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Abstract—Dynamic distribution network reconfiguration
(DNR) algorithms perform hourly dynamic status changes
of sectionalizing and tie switches to reduce network line
losses, minimize loss of load, or increase hosting capacity for
distributed energy resources. Existing algorithms in this field
have demonstrated good results when network parameters
are assumed to be known. However, in practice inaccurate
distribution network parameter estimates are prevalent. This
paper solves the minimum loss dynamic DNR problem without
the network parameter information. We formulate the DNR
problem as a Markov decision process problem and train an
off-policy reinforcement learning (RL) algorithm based on
historical operation data set. In the online execution phase, the
trained RL agent determines the best network configuration at
any time step to minimize the expected total operational cost
over the planning horizon, which includes the switching costs.
To improve the RL algorithm’s performance, we propose a
novel data augmentation method to create additional synthetic
training data based on the existing data set. We validate the
proposed framework on a 16-bus distribution test feeder with
synthetic data. The learned control policy not only reduces the
network loss but also improves the voltage profile.

Index Terms—Dynamic distribution network reconfiguration,
reinforcement learning, Q-learning, training data augmentation.

I. INTRODUCTION

By changing the status of remotely controllable switches
(RCSs), distribution network reconfiguration (DNR) algo-
rithms improve the distribution system performance. They
are particularly useful when a large number of distributed
renewable resources (DERs) are installed in the distribution
system [1]. Both federal sponsored programs and market
forces are facilitating the wide-spread adoption of smart grid
technologies such as the advanced metering infrastructure and
RCSs [2]. These two technologies are enabling remote data
collection and actuation of switches which are critical to the
implementation of distribution network reconfiguration.

Network reconfiguration problems can be classified into
static DNR [3] and dynamic DNR [4]. The former deter-
mines the best network configuration for a given injection
pattern; the latter determines an optimal sequence of network
configurations over the operational horizon in terms of line
resistive loss, loss of load, or hosting capacity for DERs.
Common operational constraints that must be modeled in DNR
problems consist of voltage magnitude limits and network
radiality. Frequent operations of RCSs improve the control

objective, they also lead to excessive wear and tear on the
equipment. Therefore, the number of switching actions are
typically constrained or jointly optimized with the typical
control objectives to prevent excessive switching. In this paper,
we focus on the problem of line loss minimization through
dynamic DNR.

Most of the existing literature on the dynamic DNR problem
adopt a physical model-based control approach. They can be
divided into three groups based on their solution methods.
The first group of literature formulates the dynamic DNR as
a mixed-integer or dynamic programming problem. In [5], a
polyhedral approximation based mixed-integer linear program-
ming (MILP) formulation is presented. A stochastic MILP for-
mulation is proposed in [6] to address the uncertainties in the
electric loads and distributed generations. In some cases, the
total number of possible radial configurations is not too large
and it is possible to enumerate them. Dynamic programming
methods can achieve very effective solutions in those cases [7]
[8]. The second group of literature proposes heuristic methods.
In [9], the optimal time points for DNR are determined based
on a gradual approaching method. A minimum spanning tree
method is proposed to solve the DNR problem in [10], where
the edge weights are the current magnitudes obtained from the
power flow results of the meshed network. In the third group,
metaheuristic methods, such as the quantum particle swarm
optimization [11] and genetic algorithm [12] are used.

The existing dynamic DNR algorithms rely heavily on
accurate knowledge of grid topology and parameters. However,
it is difficult for regional electric utilities to maintain accurate
network models [13], [14]. The primary and secondary net-
works’ parameter estimates are particularly unreliable [15]. In
addition, the computational complexity of the existing physical
model-based approaches is typically large.

