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Abstract—The need to optimize the energy consumption of
commercial buildings— responsible for over 40% of US energy
consumption-has recently gained significant attention due to the
call for energy efficiency. Moreover, the ability to participate
in the retail electricity markets through proactive demand-side
participation has recently led to the development of an economic
model predictive control (EMPC) for these buildings’ Heating,
Ventilation, and Air Conditioning (HVAC) systems. The objective
of this paper is to develop a price-responsive operational model
for buildings’ HVAC systems while considering inflexible loads
and other distributed energy resources (DERs), including photo-
voltaic (PV) generation and battery storage systems. A Nonlinear
Economic Model Predictive Controller (NL-EMPC) is presented
to minimize the net cost of energy usage by the buildings’
flexible loads i.e. HVAC systems while satisfying the comfort-
level of buildings’ occupants. To improve the computational
efficiency of the HVAC system controller, we propose a linearized
economic model predictive controller (L-EMPC). The L-EMPC
is a novel approximate linearized model for the NL-EMPC and
is based on the feedback linearization technique. The proposed
approach results in a controller for the building with the reduced
complexity that accurately approximates the original nonlinear
plant dynamics with its economic constraints. The efficiency
of the proposed EMPC controllers are evaluated using several
simulation case studies.

Index Terms—Economic model predictive control, Building
thermal model, HVAC, Demand response, Feedback linearization.

I. INTRODUCTION

HE Heating, Ventilation, and Air Conditioning (HVAC)

system is responsible for a significant proportion of the
buildings’ total energy consumption [1]. Recently, as a result
of wholesale electricity market restructuring and development
of retail electricity markets, researchers have explored the
potential of commercial buildings in proactive demand-side
participation. For example, in [2], authors proposed an MPC-
based optimization approach to generate proactive demand-bid
curves for the buildings to optimally schedule their energy
consumption in response to the variable electricity prices.
The optimization of buildings’ energy consumption while
satisfying the occupants’ comfort requirements needs a price-
responsive model for building thermal loads and advanced
control methods for the HVAC systems [3]. In literature,
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model predictive control (MPC) for both tracking a desired set-
point and for economic optimization (using economic model
predictive contro/EMPC) has been employed to solve this
problem [4].

MPC is a model-based controller that requires the dynamical
model of the system to obtain optimal control inputs. The
required model of the system must be sufficiently accurate to
acquire a valid prediction of system states in a computation-
ally tractable manner [5]. Building thermal model dynamics
results in a nonlinear HVAC system model [2]. Recently, due
to the computational complexity of nonlinear MPC, linear
HVAC controllers designed with Jacobian-based linearization
of building thermal dynamics have drawn significant attention.
For example, in [6], [7], a Jacobian linearization approach is
used to eliminate the system nonlinearity, and the resulting lin-
ear model is used to design a traditional MPC for temperature
set-point tracking. In [8], authors use a feedback linearization
approach to linearize the simplified nonlinear system model
and develop a MPC technique to track set-point temperature
using water-to-air heat exchange in HVAC systems. Similarly,
assuming that the room temperature can vary in a short range,
[9] and [10] propose a MPC-based control algorithm based on
Jacobian linearization to co-schedule the HVAC system and
battery storage units to reduce energy cost while meeting the
HVAC system requirements.

Unfortunately, the Jacobian linearization approach is not
valid when the desired room temperature obtained from the
optimization problem varies significantly at different time-
steps [11]. This is usually the case when the building is not
occupied at certain times of the day and can be overheated
or overcooled to achieve the desired economic objective. This
case is of significant interest when optimizing the transacted
cost of energy by leveraging the occupancy information of
the building. Since the primary energy consumption for a
building is due to its HVAC system, significant cost savings
can be achieved using a price-responsive HVAC model that
optimally schedules heating/cooling while taking the build-
ing’s occupancy information into account, as demonstrated
using a nonlinear MPC-based optimization problem in [2].
Specifically, authors in [2] formulate a nonlinear MPC-based
optimization problem in which, based on a bilinear model,
the controller minimizes the cost of transacted energy while
meeting the HVAC system’s requirements and satisfying the
comfort level of the occupants. Similarly, by proposing a
nonlinear model for the overall cooling system, [12] presents
a MPC scheme for minimizing the energy consumption.

A nonlinear MPC control (based on the nonlinear building
thermal model dynamics) is time-consuming and may not be
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practical for real-time control, especially when co-scheduling
a large-number of buildings’ flexible resources with time-
varying price signals [3]. This calls for linearization methods
that, unlike Jacobian-based methods, can accurately model the
time-varying temperature set-points for HVAC systems while
also co-scheduling all available buildings’ flexible resources.
To address this concern, in this paper we propose an ap-
proximate linearized economic model predictive controller (L-
EMPC) for the buildings’ HVAC systems while considering
inflexible loads and other distributed energy resources (DERs)
including photovoltaic (PV) generation and battery storage
system. The performance of the proposed linearized controller
(L-EMPC) is thoroughly validated against the original nonlin-
ear MPC (NL-EMPC) using multiple case studies. The major
contributions of this paper are listed below:

« We propose a novel L-EMPC controller for the buildings’
HVAC systems. The proposed L-EMPC is based on a feed-
back linearization technique that, unlike Jacobian lineariza-
tion, linearizes the nonlinear building thermal dynamical
model without making any assumption regarding the allow-
able variations in a building’s temperature set-points. The
proposed L-EMPC model approximates the price respon-
sive behavior of the original non-linear (bilinear) building
thermal model while drastically reducing the associated
computational cost.

« We describe the L-EMPC model for a home energy manage-
ment system (HEMS) that includes models for the HVAC
system, local DERs including PV and the battery energy
storage, and controllers therein. We also include a detailed
model for the battery energy storage system and demonstrate
the effects of battery depreciation cost on the optimal control
trajectory for the HVAC system and battery storage system.

o We present a thorough validation of the proposed L-EMPC
model by demonstrating its: (1) accuracy in estimating
original non-linear plant dynamics; (2) price responsiveness
when subjected to uncertainty; and (3) price responsiveness
when including local DERs (PV and battery storage). The
results are benchmarked against the equivalent NL-EMPC
HVAC controller. We demonstrate that the proposed L-
EMPC model closely approximates the optimal control
trajectory obtained for the equivalent NL-EMPC model.

o The bilinear model for a building thermal dynamics is
compared against an equivalent Jacobian-linearized build-
ing thermal model. It is demonstrated that the Jacobian-
linearized model cannot appropriately represent the building
thermal dynamics when indoor temperature varies over a
wider range and leads to undesirable control actions that
violate designated occupants’ comfort levels.

The rest of the paper is organized as follows: Section II
describes the required component models that are used in the
problem formulation. Section III provides the mathematical
formulation for the proposed NL-EMPC and L-EMPC models
and details different methods employed for eliminating the
model nonlinearities. Section IV thoroughly validates the
proposed controllers for varying system conditions and high-
lights the benefits of the proposed L-EMPC approach. Finally,
Section V presents concluding remarks.

2

II. OVERVIEW OF THE PROPOSED FRAMEWORK

This section details mathematical models for a dynamical
model for the building thermal load, battery energy storage
systems, and photovoltaic (PV) generation panels.

A. Dynamical Model for Building Thermal Load

An accurate thermal model of a building can be obtained
using building energy performance simulation (BEPS) tools
such as EnergyPlus, TRNSYS, ESP-r [5]. Although these tools
provide a building thermal model of high precision, mathe-
matical descriptions of such models are incredibly complex
which makes them intractable to use for online optimizations
[13]. As a result, models with lower computational complexity
are commonly used in the recent literature especially when
implementing advanced model-based control methods such
as MPC. For the building thermal load, the RC network
model based on the analogy between the diffusion of heat
and electrical charge, is commonly employed by the HVAC
system engineering community [14]-[16]. This representation
provides a useful tool for conceptualizing and quantifying the
heat transfer problem. Here, we describe a bilinear model for
the building thermal dynamics derived from the RC network
model.

In general, if there are in total n nodes, m of which denote
rooms, then n — m remaining nodes denote walls. Using the
same equations as detailed in [17], to describe rooms’ and
walls’ temperatures for the sampling time K denoted by Tf.(
and Tff , respectively, and after zero-hold discretization [2],
we obtain the following state-space equations representing the
building thermal model that is bilinear in output and control
decisions:

2" = Az® + Bu” o (Ts — ") + Ed* (1)
y" = Ca" (@)

where, superscript k shows the sampling time and o is the
element-wise product operator for two vectors; d" e R is
the vector of environmental disturbance (with [ number of
the disturbance elements such as external temperature, solar
radiation and internal gains, etc.); A € R"*" B € R"*™,
C € R™" and E € R™! are matrices obtained from a
building thermal model representing time-invariant building

k
parameters (see [6], [17] for more details); zh = [Tﬂc" e R"

T
is the state vector representing the temperature of the network
nodes; u® € R™ is the vector of input variables whose
elements (uf) are air mass flow into each thermal zone;
yk = Tf € R™ is the output vector of the system; and
Ts € R™ with entries of T, representing the temperature
of supply air to the room <.

