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Abstract—Covered conductors are widely adopted in the
medium to low voltage systems to prevent faults and igni-
tions from events such vegetation contacting with distribu-
tion lines and conductors slapping together. However, such
events could cause partial discharge in deteriorated insulation
system of covered conductors and ultimately lead to failure
and ignition. To prevent power outages and wildfires, it is
crucial to detect partial discharges of overhead power lines
and perform predictive maintenance. In this paper, we develop
advanced machine learning algorithms to detect partial discharge
by using measurements from high frequency voltage sensors.
Our innovative approach synergistically combines the merits of
spectrogram feature extraction and deep convolutional neural
networks. The proposed algorithms are validated using real-
world noisy voltage measurements. Compared to the benchmark,
our approach achieves notably better performance. Furthermore,
the classification results from the neural networks are interpreted
with an occlusion map, which identifies suspicious time intervals
when partial discharges occur.

Index Terms—Partial discharge, fire prevention, short-time
Fourier transform, convolutional neural networks.

I. INTRODUCTION

Power line faults that result in sparks and ignite nearby tree

branches contributed to the increase in the number of wildfires

in the United States. California had the worst wildfires in the

nation in 2018 with damages valued at more than 3.5 billion

dollars [1]. It has been confirmed that the deadly Camp Fire in

2018 was caused by the power line owned by Pacific Gas and

Electric Company (PG&E) [2]. Although enhanced vegetation

management can significantly reduce wildfire risks, it can be

very labor-intensive and costly.

An alternative solution to mitigate power line caused ig-

nitions is to replace existing bare conductors with covered

conductors. Upgrading bare conductors to covered power lines

will significantly reduce fault current from a few amps to

milliamps when a foreign object contacts with power lines. In

most cases, this reduction in fault current and energy prevents

ignition [3]. However, when vegetation comes in contact

with covered conductors or conductors slap together, partial

discharge could occur in deteriorated insulation systems. A

partial discharge (PD) is a small electrical spark that occurs

across the surface of insulating material where the electric

field strength exceeds the breakdown strength of the insulating

material [4], [5], [6], [7]. Thus, it is crucial to detect PD

incidents and prevent ignitions and deadly wildfires.

The PD detection problem has been extensively studied

in the existing literature from many different aspects. A

detailed description for the mechanism and phenomena of

PDs in capacitors, transformers, rotating machines, and power

cables is provided in [7], [8]. Comprehensive experiments

and measurements for PD events are performed with various

sensors such as inductors and Rogowski coils [6], [7], [8].

The PD detection problem is formulated as a classification

problem and solved with different methods such as statistical

learning, signal processing algorithms, support vector machine

[9] and artificial neural networks [5]. Deep neural networks

were applied to detect PD problems in recent years. The 1D

convolutional network is adopted in [10] to detect PD. The

long short-term memory model is used to classify different

categories of PD signals in power electronic devices [11].

However, most PD detection methods are developed and

evaluated based on high quality signals measured in laboratory

environment. Recognizing this problem, researchers recently

started investigating PD detection with real-world noisy mea-

surements from high frequency voltage sensors. By selecting

input features based on domain knowledge and adopting the

random forecast algorithm, state-of-art performance for PD

detection was achieved and verified in field deployment [3].

In this paper, we propose an innovative data-driven approach

to detect PD. The unique contributions of our proposed

method are three-fold. First, we overcome the challenges

associated with noisy real-world measurements by deploying

high-pass filters and discrete wavelet transform (DWT) to

remove the 50Hz base waveform and suppress high-frequency

noise. Second, we convert the PD detection task from a

time series classification problem to an image classification

problem with short-term Fourier transform. Compared to the

ad hoc feature extraction approach [3], our proposed feature

transformation from 1D voltage time series to 2D spectrogram

better preserves useful information in the high-dimensional

dataset. Third, by combining two state-of-the-art convolutional

neural networks to solve the image classification problem, our

proposed algorithm significantly improves the PD detection

performance. Finally, by plotting the occlusion map of the

trained neural networks, we identified time intervals when
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partial discharges may occur.