To cope with unreliable distribution network parameters,
we propose a deep reinforcement learning (RL) framework to
learn and execute dynamic DNR without the use of distribution
network parameter information. One of the major limitations
of existing RL algorithms is the low sample efficiency. To
address this challenge, we propose an innovative approach to
augment past grid operational experiences with synthetic ones.
Simulation results on a 16-bus distribution feeder reveal that
the proposed deep RL is capable of finding a decent control
policy without using the network parameter information.
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The unique contributions of this paper are listed below.
• Our proposed off-policy RL algorithm is capable of

performing dynamic DNR with only network topology infor-
mation and historical operation data set.
• Our operation experience augmentation technique greatly

improves the performance of deep RL algorithms.
The rest of the paper is organized as follows. Section II

formulates the distribution network dynamic reconfiguration
problem. Section III presents the proposed reinforcement
learning algorithm. Section IV shows the simulation results.
Section V states the conclusion.

II. PROBLEM FORMULATION

In this section, we formulate the dynamic DNR as a Markov
decision process (MDP) [16]. First, we briefly review some
basic concepts of MDPs and introduce our notations. Next,
we present the problem formulation.

The dynamic DNR problem can be treated as a sequential
decision making process. At each time step, the control algo-
rithm reconfigures the network to produce a new configuration.
This intuitive description of the dynamic DNR problem can
be converted into precise mathematical statements via MDPs.

An MDP is a tuple (S, A, P , r, γ, T ), which consists
of a set of states S, a set of actions A, a state transition
probability P (s′|s, a) ∀s′, s ∈ S , a ∈ A, a reward function
r(s, a) : S × A 7→ R, ∀s ∈ S , a ∈ A, a discount factor
γ ∈ [0, 1], and a time horizon T . In an MDP, an agent selects
an action At ∈ A based on the environment’s state St ∈ S
at each discrete time step t. After that the agent receives a
reward Rt+1 = r(St, At) and the environment’s state will
advance to St+1 according to the state transition probability
P (St+1|St, At). The process terminates when t = |T | and
S|T | is a terminal state. In dynamic DNR problem, the state
St corresponds to the status of the distribution network, which
includes the current topology configuration, loads, and global
time. The action At can be represented by changing the
configuration of the distribution network in St. The reward
Rt+1 = r(St, At) is a numerical measure of how good the
reconfiguration action At was, in terms of minimizing network
loss while keeping the number of switching actions small. The
state, action, and reward of the dynamic DNR problem will
be clearly defined later in this section.

The goal of the agent is to find a control policy π(a|s)
in each state s that maximizes the expected discounted return
(or state-value function) V π(s) = Eπ

[∑T
t=0 γ

tRt+1|S0 = s
]
,

which captures the expected discounted return for starting
at state s and following policy π thereafter. For a de-
terministic policy, π maps each state s ∈ S to an ac-
tion a ∈ A. For a probabilistic policy, π maps each
state to a probability distribution of selecting each ac-
tion. Another useful quantity is the action-value function
Qπ(s, a) = Eπ

[∑T
t=0 γ

tRt+1|S0 = s,A0 = a
]
, which is

related to V π(s) by V π(s) = Ea∼π(a|s) [Qπ(s, a)]. We will
discuss the algorithms for solving the MDP problem in Section
III. In the rest of this section, we focus on formulating the
dynamic DNR problem as an MDP.

We first introduce some notations for the dynamic DNR.
Consider a distribution network with n load nodes (PQ
buses) and n0 substations (slack buses). Let vit, pit, and
qit be the nodal voltage magnitude, real and reactive power
injections of node i at time t. Define vectors pt and qt as
pt = [p1t, p2t, · · · , pnt] and qt = [q1t, q2t, · · · , qnt]. Let plt be
the network’s total real line losses at t. We denote a radial
configuration of the distribution network at time t by art .
That is, art represents a rooted spanning forest of the graph
associated with the no-shunt distribution network [8]. Each
root corresponds to a substation.