Note that a perfect prediction of the future environmental
disturbance is not possible in practice, and it results in an
uncertainty in the forecasted ambient temperature, solar radia-
tion, and other weather-related disturbances [7]. Similarly, it is
difficult to capture the exact dynamical model for a complex
system such as a building thermal load which results in an
uncertain model for the system. For a building thermal model,

both model uncertainty and prediction/forecast errors need to
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be considered when defining the dynamical model for the
system. This requires an appropriate model for characterizing
the cumulative uncertainty resulting from inaccurate dynam-
ical model and prediction error. Although different models
exists for characterizing the uncertainty in dynamical systems
[18], a majority of the recent literature concerned with MPC
for home energy management models uncertainty as bounded
input disturbances [7], [19], [20]. In this case, the MPC
controller is implemented on the known plant model that is
subjected to unknown but bounded disturbances. In this paper,
we also use the bounded disturbance model.

The system dynamics after considering prediction error
and model uncertainty for the building thermal model is
represented as the following:

D" =d" + ¢" 3)
=" = Az® + Bu* o (Ts — y*) + ED* )

where, d)k is unknown but bounded uncertainty and represents
the cumulative effects of prediction error and model uncer-
tainty. Note that, considering the bounded uncertainty is a
fair assumption. That is, based on an approximate knowledge
in accuracy of modeling the building thermal model and the
comparison of the actual and predicted ambient disturbances
of the historical data, conservative bounds can be chosen to
characterize the total effects of uncertainty on the underlying
system model.

Next, we detail the equations for the power consumption of
a HVAC system as a function of air mass flow rate. A typical
HVAC system consumes most of its power through the heater,
chiller, and fan [2]. Without loss of generality, in this paper we
only consider a cooling system. The fan power consumption,
P}, is modeled as a cubic function of air mass flow rate, ;.

= Pratedj, (’Ufi'c/Urated,;)3 (5)

where, Prgteq; and upqteq;, are the rated power and the rated
outlet air mass flow rate of the air handling unit of a HVAC
system in thermal zone ¢, respectively; and Pﬁ- , u¥ are power
consumption and the air mass flow rate (control variable) of the
fan in the thermal zone i at the sampling time k, respectively.

The cooling load is a function of the air mass flow rate,
ambient temperature, and temperature of the thermal zone ¢
as defined in [2]:

k
Pf

i

k__ Ca = k k k
P = Gop 2 [dyt + (1= d)Th - T.]  ©)
where, 7%, is the ambient temperature at sampling time ;

COP is the performance coefficient of the chiller; ¢, is the
specific heat capacity of the air; and d,, is the instantaneous
return-to-total ratio of the chiller that varies between 0 and 1.
Therefore, the total power consumption of the entire build-
ing by its HVAC system at sampling time k is given by (7).
Py =Pf+ Y Pf, )
=1

Discussion on Building Thermal Model Estimation Problem: A
dynamic model for the building thermal load can be obtained
using different model-estimation techniques such as black-
box identification [21], grey-box modeling [22], and white-
box modeling approach [23]. A black-box model is purely

3

data-driven representation for the system. A grey-box model
combines the physics-based model for the system with data-
driven estimation techniques for model parameters. A white-
box model essentially simulates the detailed physics-based
model based on the known physical properties of the system
under consideration. A grey-box model combines the best
of both worlds: data and physics-based model and hence
is increasingly becoming more popular especially for multi-
zone building simulations. A grey-box model for building
thermal load first specifies the structure based on RC network
topology and then identifies the model parameters from the
measurements or BEPS simulations. For example, in [24],
authors claim that the detailed modeling of the physical
properties of building thermal load using RC modeling ap-
proach is infeasible for a multi-zone building, and propose
a new approach for model-identification of a large multi-zone
building. Specifically, authors in [24] simulate a physics-based
model in a building simulation software that closely describes
the building thermal dynamics. The identification signals were
provided as inputs to the simulated model to obtain the high-
quality model-identification data. We would emphasize that
our proposed HVAC controller can use any of the above-
mentioned model-estimation methods that derive a bilinear
dynamical model for the building thermal load. The resulting
bilinear model can be easily integrated with the proposed
controllers to achieve an economic objective.

B. Battery Energy Storage Model

Based on [10], the dynamics for the battery energy storage
can be formulated using the state-space equations for the state-
of-charge (SOC) and the limits on the battery’s charging and
discharging power and energy as follows:

k

P
SOCH! = (1 —n)SOC* + p=2L7 ®)
bat
E~ < SocH ' < EY ©)
—d, < Py<c (10)
PF, ifPF <0
Pk _ | c,d c,d 11
d {0 otherwise an

Specifically, the battery SOC updates based on (8) where
SOC* and PC’f o4 are the SOC and charging/discharging power
of the battery at the sampling time k, respectively; 1, p,
and Qp.: are energy decay rate, round-trip efficiency, ca-
pacity of the battery; 7 is the length of sampling time.
Constraint (9) guarantees the battery SOC remains in the
safety boundary where ET and E~ specifies bounds on the
battery charging/discharging limits. Constraint (10) bounds
the battery’s maximum charging/discharging rates where d,
is the maximum discharge rate while ¢, is the maximum
charge rate. Finally, the battery discharging power is calculated
in (11) and denoted by P§~ Also, Pc’fd > 0 indicates that
battery is charging while P(ff 4 < 0 indicates that the battery is
discharging.
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Inflexible and
essential load

Fig. 1. System layout

C. Photovoltaic (PV) Generator Model

For the steady-state analysis, a PV generator is usually
modeled as a negative constant power load with a varying
load profile that depends on the solar irradiance. The PV
panel is modeled as a negative load with rated active power of
Prated and an associated multiplier o* indicating the effect of
variation in solar irradiance at the sampling time k. The PV
generation at sampling time k, Pk, is given by (12).

PEy = o*.Ppye? (12)

Discussion: It should be noted that the proposed framework
can be easily expanded to include other controllable and time-
shiftable loads within the building. Since most of the con-
trollable loads other than a HVAC system can be represented
using linear dynamics, they are easy to incorporate. Moreover,
the battery model can be generalized for other time-shiftable
loads, such as electric vehicles (EVs) and smart dishwashers.

III. MPC FOR OPTIMAL SCHEDULING OF BUILDING’S
POWER CONSUMPTION

The component layout used in this paper for a
house/building is shown in Fig. 1. It is assumed that the
building is equipped with the home energy management sys-
tem (HEMS) [25]. HEMS has the ability to participate in the
demand response program by shifting or curtailing the demand
to reduce the building’s energy consumption [26]. In order
to satisfy the building’s energy demand, HEMS can provide
electricity from any combination of PV generation, battery
storage, and electricity purchased from the retail electricity
provider [27]. The HEMS aims at optimally co-scheduling the
building’s HVAC system, inflexible loads, and all available
energy resources such that it can optimize the net cost of
transacted energy for the specified prediction window while
ensuring that the desired level of comfort is met for its
occupants. The problem is formulated as an economic model
predictive control (EMPC) problem with the objective of
minimizing the building’s total electricity usage cost for a
given price vector, whose entries indicate time-of-use (TOU)
electricity tariffs for each hour of the day subject to dynamical
load models and load satisfaction constraints. The problem
formulation is detailed below:

t+W—1
Min Price®.PE + Pricey,.PF 13
Rty ; i b Py (13)

Subject to: . . .
TMin j Tr j T]\/Iaoc (14)

4
0< Pf; < Pu,,,, (15)
UMin j uk j UMazx (16)

Pf = Pi; + PF + Pr,— P}, (17)
PE>o0 (18)

and constraints (1), (2) and (5)-(12)

The minimization of the electricity usage cost is given by
the first term of (13) while the second term minimizes the
battery depreciation cost. In (13), W is the prediction window,
Price, is the battery depreciation cost, and PX and Price®
are the electric power purchased from the retail electricity
provider and the electricity tariff at the sampling time £k,
respectively. The desired temperature range at the sampling
time k, the HVAC system power consumption limits, air
mass flow limits, the thermal building model, and the total
consumed power by the HVAC system are presented in (14),
(15), (16), (1)-(2), and (5)-(7), respectively; where variables
T?wm»T]X/[amPHMm»UMm and wp74, are minimum and
maximum range of the temperature (°C') at the sampling time
k, maximum HVAC power consumption limits, minimum and
maximum limits for HVAC mass flow rate, respectively. Con-
straint (17) determines the total power consumption where Plk'
is the consumed power by inflexible loads of the building at the
sampling time k. Note that we use element-wise operation sign
in (14) and (16) for comparing the corresponding variables
of each thermal zone (e.g. Ty, ; < TF; < Thpap.)- Also
Ui and wpg.,. are the the vectors with the same size as
uF whose entries are equal to upzs, and Upzqq, respectively.
Lastly, constraint (18) states that the total power consumption
cannot be negative; in other words, the surplus of energy
cannot be sold back to the power grid.

