
HAT-DRL: Hotspot-Aware Task Mapping for Lifetime
Improvement of Multicore System using Deep Reinforcement

Learning∗

Jinwei Zhang, Sheriff Sadiqbatcha, Yuanqi Gao, Michael O’Dea, Nanpeng Yu and Sheldon X.-D. Tan
Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521 USA

{jzhan319,ssadi003,ygao024,mode001,nanpeng.yu,sheldon.tan}@ucr.edu

ABSTRACT

In this work, we propose a novel learning-based task to core map-

ping technique to improve lifetime and reliability based on advanced

deep reinforcement learning. The new method, called HAT-DRL, is

based on the observation that on-chip temperature sensors may

not capture the true hotspots of the chip, which can lead to sub-

optimal control decisions. In the new method, we first perform

data-driven learning tomodel the hotspot activation indicatorwith

respect to the resource utilization of different workloads. On top

of this, we propose to employ deep reinforcement learning algo-

rithm to improve the long-term reliability and minimize the per-

formance degradation from NBTI/HCI effects. It penalizes continu-

ously stressing the same hotspots and encourages even stressing of

cores. The proposed algorithm is validated with an Intel i7-8650U

four-core CPU platform executing CPU benchmarks for various

hotspot activation profiles. Results show that HAT-DRL balances

the stress between all cores and hotspots, and achieves 50% and

160% longer lifetime compared to non-hotspot-aware and Linux

default scheduling respectively. The proposed method can also re-

duce the average temperature by exploiting the true-hotspot infor-

mation.

CCS CONCEPTS

• Hardware→ Operations scheduling; Aging of circuits and

systems.

KEYWORDS

task mapping; multicore; lifetime; reinforcement learning

ACM Reference Format:

Jinwei Zhang, Sheriff Sadiqbatcha, Yuanqi Gao, Michael O’Dea, Nanpeng

Yu and Sheldon X.-D. Tan. 2020. HAT-DRL: Hotspot-Aware Task Mapping

for Lifetime Improvement of Multicore System using Deep Reinforcement

Learning. In 2020 ACM/IEEE Workshop on Machine Learning for CAD (ML-

CAD ’20), November 16–20, 2020, Virtual Event, Iceland. ACM, New York,

NY, USA, 6 pages. https://doi.org/10.1145/3380446.3430623

∗This work is supported in part by NSF grants under No. CCF-1816361, in part by NSF
grant under No. CCF-2007135 and No. OISE-1854276.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).

MLCAD ’20, November 16–20, 2020, Virtual Event, Iceland

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7519-1/20/11.
https://doi.org/10.1145/3380446.3430623

1 INTRODUCTION

Power density keeps increasing with technology scaling, causing

severe thermal and reliability problems in high performance mul-

ticore systems [14]. Temperature has a profound impact on all the

major long-term reliability effects such as electro-migration (EM)

for interconnects, and negative bias-temperature-instability (BTI)

and hot-carrier-injection (HCI) for CMOS devices [1]. In order to

find efficient methods to solve the high temperature issue and im-

prove both system performance and reliability, researchers have

proposed many dynamic thermal/reliability management (DTM/

DRM) methods, such as task mapping strategies [6, 7, 9].

Recently deep learning based approaches have been explored

for DTM/DRM [9]. Das et al [2] proposed to take advantage of

the thermal profile within (intra) and across (inter) applications

based on Q-learning, which learns the relationship between the

task allocation, voltage/frequency and device aging/mean-time-to-

failure (MTTF). Lu et al [8] presents a task allocation method based

on core and router temperatures and predicts near-future temper-

ature that assists the DTM. Rathore et al [10] proposed a heuristic

approach to manage the dimensions of state action space and a

task mapping technique across heterogeneous cores through Q-

learning. Recently, Kim et al [6] proposed a DRM technique by

considering both long-term reliability (hard errors) and soft er-

rors. All of those methods, however, have several drawbacks. First,

they mainly depend on the temperature information from sensors

and do not consider the true hotspots, which we will show in this

paper, can be quite different than the sensor temperature. Recent

study [11] shows that one can identify the true hotspots of multi-

core processors with advanced characterization. Second, existing

approaches mainly use simple table-based Q-learning or its varia-

tions, which is not very robust and does not scale well for large

control problems for many-core processors.

