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Abstract—To facilitate the integration of distributed energy
resources and improve existing operational strategies, power
distribution systems have seen a rapid proliferation of deep
reinforcement learning (DRL) based applications. DRL approach
is well suited for dynamic, complex, and uncertain operational
environments such as power distribution systems. This paper
reviews the rapidly growing body of literature that develops
applications of reinforcement learning in power distribution
systems. These applications include active grid management,
energy management system, retail electricity market, and de-
mand response. This paper also summarizes the challenges of
deploying DRL based solutions in distribution systems such as
safety, robustness, interpretability, and sample efficiency. Finally,
the research opportunities that can be pursued to address the
challenges are provided.

Index Terms—Power distribution systems, deep reinforcement
learning.

I. INTRODUCTION

Over the last two decades, power distribution systems
have experienced tremendous change with the penetration of
distributed energy resources (DERs) such as electric vehi-
cles, behind-the-meter solar photovoltaic systems, and battery
storage devices. These DERs brought significant operational
challenges including dramatic voltage deviations, bidirectional
power flow, and deteriorating power quality. To overcome the
operational challenges in distribution systems, a considerable
amount of infrastructure such as advanced metering infrastruc-
ture and remotely controllable devices such as tie switches, on
load tap changers, and smart inverters have been installed.

To fully utilize the advanced equipment and coordinate
the operations of DERs, many physical model based control
and optimization algorithms were developed and adopted by
distribution system operators. However, most of these phys-
ical model based control algorithms are built based on the
distribution network topology, parameter, and customer infor-
mation in the geographical information system and customer
management system. However, these methods did not achieve
satisfactory results in practice. This is because electric utilities
often do not have reliable and accurate information about the
distribution network or the end-use customers. Furthermore,
the computation time of the physical model based algorithms
often increases quickly with the problem size. This makes
them unfitted for real-time operations.

To mitigate the problems of distribution model uncertainty
and computational complexity, an alternative approach is to
learn control and optimization policies based on the multitude
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of data generated from the real-world distribution system or a
high fidelity simulation environment. Reinforcement learning
(RL) algorithm is one of the most promising data-driven
approaches to solve sequential decision making problems. RL
aims at learning optimal control policies in Markov decision
processes (MDPs) [1]. In the RL setup, an agent interacts with
an environment by observing the environment states, executing
actions, and receiving numerical rewards. The goal of the
agent is to learn a policy, which is a mapping from states
to actions, such that the expected total discounted reward is
maximized. For MDPs having a finite number of states and
actions, policy learning can be achieved via discrete stochastic
dynamic programming or policy iteration methods. To scale
RL algorithms to MDPs with large state and action domains,
deep neural network parameterized policy and value functions
have been adopted by a large body of work in Deep RL (DRL).

DRL algorithms can be classified in a number of ways.
First, DRL algorithms can be grouped into on-policy and
off-policy algorithms, which differ about whether or not to
evaluate and improve a different policy than the current one.
Second, DRL algorithms can be categorized into value based
and policy gradient/actor critic based on whether a policy
function is explicitly maintained. Third, the RL setup could
be either online or in a batch model. The online RL setup
integrates the data collection and the learning process. In the
Batch RL setup, the data collection is decoupled from the
learning process. In other words, the RL agent learns from
a fixed set of experiences. Finally, we have model-free RL
and model-based DRL algorithms. The model-free RL agents
directly learn the value or policy function from data, whereas
model-based algorithms build a model for the environment
transition function for learning and planning.

Although DRL has achieved great success in many domains
such as Atari games [2], data center cooling system control
[3], and Go game [4], it has not seen wide-spread adoption
in critical infrastructure systems such as power distribution
systems because they must be operated in an extremely reliable
manner. In addition, the real-world operation environment is
highly complex with very high dimensional state and action
space. The unreliable and time varying distribution system
model and intermittent DERs make it even harder to achieve
satisfactory results with DRL based approach. To achieve
the ambitious goal of successfully deploying DRL based
solutions to power distribution systems, further research and
developments are needed. This paper aims at identifying the
challenges of DRL based solutions for distribution system
applications and providing ideas for future research directions.

There are several papers that provide a high level review
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of applications of DRL in power systems [5], [6], [7]. In
comparison, this paper focuses on control-related topics in
power distribution systems. Moreover, this paper delivers in-
depth analysis of the challenges and research opportunities for
designing DRL algorithms that could be eventually deployed
in operational environments of power distribution systems.