Next, we construct the dynamic DNR problem as an MDP as
follows. We define the state at time t to be St = [pt, qt, a

r
t−1, t]

the action At as changing the topology of the network to
art . Therefore, S consists of the set of all injection patterns
together with the set of all possible radial configurations. The
latter is also equal to A. The reward function reflects both the
network loss and the switching cost and is defined as

r(St, At = art ) = −Cl(pt, qt, art )− Cs(art−1, art ) (1)

where Cl is the cost associated with the network loss and Cs is
the cost incurred by the change of network configuration. The
detailed formulation of Cl and Cs will be shown in Section
IV. The expected discounted return E

[∑T
t=0 γ

tr(St, At)
]

with some initial configuration ar−1 for the dynamic DNR
problem includes both network losses and switching costs.
This completes the construction of the MDP.

Note that the injection patterns pt and qt time series might
not be strictly Markovian. Nevertheless, we shall still use
this definition of St because the algorithms that we will be
discussing are still applicable even if the Markovian property
is slightly violated in practice [16].

During the distribution network reconfiguration process, we
need to ensure that the nodal voltages always stay within
allowable range. In the MDP framework, physical constraints
are typically modeled via a constraint function V πC (s) =

Eπ

[∑T
t=0 γ

tCt+1|S0 = s
]
, where Ct+1 = c(St, At) is the

amount of constraint violation at time t. We define c(St, At)
to be the sum of absolute value of voltage violations at all
metered nodes:

c(St, At) =
∑
i∈Nv

[max(0, vit − v̄) + max(0, v − vit)] (2)

where Nv is the set of all nodes that have voltage measurement
devices; v̄ and v are the upper and lower bounds for voltage.
Now the dynamic DNR can be formulated as a constrained
MDP problem:

max
π

V π(s) s.t. V πC (s) ≤ 0 (3)

In this paper, we approximately solve (3) by a simplified
version of the Lagrangian relaxation. The Lagrangian of (3)
is given by:

V π(s)− λV πC (s) = Eπ

[∑T
t=0 γ

t(Rt+1 − λCt+1)|S0 = s
]
(4)



The RHS of (4) has the same form as V π(s), except that
the reward Rt+1 is replaced by Rt+1 − λCt+1. Therefore,
for any fixed λ ≥ 0 value, (4) can be maximized by solving
the unconstrained MDP, which replaces the original reward
function by the following augmented reward function:

r(St, At, λ)
.
= r(St, At)− λc(St, At) (5)

However, to solve (3) exactly, the multiplier λ ≥ 0 needs to
be worked out instead of kept fixed. Nevertheless, we shall
use a fixed λ and solve the unconstrained MDP with (5) as
the reward function in this initial study.

III. TECHNICAL METHODS

In this section, we review basic concepts of deep rein-
forcement learning and describe an algorithm to find radial
configurations.Then, we present a noval operational experience
data generation algorithm. At last, we summarize all technical
methods in our proposed RL based dynamic DNR algorithm.

A. Deep Q-Learning

In this subsection, an off-policy RL algorithm will be
developed to solve the dynamic DNR problem. An off-policy
RL algorithm learns the value of optimal policy independently
of the actions took by the agent, whereas an on-policy method
works by improving the policy that is used to take actions. In
this study, an off-policy RL algorithm is more suitable than an
on-policy one for the following two reasons. First, off-policy
RL algorithms enable distribution operators to learn from a
wealth of historical network reconfiguration operation data.
Second, off-policy RL algorithms have much higher sample
efficiency than that of the on-policy ones.

One of the most widely used off-policy RL algorithm for
MDP problems is the Q-learning, which updates the action-
value function iteratively:

Q(St, At) ←Q(St, At) + α[Rt+1 (6)
+ γmaxaQ(St+1, a)−Q(St, At)]

with Q(St+1, a) = 0 if St+1 is a terminal state. This
allows the learned action-value function, Q, to converge to the
optimal action-value function Q∗ provided that all state-action
pairs continue to be updated. Once the optimal action-value
functions are learned, the optimal control policy π∗(s), which
maximizes V π(s), can be found by:

π∗ : St 7→ argmaxa Q
∗(St, a) (7)

However, it is infeasible to directly apply Q-learning for dy-
namic DNR problems. This is because even if we discretize the
continuous state variables, the dimensionality of the state space
still increases exponentially. To deal with high-dimensional
state space and continuous state variables, we parameterize an
approximate action-value function Q(St, At; θ

Q) with a neural
network, where θQ are the parameters of the neural network.