It should be noted that (1) is bilinear in system inputs
and outputs, which results in a nonlinear economic model-
predictive control (NL-EMPC) problem'. Due to the expen-
sive computations required to solve the NL-EMPC problem,
Jacobian-linearization methods are used extensively in the
related literature. This approach is based on linearizing the
original bilinear system around an equilibrium point. The
equilibrium point of (1) is obtained by setting the indoor room
temperature equal to the desired room temperature specified by
the building’s occupants also called set-point temperature [17].
The linearized model then tracks the set-point temperature
using MPC technique. The system dynamics for the building
thermal load using Jacobian linearization is formulated in (19).

" = Az® + Bu" o (T — Toet) + EDF (19)

where T',.; € R™ with entries of Ty, ; which represents
the set-point temperature of the room ¢. Note that using this
approach, the value of each term (for each room) of the vector
(Ts — Tset) is a constant number; thus, (19) and (2) are
in the form of linear state space equations. Although this
method shows good results for set-point temperature tracking
applications, it is not a valid approach when optimizing an
economic objective which is the focus of this paper. That is,
Jacobian-linearization is not valid when set-point temperatures

'Equations (1) and (4) are equivalent when there is no uncertainty.
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Fig. 2. Schematic for NL-EMPC controller

can vary over a wide-range due to varying occupancy patterns
when attempting to optimize electricity usage for time-varying
cost of electricity. To address the above problem, in this
paper we propose two EMPC methods. First, we solve this
problem by using a full Nonlinear-EMPC (NL-EMPC) model
that involves the nonlinear dynamical model for building
thermal loads. Next, we propose a novel Linearized-EMPC
(L-EMPC) model that is not only computationally efficient
with improved processing time, but also mimics the behavior
of the illustrated NL-EMPC model by accurately representing
the system dynamics. Our approach for linearization is inspired
by feedback-linearization methods widely used in the controls-
engineering community.

Discussion on the Nonlinear Battery Model: The current
formulation for the battery is nonlinear and adds computational
complexity to the problem. When the depreciation cost of the
battery is low and negligible (determined by battery manufac-
turing cost and battery maximum charging/discharging cycles),
the constraint (11) and second term of objective function
(13) can be eliminated. This approximation leads to a linear
state-space equation for the battery storage system. When
the depreciation cost is high, the non-linearity in the battery
storage model due to (11) can be relaxed using binary variables
as explained in the Appendix Section A. Note that we refer
to constraint (11) in the following discussions for the ease of
use; however, we use the constraints provided in the Appendix
Section A in simulations.

A. Nonlinear Economic Model Predictive Controller

A schematic view of the proposed NL-EMPC is detailed in
Fig. 2. At the beginning of each day, HEMS provides the NL-
EMPC controller with one-day ahead prediction information
including the occupancy pattern, environmental disturbances,
PV generation, forcasted power consumption by inflexible
loads, and TOU prices for the next 24 hours of the day. This
information determines d* in (1), T¥n and T4 in (14),
va and Plk in (17), and Price® in objective function (13).
The NL-EMPC algorithm solves the minimization problem
(13), with constraints (1), (2), (5)-(12) and (14)-(18) at each
sampling time k. This results in optimal mass air flow rate tra-

jectory [u’, u'*t, .. u'™" =] and battery charging/discharging
trajectory Pct’ d> Pct,'gl, e Pctzw_l for a prediction window

from time ¢ to time ¢+ W —1. After obtaining the optimal mass
air flow rate and charging/discharging trajectories, only the
first entry of these trajectories (u! and Pct’ 4) are applied to the
building thermal dynamics under the effects of uncertainty and
the battery charging/discharging equations stated by [(2), (4)]
and (8), respectively, to control the HVAC system and battery
operation. After observing the new values of the building
thermal states (z!) and SOC'™!, the NL-EMPC algorithm
moves one step forward and uses the observed values as

the new initial condition for the next step. The minimization
problem is solved again for time intervals from ¢+41 to t+W.
The same process continues for the next time-steps, and a
constrained optimization problem is solved repeatedly over
a moving time horizon to obtain the optimal control actions
using predictions of future costs and disturbances. This control
method is also known as receding horizon control approach.
Note that when all the states cannot be measured, an observer
should be designed to predict the state variables [28]. The
design of the observer is, however, outside of the scope of

EISL%lgg;'ized Economic Model Predictive Controller

In this section, we propose a novel linearized model for
economical control of a buildings’ HVAC system while con-
sidering other necessary loads and multiple of energy sources
for a building as explained in the Section III-A. Notice that
the nonlinearity in NL-EMPC described in Section III-A arise
from: (a) bilinear term in second term of the constraint (1) due
to product of its elements in the form of u¥ and y¥ ; (b) cubic
control input term (u¥)?3 in (5) for a fan power; and (c) bilinear
product of control input and output variables, u¥.y¥, in (6) for
chiller power. First, an exact linear model for the dynamical
HVAC system model is obtained using a feedback linearization
technique. Next, the nonlinear relationship between power
consumption of a fan and a chiller with the air mass flow
rate is linearized using approximation techniques. This results
in a linear EMPC (L-EMPC) formulation that can be solved
using off-the-shelf linear optimization tools. The resulting
model is not only computationally efficient but also closely
approximates the nonlinear plant dynamics for the HVAC
system.

1) Feedback Linearization of Bilinear HVAC Dynamics:
Notice that the state-space model described in (1)-(2) is nonlin-
ear due to bilinearity of constraint (1). To handle non-linearity
in (1), feedback linearization is proposed in this section where
by finding an explicit relation between the system output y*
and the control input u*, we cancel out the non-linearity of the
system. Interested readers can refer to [29] for further details
regarding feedback linearization approaches.

To linearize (1), we define the following equation:

" =ub o (T — y") (20)

where v¥ € R™ is the vector of new input variables at

sampling time k after feedback linearization whose elements
(vf) are new input variables for thermal zone 7. Then, using
(20) in (1), we obtain:

="t = Az"® + Bv* + Ed” 2D

It should be noted that in (21), state vector * remains
the same as the one in (1), and as the result the equation
(2) describes the output for the building thermal model after
implementing the feedback linearization approach.

Note that since (21) is based on the new control input vector,
the minimization problem defined in (13) should be changed
accordingly. The following equation defines the minimization
of electricity usage cost obtained after feedback linearization:

t+W—-1
]\ngn Z Pm’cek.Pﬁ
k=t

(22)
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The next step is to map the constraints (5)-(7) and (16),
which are based on u”* to the new input variables v* as
detailed in the following section.

2) Mapping Input Constraints: In this section, we address
the mapping of constraint (16) to the new input variable v".
The mapping problem, at each sampling time &, can be defined
as deriving the constraint of the following form:

kebglk g hetill o bt

el Ik for j =0,1,..,W —1

azx

(23)

where v#+ilk s the value of L-EMPC control input vector
v**7 (for future time k + j) obtained at sampling time k;

vﬁjfnlk and vljﬁﬂk are the minimum and maximum limit for
control input v**J obtained at sampling time k, respectively?.
Finding the bounds of the new control input in constraint (23)
requires to solve the following optimization problem at each

sampling time k:

vl]c\;—gn\k _ Akg'”‘lk [uk"rﬂk ° (Ts _ yk+]|k)]
wk+i
" ) o (24)
okt = Mag [ o (T, — )

whtilk
subject to
UNin S uftIE < Upar forj=0,1,...., W —1

where u**+71¥ and y*+71* represent the input u**7 and output
y**7 computed at the sampling time k. Then, by substituting
j = 0 in (24), bounds for the input control at the current
sampling time can be calculated as:

Klk g k k
”Mm—*Mum uo(Ts —y")

(25)
vﬁyfw = Maz u" o (Ts — yk)

subject to
k
Upin 2 U =X UMaz

As is clear, this optimization problem is trivial to solve due
to affine objective function in uf [30]. On the other hand, it
is difficult to compute the constraints for future input over
the prediction window [vFT1E k+2lk gkt W=1[k]  Note
that in order to solve the optimization problem formulated in
(24) to obtain the mapped constraints in (23), the estimates
of the future values of input and output variables are needed.
However, these estimates are not available until the L-EMPC
problem is solved that in turn requires the mapped input
constraints in (23) over the entire prediction window [31]. To
address this problem, we use a similar but slightly modified
approach illustrated in [32] described as follows.