This paper has two contributions. First, it presents an up-to-
date literature review on deep reinforcement learning in power
distribution systems. Second, it summarizes the challenges and
research opportunities of DRL in power distribution systems.

The remainder of this paper is organized as follows. Section
II reviews applications of DRL in power distribution systems.
Section III discusses the challenges and opportunities. Section
IV provides the concluding remarks.

II. APPLICATIONS OF RL IN DISTRIBUTION SYSTEMS

This section reviews the promising applications of DRL in
power distribution systems. We group the existing literature
into the following application areas: active distribution grid
management, energy management system and retail electricity
market, and demand response. Due to the space limitation,
only selected papers are reviewed. A summary of RL method-
ologies in the literature is presented at the end of this section.

A. Active Distribution Grid Management

1) Volt-VAR Control (VVC): There are a large number
of papers that tackle the VVC problem using RL methods.
An early work proposed the use of Q-learning for reactive
power control [8]. The actions include transformer taps, shunt
compensations, voltage and power generations at PV buses.
The reward is proportional to the degree of operating limit
satisfaction. To reduce the communication and computation
burden of a central controller, [9] proposed a multi-agent
Q-learning VVC framework. The actions are generator bus
voltage, capacitor banks, and tap positions of transformers.

To handle high-dimensional and continuous state spaces, RL
algorithms have been combined with function approximators.
[10] proposed a least square policy iteration (LSPI) algorithm
for tap changer control, where the states are the nodal voltages
and existing tap positions. A linear function approximation of
the Q-function is constructed and updated using the standard
LSPI iteration. [11] formulates a multi-agent MDP for the
VVC problem and proposes a multi-agent deep Q learning
algorithm. The action space is decomposed in a per-device
manner to improve the learning efficiency. [12] developed a
consensus multi-agent RL algorithm in the maximum entropy
RL framework, and demonstrated the algorithm’s robustness
against agent/communication failures. While the operation
constraints were handled by domain knowledge based re-
ward designs in the aforementioned literature, they have also
been rigorously modeled in the constrained Markov decision
process (CMDP) framework. In [13], the VVC problem is
formulated as a CMDP, where the voltage violations are
treated as constraints. This paper adopts the constrained policy
optimization (CPO) algorithm to solve the CMDP problem. To
further improve the sampling efficiency of the DRL algorithm,
[14] developed a safe and off-policy RL algorithm called

the constrained soft actor-critic (CSAC) to solve the VVC
problems.

RL has also been adopted to perform smart inverter control
for VVC problems. [15] proposed to use the deep determin-
istic policy gradient (DDPG) to improve voltage profile and
minimize the curtailment of solar PV generation. To coordinate
devices operating in different time scales, [16] proposed a two-
time scale VVC for joint smart inverter and capacitor control.
The fast time-scale smart inverters control problem is solved
by quadratic programming and the slow time-scale capacitors
control problem is conducted by a DQN agent.

2) Distribution Network Reconfiguration and Restoration:
Researchers have applied RL for the system restoration or the
network reconfiguration process. [17] proposed a hybrid multi-
agent Q-learning algorithm to determine the opening/closing
switches for fast system restoration. [18] proposed a shipboard
power system reconfiguration algorithm based on Q-learning.
The paper focused on finding the best sequence of open/close
pairs to reach a final static configuration which takes the
shortest amount of execution time. [19] proposed a multi-agent
Q-learning based distribution system restoration framework
for load restoration. Similarly, [20] proposed a Q-learning
framework for distribution network service restoration and
load management. Switching device status optimization can
also reduce network losses. Early work adopted tabular Q-
learning algorithm for static minimum loss network recon-
figuration [21]. The actions are to change the switch status.
To avoid specifying an accurate simulation model or learning
by interacting with the grid, batch RL methods have been
developed to solve the reconfiguration problem. [22] proposed
a DQN based approach to learn from the historical dataset
and a synthetic dataset generated from a Gaussian process
to improve the training data diversity. The problem of bias
for learning from a fixed dataset has also been addressed by
regularizing the learned policy toward the behavior policy [23].

B. Energy Management System and Retail Electricity Market

A number of papers have applied RL for the residen-
tial and microgrid energy management problem. In [24],
the battery storage operation problem is formulated as an
MDP and solved with Q-learning considering three possible
charging/discharging actions. [25] extended the framework by
adopting the proximal policy optimization (PPO) algorithm
with a recurrent neural network to represent the price time se-
ries. [26] proposed a prioritized DDPG based residential multi-
energy system. The learned policy is capable of determining
power dispatching signals for distributed generation and en-
ergy storage systems (ESS) that minimizes the microgrid oper-
ational cost while satisfying operational constraints. A bi-level
microgrid management framework is developed in [27]. The
first-level control is carried out by a Q-learning agent, which
learns an optimal location price control policy. In the second
level, each microgrid manages its own generation/storage by
solving a mixed-integer nonlinear programming problem.

