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Abstract—Electricity theft is the third-largest form of theft
in the United States. It not only leads to significant revenue
losses, but also creates the risk of fires and fatal electrical
shocks. In the past, utilities have fought electricity theft by
sending field operation groups to conduct physical inspections
of electrical equipment based on suspicious activity reported by
the public. However, the recent rapid penetration of advanced
metering infrastructure makes it possible to detect electricity
theft by analyzing the information gathered from smart meters.
In this paper, we develop a physically inspired data driven model
to detect electricity theft with smart meter data. The main
advantage of the proposed model is that it only leverages the
electricity usage and voltage data from smart meters instead
of unreliable parameter and topology information of the sec-
ondary network. Hence a speedy and widespread adoption of
the proposed model is feasible. We show that a modified linear
regression model accurately captures the physical relationship
between electricity usage and voltage magnitude on the Kron-
reduced distribution secondaries. Our results show that electricity
theft on a distribution secondary will lead to negative and positive
residuals from the regression for dishonest and honest customers
respectively. The proposed model is validated with real-world
smart meter data. The results show that the model is effective
in identifying electricty theft cases.

Index Terms—Advanced metering infrastructure, data-driven
analysis, electricity theft detection, smart meter

I. INTRODUCTION

Electricity theft refers to the practice of manipulating one’s
electricity data to reduce his or her electricity bill [1]. The
practice raises electricity costs and overheats circuit devices
to dangerous levels. It is also quite costly to electric utility
companies. In the United States, utilities lose between 0.5%
and 3.5% of their annual revenue to theft [2]. In some
developing countries, the revenue loss from electricity theft
is even larger [3] [4].

Electricity theft detection secures the revenue of utility
companies around the world. But traditional detection methods
rely on labor intensive inspections. These inspections can now
be guided by newer detection methods, which instead rely on
smart meter or other collected customer data [5]. Most, if not
all, of these methods can be categorized into three groups
based on the type of data that they use.

Methods in the first group assume that smart meter data
is not available. Instead, they leverage ancillary information
such as biannual electricity consumption and credit scores
[5] [6] [7]. Such information can be used as features in
supervised machine learning. Many supervised methods have
been tested in literature. Examples include support vector
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machines (SVM) [7], optimum-path forests [6], and artificial
neural networks [8]. But these only work if verified cases of
electricity theft are available to train on. If this is not the
case, then unsupervised methods, which do not use electricity
theft labels, must be used. Examples include fuzzy c-means
clustering [5] and optimum-path forests clustering [9].

Methods in the second group assume that granular power
consumption data is available. For example, reference [10]
analyzed consumption profiles through a self-organizing map
(SOM). Reference [11] proposed an entropy-based method
to analyze the distribution of differenced consumption data.
Reference [12] used an extreme learning machine to detect
anomalies in electricity usage. Reference [13] combined a de-
cision tree and an SVM to predict smart meter abnormalities.
Reference [14] used a convolutional neural network trained on
such data to perform detection.

Some studies in the second group assume the existence of a
“central observer” [15] [16] [17] [18]. This observer measures
the aggregated consumption from a group of customers. In
particular, such central observers can be placed on the distri-
bution transformers. Meter malfunction or tampering can thus
be identified using linear regression.

Methods in the third group assume that network topology
and parameter information are available. Under this assump-
tion, state estimation based approaches become feasible. Early
work on this direction [19] perform distribution system state
estimation based on estimated load. The non-technical losses
are then detected by comparing the results with the billed
consumption. The approaches proposed in [20] [21] [22] first
perform three phase state estimation procedures on the net-
work. They then analyze variances [20] [22] or apply heuristic
methods [21] to locate meter defects or tampering. Recently,
these time-snapshot based methods have been improved by
adopting phasor measurement unit (PMU) data [23]. Another
method in this group formulates anomaly detection as an
optimization problem [24]. The method finds a sparse power
mismatch matrix whose non-zero elements correspond to the
bypassed power from dishonest customers.

Perhaps, the most directly relevant work is [25], in which
the authors proposed analyzing sample covariance matrices of
smart meter measurement error statistics, voltage magnitude
and active power data to detect electricity theft . Compared to
[25], our proposed work does not need to make any assumption
about the smart meter measurement error distributions. In ad-
dition, we provide a theoretical justification based on physical
network model for using real power consumption and voltage
magnitude measurement to detect electricity theft.

The existing literature on data-driven electricity theft detec-
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tion has three limitations. First, it is not realistic to assume that
the transformer power measurements, reliable topology docu-
mentation, and network parameter information are available to
electric utilities. Network parameter information is typically
known only up to the type of conductors. Good parameter
estimation methods for single-phase models [26] and balanced
three-phase models [27] do exist. But methods for estimating
unbalanced three-phase network parameters are still in their
infancy. Hence all techniques in the third group are usually in-
feasible. Furthermore, Pole mounted distribution transformers
are generally not equipped with operational monitoring devices
[28] in Europe and America. Thus the “central observer”
techniques in the second group are infeasible as well. Second,
residential customer loads are irregular and are dependent
on many external factors [29]. Analyzing such profiles alone
produces very limited interpretability and justification of the
results. Worse yet, they might not distinguish between electric-
ity theft and non-malicious customer activities. Many of these
methods would detect the installation of a new electric device
as theft. This diminishes the usability of methods in the second
group. Finally, supervised approaches in the first and second
groups need theft samples. But obtaining labeled datasets in
this case is usually a hard task [9]. As a result, the number of
labeled (inspected) customers is very small compared to the
total number of customers.

In practice, data is limited to customer active power con-
sumptions and voltage magnitudes. Network information is
limited to the customer to transformer association map. We
propose an unsupervised detection technique leveraging only
these sources of information. Note that here ’unsupervised’
means that electricity theft labels are not available for training
purposes. Furthermore, the proposed method yields more
interpretable results than consumption based methods. The
unique contributions of this paper are listed as follows.
• To the best of our knowledge, this is the first method

that detects electricity theft from customer active power and
voltage magnitude measurements alone.
• This paper derives a linear model relating smart meter

kWh measurements to line-line smart meter voltage magnitude
measurements in distribution secondaries.
• This paper proves some exploitable behaviors expressed

by the proposed linear model subject to normal and abnormal
smart meter data.
• The proposed algorithm needs neither training samples for

theft cases nor a complete network topology and parameter
documentation; it requires only a customer to transformer
association map.

The rest of the paper is organized as follows. Section II de-
scribes the proposed framework for electricity theft detection.
Section III presents the modeling of distribution secondaries
considering smart meter measurements. Section IV presents
the technical methods for electricity theft detection. The ex-
perimental results are shown in Section V. Section VI provides
the conclusion.