At the first sampling time of solving the problem (k = 0),
we use the constant input constraints to calculate the bounds
on future control input in prediction window W as follows:

ktilk _  klk
Min — YMin (26)
kt+jlk _ K|k
Max — v]\{az

for j =0,1,2,...., W —1

where vlf\lﬁn and vlf\yfm are obtained based on (25). Hence,

the L-EMPC uses (25) and (26) to solve the optimization

2In this paper, we use variables k and j to refer different sampling times
of solving the problem. As EMPC is a multi-time optimization algorithm, at
each sampling time (k) the problem should be solved for current and future
sampling time (j = 0,1,..., W — 1).

problem formulated in (22) at the first sampling time (k = 0).
Then, for solving the problem at each of the next sampling
times (k = 1,2,...,W — 1), we use inputs calculated from the
previous sampling time to calculate the future constraints at
the current sampling time. The resulting problem is formulated
as the following:

Uﬁ;]nlk _ Agi?k[uk+jlk_l o (Ts _ yk+]‘\k—1)]
uk+i
) ) ) 27)
vﬁ}'jglck = Mazx ['u,kﬂlk_1 o(Ts — ykﬂ‘k_l)]
wk+ilk

subject to:
warin < uFP < upee forj=1,.. W —1

In (27), for each thermal zone 7 and for each j = 1,.... W —
1, if (T, — yf*ﬂlk*l) > 0, then w4, and ups,., determines

k+jlk k+j|k . . .
Unfin.i and Uhfar.io respectively; otherwise upsin, and Upsqq

: k+jlk k+jl|k i
determines v, ..., and vy, respectively. Note that bounds

for the control input at j = 0 are obtained based on (25).

3) Linearized Power Consumption Model for HVAC: As
previously mentioned, constraints (5), (6) and consequently
(7) introduced in Section II-A are based on u”. After using
feedback linearization technique, these should be redefined
based on the L-EMPC control input, vk,

First, we consider constraint (5). By modifying constraint

(20) at each sampling time k, we obtain u* based on v* over
the prediction window in (28).
ket ilk pktilk )
u :mfor]:O,l,...,Wfl (28)

where for each sampling time &k and for each j, each entry

of the right hand-side of the above equation is defined as
k+jlk

ﬁ Substituting (28) in (5), we obtain the following:

k+jlk Uf alk ’ :
Pfi = Prated; o = uraren, forj=0,.W -1
4 (29)
where Pz ¥ is the total fan power consumption computed at
the sampling time & in thermal zone ¢. Although (29) is based
on the input variable of the L-EMPC, it is non-linear due to
the cubic relation between Pkfj Ik and vf + ‘k, and inverse-
polynomial relation between P}iﬂ * and y*™7!*. hence, it
cannot be directly integrated into the L-EMPC model. To
eliminate the nonlinearity between PJ]Z +ilk and yf +ilk we use
the same method we previously proposed in Section III-B2 for
mapping input constraints as detailed below.

For the first sampling time (kK = 0), we consider the initial
value as y° € R™ (with entries of y for the vector y*), and
set it as the value of the output for the rest of the sampling
time in the prediction window as follows:

Yy IR =0 for j=0,1,..,W — 1 (30)

Then, for the next sampling times in the prediction window,
(e.g. k=1,2,...,W — 1), we use the output calculated at the
previous sampling time, y*7/5=1 as the future outputs at the
current sampling time, y**71%, stated as the following:

YT — gm0 1, W — 1 (3D
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Note that in (31) yk‘k yk‘k ' This implies that current value

of the output which obtained at the previous sampling time
(k—1) is used as the initial condition for solving the problem
at the current sampling time (k). For example at the current
sampling time (e.g. 12:00), we use the temperature of this time
as the initial condition to find the temperature for the next
sampling time (e.g. 12:15). Using this approach, future output
variables y ¥ are constant and equal to the output variables
obtained at the previous sampling time. This approach, there-
fore, makes y, FHIlF constant at sampling time k and eliminates
the inverse-polynomial relation between Pf % and ykﬂ‘k
Although approximate, this method successively improves the
prediction of output variables at the current sampling time.

Note that (6) is also nonlinear due to the product of
variables in form of u¥.y¥. This imposes the term v¥.y¥ in the
equivalent chiller equatlon after feedback lrnearrzatron. This
nonlinearity is also relaxed using the same approach proposed
at the beginning of this section by modifying y**7!¥ based on
(30) and (31). Thus, for the first sampling time (k = 0), this
can be written as follows:

m k+jlk
prtilk — _Ca Yi (d 04 (1—d,)T" _Tgv)
COP ;::1 Ta, — 3 pYi + ( ) Tout s
(32)

for j =0,1,2,...W —1

Then, for the next sampling times in the prediction window
(k=1,2,...,W — 1), the formulation is changed as follows:

ktdle k+J|k
J —
P, COPZ T, _yk+]|k—1

. (dpyf““‘ Yy (1—dy)TE,, - T) 33)

for 7=0,1,2,...., W -1

Next, we employ the incremental approach of piecewise lin-

earization to relax the nonlinearity in Pfcﬂ ' due to cubic term
of v¥IF+7, The approach is explained briefly here; however,
interested readers can refer to [33] for further details on the
piecewise linearization approach.
At each sampling time, we approximate each vkﬂ I in
(29) as the summation of multiple line segments. In order to
formulate the linear approximated function, we first introduce
following two conditions [33]:

o The line segments in L can be ordered as [,ls, ..., L,
subject to I, Nly;—1 # o for x € {2,...,|L|}, where
operator |.| shows the number of the elements.

« For the order in L, the vertices of each line segment [,
ordered as h2 and hl for z € {2,...,|L|}.

At each sampling time, the limits of the linearized control
input specified by (23) determines the initial vertex of the first
line segment (hY) and ending vertex of the last line segment
(hi). Then, by introducing auxiliary continuous variables o,
which can be interpreted as the slopes of line segments [, with
the vertices h2 and hl for z € {1, ..., |L|}, we can define the
piecewise linearized input v¥ as follows:

One-Day ahead Information

l |

K
Mapping Input Vmin| L-EMPC- Based v
Constraints Described By P Formulation =
(24) - (27) vk .0x] Described By (37)

HEMS

7
Pca l

System Dynamics
»| Described By (2)-(4)

Transformation To | u/
Main Input
Described By (28)

A

xk+1

sock+t | xk+1

Fig. 3. Schematic for the Proposed L-EMPC controller

IL|
=hl+ > ou(hs
x=1
IL|

Zaz[f F(h2)]

L}

F@r) (34)

>0 forﬂce {1

where f(.) = (. )3 for any arbitrary value of (.) in (34). Note
that, as (vf)3 is monotonically increasing function, there is
no need for binary variables to define piecewise linear model.
Using (30), (31) and (34), we linearize (29) for the first
sampling time (k = 0) as following:

i 1
Pki‘r]lk = Pra ed; (
fi tedi (Te1 - yz‘o)uratedi

wW-1

3
) ftn 6
for 7=0,1,2,...,

Then, for the next sampling times in the prediction window
(k=1,2,..., W — 1), the formulation is changed as follows:

3
k+ilk 1 ktilk
Pf TR — rated; <(T 7y].€+j‘k71) ) f(vz J ) (36)

wW-1

Urated,;
for 7=0,1,2,...,
Finally, the formulation for L-EMPC is detailed in (37).

t+W-—1

Mm Z Price® PT (37
Subject to:
" = Az" + Bo" + Ed*
y* = Ca*
Wl < R talk <RIk o j=0,1,.., W — 1

k
TJWin j T'r j T]\/Iacc

k
OgPHéPH}Mam

m
Py =P+ > Pf,
i=1
Pf = Pj+ P + P8, — P},
Pi>0

constraints (8)-(12), (20), (24)-(27) and (30)-(36).

The L-EMPC problem is illustrated in Fig. 3. At the
beginning of each day, the HEMS provides the L-EMPC
controller one-day ahead prediction information as illus-
trated in Section III-A. Then, using this information and
mapped input constraints defined in (24), the L-EMPC
solves the optimization problem in (37) at each sampling
time k. The results of solving this optimization problem
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is the vector of feedback linearized input optimal tra-
jectory [vf, vttl w2 w!TW-1] and the battery charg-
ing/discharging trajectory [Pé s P;El, e P;j;w_l]. The first
entry of linearized control input trajectory (v') is used to
find the value of current air mass flow rate (u’) based on
(28). Finally, same as the receding horizon approach for the
NL-EMPC controller, u’ and first entry of battery charg-
ing/discharging trajectory (Pé 4) are applied to the building
thermal dynamic model and the battery charging/discharging
equations stated by [(2) and (4)] and (8), respectively, to
control the HVAC system and the battery operation. The
measured values of the states (xft!) and SOC'™! are used
as the initial values in the next sampling time and the same
algorithm continues.