The remainder of the paper is organized as follows. Section

II describes the PD detection problem and provides a detailed

description of the real-world noisy voltage sensor data. The

technical methods for the PD detection problem are presented

in Section III. Section IV conducts a comprehensive validation

study for the benchmark and our proposed algorithms. Section

IV concludes the paper.

II. PROBLEM DESCRIPTION

This paper aims to detect the presence of PD in high

frequency noisy voltage measurements. With sufficient PD

labels, the PD detection problem can be naturally framed

as a time series classification problem. In this section, we

first provides an overview of the real-world high frequency

voltage sensor data. Then, we discuss the technical challenges

associated with detecting PD events in the real-wold dataset.

A. Data Description

We gather the power line voltage measurements from an

online repository [12] to perform PD detection. The voltage

measurements are recorded by inductors installed on three-

phase power lines of a electric grid whose operating frequency

is 50Hz. The voltage measurements are collected from all

three phase wires simultaneously. Each single-phase voltage

signal sample contains 800,000 measurements over 20ms,

which covers a full operating cycle. The voltage magnitudes

are scaled and rounded into integers within the range of

[−128, 127]. Two voltage signal samples with and without PD

are plotted in the Fig. 1. The binary labels indicating whether

PDs occur during the individual voltage time series are also

provided. The PD detection problem is framed as a binary

classification task.

Fig. 1. Sample voltage measurements with and without partial discharges

B. Technical Challenges

There are three major technical challenges in detecting

PDs based on noisy and high frequency real-world voltage

measurements and label data. First, the real-world voltage

measurements contain a significant amount of background

noise from several sources including radio emissions, power

electronic devices, lightning, switching operations, and corona.

In addition, the background noise time series of different

voltage sensors do not have a consistent pattern. For exam-

ple, radio stations with varying distances to the power lines

broadcast radio waves during different operating hours.

Second, the dimensionality of the voltage signals is sig-

nificantly larger than the sample size. There are only 8,712

voltage time series available and each signal contains 800,000

measurement points. Moreover, the information regarding the

start and end times of PD events in the time series are not

available. In general, it is extremely difficult to identify the

sub-sequences associated with PDs in each raw voltage time

series. Therefore, in order to avoid over-fitting, we must retain

the most distinguishable features for PD events by performing

effective data preprocessing and dimensionality reduction.

Third, the sample dataset is highly imbalanced, where

only 525 or 6% of the voltage signals have PD events. The

highly imbalanced dataset can easily lead to either high false

negatives or high false positives.

III. TECHNICAL METHODS

The overall framework of data-driven PD detection contains

three stages, signal preprocessing, data conversion, and sample

classification. In the first stage, we apply signal preprocessing

techniques on the raw voltage time series data. In the second

stage, we convert 1D preprocessed voltage time series into

2D spectrogram with short-time Fourier transformation. In the

third stage, we adopt convolutional neural networks to classify

the images corresponding to voltage time series into groups

with and without PDs.

A. Signal Preprocessing

In the signal preprocessing stage, we first take two de-

noising steps to remove the normal frequency component of

the voltage data and the high frequency background noise. At

last, we apply max-pooling to reduce the dimensionality of

the high frequency voltage time series.

The 50Hz component of the voltage signal is always present

in a voltage waveform. Thus, it does not provide any useful

information for the PD detection problem. To remove the 50Hz

component, we first normalize the original voltage signal with

integer data points into the range of [-1, 1] and then pass it

through a discrete-time high-pass filter:

xh[n] = αxh[n− 1] + α(x[n]− x[n− 1]), (1)

where xh[n] and x[n] denote the n-th output and input data

points of the high-pass filter. The coefficient α is set as

1/(2πΔTfc), where ΔT is the time interval between sampled

points and fc is the cut-off frequency.

To remove the high frequency background noise in the

voltage time series without diminishing the voltage spikes of



interests, we apply the discrete wavelet transform (DWT) [13]

to decompose the outputs of the high-pass filter as follows:

x[n] =
1√
N

∑

k

Wφ[j0, k]φj0,k[n]

+
1√
N

∞∑

j=j0

∑

k

Wψ[j, k]ψj,k[n], (2)

where x, φ, and ψ are the discrete signal, the scaling function,

and the wavelet function. n denotes the index of data points.