Nonetheless, this brings its own challenges. Divergence
may occur during learning [17]. One cause of diver-
gence is the high correlations between the action values
Q(St, At) and the target values Rt+1 + γmaxaQ(St+1, a).

To ease this, we adopt a target Q network whose pa-
rameters θQ− are only updated every C steps [18] by
θQ− ← θQ. The θQ update uses the loss function
L(θQ)

.
= E

[
(r + γmaxa′ Q(s′, a′; θQ−)−Q(s, a; θQ))2

]
,

with Q(s′, a′, θQ−) = 0 if s′ is a terminal state. To further re-
duce the high correlation, we adopt the replay mechanism [17].
As such, we store the past operational experiences for network
reconfiguration et = (St, At, Rt+1, St+1) in a ‘memory data
set’ DH

.
= {e1, ..., eH}, which is sampled during learning.

Each sample forms a replay in the learning process.

B. Finding Radial Configurations

When constructing the action domain, all feasible radial
configurations need to be enumerated. For single substation
distribution networks, this could be done by the tree enumer-
ation algorithm [19, p.464]. For distribution networks with
multiple substations, we enhance the algorithm by adding a
merge and a split step. Fig.1 provides an example of this
enhanced algorithm. First, we merge all the substation nodes (0
and 1) into a single root node X . Then we enumerate spanning
trees on the resulting graph. Finally, we split the root node X
by identifying the branch-node connectivity on the original
graph. This algorithm guarantees that all the rooted spanning
forests can be discovered.
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Figure 1. Rooted spanning forest enumeration process.

Due to the operational constraints, the agent must choose
configurations that would lead to safe operation of the grid.
As a result, many of the actions ar ∈ A cannot be selected
under certain injection pattern. Therefore, we reduce the action
space A to include only those configurations that appeared in
the historical data set. This allows the agent to avoid selecting
unacceptable network configurations. However, this will limit
the potential of discovering the optimal control policies.

C. Operational Experience Augmentation

One major drawback of the existing deep reinforcement
learning algorithms is the poor sample efficiency. To improve
the performance of our proposed deep Q-learning algorithm
for dynamic DNR problem, we propose an innovative tech-
nique to generate reliable synthetic operational experience data
from historical operational data set.

We propose a three-step algorithm to create a set of
synthetic operational experiences D̃H̃

.
= {ẽ1, ..., ẽH̃} where

ẽt = (S̃t = [p̃t, q̃t, ã
r
t−1, t], Ãt = ãrt , R̃t+1 = r(S̃t, Ãt) +

λc(S̃t, Ãt), S̃t+1). The steps are 1) synthesizing the injection
time series p̃t and q̃t, 2) generating the network configuration



at each time step ãrt , and 3) estimating the corresponding
reward values r(S̃t, Ãt) + λc(S̃t, Ãt) for the data created in
steps 1 and 2. Step 1 takes the historical load time series and
outputs a new one. For example, we can either directly use
the historical injection data or train an load time series model
using historical data [20]. In step 2, we generate a sample path
{art} from a stochastic process defined on the sample space
A. In step 3, we estimate r(S̃t, Ãt) and c(S̃t, Ãt) for each
time step t. The algorithms for estimating the network losses
and voltage magnitudes are described below.