Discussion on the Effects of Uncertainty on Control Decisions:
In the related literature, robust MPC has been proposed for
controlling dynamical systems with uncertainties. A robust
MPC controller essentially generates optimal control deci-
sions by solving a stochastic optimization/control problem
that implicitly includes the effects of uncertainty in control
decisions. Min-max [34], Tube-based [35] and multi-stage
approach [36] are common methods employed for designing a
robust economic model predictive controller (REMPC). Unfor-
tunately, using aforementioned methods lead to conservative
control decisions resulting in a higher cost when optimizing
an economic objective function. Thus, REMPC formulations
may degrade the economical benefits when to compared to the
nominal EMPC models. Another drawback of using common
REMPC approaches is the added computational complexity;
this is specially a critical concern for our problem where
prediction window is 24 hours ahead in 15 minute intervals
(96 sampling times). Therefore, a robust version may not be
computationally tractable for the problem at hand.

In this paper, we model nominal the L-EMPC and the NL-
EMPC to control the system of interest while considering
the effects of the uncertainty on system dynamics. Note that,
in the presence of uncertainty, the actual trajectory obtained
using nominal MPC/EMPC methods will deviate from the
optimal trajectory. The two factors that contribute to the
deviation from optimal control trajectory for the associated
controller are attributed to the errors in the model estimation
and errors in environmental disturbances prediction. Note that
considering small model uncertainty for the thermal building
model is a valid assumption. That is, as is proposed in [20],
at each sampling time and before using the building thermal
model for control purposes, time-varying parameters of the
building can be tuned based on adaptive approaches such
as Kalman filter or/and observer in an online fashion from
the measurements of the previous sampling time. The results
in [20] show that using this approach decreases uncertainty
in the thermal building model dramatically and consequently
provides an acceptable model for the building thermal load.
Furthermore, the environmental disturbances usually have a
forecast accuracy of more than 90% for one-day ahead of
time [37]. Thus, the error in the day ahead prediction of
environmental disturbances (d¥) has a negligible effect on
the dynamics of the building thermal model. Therefore, it
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Fig. 4. Model Parameters used for a building’s HVAC system

can be claimed that a nominal EMPC model for building
thermal loads provides the computational advantage while
not significantly deteriorating the control decisions due to
the uncertainty. Lastly, designing a computationally tractable
robust controller that can provide the economical benefits is a
separate problem and is not within the scope of this work.

IV. RESULTS AND DISCUSSIONS

In this section, we conduct a set of experiments to validate
the efficiency of the proposed L-EMPC controller by bench-
marking the results against an equivalent NL-EMPC con-
troller; then, we show the weakness of conventional methods
for solving the introduced problem in this paper. For the
thermal building model, we consider a thermal zone with 7
states (four states for temperature of walls, two states for
temperature of floor and ceiling, and one state for indoor
thermal zone temperature) with the parameters the same as
[2]. Other building parameters are: COP = 3, d, = 0,
T, = 10 (°C), Tser = 23 (°C) (for Jacobian-linearized
model), Pygteq and t,qreq are 600W and 1kg/s, respectively.
The parameters for the battery energy storage system are as
follows: n =0,p=1,E~ =0.25,E" = 1,d, = ¢, = 1kW
and Qpq: = 3kWh. The predicted ambient temperature, the
24-hour TOU electricity tariffs and occupancy patterns for the
building received at the beginning of the day are shown in
Fig. 4. The occupancy patterns represent the typical cases for
residential (occupancy pattern 1) and commercial (occupancy
pattern 2) buildings. To maintain the desired comfort level of
building occupants, it is assumed that during occupancy, the
indoor temperature in building should lie between 21- 25 (°C'),
otherwise, there is no limit for the thermal zone temperatures.
There are no temperature limits for the other 6 states of the
thermal zones for all the times.The initial temperature of all
7 states of the building with occupancy pattern 1 are 24 (°C),
while these values are changed to 28 (°C') when the building
follows the occupancy pattern 2. The simulations are done on
a dual core 17 3.41 GHz processor with 16 GB of RAM.

A. Validity of proposed approach for HVAC control

This section aims at validating the proposed L-EMPC
and NL-EMPC when controlling only the building’s HVAC
system. Therefore, we set Plk = ngd = Pfﬁ) = 0 in (17),
and remove the battery and PV constraints in (8)-(12) from
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problem formulations in Section III for both NL-EMPC and L-
EMPC controllers. The resulting problem aims to minimize the
current and future cost of energy consumption by the HVAC
system. All essential constraints are included in the rest of the
test cases.

Starting at the beginning of a day (00:00) and after receiving
one-day ahead information, both controllers solve the EMPC
optimization problem for the next 24 hours at a sampling rate
of 15 minutes as described in Sections III-A and III-B.

For both occupancy patterns and both EMPC controllers,
Fig. 5 shows the evolution of indoor building temperature,
optimal value of the control input u (air mass flow rate) and
the HVAC system power consumption. As is seen in Fig. Sc
and Fig. 5d, when the building is occupied, the controllers
adjust the air mass flow rate of the HVAC cooling system
such that the temperature of the building lies within the
prespecified comfort range (see Fig. 5a and Fig. 5b) while
simultaneously minimizing the cost of transacted energy. On
the contrary, when there is no occupancy in the building,
controllers minimize the total cost of energy usage by turning
the HVAC cooling system off. Note that there are times during
the day (e.g. 00:00-06:00 for the occupancy pattern 1) that
although the building is occupied, there is no need to utilize the
HVAC system (v = Py = 0) to set the indoor temperature in a
desirable range (21- 25 °C). That is, the ambient temperature
at these times is low and sufficient to maintain the thermal-

zone temperature within the occupants’ comfort level without
requiring the HVAC cooling system. The price-sensitivity of
the model is emphasized for the optimal controls obtained for
the occupancy pattern 2. Notice that although the building is
unoccupied till 6:00, the HVAC system control is ON from
4:00-6:00. That is, due to the low TOU electricity tarrifs, the
optimal solution is to precool the building from 4:00-6:00 by
turning ON the HVAC system, so as to consume a smaller
amount of expensive electricity after 6:00. Both NL-EMPC
and L-EMPC are price-responsive and leverage the thermal
building dynamics to minimize the overall cost of transacted
energy.

Another interesting observation for the occupancy pattern 2
is the rapid change of the room temperature from 25 °C at
18:00 to 31.58 °C at 18:15 (during one sampling time). That
is, based on the heat transfer equations of the thermal building
model nodes and the consequent thermal building space state
model (see [17] for more details), the room temperature is
evolved and influenced by the temperatures of all other nodes
in the thermal building model, control input and disturbances.
Note that the air mass flow is applied directly to change
the room temperature (although the walls’ temperatures are
influenced by the room temperature and hence indirectly from
the air mass flow). Thus, before 18:00, although the room’s
temperature is kept within the comfort range of its occupants
by applying the control input of the HVAC system (air mass
flow) to the room, walls have relatively higher temperatures
at this time, as there is no constraint in any time of the day
for the walls’ temperatures. As the result, at 18:00 when the
optimal control action for the EMPC controllers is to turn the
HVAC system off, the room temperature is affected by walls’
temperatures and increases to a relatively high value in a short
time-period.

Note that although the ambient temperature is the most
important disturbance that affects the room temperature, it is
not always the dominant factor and there are other compo-
nents (e.g. solar irradiation) in the vector d” that can affect
the thermal building nodes’ temperatures as well. Therefore,
temperatures of some walls are increased® at some intervals
of the day (e.g 14:30-18:00) despite of decrease in the the
ambient temperature. This also explains the increase of the
HVAC power consumption after 14:30 for the occupancy
pattern 2 despite of a decrease in the the ambient temperature.
The EMPC is a model-based controller and it considers the
prediction of disturbances and dynamics of the system for
calculating the optimal trajectory of the system’s input (u*).
Hence, to maintain the comfort-level while minimizing the
cost, the optimal solution is to increase the air mass flow rate
for the HVAC system to cool the walls as their temperatures
have a direct impact on the room temperature. This avoids
purchasing a high volume of expensive energy later during
the day.