To capitalize on the recent advances in true hotspot identifica-

tion and DRL, we propose a novel DRM method, called HAT-DRL,

for performingmore efficient task mapping to improve the lifetime

and reliability based on an advanced deep reinforcement learning

(DRL) technique. We first develop a data-driven approach based

on deep neural network (DNN) to model the hotspot activation

profile/indicator with respect to the resource utilization of work-

loads. Then, we propose to employ a recently proposed highly ro-

bust, sample-efficient DRL technique, called soft-actor-critic or SAC

method. SAC is a model-free off-policy DRL algorithm that pro-

vides sample-efficient learning while retaining the benefits of sta-

bility. The algorithm has been successfully applied in many engi-

neering domains such as the smart grid [15]. In this paper, it learns

optimal policy to improve long-term reliability from NBTI/HCI

https://doi.org/10.1145/3380446.3430623
https://doi.org/10.1145/3380446.3430623

Figure 1: The overall HAT-DRL framework and algorithm workflow

effects and minimize performance degradation. The proposed ap-

proach is experimented with an Intel i7-8650U quad-core CPU plat-

form executing CPU benchmarks for various hotspot activation

profiles. Experimental results show that HAT-DRL balances the

stress between all cores and hotspots, and achieves 50% and 160%

longer lifetime than non-hotspot-aware and Linux default sched-

uling, respectively. The proposed method can also reduce the aver-

age temperature by exploiting the true-hotspot information.

2 THE OVERALL FRAMEWORK AND
ALGORITHM FLOW

The whole algorithm flow, shown in Fig. 1, contains two stages.

The first stage estimates how much percentage a hotspot area is

activated (intensive power) or idle (low power). For the Intel i7

8650U quad-core processors, we find that each core has two pri-

mary hotspot areas. The second stage performs the task mapping

based on an advanced DRL method. The new scheduler will take

action of assigning or migrating tasks from current core(s) to de-

sired core(s) every ΔC interval.

The framework consists of three modules: the processor related

dynamic environment, the state and reward functions based on

NBTI/HCI thermal effects and aging, and the agent that interacts

with as well as learns from the environment, as shown in Fig. 1.

In the environment, aging and thermal effect values of all vari-

ables of hotspots will form the states of the environment, hence the

states are continuous. The actions are discrete, deciding which one

of the cores to move to. Rewards are evaluated based on how well

the aging and thermal effects are controlled, especially in terms

of the worst hotspot. The policy is learned by using the recently

proposed SAC algorithm [3] consisting of the state value network,

state-action value network as critics and the actor network.

3 MOTIVATION EXAMPLE

3.1 Thermal sensors v.s. true hotspots

Direct sensor readings may miss the true hotspots of the cores,

which can lead to sub-optimal task migration decisions. Fig. 2(a) il-

lustrates an interesting case when temperature of all cores are the

same at 90◦C from a four-core system. However, the power distri-

bution of the each core can be different due to different workloads,

as shown in Fig. 2(b). As shown in the sequel, those deep knowl-

edge of the true hotspots of a core can lead to different results for

both temperature and reliability of the whole multicore processor.

(a) (b)

Figure 2: Thermal measurements without and with power

distribution information on each core.

3.2 Motivation example for hotspot-aware v.s.
non-hotspot-aware

In essence, themotivated idea is to avoid stressing the same hotspot

continuously for long period of time, thus minimizing the weakest

point of the entire processor. Basically, there are three pieces of re-

quired information. First, the number of primary hotspots in each

core. Second, the hotspot stress conditions of all cores. Third, the

hotspot activation percentage of the task(s). Before we dive into

the DRL based control algorithm and the complete workflow, we

first prove that the hotspot-aware idea indeed has positive differ-

ence over the non-hotspot-aware scheduling.