Two sets of regression models are trained on the histor-
ical data to estimate total network loss and nodal voltage
magnitudes, respectively. For both sets of regression models,
the input variables are the injection patterns and the network
configurations. After the training, the reward r(S̃t, Ãt) +
λc(S̃t, Ãt) can then be calculated based on the out-of-sample
prediction of the regression models applied to the synthesized
data points S̃t, Ãt. It has been shown that inaccurate rewards in
training data can hurt the learning process. Therefore, we must
determine if the estimated rewards are reliable and discard the
ones which have high uncertainty.

We choose the Gaussian process (GP) [21] as the regression
model to learn both the estimated values and their uncertain-
ties. In the GP setting, the target y and the input vector x are
modeled by the relationship y = f(x) + ε where ε represents
the observation noise and is typically a zero mean Gaussian
ε ∼ N (0, σ2

ε ). f is a GP f(x) ∼ GP(m(x), k(x, x′)). If the
mean function m(x), the covariance function k(x, x′), and
σ2
ε are known, then the probability distribution of any data
p(y|x) can be evaluated and the uncertainty is represented by
the variance of p(y|x). Typically, the mean and covariance
functions of f are in some parametric families mθM (x) and
kθK (x, x′). For example, the constant mean function and the
squared exponential covariance function are given by:

mθM (x) = C kθK (x, x′) = A2exp

(
−
‖x− x′‖22

2`2

)
(8)

In this example, θM = {C} and θK = {A, `}. The parameters
θM , θK , and σ2

ε can be estimated by marginalizing the
Gaussian process GP(mθM , kθK ) onto the training data points
x. That is, y ∼ N (µx,Σxx + σ2

ε I) where µx = mθM (x) and
Σxx = kθK (x,x). Then we can perform maximum likelihood
estimation of the parameters on this marginal distribution. Let
the estimated parameters be θ̂M , θ̂K , and σ̂2

ε . The posterior
distribution of a testing instance y∗ = f(x∗) + ε is again
Gaussian, with the conditional mean and variance:

µ̂(y∗|x∗,x,y) = µ̂x∗ + Σ̂x∗x(Σ̂xx + σ̂2
ε I)−1(y − µ̂x) (9)

σ̂2(y∗|x∗,x,y) = σ̂2
x∗ + σ̂2

ε − Σ̂x∗x(Σ̂xx + σ̂2
ε I)−1Σ̂xx∗ (10)

where ˆ means that the quantity is obtained by using the
parameter estimates θ̂M and θ̂K . σ̂2(y∗|x∗,x,y) is not quite
the model uncertainty due to the lack of information about
θM ,θK , and σ2

ε [22]. An improved version is given by [22]:

σ̊2(y∗|x∗,x,y) = σ̂2(y∗|x∗,x,y) + gTM−1g (11)

where g = ∂
∂θM

[mθM (x∗) − mθM (x)T (Σ̂xx + σ̂2
ε I)−1Σ̂xx∗ ]

and M =
∂mθM (x)

∂θM
(Σ̂xx + σ̂2

ε I)−1
[
∂mθM (x)

∂θM

]T
. Now,

µ̂(y∗|x∗,x,y) and σ̊2(y∗|x∗,x,y) represent the estimated
target and its uncertainty. In the dynamic DNR problem, each
x represents an injection pattern and a radial configuration
and each y represents the corresponding network loss or a
voltage magnitude. If the uncertainty of the target estimate
σ̊2(y∗|x∗,x,y) is larger than some threshold, then the syn-
thetic data generated (x∗, y∗) will be discarded. In this paper,
the threshold is heuristically set to be 3 · [std(σ̊ − avg(σ̊))]
where σ̊ is the set of uncertainty estimates for all y∗.

D. Algorithm Summary

The technical methods of RL based dynamic DNR is
summarized in Algorithm.1. The algorithm learns a control
policy based on historical operation data. To address the
sample efficiency problem of RL algorithms, we create a
synthetic operation data set and combine it with the histor-
ical operation data. The synthetic data set is generated by
combining the injection patterns p̃t, q̃t, network configurations
ãrt , and estimates of the corresponding network losses p̃lt and
voltages ṽit using GP models. The synthetic samples with
large estimation uncertainties are removed from the augmented
data set. The parameters of GP models are trained using the
maximum likelihood framework with the historical operation
data. Both the historical and augmented data are converted
to experiences et and stored in the replay buffer D. We
then use stochastic gradient descent to train the Q-learning
agent. In each training iteration, the algorithm samples a
random minibatch of experiences from D and updates the
value network parameters θQ. The target network parameters
θQ− are updated every C training iterations.