Next, Table I details the comparison of NL-EMPC and L-
EMPC controllers in terms of optimal cost and computation

3The changing position of the sun through the day affects the radiation.
Also, it should be noted that walls and the roof are not affected equally from
the solar irradiation during the day. In this paper, due to lack of the data, we
use a sinusoidal input for the sun irradiation related elements in d*.
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TABLE I
SIMULATION DETAILS OF L-EMPC AND NL-EMPC

[ Approach | Occupancy Pattern [ Cost($) [ Time(s) [ Solver |
| [ Occupancy pattern 1 [ 0.7651 6109 | .
‘ NL-EMPC | Occupancy pattern 2 | T.T041 | 8628 | MATLAB-IPOPT
[ Occupancy pattern 1 [ 0.7651 [ 35 ] .
‘ L-EMPC | Occupancy pattern 2 [ T.1078 [ 37 | MATLAB-linprog

time for both occupancy patterns. We use IPOPT and linprog
functions in MATLAB to solve NL-EMPC and L-EMPC
models, respectively. As is seen, there is a negligible difference
in cost function obtained using NL-EMPC and L-EMPC con-
trollers while the L-EMPC controller significantly improves
the simulation time. Note that although for the occupancy
pattern 1, there is a negligible difference in cost of energy
usage for the NL-EMPC vs. the L-EMPC for the occupancy
pattern 2, the NL-EMPC results in slightly lower cost of
energy usage. Although the optimal costs differ, from Fig.
5, it can be concluded that the L-EMPC is price-responsive
and closely mimics the solutions derived from the NL-EMPC
controller. Furthermore, the L-EMPC leads to approximately
200 times improvement in the computation speed, making
it more suitable for real-time control of buildings’ HVAC
systems.

It is interesting to observe that the L-EMPC optimal de-
cisions match exactly with the NL-EMPC decisions for the
occupancy pattern 1 but not for the occupancy pattern 2. The
reason for this difference in the L-EMPC accuracy is attributed
to the approach used for mapping the constraints in feedback
linearized model for bilinear dynamical model for the building
thermal loads. Recall that this constraint mapping is output
dependent and requires an estimate of the output variable
trajectory to solve the L-EPMC model for the current sampling
time. Note that these estimates are not available until the L-
EMPC problem is solved. We use a prediction based approach
to solve this problem. That is, at every sampling interval, we
use an estimate of future output trajectory and solve for the
control decisions and output trajectory using the L-EMPC
model. For the next sampling interval, we use the output
trajectory obtained in the previous time step as the new esti-
mate for output variable trajectory. This approach successively
improves our estimates of output trajectory thus improving
the consequent control decisions and bringing those closer to
the NL-EMPC control decisions. For the occupancy pattern 1,
since the optimal decisions are simply turning the HVAC off
when the building is not occupied and tracking the 25 (°C)
(upper bound for the specified occupant’s comfort level), the
future prediction exactly matches the actual output trajectory.
Thus, the L-EMPC exactly represents the NL-EMPC model.
However, for the occupancy pattern 2, the optimal decision is
to leverage the TOU prices to over-cool the building between
4-6 am and use that energy later when the building is occupied
(after 6 am). In this case, the prediction of the output provided
at earlier time steps does not exactly represent the actual future
output trajectory that leverages the TOU prices. Hence, the L-
EMPC model successively improves the future trajectory by
learning more about the economical benefits of overcooling
the system in this setting. This is the reason L-EMPC does
not exactly track and only approximate the NL-EMPC control
trajectory for the duration when price-responsiveness of the
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Fig. 6. Comparison of bilinear building thermal model and Jacobian-linearized
building thermal model for optimal control decisions using NL-EMPC based
on internal zone temperature, air mass flow and HVAC power consumption
for defined occupancy patterns.

building thermal model is being leveraged.

B. Jacobian-Linearized vs. Bilinear Building Thermal Model

As it was mentioned in Section III, using Jacobian lineariza-
tion method leads to controlling an inaccurate thermal building
model and consequently undesirable results. The effect of
Jacobian linearization can be demonstrated by substituting
(19) for (1) in the NL-EMPC formulation (13). Thus, the
NL-EMPC problem is solved based on both thermal building
models to ensure that the experiment only captures the effect
of Jacobian linearization on control decisions.

Fig. 6 compares NL-EMPC controller based on the
Jacobian-linearized and the bilinear thermal building models
for internal zone temperature, air mass flow and HVAC power
consumption for defined occupancy patterns. On comparing
the air mass flow trajectories derived using different occupancy
patterns, Figs. 6¢ and 6d show that using Jacobian-linearized
building thermal model leads to undesirable control actions.
The effect of these control actions can be seen in Fig. 6b
where there are violations in occupants comfort-level (e.g.
09:15 for the occupancy pattern 2). Furthermore, Figs. 6e
and 6f show that using the controller based on the Jacobian-
linearized thermal building model leads to more power con-
sumption compared to the NL-EMPC controller and increases
the cost of energy usage to $0.9177 and $1.2632 from $0.7651
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Fig. 7. Effect of uncertainty based on internal zone temperature and air mass
flow for defined occupancy patterns.

and $1.1041 per day for the occupancy patterns 1 and 2,
respectively.

C. Effect of Model Uncertainty for L-EMPC Controller

In this section, we demonstrate the effects of uncertainty
on the control trajectory of the HVAC system obtained using
the proposed L-EMPC controller. We carry out the described
experiment in Section IV-A, however, now also including
uncertainty in the building thermal model. Note that dynamical
model (3) and (4) for the building thermal load can be stated
as follows:

"t = Az® + BuF o (T, — ") + Ed* + E9"  (38)

In (38), only the term Eq&k is unknown. Here, we assume
d)k is chosen in a way that the entries of the term E¢k have
a uniform distribution which is represented as unif(a,b) for
any two real numbers b > a.

For both occupancy patterns, Fig. 7 shows the optimal air
mass flow and the consequent evolution of indoor thermal zone
temperature using the L-EMPC when controlling the HVAC
system with a uncertainty of unif(—2,2) in the building ther-
mal model. This leads to £2(°C') uncertainty in system states
i.e. room temperature. Then, these trajectories are compared
with their corresponding nominal trajectories derived by the
NL-EMPC without any model uncertainty.

As it can be seen in Fig.7a and Fig.7b, for the considered
model uncertainty, the L-EMPC controller can control the
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room temperature with an acceptable accuracy. Note that there
are minor constraint violations due to the model uncertainty
during a few time-intervals of the day (e.g. between 10:00
and 12:00 for the occupancy pattern 2). As it was described
in Section III-B, due to the use of receding horizon control
approach the controller includes the effects of the observed
model uncertainty (at the current time-step) when optimizing
for the future time-steps. The economical effects of the model
uncertainty can be seen in Figs.7e and 7f, where power
consumption pattern for the building load is lower and higher
compared to the nominal power consumption trajectory for
occupancy patterns 1 and 2, respectively. The deviation from
nominal power trajectory is explained as follows. Due to the
model uncertainty, the observed system states are different
from predicted/assumed system states. Therefore, the con-
troller adjusts the air mass flow rate by re-optimizing the
problem for the current sampling time after including the
effects of uncertainty on the system states that are observed
at the current sampling time. Thus, the air mass flow and
consequently power consumption of the HVAC system under
the model uncertainty follow different trajectories compared
to their nominal trajectories without any model uncertainty.
Note that, in the presence of uncertainty, the controllers
are still able to ensure user comfort while optimizing for
the economic objective. The errors in model estimation and
errors in environmental disturbance prediction contribute to
the cumulative uncertainty in the dynamical model for the
building thermal loads as discussed in Section III B. Advanced
model estimation techniques [20] and prediction methods [37]
can help reduce the cumulative uncertainty. Therefore, the
proposed nominal EMPC models are used for controlling the
building thermal load as they do not deteriorate the control
decisions due to model uncertainty while providing significant
computational advantages compared to the robust EMPC.

D. L-EMPC: Co-scheduling HVAC, PV and Battery Storage

This section demonstrates the effectiveness of the L-EMPC
controller in meeting the economic objective of minimizing
transacted energy cost by coordinating the HVAC system
control with the battery energy storage, the PV system, and
other inflexible loads of the building. We divide results to
two different scenarios, namely, Scenario-1 and Scenario-II.
In Scenario-1, the depreciation cost of the battery is ignored
(Pricep, = 0) and similar to the Section IV-A, we compare
the results against an equivalent NL-EMPC controller. In
Scenario-11, we show the capability of the proposed controller
for co-scheduling different sources of energy and buildings’
load with a more complicated model for the battery in
which depreciation cost of the battery is considered. For both
Scenario-1 and Scenario-I1, the building thermal dynamical
model simultaneously utilizes the occupancy information and
TOU prices to optimally schedule all resources. The PV panel
is rated at 4 kW. The actual PV generation follows the sun’s
irradiation during the day, and it is depicted in Fig. 8a. It is
assumed that the battery is in the minimum state of charge
(SOC = 0.25) at the beginning of the one-day simulation
(00:00). Fig.8b shows the demand profile for other essential
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Fig. 8. Model Parameter for Co-Scheduling Energy

and inflexible building loads; the demand varies based on the
building occupancy patterns.