We deploy two tasks on just two cores of the processor where

the two tasks have complementary hotspot activation areas, as a

motivation experiment. We use two single-threaded benchmark

tasks hint and postmark from the Phoronix Test Suite to do an ex-

periment on an Intel i7-NUC mini PC (with i7-8650U quad-core

CPU). The mini PC has four cores, from which we will use core-0

and core-3 to execute the two tasks, one on each core at the same

time. We learned that each core contains two primary hotspots,

marked as � and �. Besides that, we also learned that task hint

(actually its subtask DOUBLE) almost always activates the hotspot

� much greater than �, while postmark almost always activates �

much greater than �, as shown in Fig. 5(b) and Fig. 5(c). We will

elaborate on the method of how we learned the primary hotspots

of the processor and the hotspot activation profile of the different

tasks in Sec. 4.

There are two experiment settings, in the first setting, i.e. the

non-hotspot-aware setting, each core will execute one task respec-

tively and continuously for some time without task migration. In

the second setting, i.e. the hotspot-aware setting, two cores will

execute the two tasks interchangeably every 20 seconds (Fig. 3).

Note that we run the second setting sufficiently long after the first

setting run, waiting for the processor to cool down after the first

run and making sure both runs have the same initial temperature.

Figure 3: The hotspot-aware scheduling in the motivation

experiment, where two tasks swap the cores every other in-

terval.

Figure 4: Temperature results of motivation experiment.

Blue: non-hotspot-aware setting. Orange: hotspot-aware set-

ting.

The background applications are minimized that their energy con-

sumption can be ignored.

The temperature measured from sensors of core-0 and core-3

are recorded and plotted in Fig. 4. We conducted the same exper-

iment repeatedly and found that the average temperature of the

second setting always shows a 0.7 ∼ 1.1◦C reduction. As for the

execution time of the tasks, postmark are almost same on the two

settings (average 52 seconds per execution). Actually hint shows a

little bit faster execution on the second setting (average of 6 mins

and 30 seconds per execution) over the first setting (average of 6

mins and 35 seconds per execution). Hence the performance of the

system is not degraded at all.

We remark, in addition to the temperature reduction, more sig-

nificant is to mitigate the long-term aging effect. As the migration

of hot tasks (with hotspots) among different cores can lead to re-

covery effects of NBTI and HCI, which can lead to significant life-

time improvement as we show later. Hence, we have shown and

proved that the hotspot-aware scheduling can indeed bring brand

new opportunities to improve the aging and reliability of multicore

systems.

4 DATA-DRIVEN MODEL FOR HOTSPOT
ACTIVATION

One important aspect of the proposed method is to know which

hotspots are active for a given workload. This can be achieved by

using deep neural networks. Asmentioned in themotivation exam-

ple, for each core, we have two primary hotspot. In our work, we

build a machine learning model to predict the hotspot activation

indicator ? based on the the on-chip workload utilization metrics.

Here ? is normalized to [0, 1], where 1 means fully activated, and 0

not activated. We propose to build DNN based supervised learning

method that takes use of the processor’s IPCM [4] data to estimate

the task’s hotspot activation indicator. In our case, we select 24

most relevant PCM metrics as inputs for the DNN model, which is

built by a multi-layer perception neural (MLP) network. Input vec-

tors are obtained by the IPCM tool. IPCM tool is launched at the

same time when the processor is under workload, data of the PCM

vector is sampled at the frequency of 60 Hz. So the input matrix

for the training data will have 24 columns where each column rep-

resents a time series of a PCM metric, and each row is one sample

of the PCM vector.

As for the hotspots been activated, they are found indirectly

through the use of thermal imaging system. We follow the simi-

lar hotspot characterization method in [11] in which hotspots are

obtained by computing power maps from the measured thermal

maps first. Then we take the power peaks that surpass a certain

threshold as the activated hotspots. Note that thermal images must

be synchronized with the PCM data sampling, so that each hotspot

label will be connected to the correct PCM vector.

5 PROPOSED DRL-BASED APPROACH

In this section, we first formulate the task-to-core control problem

as an MDP, then discuss the soft actor critic algorithm to solve the

MDP problem.

