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Abstract—Volt-VAR control (VVC) plays an important role
in enhancing energy efficiency, power quality, and reliability
of electric power distribution systems by coordinating the op-
erations of equipment such as voltage regulators, on-load tap
changers, and capacitor banks. VVC not only keeps voltages
in the distribution system within desirable ranges but also
reduces system operation costs, which include network losses
and equipment depreciation from wear and tear. In this paper,
the deep reinforcement learning approach is taken to learn a
VVC policy, which minimizes the total operation costs while
satisfying the physical operation constraints. The VVC problem is
formulated as a constrained Markov decision process and solved
by two policy gradient methods, trust region policy optimization
and constrained policy optimization. Numerical study results
based on IEEE 4-bus and 13-bus distribution test feeders show
that the policy gradient methods are capable of learning near-
optimal solutions and determining control actions much faster
than the optimization-based approaches.

Index Terms—Reinforcement learning, Volt-VAR control, con-
strained Markov decision process, policy gradient methods.

I. INTRODUCTION

As the penetration level of distributed energy resources
(DERs) continues to rise in power distribution systems, it is
increasingly difficult to keep the voltages along the feeders
within the desired range. The voltage profile highly impacts
the electricity service quality for end users. Both over-voltage
and under-voltage conditions could reduce energy efficiency,
cause equipment malfunction, and damage customers’ electri-
cal appliances. Equipped with remote control and monitoring
devices, electric utilities started adopting Volt-VAR control
(VVC) to maintain voltages within allowable range, manage
power factor, and reduce operation costs. These control objec-
tives can be achieved by coordinating the operations of various
equipment such as voltage regulators, on-load tap changers,
switchable capacitor banks, and smart inverters.

Although successful field demonstrations of VVC have been
reported by many electric utilities, there are still many barriers
to the wide-spread adoption of the technology. One of the most
significant barriers is the lack of robust distribution network
topology and parameter information, which are required in
optimization based VVC approaches. In particular, inaccurate
distribution secondary systems’ information [1]–[3] makes it
difficult for VVC to ensure that customers’ voltages will
stay within the acceptable range. To overcome the drawbacks
of optimization-based approaches, we develop a data-driven

deep reinforcement learning based approach to solve the VVC
problem.

The existing algorithms for VVC can be divided into two
categories: optimization-based approach and reinforcement
learning based approach. The optimization-based approach to
solve the VVC problem has been well researched. The VVC
problem is formulated as a deterministic optimization prob-
lem with different extensions [4]–[7]. Voltage-dependent load
model is introduced in [4]. Continuous controllable reactive
power source is considered in [5]. The interaction between
the Volt-VAR optimizer and prosumers is incorporated in a
game theory model [6]. Considering the uncertainties of DERs,
the VVC problem is formulated as a robust optimization
problem [8], [9]. Both papers propose a two-stage coordination
scheme for the VVC, which consists of the less-frequent
control for on-load tap changers and the more-frequent control
for smart inverters. Model predictive control (MPC) based
VVC is studied in [10], [11] to reduce real power losses and
voltage fluctuation [10] and preserve the life of controllable
equipment by penalizing the number of tap changes [11].
In the optimization-based approach, the VVC problem is
typically formulated as a mixed-integer conic programming
(MICP) or mixed-integer nonlinear programming problem.
The computational complexity of the solution algorithms for
these NP-hard problems increases exponentially with the dis-
tribution network size and the number of controllable devices.
Thus, the optimization-based approach does not scale well for
real-time application of VVC.

The reinforcement learning approach is capable of making
control decisions online based on off-line trained models.
In particular, Q-learning based algorithms are developed for
the VVC problem [12]–[14]. The tabular Q-learning method
is adopted to solve the VVC problem [12]. A tabular Q-
learning method is proposed to solve the optimal reactive
power dispatch problem [13], where the global reward is
obtained with a consensus-based global information discovery
algorithm. In [14], separate Q-values of on-load tap changers
are approximated sequentially by radial kernel functions. So
far, all reinforcement learning based algorithms developed for
the VVC problem are action-value methods [15], [16]. They
learn the values of actions and then select actions based on
estimated action values.