1) Scenario-1: Fig. 9 shows the schedule of purchased
power for the day to satisfy the power requirement of a build-
ing’s HVAC system and inflexible loads for both occupancy
patterns and both NL-EMPC and L-EMPC controllers. Three
scenarios are demonstrated: (1) without the battery storage
and the PV, (2) with the battery storage but without the PV,
and (3) with both the battery storage and the PV. As it can
be observed for both occupancy patterns, with the help of
the PV, a reduction in total amount of purchased power from
the grid is observed. This reduction reaches its maximum at
around 12:00 noon when there is maximum solar radiation.
Similarly, the positive effect of the battery can be observed;
the HEMS decides to purchase the energy at times that TOU
electricity tariffs are low (00:00- 07:00) to charge the battery,
and uses the stored energy when TOU electricity tariffs are
high (17:00-21:00).

Next, Table II shows the cost of purchased electricity for
each combination of resources to be co-scheduled. As it can
be observed from this Table, the L-EMPC controller closely
approximates the behavior of the NL-EMPC controller and
effectively co-schedules all resources. The cost of pucharsed
electricity for the day is approximately the same for both
NL-EMPC and L-EMPC controllers. Therefore, the proposed
L-EMPC controller can be used in place of the NL-EMPC
without compromising the performance while significantly
improving the computational efficiency. Notice that on co-
scheduling the HVAC system with the battery, the cost of
electricity usage is decreased for the day. As expected, co-
scheduling the HVAC system with both PV and battery storage
leads to the most savings in electricity usage cost.

TABLE 11
TOTAL COST OF ELECTRICITY USAGE DURING A DAY (24-HOURS)

12

We use CPLEX to solve the MIL-EMPC formulation. Here,
we consider different depreciation costs for the battery and
evaluate the role of this parameter in co-scheduling HVAC
system, PV, and battery storage.

Fig.10 shows the purchased power during the day for
the aforementioned test scenarios based on the MIL-EMPC
formulation for four separate battery depreciation cost pa-
rameters. The cases with no depreciation cost for the battery
ie. Price, = 0 $/MWh and for Price, = 15 $/MWh,
result in the same optimal power consumption trajectory (see
Fig. 9). In fact, as long as the depreciation cost of the
battery is lower than the minimum predicted TOU electricity
tariffs for the day, regardless of the depreciation cost, the
controller schedules the battery in a way to get the most
possible economic benefit. Therefore, the building loads have
the same power consumption pattern for all depreciation
costs less than the minimum predicted TOU electricity tariffs.
When the depreciation cost of the battery lies between the
minimum and the maximum predicted TOU electricity tariffs
(e.g. Price, = 40$/MWh), economical benefits that can be
obtained from charging/discharging of the battery are reduced
as the controller limits the battery operation based on the rel-
ative TOU electricity tariffs and the battery depreciation cost.
For example, the oscillations due to charging and discharging
of the battery in the case of with Price, = 15$/MWh cannot
be seen in some time intervals of the case with Price, = 40
(e.g. from 22:00 to 23:00 for the occupancy pattern 2), as
discharging the battery in the latter case is not economically
beneficial. Finally, for the case that depreciation cost of the
battery is more than the maximum predicted TOU electricity
tariffs (e.g. Price, = T75$/MWh), controller prevents the
battery from discharging for all the times which is equivalent
to the case of having no battery storage in the building.

Table III shows the cost of purchased electricity for different
cases simulated for battery depreciation costs for the two
defined occupancy patterns. For both occupancy patterns, as
it was expected for Price, = 15 $/MWh, when the battery

----Loads
- - Loads+Battery
— Loads+Battery+PV

)

Power (kW

0 0
00:00 00:00

T ooemame P Cost Based on System Configurations®) | 06:00 1200 18:00 2400 06:00 1200 18:00 24:00
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‘ NL-EMPC 5 ccupancy pattern 2 [ 39115 | 3.8053 | 33979 \ . pancy paney
L-EMPC [ Occupancy pattern 1 [ 3.3287 ] 3.2545 [ 1.8471 ‘ Ao 8
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2) Scenario-11: As it was mentioned in Section III, con- i =3
. . .. . . 54
sidering the depreciation cost of the battery introduces bi- g
nary variables in the problem formulation. This changes the S
formulation for the L-EMPC controller to the MIL-EMPC 0 o
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mentioned solvers in Table I cannot be used in this section
and new solvers are required to solve the mixed-integer linear
programming problem associated with MIL-EMPC model.

(c) L-EMPC (occupancy 1) (d) L-EMPC (occupancy 2)

Fig. 9. Amount of purchased power during a day under different system
configurations for EMPC controllers and defined occupancy patterns.
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(b) occupancy pattern 2

depreciation cost is lower than the minimum forecasted TOU
price, the total cost of purchased electricity is the minimum.
These minimum values can vary up to $1.9584 and $2.5063
for the occupancy pattern 1 and the occupancy pattern 2,
respectively; where due to the higher depreciation cost of the
battery compared to the TOU electricity tariffs rendering the
battery operation is uneconomical and its charging/discharging
is restricted.

TABLE III
TOTAL COST OF ELECTRICITY USAGE DURING A DAY (24-HOURS)

Depreciation Cost of a Battery($) |
0(MWh) [ I5(MWh) [ 40($MWh) [ 75(MWh) |
1.8471 1.8471 1.8577 19584 |
23856 | 23856 | 24364 [ 25063 |

Occupancy Pattern

\
l
[ Occupancy pattern 1 ]
| Occupancy pattern 2|

V. CONCLUSION

In this paper, we developed a novel L-EMPC controller
that can mimic the behavior of the NL-EMPC controller for
building HVAC systems. In order to approximate the nonlin-
ear dynamics of the system, several methods were proposed
including feedback linearization for nonlinear control input,
constraint mapping based-on prediction, and function approx-
imation using piecewise linearization. The proposed L-EMPC
controller can successfully optimize the buildings’ electricity
usage cost by leveraging the known buildings’ occupancy
information, a dynamical model of the HVAC system, and
projected DER generation. The results obtained using the
proposed L-EMPC controller were thoroughly bench-marked
against the NL-EMPC controller. Specifically, for a price-
sensitive control of building’s HVAC system, we demonstrated
that for a negligible value of error, the L-EMPC controller
can dramatically improve the computation time. Then, we
showed that the L-EMPC controller can precisely co-schedule
building’s HVAC system with its inflexible loads, the PV
system, and the battery storage.

APPENDIX A
MIXED-INTEGER LINEAR FORMULATION FOR THE
BATTERY STORAGE SYSTEM

The constraint (11) can be re-written as follows:

k e pk
Pf _ |Prg] if chd >0 (39)
0 otherwise

We use a binary variable and Big-M method [38] to model
different conditions of (39). First, we define a binary variable
to activate different boundaries of (39). This can be stated as
follows:

13
=1 -Pf;>0 (40)
§=0+<= —PF;<0
This can be formulated as:
—Pry>e—M(1-9) (41)
—Ply < M3 (42)

where ¢ € {0,1}, e and M are binary variable, arbitrary small
number and arbitrary large number, respectively, which are
used to model (40). It should be noted that M should be chosen
as a big enough (possibly always different) number so that
it does not limit any significant function of variables in the
constraints [38]. Also, € is used to guarantee that for § = 1,
PF, is not equal to zero. Then, we model conditions of (39)

based on (40) as follows:

§=1<= Pj =Pk, (43)
§=0«= P;=0
This can be formulated as:
|PEgl = M(1—0) < Py < |Phyl+ M(1—06)  (44)
—Mé < Py < M§ 45)

where the double inequality (44) still needs to be linearized
due to the absolute value term. Thus, the left hand-side
inequality of (44) can be re-written as follows:

|PY4| < Pf+ M(1-96) (46)
which can be linearized as follows:

Py < PP+ M(1-9) 47)

—PFy < Pj+M(1-96) (48)

Then, the right hand-side inequality of (44) can be stated as
follows:

|PE4| > Py — M(1-9) 49)

which can be linearized as follows:
Ply>Pi—M(1-0)—MB (50)
—Pra > Pi—M(1—68)— M(1-8) 1)

where 8 € {0,1} is a binary variable which is defined to
linearize (49). Therefore, the nonlinear constraint (11) can be
replaced by set of mixed-integer constraints (41), (42), (45),
(47), (48), (50) and (51). Interested readers are encouraged to
refer [33] and [38] for more details.

REFERENCES

[1] M. Pazhoohesh and C. Zhang, “Investigating occupancy-driven air-
conditioning control based on thermal comfort level,” Journal of Ar-
chitectural Engineering, vol. 24, no. 2, p. 04018003, 2018.

[2] Y. Liu, N. Yu, W. Wang, X. Guan, Z. Xu, B. Dong, and T. Liu,
“Coordinating the operations of smart buildings in smart grids,” Applied
Energy, vol. 228, pp. 2510-2525, 2018.

[3] M. Ostadijafari, A. Dubey, Y. Liu, J. Shi, and N. Yu, “Smart building
energy management using nonlinear economic model predictive control,”
arXiv preprint arXiv:1906.00362, 2019.