5.1 Formulating the task-to-core control
problem as an MDP

5.1.1 The basics of MDP. We will use the following notations for

an MDP M = (S,A, P, A) [13]: S and A are the state and ac-

tion spaces, respectively. P(B ′ |B, 0) ∀B ′, B ∈ S, 0 ∈ A is the en-

vironment state transition probability. A (B, 0) is the reward func-

tion. For each time step C , the RL agent takes an action 0C based

on the environment’s state BC . Then the environment returns a

reward AC+1 = A (BC , 0C) and moves to the next state BC+1 accord-

ing to P(BC+1 |BC , 0C). The goal of the RL agent is to learn a pol-

icy c (0 |B) that maximizes the expected long-term return starting

from any state, which are captured by the action value function

&c (B, 0) = Ec [
∑

C=0 W
CAC+1 |B0 = B, 00 = 0] or the state value func-

tion + c (B) = E0∼c (· |B) [&
c (B, 0)]. W ∈ [0, 1) is the discount factor.

Next, we identify the state, action, and reward for the taskmapping

problem.

5.1.2 Formulation of states. As discussed in Section 3, an impor-

tant factor that determines the lifetime and reliability of a core is

their hotspots and related lifetimes.

The state is defined as BC = [3�C , 3+C , %C], where 3�C =

[?1C 3�
1
C , ..., ?

#
C 3�#

C] denotes the increments of aging of the #

hotspots at time C ; similarly, 3+C = [?1C 3+
1
C , ..., ?

#
C 3+#

C] denotes

the threshold voltage shift of the # hotspots. ?8C denotes the power

activation rate of the 8-th hotspot. In this paper, the increment

of aging and threshold voltage shift are assumed to be linear in

the power activation. They are used to distinguish the aging and

stress of different hotspots. Finally, %C ∈ {%
1
C , ..., %

�
C } where %

9
C =

[%
91
C , ..., %

9"
C] stands for the power activation profile of the 9 work-

load thread, which contains the power profile of the task to be

mapped ormigrated." is the number of primary hotspots per core.

5.1.3 Formulation of actions. The Action taken by the HAT-DRL

agent is defined as the indexes of mapped cores corresponding to

the tasks.

5.1.4 Formulation of rewards. The reward function reflects the ag-

ing and threshold voltage shift of the worst hotspot and is defined

as follows

A (BC , 0C) = 21 · range(�C) + 22 · range(+C) (1)

where �C and+C are aging and voltage shift of all hotspots at time

C ; range(G) is the difference between the largest and the smallest

elements of vector G ; 21 and 22 are scaling constants. The detailed

formulation of each of the terms in (1) is discussed below:

• Thermal aging �C : The thermal aging related lifetime reli-

ability of a hotspot is defined as '(C) = 4−�C
VC where �C is the

aging rate of the core per iteration of the application and is given

by ([12])

�C =
1

C?

∑

8

ΔC8

U ()8)
(2)

where C? is the period of the application graph and U ()8) is the

fault density (typically Weibull or Lognormal distribution).)8 is

the average temperature in the time interval ΔC8 . The MTTF of

hotspot ℎB 9 with reliability ' 9 (C) is given by

"))� 9 =

∫ ∞

0
' 9 (C)3C =

∫ ∞

0
4−C (� 9)

V
3C (3)

We define the fault density as a Weibull distribution by

U ()8) =
V

[

(

)8

[

)V−1

4
−
(

)8
[

)V

(4)

where [is a positive constant and V ∈ (0, 1], U ()8) declines mono-

tonically as the temperature)8 increases. Hence, to maximize the

thermal aging related lifetime is equivalent to minimize the aging

rate.

