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Abstract—The maximum diversified demand is an important
factor to consider when utilities design new distribution systems.
To estimate the maximum diversified demand, engineers need
to make an estimate of the diversity factor (DF). In practice,
electricity utility companies usually estimate the DF using DF
tables, in which the DF changes with the number of customers.
However, besides the number of customers, DF also depends
on many other factors, such as customer type, weather, demo-
graphics, and socioeconomic conditions. Ignoring these factors,
DF tables have limited accuracy. In addition, engineers cannot
interpret or understand how various factors affect the DF. In this
paper, by leveraging supervised machine learning algorithms, we
build comprehensive DF prediction models that take a variety of
factors into account. These models show high prediction accu-
racy and interpretabilty when applied to real-world distribution
feeders. Using the interpretation method called SHapley Additive
exPlanations, we quantify the importance of different features in
determining DFs. Finally, we offer more insights into how various
factors affect DFs.

Index Terms—Distribution circuit planning, diversity factor,
interpretable machine learning, SHapley Additive exPlanations,
supervised machine learning.

I. INTRODUCTION

The maximum diversified demand, i.e., the maximum of the
sum of demands of a group of electricity customers over a par-
ticular period, is one of the most important factors to consider
when utilities develop plans to build new distribution systems.
It is very important to the design of both network topology
and the ratings of equipment. Underestimating the maximum
diversified demand will cause reliability and safety issues. If
the peak load exceeds the circuit rating, then equipment such
as transformers and cables will be overloaded, which results
in shortened lifespan and premature failure. Overestimating
the maximum diversified demand often leads to installation of
oversized distribution system equipment and under-utilization
of system assets.

The maximum diversified demand is usually estimated by
using the maximum noncoincident demand and the diversity
factor (DF), which is defined as follows [1]:

Maximum noncoincident demand

Diversi tor = ¢!
iversity factor Maximum diversified demand b

Here, the maximum noncoincident demand is the sum of each
individual customer’s maximum demand. Obviously, DF is
greater than or equal to 1. A higher DF means that customers
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have more diversified usage patterns and their individual
maximum loads have less coincidence in time. In general, as
the number of customers increases, DF first increases and then
gradually levels off.

The maximum noncoincident demand is straightforward to
estimate because an individual customer’s maximum demand
is the customer’s electric service rating, which can be obtained
by survey. Thus, the key problem is how to estimate DF.

In practice, DF is often estimated based on a simple
relationship. Engineers estimate DF by referring to a DF
table, in which the DF value varies with the number of
customers. The DF table is often derived by utilities through
load surveys from a few groups of customers in the distribution
system [1]]. In the load survey, the maximum demand of each
individual customer and their maximum diversified demand
are recorded. However, DF is influenced by many other factors,
such as customer demographics and climate conditions. Thus,
DF tables, which ignore these factors, have limited accuracy.
Furthermore, engineers cannot interpret or explain how various
factors affect the DF.

Researchers have studied different aspects of DF and de-
mand diversity. However, very few research efforts have fo-
cused on developing comprehensive and interpretable predic-
tion models for DF which account for various input features
[2]]. Early research [3] models DF as a function of the number
of customers. Different DF functions are derived based on time
of the year, day of the week, and whether electric-heating
is used. Ref. [4] studies the distribution of DF and shows
that DF follows gamma distributions rather than Gaussian
distributions. Ref. [S]] studies a metric called after-diversity
maximum demand of n customers (ADMD™), which is closely
related to DF and demand diversity. This work shows that
ADMD?" is affected by customers’ household occupancy and
wealth levels. In [6]], a variable truncated R-vine copulas
method is used to estimate the maximum diversified demand of
customers of different household occupancy and wealth levels.

In this paper, we develop comprehensive models based on
supervised machine learning algorithms to predict the DF of
distribution feeders, accounting for a variety of influential
factors, such as customer type, weather, demographics, and
socioeconomic conditions. The machine learning algorithms
not only yield high prediction accuracy on real-world distri-
bution feeders but also provide useful insights on how input



features influence DF. Using the interpretation method called
SHapley Additive exPlanations (SHAP) [7], we identify the
key factors that affect the DF.

The rest of the paper is organized as follows: Section
explains the machine learning methodologies used to develop
and interpret the DF prediction model. Section [lII| summarizes
the real-world distribution feeders and influential factors used
to construct the dataset for the DF prediction model. Section
shows the DF prediction performance and provides inter-
pretation for the model. Section |V|states the conclusions.