Wφ and Wψ are the approximation and detail coefficients.

j ∈ � is the dilation factor and j0 is the base dilation

factor. k ∈ � is the translation integer. In practice, the DWT

can be implemented by passing the discrete signal through a

cascaded filter bank. The high frequency background noise can

be suppressed by truncating the detail coefficients [14]. The

truncation threshold at dilation level j is calculated based on

the mean absolute deviation (MAD) of the absolute value of

the detail coefficients Wψ[j, ·] as [15]:

thresholdj =
1

0.6745
MAD(|Wψ[j, ·]|)

√
2 lnN (3)

where N is the number of data points in the time series.

The denoised voltage signals have extremely high resolu-

tion. To reduce the dimensionality of the voltage timer series,

we perform max-pooling, which keeps the largest value for

every Nm points. This operation maintains the positive spikes,

which could indicate the presence of PDs [3].

B. Convert 1D Signal to 2D Image

PDs could occur in any subsequence(s) of the preprocessed

1D voltage time series. Thus, it is more appropriate to extract

information from each of the subsequences in the prepro-

cessed voltage time series. This can be achieved by short-

term Fourier transform (STFT), which has been widely applied

in sound recognition and enhancement [16]. The discrete

STFT first divides the whole time series into subsequences

with overlap. Then, the discrete Fourier transform (DFT) is

performed with the multiplication of the window function

and the signal function over each subsequence. Denote the

subsequence size or window size as Nw and the overlap

between consecutive subsequences as No. The hop size is

defined as Nh = Nw − No. For the i-th subsequence, the

STFT is performed as:

X(i, k) =

Nw−1∑

m=0

x[iNh +m]w[m]e
−j2πkm

N , 0 ≤ k ≤ N − 1,

(4)

where X(i, k) is the STFT of subsequence i with frequency

k, w is the window function with window size Nw.

Now, we can finally convert the 1D voltage time series into

a 2D image representing the log-spectrogram, which can be

obtained by spectrogram(i, k) = log(|X(i, k)|2).

C. Convolutional Neural Networks

The PD detection task is converted from a time series

classification problem to an image classification problem in

Subsection III.B. In this subsection, we use convolutional

neural networks (CNNs) to detect if PD is present in the

images, which correspond to the sample voltage time series.

We adopt two state-of-the-art CNNs, VggNet[17] and ResNet

[18] to solve the image classification problem.

The architectures of the two CNNs are shown in Fig. 2.

Both networks are constructed with basic building blocks. The

basic building block of VggNet consists of stacked convolution

layers and a max-pooling layer, where the max-pooling layer

is used to gradually reduce the feature dimensionality. The

ResNet introduces a by-passing route from the input to the

output in the basic building block by hypothesizing that it is

easier to optimize the residual mapping F (xi,Wi) = oi − xi,
where xi, oi and Wi are the input, output and weights of

the block respectively. For both building blocks, the batch-

normalization [19] layer is adopted after each convolution

layer to relieve the gradient vanishing problem for deep

networks and accelerate network training.
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Fig. 2. Network architecture and building blocks of VggNet and ResNet

The fully connected (FC) hidden layers with ReLU acti-

vation function are used right after the building blocks. For

the binary classification problem, the output layer is a single

neuron with the Sigmoid activation function. The binary cross-

entropy is chosen as the loss function to be minimized:

floss = −y ln(ỹ)− (1− y) ln(1− ỹ) (5)

where y ∈ {0, 1} is the true binary class label and ỹ ∈ [0, 1]
is the prediction from the neural network.

As the dataset is highly unbalanced, we create balanced

training batches, which contain the same amount of samples

with and without PD patterns. To further reduce the variance



of the model ouptut, a bag of the ResNets and VggNets are

trained and ensembled [20] with average voting.

IV. NUMERICAL STUDY

A. Benchmark Algorithms

The empirical feature extraction based approaches [3], [21]

are selected as two of the benchmarks. In these approaches,

every signal is divided into four parts, which are the 90 degree

sub-intervals of a sine wave. The expert selected statistics of

the peaks in all four parts are used as features, which include

the mean value, max value and max ratio between consecutive

peaks. The random forest [3] and gradient boosted tree [21]

are used as classifiers in the benchmark.