•NBTI effect model: NBTI effect is an increase in the absolute

threshold voltage, a degradation of the mobility, drain current, and

trans-conductance of p-channel MOSFETs. NBTI related threshold

voltage shift of a PMOS in the stress phase is given by [5]

Δ+Cℎ,BC = X · C0.25

X = �#�)� · C>G ·
√

�>G (+33 −+Cℎ) · 4
(
+33−+Cℎ
C>G ×�0

− �0
:×))

(5)

where C>G is the oxide thickness, and�>G the gate capacitance per

unit area. The constants �0 and �0 stand for device-dependent pa-

rameters, �#�)� is a technology-dependent constant, and : the

Boltzmann constant.) represents the temperature, and C the con-

tinuous stress time. As discussed, the threshold voltage shift of

a PMOS transistor will be partially recovered if the transistor is

placed in the recovery phase. Then the final undesired threshold

voltage shift of PMOS transistors is expressed as following

Δ+Cℎ,#�) � = Δ+Cℎ,BC ×

(

1 −

√

Y
CA42

CA42 + CBC

)

(6)

where Y is equal to 0.35, and CBC and CA42 represent the stress and

recovery time durations in a short term, respectively.

• HCI effect model: HCI is a phenomenon in solid-state elec-

tronic devices where electrons or holes have high kinetic energy

to tunnel through the thin oxide gate to show up as gate current,

or as substrate leakage current and eventually cause performance

degradation. The equation given below evaluates the HCI-induced

threshold voltage shift [5]

Δ+Cℎ,��� = l · 5 · C0.5

l = ���� · a · 4
(
+33−+Cℎ
C>G ×�1

)
(7)

where C stands for time, a for the activity factor and 5 for the

core frequency, respectively. In addition, C>G is the oxide thickness,

and �1 depends on the device specifications, temperature, and+33 .

Further, ���� is a technology-dependent constant. For the conve-

nience of computation, we treat X and l as constants in this work.

5.2 Task-to-core control by SAC-based
reinforcement learning

Traditional DRL methods suffer very high sample complexity and

poor convergence due to high sensitivity of hyperparameters. Re-

cently SAC method [3] was proposed to address the above men-

tioned challenges. It combines off-policy actor (policy function)

and critic (value function) architecture with stochastic maximum

entropy framework, which balances the exploitation and explo-

ration nature in the DRL to achieve better performance and con-

vergence.

5.2.1 So� actor critic (SAC) algorithm in a nutshell. SAC is built

on the maximum entropy RL framework, which regularizes the re-

ward with the entropy of the policy. The value functions under

entropy regularized reward are shown to satisfy the Bellman equa-

tions:

+ h
c (B) = E0∼cEB′∼%

[

A (B, 0) + W+ h
c (B
′)
]

+ U� (c (·|B)) (8)

&h
c (B, 0) = A (B, 0) + WEB′∼%

[

+ h
c (B
′)
]

(9)

+ h
c (B) = E0∼c [&

h
c (B, 0)] + U� (c (·|B)) (10)

where � is the entropy function. U is a constant coefficient. Super-

script h denotes the entropy regularization. (8)-(10) will be used for

the training of the SAC agent.

To handle continuous state spaces, SAC uses function approx-

imations for both the Q-value and the policy, and alternates be-

tween optimizing both networks with stochastic gradient descent

using data from a memory buffer � = {(BC , 0C , AC+1, BC+1)}. Param-

eterized state value function +k (BC), soft Q-value &\ (BC , 0C), and

a tractable policy cq (0C |BC) are considered, where the value net-

works are called critics and policy network is called the actor. The

parameters of these neural networks arek , \ and q .

The loss functions are derived on (8)-(10). k is trained to mini-

mize:

�+ (k) = EBC∼�

[

1
2

(

+k (BC) − E0C∼cq [&\ (BC , 0C) − U logcq (0C |BC)]
)2
]

(11)

which is a sample-approximated version of (10). Similarly, \ is

trained to minimize the sample-approximated version of (9):

�& (\) = E(BC ,0C)∼�

[

1

2

(

&\ (BC , 0C) − &̂ (BC , 0C)
)2
]

(12)

with &̂ (BC , 0C) = A (BC , 0C) + W+k̄ (BC+1), where+k̄ is the target value

network and k̄ is an exponentially moving average of the value

0 5000 10000 15000 20000 25000 30000 35000 40000

Time (s, 2500s/episode)