IV. NUMERICAL STUDY

A. Experimental Data Description

The 16-bus distribution test feeder presented in [23, Exam-
ple 1] is used in this study. The line impedances, RCSs, refer-
ence voltage (1.0 p.u.), and complex power base (100MVA) of
[23] are kept unchanged. Applying the rooted spanning forest
enumeration procedure in Section III.B, a total of 190 radial
configurations are found. We replace the original static load
data in [23] with 26 weeks of aggregated hourly real-world
smart meter data of residential and commercial customers
taken from a 12 KV distribution feeder.

The real-world smart meter data are reprocessed as follows.
First, each nodal injection in the 16-bus feeder is set to be
the aggregated consumption of a group of randomly selected
customers. We assume a constant power factor for each node.
Then, we scale this aggregated consumption by a common
factor β (i.e., (pt, qt) 7→ (βpt, βqt) for all t) in order to
create a realistic feeder loading level. β is chosen such that the
resulting total line loss under βpt and βqt is roughly 1.5% of
the total demand [24]. Next, we select 83 medium to low line
loss configurations from a total of 190 feasible ones. A sample
path of 26 weeks with hourly granularity is then generated
from a Markov chain defined on those 83 configurations with



Algorithm 1 RL based Dynamic DNR with Operation Expe-
rience Augmentation
Input: Historical injections {pt, qt}Ht=1, losses {plt}Ht=1, volt-
ages {vit}Ht=1, i ∈ Nv , and configurations {art}Ht=0.
Output: Policy π: St 7→ argmaxaQ(St, a, θ

Q).
1: Train 1 + |Nv| Gaussian process models using
{pt, qt, plt, vit, art}Ht=1

2: Create synthetic injection data {p̃t, q̃t}H̃t=1 and configura-
tions {ãrt}H̃t=0

3: Estimate p̃lt, ṽit, i ∈ Nv using (9) and σ̊2(p̃lt), σ̊
2(ṽit), i ∈

Nv using (11)
4: Create the experience set DH = {e1, · · · , eH} using
{pt, qt, plt, vit, art , ar0}Ht=1

5: Create the augmented experience set D̃H̃ = {ẽ1, · · · , ẽH̃}
using {p̃t, q̃t, p̃lt, ṽit, ãrt , ãr0}H̃t=1

6: for t = 1, · · · , H̃ do
7: if any σ̊2(p̃lt), σ̊

2(ṽit), i ∈ Nv > threshold then
8: D̃H̃ ← D̃H̃ \ {ẽt}
9: D ← DH ∪ D̃H̃

10: for i = 1, · · · ,M do
11: Sample a random minibatch {et}B ⊂ D
12: Perform a gradient descent step on L(θQ) with respect

to θQ, where

L(θQ) =
1

B

∑
e∈{et}B

(r + γmax
a′

Q(s′, a′; θQ−)

−Q(s, a; θQ))2

13: if mod(i, C) == 0 then
14: Update the target Q network θQ− ← θQ

transition probability pii = 0.9 and pij = pik. Finally, we
find the power flow solutions for all hours in the 26-week
period and record the total line losses as well as the voltage
magnitude measurements at bus 7, 12, and 16 of the network
to form the historical operational data set.

B. Setup of the Reward Function

By (1) and (5), the reward function is defined as the sum
of negative costs of line losses (denoted as Cl(s, a)), switch-
ing actions (denoted as Cs(s, a)), and a weighted constraint
violation term λc(s, a). Cl equals to the product of a fixed
retail electricity price and the network losses. We set the retail
electricity price at $0.13/kWh. Cs equals the product a fixed
cost per switching and the number of switching actions.