The RL-based retail electricity market was also explored by
researchers. [28] introduced a customer-centric model for the
local event-driven market (LEM), where the RL agent tries to
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learn a market clearing strategy. The problem is solved by a
modified Q-learning accounting for different rewards across
episodes. [29] proposed a microgrid trading framework to
determine the energy trading strategy with other microgrids
that increases its profit.

C. Demand Response
[30] proposed a modified fitted Q-iteration for demand

response using thermostatically controlled loads. The state
variables are divided into controllable parts (e.g., indoor
temperature) and non-controllable parts (e.g., outdoor temper-
ature). The action is temperature control which is proposed
by an RL agent but rectified by a backup controller to guar-
antee safety and comfort. An RL-based solution is introduced
for multi-user demand response considering real-time pricing
(RTP) [31]. Since the price for each user is influenced by the
consumption of all users, the DR problem is formulated as
a partially observable Markov game (POMG), in which each
user controls the sleep/awake status of its loads to minimize
the electricity bill and discomfort while participating in the DR
program. The POMG problem is solved by estimating other
users’ observations to form an estimated fully observable MG,
which is solved by an actor-critic algorithm.

D. Summary of RL-based Applications in Distribution Grid
The existing literature leveraged a wide range of RL algo-

rithms in distribution system applications. Early algorithms
mostly utilized tabular Q-learning for problems with finite
and low dimensional state space. Initially, problems with
larger state spaces are often addressed by heuristics that
augment the Q-table. To process more complex state spaces,
the researchers eventually adopt DRL algorithms that leverage
deep neural networks. Off-the-shelf DRL approaches such as
action value methods (e.g., DQN and DDQN), policy gradient
methods (e.g., PPO, and CPO), and actor critic framework
(e.g., DDPG and SAC) have been explored. In addition to the
standard DRL algorithms, innovative ones such as CSAC and
batch constrained SAC (BCSAC) [23] have been developed to
address the technical issues associated with operational safety
and limited historical training samples.

In terms of the RL environment setup, some literature
assumes that RL agents learn from a set of historical data. This
setup avoids specifying a complete and accurate distribution
system simulation model, which the operators most likely do
not have access to. In other papers, the RL agents interact
with a simulated distribution network. Learning by directly
interacting with the physical environment is also explored.
To prevent the selection of risk actions, safety checks by
simulation models or human operators are often required.

The mathematical formulation of the RL problem also varies
in the existing literature. In most of the papers, the RL problem
is formulated as an MDP or a CMDP. In a few papers, the
actions affect only the immediate rewards but not future states.
In this case, the agent is facing a multi-armed bandit problem
rather than a regular MDP. In some problem formulation, the
learning environment is not strictly Markovian. However, by
aggregating system information from multiple time steps to
form the state vector, DRL algorithms can still be applied.

III. DRL IN DISTRIBUTION SYSTEMS: CHALLENGES AND
OPPORTUNITIES

In this section, we discuss the main challenges in the de-
velopment and deployment of DRL algorithms in distribution
systems. Several research and development opportunities are
pointed out to address the technical challenges.

A. Challenges

1) Safety and Robustness: To operate a power distribution
grid with many critical infrastructure in a safe and reli-
able manner, the learned control policy must be robust to
measurement noise and unforeseen operation conditions such
as addition of distribution generation or change in network
topology. Moreover, critical distribution system operational
constraints must be satisfied all the time. Relying on backup
controllers or human operators to override the RL agent’s
control signals in real-time is not an ideal operational risk
mitigation strategy. Although existing literature already lever-
aged the constrained MDP framework to develop safe RL
algorithms for applications such as Volt-VAR optimization,
this type of safe RL algorithms could only guarantee near but
not strict operational constraint satisfaction.

2) Interpretability of DRL policies: Despite promising per-
formance of DRL-based algorithms in distribution system
applications, the learned control policies are embedded in
deep neural networks. This makes it difficult to interpret
the learned policy, explain them to the system operators,
and check for desired safety properties. In order to improve
the user acceptance of DRL in power distribution systems,
we must develop DRL algorithms that are interpretable. For
example, the policy must be presented in a format that allows
electric utilities to evaluate the voltage margins under different
operational conditions.