0.00

0.25

0.50

0.75

1.00

1.25

T
h
e
rm

a
l
A

g
in

g

Thermal Aging

0A

1A

2A

3A

0B

1B

2B

3B

0 5000 10000 15000 20000 25000 30000 35000 40000

Time (s, 2500s/episode)

0.00

0.05

0.10

0.15

V
o
lt

a
g
e
 S

h
if
t

Threshold Voltage Shift

0A

1A

2A

3A

0B

1B

2B

3B

0 500 1000 1500 2000 2500

Action Iterations (15s/migration action)

− 40

− 30

− 20

− 10

0

10

R
e
w

a
rd

Training reward

(a)

0 1000 2000 3000 4000 5000 6000

Timesteps

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

A
c
ti
v
a

ti
o

n
 R

a
te

Hotspot A - Measured

Hotspot B - Measured

Hotspot A - Model

Hotspot B - Model

(b)

0 1000 2000 3000 4000 5000 6000

Timesteps

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
c
ti
v
a

to
n

 R
a

te

Hotspot A - Measured

Hotspot B - Measured

Hotspot A - Model

Hotspot B - Model

(c)

Figure 5: Model training visualization. (a) SAC-based model training, 2500 seconds per episode and 15 seconds per iteration

interval. (b) Hotspot activation profile of hint and (c) postmark computed by the DNN model.

Figure 6: Scattered hotspots activated by various workloads.

network weights updated by k̄ ← dk̄ + (1−d)k . Finally, the policy

parameter q is learned by minimizing the objective function:

�c (q) = EBC∼�

[

E0C∼cq (· |BC)

(

logcq (0C |BC) −&\ (BC , 0C)
)]

(13)

5.2.2 SAC-based task-to-core control. In our work, we implement

the actor network, Q-critic and V-critic networks as three-layer

fully connected DNNs, respectively. Once the action is determined

by the agent, the scheduler of the operating system will be overrid-

den by setting the CPU mask of the corresponding tasks dynami-

cally in the run-time.

6 EXPERIMENT RESULTS AND DISCUSSIONS

6.1 Results for hotspot activation indicator
modeling

Weexperimentedwith 9 benchmark tasks fromPhoronix Test Suite

and for each taskwe captured over 10 thousand IPCMdata samples

and corresponding thermal images. The power peaks are scattered

in Fig. 6. Hotspots are mainly dropped into two clusters in each

core. Hence there are two primary hotspots (A and B) can be acti-

vated. Hotspot activation profiles are recorded as the label values.

For example, if a task activates hotspot A of core-0 at 50% and B of

core-1 at 95% in a four-core processor, then the output label of the

DNN is formed as [0.5, 0, 0, 0.95, 0, 0, 0, 0].

The results of hotspot activation indicator model are reasonably

accurate. We used the profiling result of task hint as an example to

demonstrate its logic and accuracy. As illustrated in Fig. 5(b) and

Fig. 5(c), this model is able to correctly characterize the hotspot

activation rates for workloads respectively when the processor is

under workloads.

6.2 Experiment setup for DRL-based control
model

The study of the proposed method is conducted on a target test

device and a simulator. As aforementioned, the hotspot activation

model is trained based on the thermal measurements of the test

device (Intel i7-8650U). This model is trained offline efficiently.

The SAC-based DRL model is trained from scratch as we train

the agent with fresh memory while it interacts with the environ-

ment. Training process on real multi-core processors can be very

time consuming as we set 10-20 seconds for task migration action

interval (ΔC) for real processors. It may cause undesired migration

overhead it the interval is too short.

To facilitate the model training process, we built a simulator of

environment to accelerates the training with only sub-millisecond

per action. The simulator essentially simulates two functionalities

of the physical system. One of the functionalities is the pseudo

IPCM process that simulates the IPCM based on the hotspot acti-

vation and thermal profile, and the current core mapping of the

tasks running in the system. The second is the OS scheduler simu-

lated by a pseudo scheduler which manages a task mapping table.