In this paper, we adopt a different reinforcement learning



approach called policy gradient methods [17]–[20] to solve
the VVC problem. Policy gradient methods directly learn a
parameterized control policy that can select actions without
using a value function. Policy gradient methods have two
advantages over action-value methods. First, the VVC policy
may be a simpler function to approximate than the action-value
function. Second, continuous policy parameterization yields
stronger convergence guarantees for policy-gradient methods
than the ε-greedy action selection for action-value methods
[21]. Compared to the optimization-based approaches, our
proposed algorithm has better scalability and does not require
accurate and complete physical model of the distribution
network.

The existing reinforcement learning based VVC works
allow controllers to freely explore any control actions during
learning. However, certain control actions will lead to severe
voltage violations in the distribution feeder. To enable safe
exploration for controllers, we adopt the constrained policy
optimization [20] algorithm, which statistically guarantees
every control policy during learning will satisfy operational
constraints in the form of expectation.

The remainder of the paper is organized as follows. Sec-
tion II presents the formulations of the VVC problem as
an optimization problem and as a constrained Markov deci-
sion process (CMDP) problem. Section III describes how to
leverage policy gradient methods to solve the VVC problem.
Section IV shows the numerical results, which demonstrate
the performance of our proposed reinforcement learning based
VVC algorithms. Section V concludes the paper.

II. PROBLEM FORMULATION

In this section, we first formulate the VVC problem as an
optimization problem and then as a CMDP problem.

A. Volt-VAR Control Formulated as an Optimization Problem

VVC algorithm aims at minimizing the total system losses
and equipment operation costs while satisfying voltage con-
straints. In this formulation, we assume the voltage regulators,
on-load tap changers and capacitor banks are the primary
control knobs. Then, the VVC problem can be formulated as
an optimization problem as follows [22]:

minCp[

T∑
t=1

P tloss] + Cr

T∑
t=1

Nr∑
j=1

|Taprj(t)− Taprj(t− 1)|

+ Cl

T∑
t=1

Nl∑
j=1

|Taplj(t)− Taplj(t− 1)|

+ Cc

T∑
t=1

Nc∑
j=1

|Tapcj(t)− Tapcj(t− 1)| (1)

s.t.

fPB(PGt,QGt,PDt,QDt,TAP t,u
t, lt) = 0,∀t (2)

fOL(PF t,QF t,TAP t,u
t, lt) = 0,∀t (3)

PF tij
2

+QF tij
2

= ltiju
t
i,∀i, j ∈ N , (i, j) ∈ E, t (4)

u ≤ uti ≤ u,∀i ∈ N , t (5)

The objective function (1) minimizes the total operation
costs, which include the costs associated with line losses and
the switching costs of voltage regulators, on-load tap changers,
and capacitor banks. The switching cost is assumed to be
proportional to the absolute number of tap changes between
consecutive hours. P tloss denotes the total real line losses at
hour t. Cp, Cr, Cl, and Cc are the cost coefficients for the
real power loss, the tap changes of voltage regulators, on-load
tap changers, and capacitor banks respectively. Nr, Nl, and
Nc are the total numbers of voltage regulators, on-load tap
changers, and capacitor banks. Taprj(t), Taplj(t), and Tapcj(t)
denote the tap position of the j-th voltage regulator, on-load
tap changer, and capacitor bank at hour t. T is the operation
horizon of the VVC algorithm.

The formulation of constraints leverages the DistFlow equa-
tions [23]. The decision variables of the DistFlow formulation
are the vector (ut) of uti for all the nodes (N ), the vector
(lt) of ltij for all the lines (E), and the vector (TAP t) of tap
positions for all the devices. uti denotes the square of voltage
magnitude of node i at hour t. ltij denotes the square of current
magnitude of the line connecting node i and j at hour t.