II. ELECTRICITY THEFT DETECTION FRAMEWORK

This section provides an overview of the framework for
electricity theft detection. The framework consists of five

steps. Steps 1 through 4 are iteratively performed on a moving
window of data. Step 5 combines the results from all the
moving windows to get an anomaly score for each customer.

Step 1 first selects the initial training and testing data
periods. It then removes outliers from the training dataset. We
describe this outlier removal process in Subsection IV.A.

Step 2 fits a modified linear regression model with the
training smart meter data. These models capture the rela-
tionship between smart meter voltage readings and electricity
consumptions. The motivation for a modified linear model is
the subject of Section III. The formal presentation of the model
is the subject of Subsection IV.B.

Step 3 applies the trained models on the testing data and
outputs an estimate of the electricity consumption for each
customer. It then calculates the residual of the estimates to
the true consumption. These residuals distinguish dishonest
customers from honest ones. The former will have large
negative residuals while the latter will have small positive
residuals. We prove these observations in Subsection IV.C.

Step 4 produces an electricity theft anomaly score for each
customer. These scores are obtained by running the electricity
consumption residuals through post-processing techniques.
The post-processing algorithm and the anomaly score are the
subject of Subsection IV.D.

Step 5 ranks the customers according to their anomaly
scores to help the system operator make further decisions.

The proposed framework assumes that each customer has a
smart meter installed. It further assumes that each transformer
serves a known list of customers. The proposed algorithm
requires neither measurements from transformers nor infor-
mation about network topology or parameters.

III. AN ANALYSIS OF DISTRIBUTION SECONDARIES

In this section, we linearize the physical relationship be-
tween smart meter voltage magnitudes and real power con-
sumptions. A novel substitution method is then applied to
handle nodes without measurements. No equations in this
section are used for computation. Their purpose is to provide
justifications of the algorithms presented in Section IV.

A. Linearization of Secondary Circuit Power Flow Equations

In North America, distribution secondaries serving residen-
tial customers typically have a 120/240V three-wire two-phase
configuration. The two phases have voltages with an angle
difference of 180 degrees. A sample distribution secondary
with nc customers is shown in Fig.1. To our knowledge, these
secondaries do not have any existing linearized relationships.
However, linearizations do exist for other power system con-
figurations [30] [31].

To obtain this linearization, we adapt the approach of
reference [30]. The idea is to find a tangent plane to the
power flow manifold centered at a suitable point, which can be
the modified flat voltage solution. We construct this solution
as follows. First, assume that shunt admittances are zero.
Denote the line to ground voltage phasor and current phasor
at node m as ūm and īm, and the real and reactive power
injections as p̄m and q̄m. Then the modified flat voltage
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Figure 1: Triplex line secondary circuit

solution has, at each node m, the following set of values:
ūm = [1, 1 · e−πj ]T = [1,−1]T, īm = 0, p̄m + jq̄m = 0.

Denote vpm as the deviation of the line-to-ground voltage
from the flat voltage solution v̄pm at node m and phase p. Let
v1 and v2 be the reindexed voltage vectors:[

v1T,v2T
]

=
[
v1

1 , v
1
2 , ..., v

1
n, v

2
1 , v

2
2 , ..., v

2
n

]
where n is the number of non-zero injection nodes in a sec-
ondary circuit. The voltage angles θ1 θ2, real power injections
p1 p2, and reactive power injections q1 q2 are defined in
a similar manner. The linearization around the modified flat
voltage solution yields:

p1

p2

q1

q2

 =


G11 −G12 −B11 B12

−G21 G22 B21 −B22

−B11 B12 −G11 G12

B21 −B22 G21 −G22




v1

v2

θ1

θ2

 (1)

where Gij and Bij are the real and imaginary blocks of the
reindexed nodal admittance matrix Yr:

Yr =

[
G11 G12

G21 G22

]
+ j

[
B11 B12

B21 B22

]
(2)

which is a permutation of the well-known bus admittance ma-
trix Y. Explicitly, Yr is obtained by taking every odd indexed
row and column of Y and relocating them to the bottom-
most and right-most positions respectively. In the following,
we refer to (1) as yr = Lrxr. The derivation of (1) is provided
in Appendix A.

In (1), p1, p2, q1 and q2 are single-phase net injections.
But electric loads at the customers’ site can be single-phase
or two-phase as shown in Fig.1. We can get the single-phase
net injections from the electric loads by using (3):[

s1
i

s2
i

]
=

 u1n
i

u1n
i +u2n

i
0 1

−u2n
i

u1n
i +u2n

i
1 0

s12
i

s2n
i

s1n
i

 (3)

The derivation of (3) is in Appendix B. This can be
simplified near the flat voltage operating condition to:[

p1
i

p2
i

]
+ j

[
q1
i

q2
i

]
=

[
s1
i

s2
i

]
≈
[

1
2 0 1
1
2 1 0

]s12
i

s2n
i

s1n
i

 (4)

B. Conversion to Smart Meter Measurements

In practice, smart meters read line-line voltage magnitudes
|u1
i −u2

i | and the sum of single-phase powers p1
i +p2

i . But (1)

relates single-phase net injections to line-ground voltages. We
need to change (1) such that it relates the former quantities.

To do this, we first assume that the following approximation
holds (u1

i , u2
i are line-to-ground voltage phasors, θ1

i , θ2
i are

line-to-ground voltage angles, of node i phase 1 and 2):

|u1
i − u2

i | = |(v1
i + 120)cos(θ1

i ) + j(v1
i + 120)sin(θ1

i )

− (v2
i + 120)cos(θ2

i )− j(v2
i + 120)sin(θ2

i )|
≈ |v1

i + v2
i + 240| (5)

This is valid when all θ1
i , θ2

i are near those of the modified flat
voltage solution. Thus the measured voltage magnitude can be
approximately written as |u1

i − u2
i | ≈ v1

i + v2
i + 240.