II. MACHINE LEARNING METHODOLOGIES FOR DF
PREDICTION MODELS

We adopt supervised machine learning algorithms to build
the DF prediction model, which maps the input features to the
output (i.e., DF of a feeder). In supervised machine learning,
a model learns its mapping from a training dataset, which
are samples of correct input-output pairs. Mean square error
(MSE) is used to measure the model prediction performance.
The details of DF prediction model development are provided
in Section To interpret the prediction model, we use a
method called SHAP [7] to identify the most important input
features that influence the DF prediction. The details of SHAP
are explained in Section [[[-B

A. Supervised Machine Learning Algorithms

To estimate DF of distribution feeders, we adopt 3 types of
supervised machine learning algorithms: feed forward neural
network (FNN), gradient boosted trees (GBT), and random
forest. We choose these 3 algorithms, because they are widely
used in the machine learning field and achieve great results in
various problems. We further improve FNN by adding dropout
layer(s) and introducing network pruning. Thus, in total,
we deploy 6 algorithms: FNN, FNN+dropout, FNN-+pruning,
FNN-+dropout+pruning, GBT, and random forest. The overall
framework for building and evaluating DF prediction models
consists of 3 steps. First, we preprocess the dataset and
split it into training, validation, and test datasets. Second,
for each of the 6 models, we train the model and tune the
model’s hyperparameters. Third, we evaluate the performance
of the 6 prediction models using the test dataset. Due to the
underlying randomness in the training and model initialization
processes, we train each model 10 times and report the average
model prediction errors. The technical details related to the
supervised machine learning algorithms are presented below.

1) FNN: Our base FNN consists of three components: an
input layer of 45 nodes, three hidden layers of 200 nodes, and
an output layer of 1 node. Each node has directed connections
to the nodes of the subsequent layer and each connection
has a corresponding weight. In the input layer, each node
corresponds to an input variable. In the hidden layer, each
node takes in the weighted sum of nodes from the previous
layer (plus a bias term) and produces an output value by the
ReLU activation function. The output layer is a linear function
of the nodes in the last hidden layer. When training FNN and
its variants, we use early stopping with patience=200 epochs.

2) Network Pruning: Pruning removes unnecessary
branches to improve the performance of FNN. We adopt an
innovative pruning method called lottery ticket [8], [9]. This
pruning method comprises the following steps: a) randomly
initialize a neural network with weights w;; b) train the neural
network, reaching the trained weights wy; ¢) prune p% of
the weights that have the smallest w; in magnitude, i.e., set
the pruned weights to 0; d) reset the unpruned weights in wy
to their initial values in w; (i.e., winning tickets) and retrain
the network while keeping the pruned weights to 0. It is
believed that pruning produces a sparse neural network with
less connections, which can reduce overfitting. In addition,
the winning tickets may discover a good initialization point
that already lies in the randomly initialized network.

3) GBT: GBT is an ensemble learning method, which
consists of a series of decision trees. The summed/aggregated
prediction of the decision trees are used as the output. The
GBT is trained by adding one tree a time while keeping the
existing trees unchanged. Each new tree is trained using a
gradient descent procedure so that the loss of the ensemble
model is reduced. To avoid overfitting in the training process,
we use early stopping technique with patience=200 to decide
when to stop adding trees.

4) Random Forest: Random forest is another widely used
ensemble learning method. It outputs the average prediction
of multiple decision trees, which are fitted to various subsets
of the dataset. Different from GBT, which trains a new tree
based on the existing ones, random forest trains trees that are
almost independent.

5) Data Preprocessing and Split: Every numerical input
feature is standarized, i.e., centered and normalized by its stan-
dard deviation. This standarization shifts and rescales feature
variables to similar ranges and thus improves convergence
in the training process. Every categorical feature variable is
represented by one-hot encoding. In our problem, only the
climate zone featue is a categorical variable. For input features
that are linearly dependent, we remove one of them. For
example, the ratios of population in different age ranges sum
up to 1. Thus, we remove one of the ratios. Such features,
called redundant features, are highly correlated with other
features, so they do not provide relevant information. It is
a common practice to remove them in machine learning.