The set of power balance constraints in the DistFlow is
represented by (2), where PGt, QGt, PDt, and QDt denote
the vector of nodal real and reactive power generations and
demands at hour t. The constraints corresponding to the Ohm’s
law is represented by (3), where PF t and QF t denote the
vector of real and reactive power flows at hour t. Equality
constraint (4) is the only nonlinear constraint in the DistFlow
formulation, which can be relaxed as a second order cone [23].
PF tij and QF tij are the real and reactive power flow on the
line connecting node i and j at hour t. E and N denote the
set of edges and nodes in the distribution feeder. Equation (5)
represents the nodal voltage constraints, where u and u are the
lower and upper limits for the square of voltage magnitude.
The detailed formulations for the operating constraints can
be found in [22], where binary variables are introduced to
represent the tap positions. The optimization problem shown
above is a MICP problem.

Finally, to account for generation and load uncertainties,
the VVC problem can be formulated as a MPC [10]. The
optimization problem shown above can be solved on a rolling
basis based on the updated load and generation forecasts.

B. Volt-VAR Control Formulated as a Constrained Markov
Decision Process

In the Markov decision process (MDP), the grid operator
or controller is denoted by an agent. This agent and the
distribution grid interact at each of a sequence of discrete
time steps t = 0, 1, 2, . . .. At each time step t, the agent
receives the system’s state st ∈ S, and selects a control action
at ∈ A(s). One time step later, the agent receives a numerical
reward Rt+1 ∈ R ⊂ R, and finds itself in a new state st+1.
The probability of receiving a reward and observing a new



state depends on the preceding state and control action as
P (st+1|st, at) = P (st+1|s0, a0, ..., st, at).

In the context of the VVC, the state is defined as s =
[P ,Q, T , t], where P ,Q, T and t denote the nodal real and
reactive power injections, the current tap positions, and the
time step. The action taken by a VVC agent is changing the
tap positions of controllable devices to T ′. The size of the
action space is ΠNs

i=1ni, where Ns = Nr + Nl + Nc is the
number of controllable devices and ni denotes the number of
tap positions of device i. The reward received by the controller
R(st, at, st+1) for taking action at at state st and reaching
state st+1 is defined as the negative of the system operational
costs, which include the costs associated with real power losses
and equipment operations.

R(st, at, st+1)

=−
[
CpP

t
loss + Cr

Nr∑
j=1

|Taprj(t+ 1)− Taprj(t)|

+ Cl

Nl∑
j=1

|Taplj(t+ 1)− Taplj(t)|

+ Cc

Nc∑
j=1

|Tapcj(t+ 1)− Tapcj(t)|
]

(6)

The goal of an agent is to find a control policy π that
maximizes the expected discounted return defined as:

J(π) = E
τ∼π

[

T∑
t=0

G(τ)] (7)

where control policy π is a mapping from state space S to
action space A for a deterministic policy and a mapping
from states to probabilities of selecting each possible ac-
tion for a probabilistic policy. τ is a trajectory or sequence
of states and actions, {s0, a0, s1, a1, ..., sT−1, aT−1, sT }.
G(τ) is the discounted return along a trajectory. G(τ) =∑T
t=0 γ

tR(st, at, st+1), where γ ∈ (0, 1) is the discount
factor.

Two important functions, action-value function and state-
value function for policy π are defined as follows [21]:

Qπ(s, a) = E
τ∼π

[G(τ)|s0 = s, a0 = a] (8)

V π(s) = E
τ∼π

[G(τ)|s0 = s] (9)

The action-value function Qπ(s, a) represents the expected
return starting with state s, taking action a, and following
π thereafter. The state-value function V π(s) represents the
expected return starting with state s and thereafter following
policy π.

To enforce the voltage constraints, we augment the MDP
with a set of cost functions RC(st, at, st+1). For the VVC
problem, it is defined as the number of voltage violations
across all nodes, i.e.,

RC(st, at, st+1) =

N∑
i=1

[1(|vt+1
i | > v) + 1(|vt+1

i | < v)] (10)

where 1(·) is the indicator function; vt+1
i is the voltage of node

i at hour t + 1; v and v are the upper and lower limits for
voltage magnitudes. Additional operating constraints such as
the line flow limits could be incorporated in a similar manner.