Next, we introduce two new vectors xs and ys:

xsT =
[
(v1 + v2)T, (v1 − v2)T,θ1T,θ2T

]
= [vsT,θsT]

ysT =
[
(p1 + p2)T, (p1 − p2)T,q1T,q2T

]
= [psT,qsT]

which are related to xr and yr via M = diag(
[
I I
I −I

]
,
[
I 0
0 I

]
):

xr = M−1xs and yr = M−1ys. Substituting these relation-
ships into (1) yields ys = MLrM−1xs = Lsxs, or:[

ps

qs

]
=

[
Ls

11 Ls
12

Ls
21 Ls

22

] [
vs

θs

]
(6)

Further, we remove the dependency on θ1 and θ2 to obtain:

ps =
(
Ls

11 − Ls
12L

s†
22L

s
21

)
vs + Ls

12L
s†
22q

s (7)

Where Ls†
22 is the pseudoinverse of Ls

22. We prove (7) in
Appendix C.

Now, if each node has a constant lagging power factor
over the analysis window, we can write

[ q1

q2

]
= D

[ p1

p2

]
where D is a positive definite diagonal matrix. Then we have
qs = DM−1

u ps where Mu is the upper left block of M. We
can then simplify (7) to

ps = (I− Ls
12L

s†
22DM−1

u )−1
(
Ls

11 − Ls
12L

s†
22L

s
21

)
vs (8)

We argue that (I−Ls
12L

s†
22DM−1

u ) is nonsingular in practice
in Appendix C. The first nc equations of (8) are

p1 + p2︸ ︷︷ ︸
−p

= L(+)
pv (v1 + v2)︸ ︷︷ ︸

v−1·240

+L(−)
pv (v1 − v2) (9)

where p and v are smart meter net power consumption and
voltage measurements respectively. (9) shows that the real
power measurements depend on the observed voltage sums
and the unobserved voltage differences. This latter term is
negligible. Accounting for measurement errors with a noise
term ε, we thus have

p = Lpv(v − 1 · 240) + ε = Lpvv + ε (10)

where Lpv = −L
(+)
pv whose nullspace contains 1.

C. A Remedy for Not Having Transformer Data

We can partition (10) with respect to transformer node and
customer nodes:[

pT
pC

]
=

[
lTT lTC
lCT LCC

] [
vT
vC

]
+

[
εT
εC

]
(11)
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In most cases, transformers do not have smart meters installed
on them. Thus there are no measurements for vT and pT in
(11). We can remedy this by using conservation of energy to
write pT ≈ −1TpC . This relationship is exact when there are
no losses. We can then eliminate vT from (11) and replace the
remaining pT term to obtain:

pC = −lCT l−1
TT1TpC + (LCC − lCT l−1

TT lTC)vC + ε′C (12)

Where ε′C = εC − lCT l−1
TT εT . (12) motivates the use of 1TpC

as a covariate in model estimation. We will use it in Subsection
IV.B where we develop the modified linear model.

IV. TECHNICAL METHODS

This section details each step of the proposed framework
outlined in Section II. To avoid tedious notation, all quantities
correspond to one rolling window.

A. Data Preprocessing

Most real-world smart meter datasets contain missing values
and outliers. The time stamps with missing values and/or
power outages are discarded from the analysis. The amount of
discarded data is usually negligible. Outliers are much more
frequent and can hurt our regression models [32]. We discuss
the problem of outliers in voltage data in this subsection.

A properly trained model would be sensitive to voltage
measurement errors because the voltages vary around flat
condition by a very small amount. In this paper, the time
stamps where voltage error is large will be removed. The
method is as follows. First, we train a regression model that
is robust to outliers on the training dataset. We then apply
the model to each customer i ∈ {1, 2, · · · , nc} and search
for training time stamps T out

i = {tout
i,1 , · · · , tout

i,io
} with large

residuals. For notational clarity, all references to quantities
involving robust regression will carry the superscript rb. Then:

t ∈ T out
i if

(
ỹrbi (t)/var(ỹrbi )

)2
> F−1

χ2
1

(0.999) and

(v(t)− v̄)TΣ−1
v (v(t)− v̄) > F−1

χ2
nc

(0.999)

(13)
where ỹrbi (t) = yi(t)− ŷrbi (t) is the estimation residual for
customer i at time t, var(ỹrbi ) =

∑
t(ỹ

rb
i (t)− ¯̃yrb,i )2/(T − 1)

is its empirical variance. v̄ and Σv are the sample mean vector
and covariance matrix of voltage measurements. F−1

χ2
1

is the
inverse of chi-square CDF with one degree of freedom.

After the sets {Ti}nc
i=1 are found, we remove any time

instances that are a member of two or more of these sets.
That is, if tp ∈ T out

i ∩ T out
j , i 6= j, then the measurements

pi(tp), vi(tp) are discarded for all i ∈ {1, 2, · · · , nc}. The
reasoning behind this final rule is as follows. If there is a
voltage outlier, then at least two of the customers’ regression
residuals will be severely affected. This fact has been con-
firmed experimentally and can be understood from (10).

Robust regression methods such as least median of squares
(LMS) [33]; M-estimator [34]; and random sample consensus
(RANSAC) [35] can be used. In this work, we use RANSAC
for its simplicity and efficiency.

B. Modified Linear Model

The ideas outlined in Subsection III.A-III.C are combined
to produce the following modified linear model (MLM):

yi(t) =
[
x(t)T

∑nc

j=1 yj(t)
] [βXi
βyi

]
+ ε′i(t)

= X (t)TBi + ε′i(t) (14)

where x(t) = [v1(t), v2(t), · · · , vnc(t)]
T: vector of voltage

readings at time t, yi(t) = pi(t): kWh readings of customer
i at time t, and ε′i(t) accounts for measurement noise and
unobserved dependencies as in (12).

The parameter vectors {Bi}nc
i=1 will be estimated by using

ordinary least squares (OLS) on the training data (XD, yD)
[36], which is a portion of the rolling window. This estimate
is achieved by solving the normal equations:(

XDTXD
)

[B1, · · · ,Bnc
] = XDT[yD1 , · · · ,yDnc

] (15)

Variations of OLS such as total least squares (TLS) [37] [38]
can be used instead, but these do not exhibit the properties
described in the next subsection.

The fitted model is then used to predict kWh consumption
values for the testing data (X , y) within the rolling window:

[ŷ1, · · · , ŷnc
] = X [B1, · · · ,Bnc

] (16)

The LHS are used to calculate the residual time series ỹi =
yi − ŷi, which are used to perform electricity theft detection.

In this work, the length of each rolling window is chosen
to be 67 days. The first 60 days and the last 7 days form the
training and testing data, respectively. Each rolling window is
1 day ahead of the one preceding it.

C. Properties of Residuals Under Theft

The residuals of the MLM change when there is an energy
thief. Denote y

(e)
i as the kWh meter data for customer i when

one of the customers in the same secondary is a thief. Let the
original symbol yi denote the kWh meter data of the same
customer had there been no theft activities. Suppose without
loss of generality that customer i is the thief, then

y
(e)
i = yi − ysi ; y

(e)
j = yj ∀j 6= i

where the non-negative vector ysi denotes the difference be-
tween the imagined kWh measurement and the actual one. Let
ỹ

(e)
i and ỹi denote the out-of-sample residual time series for

the energy thief. Then the following results hold

Lemma 1.