Dense
Layer

Attention 
Layer

LSTM
Layer

Input

Output

+ + +

Fig. 3. Network architecture of bi-directional LSTM with attention mecha-
nism

The LSTM model is selected as the third benchmark,

which is one of the most popular neural networks to deal

with time-series data. The network architecture of recently

proposed bi-directional LSTM with attention mechanism [22]

is adopted and depicted in Figure 3. The bidirectional LSTM

consists of two layers, one layer with the same direction

as the data sequence and the other layer with the reverse

direction. The bidirectional structure has been shown to further

improve the performance in both time-series classification

[23] and regression [24] problems. Moreover, the attention

mechanism allows modeling of dependencies without regard

to their distance in the input or output sequences. The LSTM

model typically could handle time series with hundreds of time

steps. To apply the LSTM model for the voltage measurements

with 800,000 time steps, we divide each signal into 160

periods. The statistics of the peaks are collected over the 5,000

measurement points of each period. The sizes of the LSTM

layer, attention layer, and fully connected layer are chosen

as 256, 512, and 256 respectively. Note that the ensemble

method is also adopted. To be consistent, it is applied for

all the benchmark and the proposed algorithms.

B. Data Pre-processing and Model Training

The normalized voltage measurement data is accompanied

with the 50Hz base waveform and high frequency noises as

shown in the first subplot in Fig. 4. The denoised voltage

measurements of the sample signal is shown in the second

subplot, where the base waveform and the high frequency

noise are removed and suppressed successfully with the high-

pass filtering and DWT. The cut-off frequency of the high-pass

filter is fc = 100Hz and Haar wavelet is chosen for the DWT.

Fig. 4. Preprocessed voltage time series data

As shown in the third subplot, the dimensionality of the

original signal is reduced from 800,000 to 16,000 with max-

pooling over every 50 data points. At last, the STFT transforms

the 1D signal into a 2D spectrogram with a dimensionality of

(201, 196) by performing DFT on every 400 data points with

hop size 80. As shown in the last subplot, the spectrogram

extracts features in both frequency and time domains.

The ResNet with 18 layers (ResNet18) and VggNet with

11 layers (VggNet11) are chosen as the classifiers based on

the size of the spectrogram. To train each model, the data is

randomly split into a training set (60%), a validation set (20%),

and a test set (20%). A CNN is trained over 100 epochs with

a batch size of 128. The oversampling technique is adopted

during training to handle the unbalanced classes issue, where

the same amount of samples with or without PDs are collected



in each batch. The model version with the best Matthews

correlation coefficient (MCC) in the validation set is chosen

as the final model for testing purpose. Moreover, the best

threshold turning the continuous output of neural networks

to binary labels is determined by exhaustive search in range

(0, 1) with a step size of 0.001 on the validation results.

C. Performance Evaluation

Matthews correlation coefficient (MCC), a common mea-

sure of the quality of binary classification algorithms, is used

to evaluate the performance of the benchmark and proposed

algorithms. The MCC is defined as:

MCC =

TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

, (6)

where TP , TN , FP , and FN are the true positive rate,

true negative rate, false positive rate and false negative rate

respectively. MCC is deemed as a balanced measure for the

datasets with binary classes of different sizes.

The output ỹ of all algorithms are in the range of [0, 1].
The final binary class label is obtained by �(ỹ > ythr). � is

the indicator function and ythr ∈ [0, 1] is the threshold. For

each algorithm, a bag of models are trained by repeating the

5-fold cross-validation multiple times with different random

seed. The threshold that achieves the best MCC score on the

validation data using the average voting results is selected as

the optimal threshold.

D. Effect of Noise Filtering on Convolutional Networks

The CNNs are generally robust to noise. However, the

presence of noise may reduce learning efficiency for our small

dataset with only 8712 samples. Thus, we test the performance

of CNNs with and without noise filtering. For both ResNet18

and VggNet11, a bag of 20 CNNs are trained. The MCC scores

of the average voting results over the training, validation, and

testing data are as shown in Table I. As ResNet optimizes

over residuals, it is more likely to be affected by spikes and

non-Gaussian noises from a small dataset. However, the noise

filtering step could remove some useful information in the

raw data. This is why noise filtering causes the performance

of VggNet to deteriorate.