64% of the samples in the dataset are used to train the
prediction models. 16% of the samples are used as the vali-
dation dataset for hyperparameter tuning and early stopping.
The remaining 20% of the samples are used as the test set to
evaluate the models’ prediction performance.

6) Hyperparameter Tuning: Hyperparameters are the set-
tings and parameters that control the configuration and influ-
ence the performance of machine learning algorithms. Fol-
lowing the common pratice, we use the validation dataset
to tune the hyperparameters. Under different hyperparameter
settings, each model is trained 10 times using the training
dataset and then evaluated on the validation set. For each of
the 6 prediction models, the hyperparameter setting with the
lowest average validation MSE is selected.



The possible hyperparameter settings for all 6 models are
listed in Table |} Every combination of the hyperparameter
settings is examined when tuning the hyperparameters. For the
model FNN+Dropout, all setting combinations between FNN
and dropout are examined. For the FNN+Pruning model and
FNN+Dropout+Pruning, we fix the hyperparameter settings
already tuned for FNN and FNN+Dropout, and only tune the
network pruning rate p%.

TABLE I: Summary of Hyperparameters and Their Settings

Model [ Hyperparameters and Their Possible Configurations
Batch size = [5,10,50,100]; optimizer = [Stochastic Gradi-

FNN ent Descent, RMSprop, Adagrad, Adadelta, Adam, Adamax,
Nadam].

Dropout Input layer dropout ratio = [0.05, 0.1, 0.15, 0.2, 0.3]; hidden
P layer dropout ratio = [0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5].
Pruning Pruning rate p% = [25%, 50%, 75%, 85%, 95%, 98%, 99%].

Max. tree depth=[2,4,6,8]; learning rate = [0.01, 0.02, 0.05,
GBT 0.1]; subsample ratio of training instances = [0.3, 0.4, ..., 0.8];
subsample ratio of features for each split = [0.1, 0.2, ..., 1].
R Number of trees=[5,10,50,100,500,1000,5000,10000,100000];
andom . .
Forest max. number of features to consider for the best split = [m,
log, (m), v/m, m/3] (m: the total number of features).

B. The SHAP Method for Model Interpretation

It is important to understand how DF of a distribution feeder
is influenced by different features. In this paper, we use the
SHAP [7] framework to interpret the DF prediction models.
The SHAP framework has a solid theoretical foundation in
cooperative game theory. It calculates each input feature’s
contribution to the model’s output so that the influence on
the output can be fairly distributed to the input features. The
SHAP framework is model-agnostic, meaning that it does not
require the knowledge of the model structure. Thus, SHAP
works well with all types of prediction models.

The inner workings of SHAP can be explained as follows.
Suppose we have a prediction model y = f(x), where
x = [x1,...,2Tm,] is the input feature vector and y is the
model output. All the samples of x form a set X. For any
sample () = [xgl), ...,xg,?} € X, SHAP calculates a vector
oV = [gzﬁgi), ceey gzsﬁf)] representing the contribution of each input
feature in (), such that 37", d)gl) =f(2D)=Fpex (f(x)).
Here, Ezcx (f(x)) is the expectation of f(x). We call d);’)
the SHAP value of input feature j for sample i. For more
details of SHAP, please refer to [7].

Note that SHAP is a local method, which explains a model
prediction based on each individual sample input. Thus, in
this study, the same input feature has different SHAP values
for different distribution feeders. By examining these SHAP
values, we can discover which features have a significant
contribution to the prediction output and how a input feature’
contribution varies among different feeders.

In this paper, to interpret a prediction model, we calculate
the SHAP value of all input features for every feeder in the
dataset. Since each model is trained 10 times, the average
SHAP value is reported as the final result.
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(a) Histogram of # of customers. (b) Histogram of DF.

Figure 1: Overview of feeders and DFs in the dataset.

III. DESCRIPTIONS OF REAL-WORLD DISTRIBUTION
FEEDERS AND INPUT FEATURES FOR DF PREDICTION

In this section, we first describe the distribution feeders used
in the case study and summarize the statistics for their DFs.
Then, we describe the input features used to predict DFs.

The case study covers 3,952 distribution feeders managed
by Southern California Edison. In total, these feeders serve
over 4,000,000 customers. The histogram of number of cus-
tomers for the feeders is shown in Fig. Using one year of
hourly kWh readings of customers in 2015, we calculate the
DFs of all distribution feeders according to equation (I)). The
histogram of DF is shown in Fig. [Tb]

We collect various types of input features to predict DFs of
distribution feeders. The input features can be categorized into
three classes: feeder characteristics, customer demographic
and socioeconomic conditions, and environmental factors. The
input features are summarized in Table[[I] The sources of these
input features are provided below.