ỹ
(e)
i − ỹi = −

∑
j 6=i

βyj ysi (17)

Lemma 2. ∑
j

ỹ
(e)
j =

∑
j

ỹj = 0 (18)

Lemma 3. For any δ > 0, there exists a training data window
length T > 0 such that for each j

P(βyj ≥ −δ) > 1− δ (19)
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Lemma.1 and Lemma.3 combine to show that a thief’s
residuals will become negative once he or she begins to
steal power. Lemma.2 shows that the residuals of the other
customers will raise in order to balance their sum. These
conclusions are useful to the design of the postprocessing
method discussed in Subsection IV.D. The proofs of Lemma.1,
Lemma.2 and Lemma.3 are given in Appendix D.

D. Energy Theft Detection

We define an anomaly score in terms of the residuals ỹi for
each customer. Customers with high anomaly scores are likely
to be thieves or have malfunctioning smart meters.

Before defining the anomaly score, we post-process the
residuals in two steps. The first step removes outliers. This
step is analogous to the preprocessing stage except here, we
substitute its residual value by that of the nearest future non-
outlier. The second step sets all positive residuals to zero.
This rule comes from experimentation and the lemmas of
the previous subsection. We denote the resulting residual time
series after the two steps as ỹ′i.

Until now, we have ignored the subscript for the rolling
windows. It is necessary to introduce it here. We use the
symbol f = 1, 2, · · · to index the rolling windows. The
anomaly score for each customer i and each rolling window
f is defined as di(f) = wi(f) ‖ỹ′i(f)‖2 where wi(f) =√
|tD(f)|/

∥∥ỹD,i(f)
∥∥

2
is a weighting coefficient. Energy

thefts are identified by ranking di(f) for all i and all f . The
higher di(f) is, the higher priority of investigation customer
i should have. This ranking method is simplified to ranking
maxfdi(f) for all i when theft time is unimportant.

V. EXPERIMENTAL RESULTS

This section evaluates the performance of the proposed
method on a real dataset with synthetic electricity theft cases.
In Subsection V.A, we describe the dataset in detail. In
Subsection V.B, we test the performance of the modified
linear model without energy theft. In Subsections V.C-V.E,
we demonstrate the impact of energy theft on out-of-sample
residuals and anomaly scores. In Subsection V.F, we compare
the performance of our proposed anomaly detection method
with comparable methods.

A. Experimental Data Description

1) Real-world Smart Meter Data: The smart meter dataset
comes from a 12 KV distribution feeder in Southern California
Edison (SCE)’s service territory. The schematic of the testing
distribution feeder is shown in Fig.2. Measurements were
taken from August 1, 2015 to Feb 1, 2016, including the
customers’ hourly average voltage magnitudes and electricity
consumption. A majority of the customers on the distribution
feeder are residential customers. The transformer to customer
association information is also provided by SCE. 190 such
transformers were selected for the experimental study. This
accounts for 980 residential customers.

Overhead transformer

Pad-mounted transformer

Substation

Figure 2: Schematic of the test distribution feeder.

2) Synthetic Electricity Theft Data: Similar to other lit-
erature, we synthesize electricity theft data [17] [39] [40].
The attack invariant principle [41] is followed during the
data synthesis process:

∑
t∈Te p

(e)
k (t) <

∑
t∈Te pk(t) where

the kth customer is stealing power during time period Te.
pk(t) denotes the actual electric power consumed by the kth
customer. p(e)

k (t) is the electricity consumption of the kth
customer recorded by the electric utility.

The amount of electricity theft from the kth customer during
hour t, psk(t), is defined as psk(t) = pk(t) − p

(e)
k (t) where

0 6 psk(t). Within the attack invariant principle, four electricity
theft cases are simulated.
Case 1: 100% of electricity theft for n hours: psk(t) = pk(t)
Case 2: A constant amount of electricity theft: psk(t) = αc2

Case 3: A uniformly distributed electricity theft: psk(t) ∼
U(0, αc3)

Case 4: A constant percentage of electricity theft: psk(t) =
αc4pk(t)

In this paper, we assume the time period when electricity theft
occurs is a consecutive subset of all time stamps of our dataset,
that is, Te(t(e)1 , t

(e)
2 ) = {t : t

(e)
1 ≤ t < t

(e)
2 }. Data synthesis is

performed within Te(t(e)1 , t
(e)
2 ).

The synthetic electricity theft case for the kth customer
is created as follows. If customer k does not have DERs,
then pk(t) − psk(t) 7→ p

(e)
k (t) and max(p

(e)
k (t), 0) 7→ p

(e)
k (t).

The synthesized electricity consumption of a customer without
DERs should be higher than zero. If customer k does have
DERs, then the floor for net electricity consumption recording
should be the electricity delivered back to the grid.

B. Performance of the Modified Linear Model

Consider a distribution secondary circuit consisting of 4
residential customers as highlighted in Fig.2. The rolling
window under study is set up as follows. The training dataset
tD starts at hour 1 and ends at hour 1440 from 60 days. The
testing dataset tDa includes 168 consecutive hours from 7 days
following the training dataset.

We first show that the proposed MLM accurately estimates
the electricity consumption of a given customer. This cus-
tomer’s true consumption, estimated consumption, and resid-
uals are depicted in Fig.3. We plot this data for the first 100
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hours of the in-sample and out-of-sample periods. The average
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Figure 3: Electricity consumption residuals from the MLM for
one customer.

electric load consumed by this customer is 1.6 kWh. The
mean of the estimation residual is -0.01 kWh and its standard
deviation is 0.1 kWh. Both of these are small compared to
the customer’s average load. This result shows that the MLM
estimates the electricity consumption of a customer quite well.

We next apply this analysis to every customer on the feeder
over 59 rolling windows. The first window is the same as
above. Each other window is 24 hours ahead of the one preced-
ing it. The box plot of the in-sample residual sample standard
deviation, out-of-sample residual sample mean and standard
deviation for all customers are shown in Fig.4. The statistics
of the example customer shown in Fig.3 are highlighted by the
yellow dashed lines. Most customers’ have a small residual

0
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Figure 4: Residual statistics of all customers on the distribution
feeder.

mean and standard deviation. Hence the proposed MLM is
accurate in estimating the consumption of most customers
on the feeder. Yet, some customers do have relatively large
residuals. These are likely due to errors in the customer to
transformer mapping and noisy smart meter data.

Finally, we compare the performance of the MLM with three
nonlinear regression models. A Feed-forward Neural Network
(FNN), a Radial Basis Function Network (RBF) [42], and a
Support Vector Regression (SVR) model [43]. The inputs and
outputs of the nonlinear models are the same as MLM. The
number of hidden units in the FNN is one plus the number
of inputs, the number of neurons in the RBF is 200, and the
kernel for the SVR is a degree 2 polynomial. Five equally
spaced rolling windows between the 1st and 59th - shown
in Fig.4 - were selected to perform the regression analysis.
All other experimental setups are identical as in Fig.4. The

results are reported in Table.I. Each cell of Table.I shows
the µ ± 2σ of the corresponding performance measure. All
values are in kWh and have been rounded to 2 decimal places.
Table.I shows that all regression models perform similarly over

Table I: Comparison of regression models

std (in-sample) mean (out-of-sample) std (out-of-sample)
MLM 0.12 ± 0.09 0.00 ± 0.09 0.13 ± 0.10
FNN 0.11 ± 0.08 0.00 ± 0.09 0.13 ± 0.10
RBF 0.12 ± 0.07 0.00 ± 0.08 0.17 ± 0.13
SVR 0.12 ± 0.09 0.01 ± 0.08 0.13 ± 0.10

a wide range of customers. But we value interpretability and
simplicity over sophistication and complexity. For this reason,
our experimental studies shall focus on the proposed modified
linear model.