This is how pseudo IPCM works, when a task is mapped to a core,

the pseudo IPCM creates the sequences of frequency, hotspot ac-

tivation rate, temperature, and time for that core being mapped

according to the task’s profiles that we studied. The pseudo IPCM

generates such sequences for every core. We assume there will be

no multiple tasks mapped onto the same core at the same time,

and that the tasks in this work are all single-threaded. To include

the random behavior of the tasks, we added ±5% uniform random

noise to the mean of hotspot activation rates, ±5◦C to the temper-

ature and ±0.3GHz to the frequency.

6.3 Results and comparison for the SAC-based
DRL model

The proposed DRL based method demonstrates robust behavior

during the control for multiple task to core mapping.

Figure 7: Normalized MTTF results.

0 2000 4000 6000 8000

Time

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

T
h
re

s
h
o
ld

 V
o
lt

a
g
e
 S

h
if
t

0A

1A

2A

3A

0B

1B

2B

3B

Figure 8: Threshold voltage shift traces of all 8 hotspots for

the test device under HAT-DRL mapping.

0 2000 4000 6000 8000

Time

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

T
h
re

s
h
o
ld

 V
o
lt

a
g
e
 S

h
if
t

0A

1A

2A

3A

0B

1B

2B

3B

Figure 9: Threshold voltage shift traces of all 8 hotspots for

the test device under non-hotspot-aware mapping.

First of all, Fig. 7 demonstrates the MTTF of the system under

three different kinds of scheduling policies - Linux default sched-

uling, non-hotspot-aware and hotspot-aware (HAT-DRL). MTTF is

normalized with the longest core to be 10 years. The MTTF of each

core is presented by the worst hotspot on that core. And the sys-

tem overall lifetime is limited by the shortest MTTF of all its cores.

Non-hotspot-aware policy is a comparison with the hotspot-aware

such that its input state vector does not distinguish the elements

between the different types of hotspots. In our case, we replaced

the elements of agings and voltage shifts of hotspot A and B with

their mean value of each core in the state vector, hence the agent

network cannot distinguish the hotspot stresses in the input state.

It shows that HAT-DRL balances the stress between all cores and

hotspots, which achieves about 50% and 160% longer lifetime than

non-hotspot-aware and Linux default scheduling.

Training process and rewards are presented in Fig. 5(a). We im-

plement episodes in the trainingwhich remarkablymakes the train-

ing efficiently. Every 2500 seconds (15s between 2 iteration actions)

the environment resets and the aging grows from start. As we see

the aging and threshold voltage shift of eight hotspots grow very

unevenly in the first few episodes, then they gradually grow evenly,

meaning the worst stressed hotspot is dynamically mitigated.

Further, Fig. 8 shows the threshold voltage shift history of hots

pots under hint and postmark controlled by HAT-DRL. The curves

of hotspots under the same tasks with non-hotspot-aware sched-

uling is shown in Fig. 9. It is obvious that HAT-DRL minimizes the

variation and maximum of threshold voltage shift quite well.

7 CONCLUSION

Wepropose a novel learning-based task to coremapping techniques

to improve the lifetime and reliability based on advanced deep rein-

forcement learning technique. The new method, called HAT-DRL,

is based on the observation that on-chip temperature sensors may

not capture the true hotspots of the chip, which can lead to sub-

optimal control decision. The new method is able to reduce the

temperature by 1◦C tested on Intel i7-8650U CPU. It also improves

the lifetime by 50% over the limitation by temperature measure-

ments and 160% over the Linux default scheduling. Furthermore,

the threshold voltage shift is significantly mitigated for the multi-

core system.

REFERENCES
[1] H. Amrouch, V. M. van Santen, T. Ebi, V. Wenzel, and J. Henkel. 2014.

Towards interdependencies of aging mechanisms. In 2014 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). 478–485.
https://doi.org/10.1109/ICCAD.2014.7001394

[2] Anup Das, Rishad A Shafik, Geoff V Merrett, Bashir M Al-Hashimi, Akash Ku-
mar, and Bharadwaj Veeravalli. 2014. Reinforcement learning-based inter-and
intra-application thermal optimization for lifetime improvement of multicore
systems. In Proceedings of the 51st Annual Design Automation Conference. ACM,
1–6.