[4] Y. Long, S. Liu, L. Xie, and K. H. Johansson, “A hierarchical distributed
mpc for HVAC systems,” in American Control Conference (ACC), 2016.
IEEE, 2016, pp. 2385-2390.

[5] J. Cigler, “Model predictive control for buildings,” 2013.

[6] M. Maasoumy and A. Sangiovanni-Vincentelli, “Total and peak energy
consumption minimization of building HVAC systems using model
predictive control,” IEEE Design & Test of Computers, vol. 29, no. 4,
pp. 26-35, 2012.

1949-3053 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2020.2965559, IEEE

[71

[8]

[9]

[10]

(111

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

1949-3053 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Smart Grid

G. Mantovani and L. Ferrarini, “Temperature control of a commercial
building with model predictive control techniques,” IEEE Transactions
on Industrial Electronics, vol. 62, no. 4, pp. 2651-2660, 2015.

J. Rehrl and M. Horn, “Temperature control for HVAC systems based on
exact linearization and model predictive control,” in Control Applications
(CCA), 2011 IEEE International Conference on. 1EEE, 2011, pp. 1119—
1124.

T. Wei, Q. Zhu, and M. Maasoumy, “Co-scheduling of HVAC control,
ev charging and battery usage for building energy efficiency,” in Pro-
ceedings of the 2014 IEEE/ACM International Conference on Computer-
Aided Design. IEEE Press, 2014, pp. 191-196.

T. Wei, Q. Zhu, and N. Yu, “Proactive demand participation of smart
buildings in smart grid,” IEEE Transactions on Computers, vol. 65, no. 5,
pp. 1392-1406, 2016.

M. Ostadijafari and A. Dubey, “Linear model-predictive controller
(Impc) for building’s heating ventilation and air conditioning (hvac) sys-
tem,” in 2019 IEEE Conference on Control Technology and Applications
(CCTA), Aug 2019, pp. 617-623.

Y. Ma, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, and P. Haves,
“Model predictive control for the operation of building cooling systems,”
IEEE Transactions on control systems technology, vol. 20, no. 3, pp.
796-803, 2012. .

J. Cigler, D. Gyalistras, J. Siroky, V. Tiet, and L. Ferkl, “Beyond theory:
the challenge of implementing model predictive control in buildings,”
in Proceedings of 11th Rehva world congress, Clima, vol. 250, 2013.
A. Mirakhorli and B. Dong, “Model predictive control for building loads
connected with a residential distribution grid,” Applied energy, vol. 230,
pp. 627-642, 2018.

A. F. Taha, N. Gatsis, B. Dong, A. Pipri, and Z. Li, “Buildings-to-grid
integration framework,” IEEE Transactions on Smart Grid, 2017.

A. Vosughi, M. Xue, and S. Roy, “Occupant-location-catered control
of iot-enabled building hvac systems,” IEEE Transactions on Control
Systems Technology, pp. 1-9, 2019.

M. M. Haghighi and A. L. Sangiovanni-Vincentelli, “Modeling and
optimal control algorithm design for HVAC systems in energy efficient
buildings,” Masters report, 2011.

A. Bemporad and M. Morari, “Robust model predictive control: A
survey,” in Robustness in identification and control.  Springer, 1999,
pp. 207-226.

G. Serale, M. Fiorentini, A. Capozzoli, D. Bernardini, and A. Bemporad,
“Model predictive control (mpc) for enhancing building and hvac system
energy efficiency: Problem formulation, applications and opportunities,”
Energies, vol. 11, no. 3, p. 631, 2018.

M. Maasoumy, M. Razmara, M. Shahbakhti, and A. S. Vincentelli,
“Handling model uncertainty in model predictive control for energy
efficient buildings,” Energy and Buildings, vol. 77, pp. 377-392, 2014.
S. Privara, J. Cigler, Z. Vana, F. Oldewurtel, C. Sagerschnig, and
E. Zatekova, “Building modeling as a crucial part for building predictive
control,” Energy and Buildings, vol. 56, pp. 8-22, 2013.

M. J. Siemann, “Performance and applications of residential building
energy grey-box models,” Ph.D. dissertation, 2013.

D. Sturzenegger, D. Gyalistras, M. Gwerder, C. Sagerschnig, M. Morari,
and R. S. Smith, “Model predictive control of a swiss office building,”
in Clima-rheva world congress, 2013, pp. 3227-3236.

S. Privara, Z. Vana, D. Gyalistras, J. Cigler, C. Sagerschnig, M. Morari,
and L. Ferkl, “Modeling and identification of a large multi-zone office
building,” in 2011 IEEE International Conference on Control Applica-
tions (CCA). IEEE, 2011, pp. 55-60.

H. Shareef, M. S. Ahmed, A. Mohamed, and E. Al Hassan, “Review
on home energy management system considering demand responses,
smart technologies, and intelligent controllers,” IEEE Access, vol. 6, pp.
24 498-24 509, 2018.

M. Beaudin and H. Zareipour, “Home energy management systems: A
review of modelling and complexity,” Renewable and sustainable energy
reviews, vol. 45, pp. 318-335, 2015.

J. Cai, X. Jin, and H. Zhang, “Economic model-based control of sustain-
able buildings with photovoltaic (PV) and battery systems considering
battery degradation costs,” in 2018 Annual American Control Conference
(ACC). IEEE, 2018, pp. 5406-5411.

P. Zhou, W. Dai, and T.-Y. Chai, “Multivariable disturbance observer
based advanced feedback control design and its application to a grinding
circuit,” IEEE Transactions on Control Systems Technology, vol. 22,
no. 4, pp. 1474-1485, 2014.

H. K. Khalil and J. Grizzle, “Nonlinear systems, vol. 3,” Prentice hall
Upper Saddle River, 2002.

[30]
(31]

(32]

(33]

[34]

(35]

(36]

(371
[38]

L

plann

14

M. A. Henson and D. E. Seborg, “Feedback linearizing control,”

Nonlinear process control, vol. 149, 1997.
M. J. Kurtz and M. A. Henson, “Input-output linearizing control of

constrained nonlinear processes,” Journal of Process Control, vol. 7,
no. 1, pp. 3-18, 1997.

A. Ghasemi, “Application of linear model predictive control and input-
output linearization to constrained control of 3d cable robots,” Modern
Mechanical Engineering, vol. 1, no. 02, p. 69, 2011.

M. Bernreuther, “Solving mixed-integer programming problems using
piecewise linearization methods,” 2017.

A. Marquez, J. Patino, and J. Espinosa, “Min-max economic model
predictive control,” in 53rd IEEE Conference on Decision and Control.
IEEE, 2014, pp. 4410-4415.

F. A. Bayer, M. A. Miiller, and F. Allgower, “Tube-based robust
economic model predictive control,” Journal of Process Control, vol. 24,
no. 8, pp. 1237-1246, 2014.

S. Subramanian, S. Lucia, and S. Engell, “Economic multi-stage output
nonlinear model predictive control,” in 2014 IEEE Conference on
Control Applications (CCA). IEEE, 2014, pp. 1837-1842.

https://scijinks.gov/forecast-reliability.
M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear programming and
network flows.

John Wiley & Sons, 2011.

Mohammad Ostadijafari (S’18) received the B.S.
and M.S. degree in Electrical Engineering from
Islamic Azad University at Tehran, Iran, in 2013 and
2015, respectively. He is currently working toward
the Ph.D. degree at the School of Electrical Engi-
neering and Computer Science, Washington State
University, Pullman, WA, USA. His current research
interests include energy management in smart build-
ings, power market and application of the control
theory in power systems.

Anamika Dubey (M’16) received the M.S.E and
Ph.D. degrees in electrical and computer engineering
from the University of Texas at Austin, Austin,
TX, USA, in 2012 and 2015, respectively. She is
currently an Assistant Professor with the School
of Electrical Engineering and Computer Science,
Washington State University (WSU), Pullman, WA,
USA. Her research focus is on the analysis, opera-
tion, and planning of the modern power distribution
systems for enhanced service quality and grid re-
silience. At WSU, her lab focuses on developing new
ing and operational tools for the current and future power distribution

systems that help in effective integration of distributed energy resources and
responsive loads.

energ
IEEE

Nanpeng Yu (M’11-SM’16) received his B.S. in
Electrical Engineering from Tsinghua University,
Beijing, China, in 2006. Dr. Yu also received his
M.S. and Ph.D. degree in Electrical Engineering
from Jowa State University, Ames, IA, USA in 2007
and 2010 respectively. He is currently an Asso-
ciate Professor in the department of Electrical and
Computer Engineering at University of California,
Riverside, CA, USA. His current research interests
include machine learning theory, big data analytics
in smart grid, electricity market design, and smart
y communities. Dr. Yu is an Editor of IEEE Transactions on Smart Grid,
Transactions on Sustainable Energy, and International Transactions on

Electrical Energy Systems.