C. Properties of the Anomaly Score

This subsection studies the proposed energy theft detection
scheme of section IV. The goal of the following experiments is
twofold. First, it confirms that ranking the maximum anomaly
score maxfdi(f) for all i is a good way to detect energy
thieves. Second, we show that maxfdi(f) generally occurs
during a rolling window with nice properties. The properties
in question are cleanliness of the training dataset and theft
strength of the testing dataset.

For illustrative purposes, we consider the following exper-
iment. First, we give synthetic theft data to the customer
depicted in Fig.3. This synthesized data follows case 3 with
parameter αc3 = 1.8 kWh. We then increase |Te∩tD|/|tD| and
|Te ∩ tDa |/|tDa | from 0 to 1 and average the results from 10
such simulations. The resulting anomaly scores for the first
window are shown in Fig.5. Fig.5 shows that the anomaly

0
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Figure 5: Anomaly scores for the example customer

score increases with the amount of Te contained in the testing
dataset. However, it decreases with the amount of Te contained
in the training dataset. A maximum occurs when |Te∩tD|/|tD|
is 0 and |Te ∩ tDa |/|tDa | is 1. We extend these properties of
the anomaly score to all rolling windows, all synthetic theft
cases, and all customers. To do this, we consider 5 different
theft intervals Te, which begin at 20%, 30%, 40%, 50%, and
60% of the way through the dataset and end at the last sample.
The 4 synthetic theft cases were considered with parameters
given by αc2 = 1 kWh; αc3 = 1.8 kWh; αc4 = 0.5. In total,
we have 20 different synthesized datasets for each customer.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Table II: Maximum anomaly score maxfdi(f) and ranking
percentile averaged over all customers

Case
Te 20% 30% 40% 50% 60%

1 16.2 (55) 30.7 (10) 79.3 (1) 88.8 (1) 94.0 (1)
2 16.6 (53) 26.9 (16) 67.4 (1) 70.2 (1) 69.8 (1)
3 17.5 (47) 27.1 (16) 61.3 (1) 64.3 (1) 64.7 (1)
4 17.0 (50) 25.2 (19) 43.4 (3) 46.8 (2) 49.6 (2)

Table III: Difference |tDa ∩ Te|/|tDa | − |tD ∩ Te| · |tD|

Case
Te 20% 30% 40% 50% 60%

1 0.44 0.77 0.92 0.93 0.93
2 0.37 0.77 0.93 0.92 0.92
3 0.35 0.76 0.92 0.92 0.92
4 0.25 0.71 0.88 0.89 0.87

The 59 rolling windows described in Subsection V.B were
simulated 980 · 20 times. That is, for each rolling window,
there is a simulation for each customer in each of the 20 theft
modes. For each simulation, denote k as the index of that
simulation’s thief. We report the value and ranking percentile
of maxfdk(f) among maxfdi(f) of all other customers i
in Table.II. The numbers in the parenthesis are the ranking
percentile of the anomaly score in that cell.

In the first two columns of Table II, the anomaly periods
Te intersect the training dataset. As a result, the maximum
anomaly scores maxfdi(f) are indistinguishable from the
anomaly scores of non-thieves. However, these scores increase
as Te takes up smaller portions of the training dataset as shown
in the last three columns of Table II. Thus the rolling window
approach is useful when there is no theft for the first part of
the analysis. The exact amount of time necessary for this part
of the analysis depends on the length of the training window.

The highest anomaly scores correspond to the rolling win-
dow which has a maximum amount of clean data in training
set and a minimum amount of clean data in testing set. This
intuition is confirmed in Table.III. Each cell is the difference
|tDa ∩Te|/|tDa |− |tD ∩Te| · |tD| averaged over all customers.

The detection abilities of these anomaly scores need a
window that is both clean and strong in theft. Such a window
will exist so long as the thief does not steal power throughout
the entire analysis. Table.II shows that this window will be
recognizable because the anomaly score of the thief will
increase substantially during this window. We may idealize this
window as one with |tD∩Te|·|tD| = 0 and |tDa∩Te|·|tDa | ≈ 1.
Since this particular rolling window is of crucial importance,
we study it in detail in Subsections V.D and V.E.

D. The Impact of Energy Theft on Out-of-sample Residuals

This subsection focuses on the behavior of out-of-sample
residuals when the training set is clean. It emphasizes a
difference in behavior between theft and non-theft scenarios.

We first synthesize smart meter data for customer k under
synthetic case 3. We assume that the electricity theft activities
occur from hour t(e)1 = 25 to hour t(e)2 = 168 in the out-of-
sample period. The amount of electricity theft is assumed to
follow a uniform distribution with psk(t) ∼ U(0, 1.8) (kWh).

Table IV: Anomaly Scores

dk Ranking
∑

i di/N PR(di,95) max
i6=k

di

79.4 1 (0.1%) 8.1 14.6 42.2

Figure 6: Anomaly scores versus amount of stolen electricity

The MLM is applied for all 4 customers in the same secondary.
The out-of-sample residuals for the 4 customers are shown
in Fig.7b. The figure represents the residuals of customer k
by the solid green line. The other 3 customers’ residuals are
represented by blue dash lines. The out-of-sample residuals
obtained from the original data (without electricity theft) are
shown in Fig.7a for comparison purposes. As shown in Fig.7b,
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Figure 7: Out-of-sample residuals.

customer k has negative residuals while the honest customers
have positive residuals. The sum of them at any given hour is
zero as stated in Lemma.2. For all customers, the regression
coefficients

∑
` 6=j β

y
` are positive. In this case,

∑
6̀=k β

y
` took

on the values of 0.74, 0.77, 0.67 and 0.81 for j = 1, 2, 3 and 4.
Hence, the residuals of the dishonest customer k will always
be negative according to Lemma.1. These results show that
the residual plots of all customers on the same secondary are
helpful in detecting electricity theft.

E. The Impact of Energy Theft on Anomaly Scores

Next, we will show that electricity theft can be easily
detected by anomaly scores in a wide variety of cases. We
further show that the anomaly scores increase with the amount
of stolen electricity.