Now the expected discounted return of policy π with respect
to the cost function can be defined as

JC(π) = E
τ∼π

[

T∑
t=0

γtRC(st, at, st+1)] (11)

The final CMDP formulation for the VVC problem is:

max
π

J(π) (12)

s.t.
JC(π) ≤ J (13)

where J is the limit for the expected discounted return of the
cost function associated with the voltage constraints.

III. TECHNICAL METHODS

So far all reinforcement learning algorithms adopted to
solve the VVC problem have been action-value methods,
which approximate the action-value functions through learning
and then select actions based on the estimated action-value
functions. In this paper, we consider policy gradient methods,
which learn a parameterized control policy that directly selects
actions without consulting a value function [21]. Typically, an
approximate policy is parameterized according to the soft-max
in action preferences, which makes approaching deterministic
policy easier and finding stochastic policy feasible [21]. Both
of these goals can not be achieved by the ε-greedy action selec-
tion in the action-value methods. Another notable advantage of
the policy gradient methods over the action-value methods is
that the control policy functions may be easier to approximate
than action-value functions in many applications such as the
VVC problem.

In this section, we first introduce the preliminaries of
the policy gradient methods. Then two state-of-the-art policy
gradient methods based on trust region algorithms [18], [20]
are adopted to solve the VVC problem. Finally, the design of
neural networks to approximate the policy and value functions
in the two algorithms will be discussed.

A. Preliminaries of policy gradient method

Policy gradient methods learn a parameterized control pol-
icy πθ that maximizes the performance measure Ĵ(πθ) by
updating the parameter θ iteratively as follows:

θk+1 = θk + α∇θĴ(θk) (14)

According to the policy gradient theorem [21], the gradient
can be derived as

∇θĴ(θ) = E
τ∼πθ

[

T∑
t=0

∇θ log πθ(at|st)Ψt] (15)

where Ψ may have various forms including the action-value
function Qπθ (s, a) and the advantage function Aπθ (s, a).



The advantage function, which quantifies the improvement
by taking action a in state s compared to randomly selecting
an action according to policy πθ and following πθ afterwards,
is defined as

Aπθ (s, a) = Qπθ (s, a)− V πθ (s) (16)

Two policy gradient methods, trust region policy optimiza-
tion (TRPO) and constrained policy optimization (CPO), that
use the advantage function are presented in the following sub-
sections. We will discuss how to adopt them to solve the VVC
problem formulated as MDP and CMDP. The implementation
details of these two algorithms can be found in [18], [20].

B. Trust Region Policy Optimization

The TRPO algorithm originally proposed in [18] provides a
theoretical guarantee of monotonic improvement of the control
policy at each policy iteration step.

The design of the policy iteration procedure is based on the
lower bound [20] of the performance improvement of policy
πθ′ over policy πθ:

J(πθ′)− J(πθ) ≥
1

1− γ
E

s∼ηπθ
a∼πθ′

[
Aπθ (s, a)

− γξπθ′

1− γ
√

2KL(πθ′ ||πθ)[s]
]

(17)

where ξπθ′ = maxs |Ea∼πθ′ [A
πθ (s, a)]|. KL(πθ′ ||πθ)[s] is

the KL-divergence between policy πθ′ and πθ at state s.
ηπθ is the discounted future state distribution, ηπθ (s) =
(1 − γ)

∑T
t=0 γ

tP (st = s|πθ). P (st = s|πθ) denotes the
probability of state s appearing at time t under policy πθ.

Thus, we can update the policy parameters iteratively by
maximizing the expected advantage with a small step size δ:

πθk+1
= argmax

πθ
E

s∼ηπθk
a∼πθ

[Aπθk (s, a)] (18)

s.t. E
s∼ηπθk

[
KL(πθ, πθk)[s]

]
≤ δ (19)

If πθk is a feasible solution, the maximum expected advantage
is non-negative. With a small enough δ, monotonic policy
improvement is guaranteed according to (17). The optimiza-
tion problem (18) and (19) can be solved by linearizing the
objective function and quadratically approximating the KL-
divergence around θk.