1) Feeder Characteristics: Input features in this class rep-
resent the properties of the distribution feeder, which include
number of customers, customer type, and the size and penetra-
tion rate of solar PV systems. These information is provided
by Southern California Edison.

2) Demographic and Socioeconomic Conditions: Input fea-
tures in this category are collected from the National Historical
Geographic Information System (NHGIS) [10]. NHGIS orga-
nizes customers’ data by census block groups (CBGs) instead
of feeders. Thus, we derive the input feature values of each
distribution feeder by matching the feeder’s service area to the
geographic locations of CBGs.

3) Environmental Factors: The California Energy Commis-
sion provides the climate zone information for each zip code
[L1]. By mapping the distribution feeders’ locations to zip
codes, we can obtain the climate zone information of each
feeder. The weather data is collected from the National Centers
for Environmental Information [[12], which organizes weather
data by weather stations. By mapping the feeder locations
to weather stations, we can obtain the weather data for each
feeder. The elevation of distribution feeders are collected from
U.S. Geological Survey by queries using feeder locations.

IV. DF PREDICTION PERFORMANCE AND
INTERPRETATION OF THE MACHINE LEARNING MODEL

In this section, we first present the DF prediction perfor-
mance of different machine learning models. Then, we quan-



TABLE II: Summary of Input Features

Class [ Feature Type [ Feature Description
" No. of Customers Number of customers in each feeder.
3 Ratio of residential customers, ratio of
5 -2 Customer Type ial
25 commercial customers.
53 Ratio of customers with solar PV and
= £
£ Solar PV average solar PV size of commercial and
© residential customers, respectively.
Average age, ratio of population in 4
Ace groups: child age (<5 years), school age
g (6~17 years), work age (18~61 years),
retired age (> 62 years).
Ratio of population in 4 educational
. levels: lower than college, less than 4
Education

years’ college, bachelor’s degree, higher
than bachelor’s degree.

Average No. of rooms of a housing unit.
Average household income, ratio of pop-
ulation in 3 income levels: <$34,999,
$35,000~$149,999, >$150,000.
Population of each feeder’s CBG.
Occupancy ratio of housing units.
Ratio of families with children.

Ratio of population in 4 conditions: em-
ployed, unemployed, army, not in labor.
Building climate zone of California.
Annual avg. of daily max. and min.

Average Room No.

Annual Income

Population
Occupancy Ratio
Child Family Ratio

Demographic and Socioeconomic Conditions

Employment

Climate Zone

= temperature; annual highest, lowest,
g @ and avg. temperature; No. of days
£ £ Weather with max. temperature>90°F, >70°F,
.guf and <32°F; No. of days with min.
5 temperature<32°F and <O0°F; heating
degree days; cooling degree days.
Elevation Elevation of feeders’ service area.

tify the features’ importance in determining feeder DF. Lastly,
we analyze how different features affect the DF prediction and
provide more insights into how DF is determined. The case
study is conducted in Python on an Oracle-Sun workstation
with 2.3 GHz Intel Xeon CPUs and 128 GB of RAM.

A. Prediction Performance of Machine Learning Models

The MSEs of 6 machine learning models on the test dataset
are shown in Fig. 2| Each model is trained 10 times with the
tuned hyperparameter setting and the MSEs are represented
by the box plot. The red bar represents the median value,
and the green diamond marker represents the mean value.
The variance of DF in the test dataset is 0.22811. The MSE
of the benchmark linear regression model is 0.13445. As
shown in the figure, all 6 supervised machine learning models
yield more accurate DF prediction results than the linear
regression model. Among all tested models, random forest
has the lowest average MSE. The figure also shows that
pruning improves the accuracy of FNN and FNN-+dropout
models. FNN+dropout+pruning and GBT have a similar level
of performance. All 6 machine learning models take less than
1 second to predict the DFs of the 3,952 feeders. Since DF
prediction is often conducted as part of the distribution system
planing process, the model training can be done off-line.

B. Importance of Different Feature Types

We calculate the SHAP values of all input features and
samples for the random forest model, which yields the best
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Figure 2: Box plot of the DF prediction MSEs of 6 models.