We first calculate the anomaly scores for all customers
on the distribution feeder under the experiment detailed in
Subsection V.D. The anomaly score of customer k and the
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summary statistics of all customers’ anomaly scores are re-
ported in Table IV. As shown in the table, the kth customer
has an anomaly score of 79.4. This is the highest among all
980 customers in the distribution feeder. The second highest
anomaly score of any customer is 42.2 which is much lower
than that of customer k. The average and 95th percentile of all
customers’ anomaly scores PR(di,95) are 8.1 and 14.6. Both
of these are much lower than that of customer k. In this case,
the anomaly score easily detects the electricity theft activity.

Synthetic electricity theft datasets for customer k are then
created for each of the synthetic cases. The parameters used
for the cases are as follows. In case 1, the theft activity starts
from hour 1 in the out-of-sample period. Multiple datasets for
this case are then created by increasing the theft ending hour in
the out-of-sample period. We create a dataset for each ending
hour from hour 2 to hour 168. In cases 2-4, the theft activity
starts and ends with hours t(e)1 = 0.2|tDa | and t

(e)
2 = |tDa |.

Multiple datasets for this case are then created by increasing
the parameters αc2, αc3, and αc4. The parameters are varied
such that the total amount of stolen electricity ranges from
1 kWh to 128 kWh. Again the electricity theft activities are
assumed to occur during the out-of-sample period.

We then calculate the residual and anomaly score for each
constructed dataset. The anomaly score of customer k and
the summary statistics of all customers’ anomaly scores are
depicted in Fig.6. The colored solid curve in each subplot
represents the anomaly scores of customer k. The numbers
along the curve show the ranking percentile of customer
k’s anomaly score. The solid black line represents the 95th
percentile of all customers’ anomaly scores. The dashed black
line represents the average anomaly score of all customers.
Both axes are on a logarithmic scale.

The figure shows that the anomaly score of customer k
increases monotonically with the amount of stolen electricity.
In all cases, customer k’s anomaly score will surpass the 95th
percentile of all customers if it steals more than 32 kWh. This
averages to 0.19 kW of power. A stronger result holds for
cases 1-3. In these cases, customer k’s anomaly score will be
the absolute largest of all customers if it steals more than 0.38
kW of power.

To further prove the validity of the proposed framework,
we extend this analysis to all customers. That is, the previous
case study is repeated 980 times. Each new set of cases sets
a new customer as the thief.

The anomaly scores of the customers who are stealing
electricity are binned and reported in Fig.8. The x- and y-axes
of the figure represent the amount of stolen electricity and the
anomaly scores. The z-axis represents the number of customers
who have an anomaly score which falls into a particular bin.
The color of the each bar indicates the ranking (in percentage)
of anomaly score of the customers in that bin against all
honest customers. A darker color represents a higher ranking.
Each row of bars add up to the total number of customers in
the distribution feeder. When the amount of stolen electricity
increases, the distribution of dishonest anomaly scores shifts
to the right. The ranking of the anomaly scores also increases.

Finally, the figure can be used to predict the probabilities
of detection. For example, if a customer steals more than 0.38

kW of power, then it is has a 97 percent chance of surpassing
the 95th percentile of all customers. It further has a 57 percent
chance that its anomaly score will be the highest among all
customers. These results show that framework is effective in
catching even small amounts of theft.

Figure 8: Numerical evaluation for all customers on the
distribution feeder

F. Comparison with Existing Techniques

We compare the performance of the proposed anomaly
detection method with the Fuzzy C-means (FCM) based
method [5], the Self-Organizing Maps (SOM) based method
[10], and Random Matrix Theory (RMT) based method [25].
We excluded the comparisons with state estimation based
methods, supervised machine learning based methods, and
the “central observer” based methods such as [18] because
they represent solutions to different classes of problems. The
original methods described in [5], [10], and [25] need to
be modified slightly to match our experimental data and our
performance measure.

For the FCM method. First, missing values were imputed
by the average values of the two nearest time stamps of the
same customer. Next, the time series data was dimension-
reduced via the t-distributed Stochastic Neighbor Embedding
(t-SNE) algorithm [44]. This was performed separately on
the consumption and voltage time series data. The results
were concatenated to form a feature vector. Second, the
definition of the anomaly score in [5, Fig.3] is modified to
be dk = ‖u0k − ukP

b‖2 where Pb is a column permutation
matrix such that Pb = argmin ‖U0 −UP‖. For the SOM
method. First, the kWh and voltage time series of each
customer were converted to kWh and voltage daily profiles.
Missing values and outage values were treated similarly to
the FCM method above. The step of comparing with the
contracted power demand was removed. We further defined the
minimum quantization error [45] as the anomaly score. For the
RMT method. First, each distribution transformer secondary is
considered as a region. Next, a window of 67 days of hourly
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two-phase voltage magnitude and active power measurements
are collected and undergo the same preprocessing procedure
as described in Section IV.A. The active power measurement
noise is assumed to be zero mean normal with a standard
deviation of 0.02 times the range of active power.

We setup experiments as follows. The four different
anomaly cases discussed in Subsection V.A will be simulated
with the parameters Te, αc2, αc3 and αc4 being varied such
that the total amount of bypassed electricity ranges from 2
kWh to 128 kWh. We performed the experiments using the
same set of customers and training/testing dataset as depicted
in Fig.8. The results are shown in Table.V. Each cell is the
anomaly score ranking for anomalous customers with respect
to normal customers averaged for all selection of anomalous
customers and expressed in percentage. Table.V shows that the

Table V: Performance comparison with [5], [10], and [25]∑
t p

s
k(t)

(kWh) 2 4 8 16 32 64 128

Case 1: disconnection of meters model
FCM 49.65 50.30 48.94 47.75 42.75 38.64 34.34
SOM 47.07 44.69 42.19 38.18 30.90 21.12 16.37
RMT 49.22 46.10 40.06 30.42 20.70 15.03 10.95
MLM 13.29 7.07 4.20 2.30 1.29 0.85 0.73

Case 2: constant bypassing model
FCM 50.49 49.49 49.48 48.40 45.10 40.59 36.94
SOM 49.86 49.51 48.38 44.59 34.21 22.33 18.97
RMT 51.23 51.09 50.87 50.60 48.92 41.35 26.99
MLM 40.54 32.23 19.95 8.55 2.73 1.21 0.91

Case 3: random uniform bypassing model
FCM 50.11 49.51 48.93 48.35 44.96 41.02 38.52
SOM 49.83 49.43 47.93 43.38 33.46 24.55 21.07
RMT 50.95 51.17 50.74 49.73 45.04 34.88 22.79
MLM 40.15 31.00 17.96 7.10 2.39 1.29 0.99

Case 4: constant percentage bypassing model
FCM 50.32 50.33 49.60 48.89 46.27 41.55 36.09
SOM 50.33 50.53 50.71 50.08 45.17 28.78 19.36
RMT 51.27 51.19 51.33 50.90 47.62 33.29 16.20
MLM 44.30 38.93 28.65 15.07 5.15 1.43 0.83

proposed method beats the modified existing techniques in all
cases. For all four methods, the rankings of the anomaly scores
decrease in response to increasing level of anomaly. However,
only the proposed method consistently ranks the anomalous
customers at the top.