The final iterative TRPO algorithm to solve the VVC
problem is shown in Algorithm 1.

To adopt the TRPO algorithm for the VVC problem, the
reward function is augmented with a penalty term associated
with the voltage violations:

R′(st, at, st+1) = R(st, at, st+1)−CVRC(st, at, st+1) (20)

where CV is the penalty factor for voltage violations.

Algorithm 1 TRPO for VVC
1: Initialize parameters for policy and value function, θ0, φ0
2: for k = 0,1,2,... do
3: Generate sample trajectories Trk = {τ} with πθk

through power flow simulations
4: Calculate the discounted return for the objective Ĝt

after each time step t along the trajectories
5: Estimate the advantage for the objective Ât based on

the value function Vφk
6: Obtain πθ∗k+1

by solving (18) and (19)
7: Update the parameters φk of the value function neural

network with Ĝt as labels
8: end for

C. Constrained Policy Optimization

To directly solve the VVC problem formulated as a CMDP,
the CPO algorithm, which guarantees approximate constraints
satisfaction, can be leveraged [20]. The theoretical guarantee
of the constraint satisfaction can be shown with the upper
bound [20] of the performance improvement associated with
constraints of policy πθ′ compared to policy πθ:

JC(πθ′)− JC(πθ) ≤
1

1− γ
E

s∼ηπθ
a∼πθ′

[
AπθC (s, a)

+
γξ
πθ′
C

1− γ
√

2KL(πθ′ ||πθ)[s]
]

(21)

where ξπθ′C = maxs |Ea∼πθ′ [A
πθ
C (s, a)]| and AπθC (s, a) is the

corresponding advantage function for the constraint. Accord-
ing to (21), the constraint at each updating step is specified
as:

JC(πθk) +
1

1− γ
E

s∼ηπθk
a∼πθ

[A
πθk
C (s, a)] ≤ J (22)

The policy update for CMDP can be found by solving (18),
(19), and (22). Therefore, with a small enough δ, the constraint
satisfaction is almost guaranteed at step k + 1 if we start
from a feasible solution πθk according to (21). The worst-case
constraint violation at step k + 1 is:

J − JC(πθk+1
) ≤
√

2δγξπθk+1

(1− γ)2
(23)

Similarly, to solve the optimization problem, (22) should be
linearized around θk. At the beginning of the training process,
a feasible solution can be recovered by solving the following
problem subject to (19):

min
πθ

E
s∼ηπθk
a∼πθ

[A
πθk
C (s, a)] (24)

The final CPO algorithm to solve the VVC problem is
shown in Algorithm 2.

D. Value and Policy Networks

Both the objective function (18) and the expectation of the
advantage function associated with the constraint in (22) can



Algorithm 2 CPO for VVC
1: Initialize parameters for policy and value functions, θ0,
φ10, and φ20

2: for k = 0,1,2,... do
3: Generate sample trajectories Trk = {τ} with πθk

through power flow simulations
4: Calculate the discounted returns Ĝ1

t , Ĝ2
t for the objec-

tive function and the constraint after each time step t
along the trajectories

5: Estimate the advantages for the objective Â1
t and the

constraint Â2
t , based on the value functions Vφ1

k
and

Vφ2
k
.

6: if the problem (18), (19) and (22) is feasible then
7: Obtain the optimal solution πθ∗k+1

8: else
9: Obtain the solution πθ∗k+1

by solving (19) and (24)
10: end if
11: Update the parameters φ1k and φ2k of the value function

neural networks with Ĝ1
t and Ĝ2

t as labels
12: end for

be calculated with only the state-value function and the policy
function as follows:

E
s∼ηπθk
a∼πθ

[Aπθk (s, a)] = E
s∼ηπθk
a∼πθk

[
πθ(a|s)
πθk(a|s)

Aπθk (s, a)] =

E
s∼ηπθk
a∼πθk

[
πθ(a|s)
πθk(a|s)

(R(s, a, s′) + γV πθk (s′)− V πθk (s))] (25)

Therefore, we only need to design neural networks to
approximate the state-value function and the policy function.
The state-value function Vφ corresponding to the augmented
reward in Algorithm 1 is parameterized with φ. The state-value
functions corresponding to the reward Vφ1

and the constraint
Vφ2

in Algorithm 2 are parameterized with φ1 and φ2. The
inputs of all the value networks are states. The output is the
expected discounted return.