The fixed cost per switching is determined as follows. First,
the lifetime cost of a sectionalizing switch can be calculated
as the summation of the equipment cost, installation cost,
and maintenance costs over its useful life. [25]. The sum of
equipment cost and installation cost is assumed to be $4,700.
The useful life and annual maintenance cost of a switch are
set to be 15 years and $94. Thus, the lifetime cost of a
sectionalizing switch is $6,110. If we assume that the number
of operations of a switch over its lifetime is 657 [26], then the
fixed cost per switching is approximately $4.6.

The upper and lower bounds v̄, v for the voltage violation
term is chosen as 1.1 and 0.9 p.u., respectively. λ is chosen
to be $0.13/kWh × 100MVA = $13,000/p.u.

C. Performance of Operational Experience Augmentation

In this subsection, we validate the quality of the synthetic
operational experience data generated by our proposed GP
based model. In particular, the quality of estimated network
losses under the augmented network configuration and injec-
tion patterns will be evaluated. Recall that we have 26 weeks of
historical data, which are divided into training data (DH ) and
testing data. The first 25 weeks of historical data are chosen
as the training data and the data of the last week are chosen
as the testing data.

We then create a 25-week synthetic operational data set
D̃H̃ as follows. First, we generate a 25-week sample path
of network configurations from a Markov chain defined on
those configurations that appeared in the training data set,
with transition probability pii = 0.8 and pij = pik. We
then estimate the network losses for this new sequence of
configurations under the injection patterns of the first 25 weeks
of historical data set. For network loss estimation, we compare
the GP model in Section III.C with the Monte Carlo (MC)
dropout neural network [27], which is shown to be equivalent
to a Bayesian approximation of a GP. When building the
GP model, the mean function is chosen to be zero and the
covariance function is chosen to be the same as in (8). Both
the GP and the MC dropout model are trained with the first
25 weeks of historical operational data. We apply the trained
model to the 1-week testing data set and the 25-week synthetic
operation experience data set. Fig.2 shows the performance of
network losses prediction for the two models under 50 samples
of both the testing data set and the synthetic data set. As shown
in the figure, compared to the MC dropout model, the GP
model is more accurate in predicting network losses.

Figure 2. Performance of out-of-sample predictions for network losses.

Although GP model produces fairly accurate predictions, it
occasionally leads to large error for some network configura-
tions and injection patterns as shown by the orange curve in
Fig.3. Fortunately, the uncertainty estimates of the GP model
represented by the blue curve in Fig.3 correlates very well
with the estimation error. This suggests our proposed strategy
of removing the samples with large uncertainty estimates
improves the quality of the augmented operational data set.



Figure 3. Regression errors versus uncertainty estimates of the GP model.

D. Performance of Deep Q-Learning Algorithms

In this subsection, we compare the performance of three
deep Q-learning algorithms with two benchmarks. In the first
benchmark, global optimal solution of the dynamic DNR
problem is obtained by dynamic programming with perfect
knowledge of the network parameters and future injection
patterns. The second benchmark simply uses the historical
network configurations in the data set. The first Q-learning
algorithm is trained using only historical data. The second Q-
learning algorithm is trained with both historical and synthetic
experiences, where the network losses are estimated based on
the GP model. The third deep Q-learning algorithm is trained
with both historical and synthetic operational experiences,
where the network losses are obtained by power flow studies
assuming perfect knowledge of the network parameters.

We divide the 26-week historical data set into a 25-week
training (DH ) data set and a 1-week testing data set. The
25-week synthetic operational experience data set D̃H̃ is
generated in the same way as in Section IV.C. During the
training iterations, we periodically save the parameters of the
neural network and test its performance on the testing data
set. The performance of the three Q-learning algorithms and
two benchmarks are shown in Fig.4. The left subfigure shows
the minimum voltage magnitude over all metered nodes and all
hours. The right subfigure shows the total operational cost. For
the three deep Q-learning algorithms, the average, the 10th,
and the 90th percentile of the results from 10 independent
runs are depicted.