VI. CONCLUSION

This paper developed a physically inspired data-driven
algorithm for electricity theft detection. The proposed algo-
rithm leverages an approximate linear relationship between the
power consumption and voltage data of customers on the same
secondary. The proposed MLM produces accurate estimates of
the electricity consumption for the majority of the customers.
The MLM model is able to detect inconsistencies among
smart meter measurements of a group of customers from
the same distribution secondary thereby identifying electricity
thefts. An evaluation of the proposed electricity theft detection
algorithm was then performed with real-world smart meter
data and synthesized electricity theft cases. The evaluation

results show that the proposed anomaly score developed in
this paper is effective in identifying electricity theft cases even
when the amount of stolen electricity is small. The method was
compared with existing unsupervised electricity theft detection
techniques. The comparison results show that the proposed
method is more effective in identifying the electricity thefts.

APPENDIX A
LINEARIZATION OF DISTRIBUTION SECONDARY POWER

FLOW EQUATIONS

We wish to approximate the nonlinear power flow equation
as a linear one:

F(v,θ,p,q) = 0 → FX̄[vT,θT,pT,qT]T = 0

where v = [v1T,v2T]T (same token for θ,p,q); FX̄ is
the Jacobian matrix of F evaluated at some operating point
X̄ =

[
v̄ θ̄ p̄ q̄

]T
. This point must itself be a solution to

the power flow equation F(X̄) = 0. When X̄ is fixed, this
Jacobean is given by [30]

FX̄ =
[
(〈diag(Yu)∗〉+ 〈diag(u)〉N2n 〈Y〉)R(u) −I

]
(20)

where Y is the bus admittance matrix, u is the vector of

complex bus voltages, N2n =

[
I2n 0
0 −I2n

]
, and

R(u) =

[
diag(cos(θ)) −diag(v sin(θ))
diag(sin(θ)) diag(v cos(θ))

]
〈A〉 =

[
Re{A} −Im{A}
Im{A} Re{A}

]
Recall that our modified flat voltage solution is given by
ū = [1n,−1n]T, p̄ + jq̄ = 0. Assuming that no shunt
resistances are present, this is a solution to the power flow
manifold with zero branch currents. Thus diag(Yu) = 0.

Furthermore, diag(u) =

[
In 0
0 −In

]
, Nn, so 〈diag(u)〉 =

R(u) =

[
Nn 0
0 Nn

]
. Thus the left hand block matrix of (20)

reduces to [
Nn 0
0 Nn

] [
Gr −Br

−Br −Gr

] [
Nn 0
0 Nn

]
=

[
NnGrNn −NnBrNn

−NnBrNn −NnGrNn

]
where Gr and Br are the real an imaginary components of
Yr. In this final expression, each product NnANn negates the
off diagonal blocks of A, yielding the desired linearization

p1

p2

q1

q2

 =


G11 −G12 −B11 B12

−G21 G22 B21 −B22

−B11 B12 −G11 G12

B21 −B22 G21 −G22




v1

v2

θ1

θ2

 (21)

APPENDIX B
CONVERSION FROM LOADS TO NET INJECTIONS

(2) is derived as the follows. First define the reference
direction of voltages and currents as shown in Fig.9. u
variables refer to voltages, i variables refer to currents, and
s variables refer to VA power consumptions.
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Figure 9: A triplex line load with reference direction defined

We then have:

s1 = u1ni1∗ = u1n(i1n∗ + i12∗) = s1n + u1n s12

u1n + u2n

s2 = u2ni2∗ = u2n(−i2n∗ − i12∗) = s2n − u2n s12

u1n + u2n

(22)

APPENDIX C
THE ELIMINATION OF DEPENDENCIES ON VOLTAGE

ANGLES AND REACTIVE POWERS

We first show that the pseudoinverse of Ls
22 can eliminates

the voltage angle dependence in our model. We first rearrange
the model equations to

ps = Ls
11v

s + Ls
12θ

s (23)
Ls

22θ
s = qs − Ls

21v
s (24)

Since (24) is enforced by our model, its right hand side is in
Range(Ls

22). Let θ∗ denote its least norm solution. Then any
other solution can be written as θs = θ∗+ θn where θn is in
Null(Ls

22).
Now,

Ls
22 =

[
−G11 G12

G21 −G22

]
(25)

and each of the blocks Gij is a Laplacian matrix having
nullspace 1. In practice the mutual conductances are much
smaller than the self conductances [46]. Hence the entries in
G12 and G21 are much smaller than that in G11 and G22.
Then the overall matrix Ls

22 has nullspace

Null(Ls
22) = Span

([
1n
0n

]
,

[
0n
1n

])
But

Ls
12 =

[
−B11 + B21 B12 −B22

−B11 −B21 B12 + B22

]
(26)

where each block Bij is again a Laplacian matrix. Thus
the nullspace of this matrix contains the above span-
ning vectors, so Null(Ls

22) ⊆ Null(Ls
12). It follows that

Ls
12θ

s = Ls
12 (θ∗ + θn) = Ls

12θ
∗. We can then write the

above system as

ps = Ls
11v

s + Ls
12θ
∗ (27)

Ls
22θ
∗ = qs − Ls

21v
s (28)

where θ∗ = Ls†
22 (qs − Ls

21v
s) because it is the least norm

solution. Substituting this into (27) yields the desired result

ps =
(
Ls

11 − Ls
12L

s†
22Ls

21

)
vs + Ls

12L
s†
22qs (29)

We conclude this appendix by showing that
(I− Ls

12L
s†
22DM−1

u ) is nonsingular. We do this by showing
that 1 is not an eigenvalue of Ls

12L
s†
22DM−1

u .
First, it is easy to show that Lr

22 = Ls
22, and Ls

12 = MuL
r
12,

so
Ls

12L
s†
22DM−1

u = MuL
r
12L

r†
22DM−1

u (30)

Thus, if 1 is an eigenvalue of Ls
12L

s†
22DM−1

u , then 1 is an
eigenvalue of Lr

12L
r†
22D. Then there exists a vector p such

that
p = Lr

12L
r†
22Dp (31)

Then there exists a vector θx ∈ Range(Lr†
22) such that

Lr
22θx = QDp (32)

Lr
12θx = p (33)

where Q is the orthogonal projector onto the range of Lr
22.