[3] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. arXiv preprint arXiv:1801.01290 (2018).

[4] Intel. [n.d.]. Intel Performance Counter Monitor (PCM).
https://software.intel.com/en-us/articles/intel-performance-counter-monitor.

[5] Naghmeh Karimi, ThorbenMoos, and AmirMoradi. 2019. Exploring the effect of
device aging on static power analysis attacks. UMBC Faculty Collection (2019).

[6] Taeyoung Kim, Zeyu Sun, Hai-Bao Chen, Hai Wang, and Sheldon X.-D. Tan.
2017. Energy and Lifetime Optimizations for Dark Silicon Manycore Micropro-
cessor Considering Both Hard and Soft Errors. IEEE Trans. on Very Large Scale
Integration (VLSI) Systems 25, 9 (2017), 2561–2574.

[7] Z. Liu, S. X.-D. Tan, X. Huang, and H. Wang. 2015. Task migrations for dis-
tributed thermal management considering transient effects. IEEE Trans. on Very
Large Scale Integration (VLSI) Systems 23, 2 (2015), 397–401.

[8] Shiting Lu, Russell Tessier, and Wayne Burleson. 2015. Reinforcement learning
for thermal-aware many-core task allocation. In Proceedings of the 25th edition
on Great Lakes Symposium on VLSI. 379–384.

[9] S. Pagani, P. D. S. Manoj, A. Jantsch, and J. Henkel. 2020. Machine Learning for
Power, Energy, and Thermal Management on Multicore Processors: A Survey.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
39, 1 (2020), 101–116.

[10] Vijeta Rathore, Vivek Chaturvedi, Amit K Singh, Thambipillai Srikanthan, and
Muhammad Shafique. 2019. LifeGuard: A Reinforcement Learning-Based Task
Mapping Strategy for Performance-Centric Aging Management. In Proceedings
of the 56th Annual Design Automation Conference 2019. ACM, 179.

[11] Sheriff Sadiqbatcha, J. Zhang, H. Zhao, H. Amrouch, J. Hankel, and Shel-
don X.-D. Tan. 2020. Post-silicon heat-Source identification and machine-
learning-based thermal modeling using infrared thermal imaging. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems (2020).
https://doi.org/10.1109/TCAD.2020.3007541

[12] Jayanth Srinivasan, Sarita V Adve, Pradip Bose, and Jude A Rivers. 2004. The
case for lifetime reliability-aware microprocessors. ACM SIGARCH Computer
Architecture News 32, 2 (2004), 276.

[13] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[14] Sheldon X.-D. Tan,Mehdi Tahoori, Taeyoung Kim, ShengchengWang, Zeyu Sun,
and Saman Kiamehr. 2019. VLSI Systems Long-Term Reliability – Modeling, Sim-
ulation and Optimization. Springer Publishing.

[15] Wei Wang, Nanpeng Yu, Jie Shi, and Yuanqi Gao. 2019. Volt-VAR Con-
trol in Power Distribution Systems with Deep Reinforcement Learn-
ing. In 2019 IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids (SmartGridComm). 1–7.
https://doi.org/10.1109/SmartGridComm.2019.8909741

https://doi.org/10.1109/ICCAD.2014.7001394
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://doi.org/10.1109/TCAD.2020.3007541
https://doi.org/10.1109/SmartGridComm.2019.8909741

	Abstract
	1 Introduction
	2 The overall framework and algorithm flow
	3 Motivation example
	3.1 Thermal sensors v.s. true hotspots
	3.2 Motivation example for hotspot-aware v.s. non-hotspot-aware

	4 Data-driven model for hotspot activation
	5 Proposed DRL-based approach
	5.1 Formulating the task-to-core control problem as an MDP
	5.2 Task-to-core control by SAC-based reinforcement learning

	6 Experiment results and discussions
	6.1 Results for hotspot activation indicator modeling
	6.2 Experiment setup for DRL-based control model
	6.3 Results and comparison for the SAC-based DRL model

	7 Conclusion
	References