Hidden layersInput

Device 1 
(softmax)

Device n 
(softmax)

Fig. 1. Structure of the policy network

The policy function πθ is approximated by a neural network
with parameter θ. The structure of the policy network is shown
as in Fig. 1. The inputs are the states and the outputs are the
probabilities of selecting various actions, which represent the
switch status of the devices. The size of the output layer is∑Ns
i=1 ni, where Ns and ni are the number of devices and

the number of tap positions for device i. The probability
distribution Pi of the actions for device i, is obtained from the
subset of the output neurons with size ni. A softmax activation
function is applied to each subset of the output neurons
corresponding to a device. The final probability distribution
of the tap combinations across all devices is calculated with
P = ΠNs

i=1Pi. Thus, in our proposed methods the network size
only increases linearly with Ns.

IV. NUMERICAL STUDY

A. Simulation Setup

The numerical studies are conducted on the IEEE 4-bus
and 13-bus distribution test feeders [24]. The real-world smart
meter data of an electric utility is used as the nodal load in
the simulation environment to generate power flow solutions.
The length of historical data is about six months. One week of
data during the summer peak are used for the out-of-sample
test and the rest are used for training. The length of the VVC
optimization horizon or an episode in reinforcement learning
is one week. The load time series data is scaled and allocated
to each node according to the load profile of the standard test
case. Each test feeder has three switching devices: a voltage
regulator, an on-load tap changer, and a capacitor bank. Both
the voltage regulator and the on-load tap changer have 11
tap positions with turns ratios between 0.95 and 1.05. The
capacitor bank can be switched on and off remotely and the
number of ‘tap positions’ is treated to be 2. The size of the
action space for each test case is 11 × 11 × 2 = 242. In the
4-bus test feeder, the capacitor bank is placed at node 4. In
the 13-bus test feeder, the capacitor bank is placed at node
675. The nominal capacity of the capacitor banks is 200kW .
Initially, the turns ratios of the voltage regulators and on-load
tap changers are 1, while the capacitor banks are switched
off. The electricity price Cp is assumed to be $40/MWh.
The switching costs of the devices Cr, Cl, and Cc are set at
$0.1 per tap change.

B. Benchmarking Algorithms

The MPC-based optimization algorithm is chosen as the first
benchmark. The control horizon is at 24 hours. The ARIMA
[25] model is used to forecast the load during the control
horizon. The MICP problem formulated in Section II-A is
solved on a rolling basis at each step of MPC. MOSEK and
GUROBI are used to solve the MICP problem. The second
benchmark is set up by replacing the load forecast with
actual load data in the MPC framework. The last benchmark
represents the baseline where all switching devices are kept at
their initial positions.



C. Policy Gradient Methods

In the TRPO and CPO algorithms, both the value and
policy neural networks have two hidden layers with 64 and 32
neurons respectively. The tanh activation function is used in all
the hidden layers. The linear and softmax activation functions
are used for the output layers of the state-value and the policy
networks. In the TRPO algorithm, the reward function is
augmented by a penalty cost for voltage constraint violations.
The penalty coefficient CV is $1 per voltage violation per
node. The terminal state is chosen as the last hour of a week
for both algorithms.