Then, since θx ⊥ Null(Lr
22) we have

(Lr
22 − (I−N)DLr

12)θx = 0 (34)
Nθx = 0 (35)

Where N is the orthogonal projector onto the nullspace of Lr
22

and is given by

N =
1

n

[
11T 0
0 11T

]
(36)

Thus, for a solution to exist, the following augmented matrix
cannot have full column rank (= 2nc):[

Lr
22 − (I−N)DLr

12

N

]
(37)

But clearly (I −N)DLr
12 has the same range and nullspace

as Lr
12. The sum of the first nc rows is therefore zero. The

same holds for the last nc rows. Thus we can perform row
operations to show that this has the same rank as the matrix
with the nthc and 2nthc rows removed. The upper matrix also
has the property that the sum of the first nc columns is zero
and the sum of the last nc columns is zero. Thus column
operations show that our matrix has the same rank as[Lr

22 − (I−N)DLr
12]red 0 0

11T 0 1 0
0 11T 0 1

 (38)

where the red subscript indicates that the nthc row, nthc column,
2nthc row, and 2nthc column have been removed.

Now, the lower right hand block of this matrix indicates two
pivots, so a solution can only exist if [Lr

22 − (I−N)DLr
12]red

does not have full rank (= 2(nc − 1)). Since this matrix
only removes rows and columns from its constituents, we can
write it as [Lr

22]red − [(I−N)DLr
12]red where the constituent

matrices now have full rank.
This matrix subtraction is unlikely to have less than full

rank for two reasons. First, it is an extremely precise re-
quirement on the relationship between the network parameters
and the power factors. It is precise in the sense that the
set of all invertible matrices sum to a singular matrix has
Lebesgue measure zero. Second, the matrix [Lr

22]red contains
conductance values and the matrix [(I−N)DLr

12]red contains
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transformed susceptance values. Since susceptance values are
typically much larger than conductance values, it follows that
the rows of the matrix subtraction will be primarily dominated
by [(I−N)DLr

12]red which has full rank. Thus a real network
is unlikely to have this difference be singular or even close to
singular. Therefore in realworld cases, (I− Ls

12L
s†
22DM−1

u )
will be invertible.

APPENDIX D
PROOF OF LEMMA.1 LEMMA.2 AND LEMMA.3

A. Lemma.2

Proof. Suppose without loss of generality that customer i is
the electricity thief. Suppose that our training window lasts T
time instances. Then at any time t:∑

j

(
ỹ(t)ej − ỹ(t)j

)
=
∑
j

(
(y(t)ej − y(t)j)− (X (t)e −X (t))βyj

)
= (y(t)ei − y(t)i)−

∑
j

βyj
∑
k

(y(t)ek − y(t)k)

= (y(t)ei − y(t)i)(1−
∑
j

βyj ) (39)

because (y(t)ej−y(t)j) is nonzero at index i only and X e and
X differ only in their last component.

Now, due to the use of ordinary least squares, βj is the
pseudoinverse of the matrix

[
Xv yΣ

]
applied to yDj . Here,

Xv is a T by nc+1 matrix of in sample voltage measurements,
yΣ is a T dimensional vector of in sample power sums, and yDj
is a T dimensional vector of in sample power measurements.
We can write the pseudoinverse in block form [47] to obtain[

βXj
βyj

]
=

[
(XT

v QyXv)−1XT
v Qy

(yT
ΣQXyΣ)−1yT

ΣQX

]
yDj (40)

where Qy and QX are the residual projection matrices

Qy = I− yΣ(yTΣyΣ)−1yTΣ

QX = I−Xv(X Tv Xv)−1X Tv
Now,

∑
j yDj = yΣ, so summing (40) over j yields∑

j

[
βXj
βyj

]
=

[
(XT

v QyXv)−1XT
v QyyΣ

(yT
ΣQXyΣ)−1yT

ΣQXyΣ

]
=

[
0
1

]
(41)

where the 0 comes from the residual of the projection of yΣ

onto itself. (39) and (41) show that
∑
j

(
ỹ(t)ej − ỹ(t)j

)
= 0.

Vectorizing over time yields the left hand equality of the
lemma. Finally, since

ŷDj =
[
Xv yΣ

] [βXj
βyj

]
(42)

we have∑
j

ŷDj = Xv
∑
j

βXj + yΣ

∑
j

βyj = yΣ =
∑
j

yDj (43)

Subtracting the leftmost term from the rightmost term yields
the right hand equality of the lemma for in sample data. A
similar argument shows that the above equation also holds for
out of sample data.

B. Lemma.1

Proof. Repeating the derivation of (39), but omitting index i
from the sum yields∑

j 6=i

(
ỹ(t)ej − ỹ(t)j

)
= (y(t)ei − y(t)i)(1− βyi ) (44)

The remaining terms present in the right hand side of (39) but
absent in (44) are −(y(t)ei−y(t)i)

∑
j 6=i β

y
j . Therefore it must

be the case that ỹ(t)ei − ỹ(t)i = −(y(t)ei − y(t)i)
∑
j 6=i β

y
j .

Vectorizing over time yields the result

ỹ
(e)
i − ỹi = −

∑
j 6=i

βjy
s
i (45)

C. Lemma.3

Proof. Consider the true (unestimated) model

pj(t) = x(t)Trj + cjyΣ(t) (46)

Consider further the hypothetical scenario where only the
transformer voltage deviates from its flat value. In this sce-
nario, we have for customer j

pj(t) = cjyΣ(t) (47)

so cj = pj(t)/
∑
i=1 pi(t) is the portion of the total power

injection contributed by customer j in this scenario. But if
all voltages are flat except the transformer voltage, then the
power injections must all have the same sign, so cj ≥ 0.

Now βyj is an estimator of cj . We will repeat its equation
here:

βyj = (yT
ΣQXyΣ)−1yT

ΣQXyDj (48)

This estimator is biased. This is because the term yΣ is
confounded by the sum of all noise terms for each individual
dependent variable. Thus this estimator suffers from the Clas-
sical Errors in Variable Problem [48]. But since this lemma
only relies on the sign of βyj , this does not pose much of a
problem. We still have

plim βyj = λcj , 0 < λ < 1 (49)

Then there are two cases. If cj > 0, then
P(βyj < 0) ≤ P(|βyj − λcj | ≥ λcj)→ 0 as the training
window length goes to infinity. Thus for any δ > 0, there
exists a window length T j1 such that P(βyj < 0) < δ

2 . If,
however, cj = 0, then there exists a window length T j2
such that P(|βyj | ≥ δ) < δ

2 . Let T j = max(T j1 , T
j
2 ). Then

for window length T j , P(βj < −δ) ≤ 2( δ2 ) = δ. Letting
T = max

j
{T j} completes the proof.
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