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Abstract— Providing ride-hailing services with electric vehicles
can help reduce greenhouse gas emissions and solve the last
mile problem. This paper develops a reinforcement learning
based algorithm to operate a community owned electric vehicle
fleet, which provides ride-hailing services to local residents. The
goals of operating the electric vehicle fleet are to minimize
customer waiting time, electricity cost, and operational costs of
the vehicles. A novel framework characterized by decentralized
learning and centralized decision making is proposed to solve the
electric vehicle fleet dispatch problem. The decentralized learning
process allows the individual vehicles to share their operating
experiences and deep neural network model for state-value
function estimation, which mitigates the curse of dimensionality
of state and action domains. The centralized decision making
framework converts the vehicle fleet coordination problem into a
linear assignment problem, which has polynomial time complex-
ity. Numerical study results show that the proposed approach
outperforms the benchmark algorithms in terms of societal cost
reduction.

Index Terms— Assignment problem, electric vehicle, reinforce-
ment learning, ride-hailing services.

I. INTRODUCTION

ELECTRIC vehicles (EVs) are gaining widespread adop-
tion because of their low greenhouse gas (GHG) emis-

sions and zero tailpipe pollution. EVs on average produce
less than half the life-cycle GHG emissions of their internal
combustion engine counterparts [1]. It is projected by the
International Energy Agency (IEA) that the number of EVs
will grow from 3 million in 2017 to 125 million by 2030 [2].
Meanwhile, ride-hailing platforms such as Uber and DiDi have
experienced phenomenal growth in the past ten years. A total
of 7.43 billion and 5 billion rides were completed on DiDi
and Uber, respectively, in 2017. To help reduce their carbon
footprint and vehicle operating costs, most of the major ride-
hailing companies have launched electric car initiatives.

Operating a community or city owned EV fleet to provide
ride-hailing services can be a great solution to delivering low
cost and low emission mobility services to the local residents.
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The EV ride-hailing service could complement public trans-
portation services to help bridge the ‘last mile’, when one’s
pickup location or final destination is too far from a public
transit node.

The key difference between dispatching conventional gaso-
line vehicles and EVs lies in the relatively frequent recharging
processes of EV batteries. Although the ranges of EVs have
been growing rapidly in recent years, the recharging process
still needs to be considered for the following three reasons.
First, the majority of EVs on the market currently have much
lower ranges than their gasoline counterparts. For example,
the Nissan Leaf has a range of 151 to 226 miles. It would
run out of power after only a few hours of continuous oper-
ation. Second, recharging an EV is still significantly slower
than refueling a conventional gasoline vehicle. For example,
charging a Nissan Leaf from empty to full would take around
one hour even using a 50 kW fast charger. Third, even
though the ranges of EVs will continue to grow in the future,
the modeling of recharging process would still be important
for many applications. For instance, the recharging process of
an EV fleet can be coordinated with the smart grid control
systems to provide frequency regulation services [3], which
will bring additional benefits to both the ride-hailing service
provider and the power grid.

In this paper, we develop an EV fleet operating algorithm
to provide ride-hailing services, which minimizes the total
customer waiting time, electricity consumption, and vehicle
operational costs. Specifically, given a fleet of EVs with
random initial locations and remaining battery levels, our
task is to make sequential decisions to dispatch the EV fleet
to serve an initially unknown set of customer trip requests
within the operating time horizon. The information of each
customer’s trip request is revealed in real-time. The EVs stop
where they are at the end of the operating horizon. This
problem formulation belongs to the family of vehicle routing
problems (VRPs) [4]. Specifically, it can be categorized as a
dynamic VRP because the information of the customer trip
requests is initially unknown and revealed over time during
the operating process.

The unknown customer trip requests and additional com-
plexity of recharge demands make it difficult to develop a
model-based optimization algorithm to solve this dynamic
VRP. In this work we propose a reinforcement learning based
approach to solve the online EV fleet dispatch problem. The
goal of our EV fleet operating algorithm is to minimize
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residents’ waiting time, electricity cost, and vehicle operational
costs. Note that this objective is very different from the goal
of a typical ride-hailing service provider, which is maxi-
mization of gross merchandise volume (GMV) [5]. A decen-
tralized learning and centralized decision making framework
is proposed in this paper to implement the reinforcement
learning algorithm. The decentralized learning component
allows individual EVs to share their experiences and learned
model to overcome the curse of dimensionality in the multi-
agent reinforcement learning environment. The adoption of
experience replay and target network ideas helps stabilize
the reinforcement learning process. The centralized decision
making component enables seamless coordination of EV fleet
to avoid scheduling conflicts. The centralized decision making
problem is converted into a linear assignment problem, which
can be solved in polynomial time for online implementation.