D. Performance Comparison

The control performances of CPO, TRPO, and MPC-
based approaches are evaluated in this subsection. Both the
CPO algorithm and the TRPO algorithm are trained for 500
iterations. Each training iteration consists of 298 episodic
trajectories, which correspond to about 50,000 samples. Over
the training episodes, we record the average discounted return
(ADR), which includes the costs associated with the line
losses, tap changes, and the penalty of voltage violations. As
shown in Fig. 2, the CPO algorithm starts to outperform the
TRPO algorithm after about 200 training iterations for the 4-
bus test case. For the 13-bus test case, the CPO algorithm
always outperform the TRPO algorithm. At the end of the
training process, the improvements of episodic returns for both
algorithms become saturated.
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Fig. 2. Training performance of the reinforcement learning algorithms

The total operation cost (OC), the number of tap changes
(# of TC), the number of voltage violations (# of VV), and
the accumulated per unit voltage violation (AVV) over the
test week are recorded in Table I for all the reinforcement
algorithms and the benchmark algorithms. The operation cost
includes the costs associated with the line losses and the
tap changes. The accumulated per unit voltage violation is
calculated as

∑N
i

∑
t[max(0, |vti | − v) + max(0, v − |vti |)].

TABLE I
PERFORMANCE COMPARISON OF VOLT-VAR CONTROL ALGORITHMS

Algorithm OC ($) # of TC # of VV AVV (per unit)

4-
bus
test
case

Baseline 150.13 0 91 2.748
MPC (Actual) 111.44 18 0 0

MPC (Forecast) 111.89 20 0 0
CPO 115.01 9 5 0.044

TRPO 120.05 3 16 0.286

13-
bus
test
case

Baseline 77.88 0 268 2.673
MPC (Actual) 58.05 6 0 0

MPC (Forecast) 58.44 6 0 0
CPO 58.92 6 0 0

TRPO 61.29 3 2 0.004
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Fig. 3. Comparison of voltage profiles on the 4-bus test feeder

The MPC with actual load represents the global optimal
solution. As shown in Table I, the CPO algorithm is capable
of achieving a near-optimal operational cost and is nearly
constraint-satisfying. The CPO algorithm yields a lower op-
eration cost compared to the TRPO algorithm. The per unit
voltages at node 3 and 4 of the 4-bus test feeder are depicted
in Fig. 3. It can be seen that the voltage solutions at node
3 of the MPC-based approach with forecasted load hit the
upper bound a few times. This is common for optimization
approaches as the optimal solutions are likely to be boundary
points. By following the CPO algorithm, the voltage profiles
at node 4 nearly stay in bounds all the time except for 5
minor violations. The CPO algorithm outperforms the TRPO
algorithm by approximately satisfying the voltage constraints
all the time.

The average and the maximum computation time of the
MPC-based algorithms with different solvers and the policy
gradient methods to determine the tap positions at each
hour are provided in Table II. Without parallel computing



TABLE II
COMPUTATION TIME OF VOLT-VAR CONTROL ALGORITHMS

Algorithm Average Time (s) Maximum Time (s)

4-bus
test case

MPC (GUROBI) 10.43 90.28
MPC (MOSEK) 346.80 3904.22

TRPO/CPO < 10−3 < 10−3

13-bus
test case

MPC (GUROBI) 4.69 8.57
MPC (MOSEK) 53.83 328.98

TRPO/CPO < 10−3 < 10−3

(MOSEK), the computation time of the MPC-based algorithm
could exceed 1 hour in the worst case on an entry level DELL
desktop. On the other hand, once trained the policy gradient
methods have a much faster execution speed, which makes
them suitable for online applications. Moreover, the MPC-
based algorithms require accurate and complete topology
model and parameters of the distribution network, which are
not often available.

V. CONCLUSION

In this paper, the Volt-VAR control problem is modeled as
a CMDP and solved with policy gradient methods for the first
time. The constrained policy optimization algorithm is adopted
to enable safe exploration for the controller. Both policy and
state-value functions are approximated by neural networks.
The structure of the policy network is tailored to achieve better
scalability for the Volt-VAR control problem. The performance
of the policy gradient methods and benchmarking algorithms
are validated with the IEEE 4-bus and 13-bus test feeders. The
results show that the constrained policy optimization algorithm
can achieve near-optimal solutions with negligible voltage
violations. Compared to the conventional optimization based
approach, the proposed reinforcement learning algorithm is
better suited for online VVC tasks where accurate and com-
plete distribution network models are not available.
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