3) Sample efficiency: To learn a good control policy, DRL
algorithms typically require a large number of training data.
This is problematic when the training data can only be sampled
from historical operational experiences in the real-world distri-
bution system. Excessive exploration in the real-world system
degrades the algorithm performance in the short term when a
good policy can not be obtained on time to compensate for
the cost due to trial-and-error. Off-policy RL algorithms offer
a natural way to improve the sample efficiency by reusing
previously collected data. However, designing off-policy RL
algorithms to learn accurate value functions or near optimal
policies for large-scale distribution system applications is still
a very challenging problem. Although batch DRL algorithms
can infer good control policies from existing operational data
without exploration. The learned policies are not guaranteed
to be near optimal. This is especially troublesome when the
utilities do not have abundant and diverse historical data.

4) Availability of accurate training environments: Most of
the electric utilities do not have accurate and reliable network
topology documents, network parameter estimates, and load
and DG models. These practical challenges make it difficult
to build a trustworthy distribution system simulation environ-
ment for training RL algorithms. Although many data-driven
network topology, parameter estimation and load modeling
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algorithms have been developed, almost none of them could
guarantee extremely small estimation error for a wide range
of distribution systems. Therefore, RL agents must be able
to transfer the knowledge they learned in the simulation
environment to the real-world distribution systems. It has been
shown that naive continuous training on new data streams does
not yield satisfactory learning results. Worse yet, re-training
the RL agent in a different environment from the previous
checkpoints still requires a large amount of new samples.

5) Lack of standardized test cases, testing procedure, and
performance metrics: One of the key drivers for major ad-
vances in machine learning research is the availability of
high quality standard training and testing dataset. However,
to date no standardized test cases and dataset are specifically
designed for RL research and development in the area of
power distribution systems. This makes it extremely difficult
to conduct a fair comparison between a new RL algorithm
and the benchmark for power distribution system applications.
In addition, the testing procedure and performance metrics
reporting used in the power system literature are not always
carried out in an appropriate manner. Furthermore, many
RL implementation details such as hyperparameters, random
seeds, and software codes are often missing from the literature
in power distribution systems. This makes it difficult to verify
and reproduce RL research results.

6) Non-Markovian environment: The RL problems are
formulated within the Markov decision process framework.
However, the Markovian property may not be valid for some
of the distribution system applications. For example, the time
varying price of retail electricity markets and the load patterns
are hardly Markov processes. Although RL algorithms such
as Q-learning are found to converge for a larger class of
problems than MDP, it is difficult to predict if the developed
RL algorithm works for a specific non-Markovian distribution
system problem domain. The current approaches to deal with
Non-Markovian problems are to aggregate the information
from the past, such as load/DG time series or price signals,
as part of the state. However, these approaches are not often
developed in a principled manner.

B. Opportunities

1) Safe exploration: To learn a safe and reliable control
policy, the RL agent must satisfy the distribution system op-
erational constraints both during and after the learning phase.
In addition, these operational constraints should be enforced
strictly rather than on expectation as in the CMDP framework.
One may consider modeling the operational constraints in a
state-wise manner and adding an action correction layer to
guarantee operational constraints satisfaction [32]. An alterna-
tive strategy for guaranteeing state-wise constraint satisfaction
can be implemented by extracting a verifiable policy, such as
decision trees [33], from a given pre-trained policy. Then, we
can verify if certain actions will violate operational constraints.

2) Interpretable policy learning: To improve the adoption
of and the trust in RL policies, we will need to describe
the learned policy to the distribution system operators in
the languages familiar to them instead of using descriptions

involving neural network terminologies and MDP theory. This
can be achieved by programmatic policy learning, which
search for and construct policies from a set of domain-
specific programming languages [34]. This approach could
produce human-readable policies, and allow for verifying the
RL agents’ behavior for any input state. A policy may also be
interpreted by learning structural causal models, which encode
causal relationships between variables of interest, such as an
action or a reward [35]. These models are then used to generate
explanations of the RL agent’s behaviors, which are subsets of
causes together with the causal chains to the reward variables.