Compared to the network configurations in the testing week
of the historical data, the deep Q-learning algorithm quickly
learned how to reduce the operational cost in a dynamic
DNR problem. When we augment the historical operational
experiences with synthetic operational data, then the opera-
tional cost of the deep Q-learning algorithm further reduces
and the minimum voltage magnitudes get even closer to the
nominal voltage values. As the learning process proceeds,
the performance of the deep Q-learning algorithms with aug-
mented operational experiences approaches that of the global
optimal solution. Note that the Q-learning agents achieved
these results without knowing the actual network parameters
or future power injection patterns. It can also be seen from the
figure that the orange curve almost coincides with the green
curve, suggesting that the network losses estimated by our
proposed GP model are almost as good as that of the power
flow solutions with perfect network parameter information.
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Figure 4. Performance of Q-learning. Hyperparameters of the neural network:
2-layer feed-forward (hidden: 600, output: 190); activation function: ReLU;
optimizer: Adam; batch size: 64; discount factor γ: 0.95; update steps C: 30.

We conclude the numerical study by showing that similar
results can be obtained without extensive tuning of hyper-
parameters, which is crucial for practical applications. We
demonstrate this by showing that the performance of the
Q-learning algorithm is relatively consistent under different
hyperparameter settings. The following combinations of hy-
perparameters are tested: batch size B ∈ {32, 64, 128, 256},
number of hidden layers L ∈ {1, 2}, number of hidden neu-
rons H ∈ {300, 400, 500, 600}, and number of steps the target
Q network’s parameters are updated C ∈ {30, 60, 90, 120}.
We generate a Taguchi’s orthogonal array for these hyperpa-
rameter combinations and report the results in Table.I. Each
calculated cost represents the average of 5 independent runs
for Q-learning with operational data augmentation. Compared
to the historical operational cost and the optimal cost, the
operational cost of the Q-learning algorithm under different
hyperparameter settings are quite consistent.

V. CONCLUSION AND DISCUSSION

This paper presents a reinforcement learning based algo-
rithm to solve the dynamic distribution network reconfigura-
tion problem without accurate network parameter information.



Table I
OPERATIONAL COSTS WITH VARIOUS HYPERPARAMETERS

Original cost: $ 8066.7 Optimal cost: $ 5128.8
B H C L QL cost ($) B H C L QL cost ($)
32 300 30 1 5752.9 128 300 90 1 5490.6
32 400 60 1 5686.2 128 400 120 1 5647.4
32 500 90 2 5608.8 128 500 30 2 5441.0
32 600 120 2 5464.3 128 600 60 2 5396.7
64 300 60 2 5523.9 256 300 120 2 5480.4
64 400 30 2 5456.8 256 400 90 2 5487.8
64 500 120 1 5579.3 256 500 60 1 5652.2
64 600 90 1 5507.9 256 600 30 1 5531.3

The proposed framework first formulates the dynamic DNR
problem as a Markov decision process, then learns the approx-
imated optimal action-value function with a neural network.
The optimal network configuration is selected to be the action
that yields the highest action-value. A novel synthetic opera-
tional experience data generation technique based on the Gaus-
sian process is developed to improve the performance of Q-
learning algorithms. Simulation results show that the proposed
Q-learning algorithm successfully reduces the operational cost
of the network under various hyperparameter settings.

The primary limitation of the proposed framework is scal-
ability. When the number of loops in the all-switch-closed
network is large, enumerating all radial configurations can be
impractical. For example, the 33-bus system [28] has 50,751
radial configurations. Learning to reconfigure this network can
be slow and requires a large amount of historical data. We plan
to improve the scalability of our algorithm in future studies.
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