TABLE I
MCC SCORES OF PARTIAL DISCHARGE DETECTION METHODS

Method Noise Filtering Train Validation Test

ResNet18
Yes 1 0.761 0.738

No 0.997 0.693 0.656

VggNet11
Yes 0.997 0.761 0.729

No 0.979 0.769 0.744

As shown in Table I, ResNet, which optimizes the residuals

over the by-passing route is more sensitive to noise. The test

MCC score drops significantly (11%) when the noise filter is

removed. In contrast, VggNet is not very sensitive to noise

filtering. The test MCC score actually increases by 2% when

the noise filter is removed.

E. Performance Comparison
The MCC scores over the training, validation, and testing

data of the benchmark (random forest, gradient boosted tree,

and bidirectional LSTM) and the proposed algorithms are

provided in Table II. For the benchmark algorithms, the

average voting is conducted over a bag of 125 models for

the random forest and the gradient boosted tree and a bag

of 20 models for the bidirectional LSTM. The final proposed

algorithm blends the two CNNs together by average voting.

TABLE II
MCC AND ACCURACY SCORES OF PARTIAL DISCHARGE DETECTION

METHODS

Method
MCC / Accuracy

Train Validation Test

Random Forest 0.926 / 0.991 0.714 / 0.968 0.712 / 0.968

Gradient Boosted Tree 0.887 / 0.986 0.721 / 0.969 0.720 / 0.969

Bidirectional LSTM 0.919 / 0.990 0.661 / 0.959 0.621 / 0.955

Resnet18 1 / 1 0.761 / 0.973 0.738 / 0.970

VggNet11 0.979 / 0.998 0.769 / 0.971 0.744 / 0.968

Resnet18 + VggNet11 1 / 1 0.791 / 0.977 0.757 / 0.973

As shown in Table II, the accuracy scores of all methods

are very similar because the majority of the samples is without

PD. The MCC is a better performance metric for extremely

unbalanced dataset. It can be seen that the two CNNs based

methods achieve better performance than the empirical feature

extraction based methods. The PD detection performance is

further improved by blending the two CNNs and introducing

diversity in network structure. The 5.1% improvement in MCC

of the combined CNN over the gradient boosted tree is notable

considering the extremely unbalanced dataset and the small

sample size.

F. Interpretation of CNNs
The methods for interpreting CNNs include filter visual-

ization, saliency map and occlusion experiment [25]. As PD

patterns do not have any obvious or specific shapes, we adopt

the occlusion map to visualize and understand trained CNNs.

The occlusion map can be constructed as follows. For each

time step, a small portion of the image is occluded with a

mask. Then, the same classifier makes a prediction based on

the new image. At last, the occlusion map is obtained by

stitching prediction results together from shifting the mask

across the whole image. The occluding mask is chosen as a

zero matrix with size 10×10. The stride size of mask shifting

on both vertical and horizontal directions is set as 2.
Figure 5 shows the results of occlusion experiment of a

voltage signal with partial discharge (class value 1). As shown

in the third subplot, the predicted class value has a significant

dip when the mask is placed around 4.5 and 12.5 ms with

frequency range from 2000 Hz to 4000 Hz. The corresponding

time intervals in the original time series could be identified as

potential voltage signatures for PD events.



Fig. 5. CNNs interpretation with occlusion map

V. CONCLUSION

This paper proposes an innovative machine learning algo-

rithm to detect partial discharges of covered conductors. The

proposed algorithm not only helps assess the health condition

of covered power lines but also prevents potential ignitions.

By transforming the 1D voltage signal to 2D spectrogram, we

can leverage the powerful CNNs to detect partial discharges

based on noisy real-world voltage sensor data. Although the

CNNs are generally robust to noises, the noise filtering step

can improve learning efficiency and accuracy of ResNet. A

comprehensive evaluation is conducted for both benchmark

and the proposed machine learning algorithms. The evaluation

results show that our proposed algorithms achieve notably

improved MCC scores. In addition, we construct an occlusion

map of CNNs, which helps identify suspicious time intervals

when partial discharges occur.
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