3) Model-based learning and planning: Model-based RL
learns a model (state transition probability and reward) then
plans a policy within the learned model. They are in general
more sample efficient than model-free RL algorithms because
the probability distribution model of the environment can be
learned separately by supervised learning methods. In addition,
prior knowledge about the environment can be specified in the
model to improve the learning efficiency. Although inaccurate
models can introduce biases in the learned policy, recent
model-based policy optimization techniques have shown that
such biases can be mitigated by strategically varying the length
of model rollouts [36]. It has been demonstrated that these
model-based policy optimization techniques greatly improve
the model usability. The model-based RL algorithms can also
be used in batch RL setup [37].

4) Imitation learning and inverse RL: The operations of
power distribution grids usually have several objectives such
as operational cost minimization and system resiliency and re-
liability maximization. It is difficult to strike a balance between
various operating objectives in the reward design process. To
address this problem, imitation learning and inverse RL [38]
can be used to infer useful reward information from a set of
demonstrations, which are the historical operational data in
power distribution systems.

5) Leveraging specific reward structures: Most off-the-
shelf DRL algorithms are designed with very general reward
formulations. However, more efficient algorithms can be de-
veloped by exploiting specific problem structures. In some
distribution system applications, it can be shown that the opti-
mal policy is the greedy policy with respect to the immediate
reward. Handcrafted functions can also be selected based on
distribution system domain knowledge as the reward. Efficient
algorithms such as the online contextual bandit SquareCB
[39] and the batch contextual bandit techniques [40] can be
leveraged to improve the learning efficiency.

6) Robust RL and transfer learning: RL control policy
learned based on operational experiences from one particular
distribution system environment may not work well in another
one with different topology or set of DERs. To prevent learning
from scratch again, one could adopt transfer learning tech-
niques, which transplant a portion of the previously learned
policy and value function neural network parameters into the
neural networks of the new operating environment. Another
approach to deal with uncertain real-world operational envi-
ronments is to learn a robust policy [41], which maximizes the
worst case value function of all the possible MDPs associated
with a set of possible real-world operating environments.
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IV. CONCLUSION

This paper provides a literature survey for recent appli-
cations of deep reinforcement learning in power distribution
systems. We point out that despite the rapid development of the
RL algorithms for power distribution systems, there remains
six fundamental challenges of adopting RL methods in real-
world operations: safety, interpretability, sample efficiency,
model uncertainty, non-Markovity, and lack of standardized
test cases. Six exciting research and development opportunities
for DRL in power distribution systems are identified.
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and R. Belmans, “Residential demand response of thermostatically
controlled loads using batch reinforcement learning,” IEEE Transactions
on Smart Grid, vol. 8, no. 5, pp. 2149–2159, 2017.

[31] S. Bahrami, V. W. S. Wong, and J. Huang, “An online learning algorithm
for demand response in smart grid,” IEEE Transactions on Smart Grid,
vol. 9, no. 5, pp. 4712–4725, 2018.

[32] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and
Y. Tassa, “Safe exploration in continuous action spaces,” arXiv preprint
arXiv:1801.08757, 2018.

[33] O. Bastani, Y. Pu, and A. Solar-Lezama, “Verifiable reinforcement
learning via policy extraction,” in Advances in Neural Information
Processing Systems 31. Curran Associates, Inc., 2018, pp. 2494–2504.

[34] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri, “Pro-
grammatically interpretable reinforcement learning,” arXiv preprint
arXiv:1804.02477, 2018.

[35] P. Madumal, T. Miller, L. Sonenberg, and F. Vetere, “Explain-
able reinforcement learning through a causal lens,” arXiv preprint
arXiv:1905.10958, 2019.

[36] M. Janner, J. Fu, M. Zhang, and S. Levine, “When to trust your model:
Model-based policy optimization,” arXiv preprint arXiv:1906.08253,
2019.

[37] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims,
“MOReL: Model-based offline reinforcement learning,” arXiv preprint
arXiv:2005.05951, 2020.

[38] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters,
“An algorithmic perspective on imitation learning,” Foundations and
Trends in Robotics, vol. 7, no. 1-2, p. 1–179, 2018.

[39] D. J. Foster and A. Rakhlin, “Beyond UCB: Optimal and ef-
ficient contextual bandits with regression oracles,” arXiv preprint
arXiv:2002.04926, 2020.

[40] M. Dudı́k, J. Langford, and L. Li, “Doubly robust policy evaluation and
learning,” arXiv preprint arXiv:1103.4601, 2011.

[41] M. A. Abdullah, H. Ren, H. B. Ammar, V. Milenkovic, R. Luo,
M. Zhang, and J. Wang, “Wasserstein robust reinforcement learning,”
arXiv preprint arXiv:1907.13196, 2019.