Random Forest -

prediction results. We then derive the feature type importance
as follows. First, for each feeder, we sum up the SHAP values
of input features by feature type. Then, for each feature type,
we calculate the average absolute value of the SHAP values
over all feeders, which quantifies the importance of each
feature type in determining DFs. Fig. [3| shows the importance
of all feature types, ranked from the highest to the lowest. The
most influential feature types are customer type, weather, solar
PV, climate zone, and number of customers.
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Figure 3: Feature importance of the random forest model

C. Impacts of Input Features on DF Prediction

For the random forest model, we select a few features with
high importance and analyze their effects on DF prediction.
To do so, we plot the SHAP values of a feature vs. the values
of the feature for all distribution feeders in Fig In the
subfigures, each circle represents a feeder, and we can see
how a feature’s contribution to DF (i.e., the SHAP value)
changes when the feature’s value changes. To demonstrate the
interactions between features, we color the circles by the ratio
of residential customers in some subfigures.

1) The Impacts of Customer Type: In the testing feeders,
all customers are either residential or commercial. As shown
in Fig. fla] feeders with higher ratio of residential customers
tend to have higher DFs. This phenomena can be explained as
follows. The electricity usage patterns of commercial buildings
are less diversified because their demands usually follow
normal business schedules. For example, restaurants, depart-
ment stores, and cinemas often have similar operation hours.
In comparison, residential customers often have drastically
different electricity usage patterns due to the randomness of
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Figure 4: Features’ contribution to the DF prediction of the
random forest model.

residents’ activities. Therefore, a typical feeder’s DF increases
as the ratio of residential customers increases.

2) The Impacts of Annual Average Temperature: In Fig.[Ab]
as the annual average temperature increases, the feeder DF
decreases, which can be explained as follows. Southern Cali-
fornia Edison is a summer peaking utility. The air-conditioning
load is a significant component of the peak demand on
very hot summer afternoons. In the service area with higher
annual average temperature, the individual customer’s annual
maximum demand is more likely to occur during the same
time periods, i.e., hot summer afternoon hours. Thus, the
distribution circuits with higher annual average temperature
tend to have lower DFs. An interesting observation is that the
SHAP values significantly decrease when the annual average
temperature exceeds 66 °F. This observation is consistent with
the building standards and convention in the United States,
which state that a building needs to be cooled when the daily
average ambient temperature is above 65 °F. We can also see
that feeders with lower residential customer ratios are less
sensitive to the change of annual average temperature.

3) The Impacts of Climate Zone: There are 9 climate zones
in the study area. The small figure inside Fig. shows the
areas covered by different climate zones. Fig. shows the
SHAP values of different climate zones for all the feeders.
All other things being equal, zone 6 tends to have higher DFs.
This is because, compared to other climate zones, zone 6 is a
coastal region with a mild climate, lower summer temperature,
and lower air-conditioning load during summer months. Thus,
feeders located in zone 6 should have higher DFs based on
the arguments stated in Section [V-C2] It can also been seen
from Fig. {c| that the DFs for feeders with lower residential
customer ratios are less sensitive to the change in climate zone.

4) The Impacts of Number of Customers: Fig. shows
the impacts of number of customers on DFs. As shown

in the figure, distribution feeders with a higher number of
customers tend to have higher DFs. The saturation effect
kicks in when the number of customers reaches a certain
level. These observations are consistent with the relationship
between number of customers and DFs in a typical DF table.
Finally, it can also be seen from Fig. dd|that the DFs of feeders
with lower residential customer ratios are more sensitive to the
change in the number of customers.

V. CONCLUSION AND FUTURE WORK

We build a suite of DF prediction models based on super-
vised machine learning techniques, which take a comprehen-
sive list of input features into consideration. When applied to
real-world distribution feeders, these models produce highly
accurate DF prediction results. Using SHAP, a unified frame-
work for interpreting machine learning models, we discover
that the most influential input features in determining DFs
are customer type, weather, solar PV penetration rate and
size, climate zone, and number of customers. The SHAP
values of different input features also offer useful insights into
how different input features affect the prediction of DFs. In
practice, the proposed DF prediction models are useful tools
for designing the distribution system and sizing distribution
system equipment. In the future, we plan to evaluate the impact
of electricity rate design (e.g., time-of-use rate) on DFs.
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