The contributions of this paper are listed as follows:
• We develop a reinforcement learning based algorithm to

provide ride-hailing services to communities with an EV
fleet.

• We develop a scalable off-policy reinforcement learning
framework with decentralized learning and centralized
decision making processes, which has polynomial time
complexity in real-time execution.

• We demonstrate that the proposed EV fleet dispatch
algorithm outperforms the benchmark algorithms in terms
of reducing societal costs for mobility service provision.

The rest of this paper is organized as follows. Section II
briefly summarizes the related works. Section III describes the
overall framework and the formulation of the reinforcement
learning problem. Section IV presents the technical methods
used in the decentralized learning and centralized decision
making processes. Section V carries out numerical simulations
to validate the effectiveness of our proposed method. The
conclusions are stated in Section VI.

II. RELATED WORKS

Our problem falls into the family of vehicle routing prob-
lems according to the generic definition given by [4]. The
original VRP and its variants have been extensively inves-
tigated since the seminal work [6]. In this section, we first
present an overview of the general vehicle routing problems.
Then, a comprehensive review of the recent development on
the electric vehicle routing problem (EVRP) is carried out.
We close the literature review section by discussing a few
papers, which adopted the reinforcement learning framework
to solve similar problems.

A. Overview of Vehicle Routing Problems

The family of vehicle routing problems have been studied
for more than 50 years. The original VRP was introduced
in 1959 to solve the dispatch schedule of a fleet of trucks for
delivering gasoline from a single depot to different stations [6].
Numerous variants and extensions of the original VRP have
been formulated and studied by researchers since then. Most
of them belong to the combinatorial optimization problems
that are notoriously difficult to solve. Meanwhile, the VRP

family receives a lot of interests not only from the academic
society but also from the industry. In general, the VRPs can
be categorized into the following four groups based on the
problem inputs and the optimization framework [4], [7].

• Static and Deterministic: All the inputs such as trans-
portation requests and vehicle parameters are known and
deterministic prior to the operating process. None of the
inputs are defined as random variables. The routes are
determined in advance and can not be re-optimized during
the operating process.

• Static and Stochastic: Same as Static and Deterministic
group except either all or parts of the inputs are stochastic
with certain distributions.

• Dynamic and Deterministic: Either all or parts of the
inputs are unknown prior to the operating process, which
are revealed to the dispatcher during the execution. The
routes can be re-optimized or evolve as a function of
the inputs over time. In other words, the routes are not
determined in advance.

• Dynamic and Stochastic: Same as Dynamic and Deter-
ministic group except either all or parts of the inputs are
stochastic with certain distributions.

The first two and the last two groups are called static VRPs
and dynamic VRPs, respectively. Our problem belongs to
the dynamic VRPs since the customer trip requests are not
known in advance but received during the operating process.
A large number of approaches have been proposed to solve
different VRPs. Most of them formulate vehicle routing as
mixed integer programming problems, which are then solved
through heuristics. Refer to [4] for a comprehensive discussion
of the formulations of different VRPs and solution methods.

B. Electric Vehicle Routing Problems

With the rapid development and growing popularity of
electric vehicles, the EV routing problem has attracted strong
interests from researchers. In this study, we distinguish EVRP
from traditional VRP based on two criteria. First, the vehicle
fleet includes EVs. Second, the EVs can be recharged at
the charging stations during the operating process. As a
pioneering work, [8] first introduced dummy vertices1 to allow
refueling the vehicles at the charging stations along their
routes. Following this idea, [10] extended the traditional VRP
with customer time windows to its EV version (EVRPTW).
Both of these two works assumed full recharges in their
formulations. However, fully recharging EVs each time might
not be the optimal solution in many cases. To mitigate this
constraint, [11] first introduced partial recharge in the EVRP
formulation. Unfortunately, the introduction of partial recharge
can complicate the problem and make it more difficult to
solve. Later, a number of other extensions and modifications
of the original EVRP were proposed. For instance, [12] con-
sidered the effect of vehicle load on electricity consumption.
Reference [13] extended EVRPTW by using a mixed fleet of
electric and conventional vehicles as well as a more realistic
energy consumption model. This mixed fleet routing problem

1Dummy vertices was originally introduced by [9] to model stops at
intermediate depots in a routing problem with traditional vehicles.
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was further examined by [14] considering different vehicle
capacities, battery sizes, and acquisition costs. Reference [15]
introduced additional constraints on the EV speed for different
time intervals based on the corresponding traffic flow forecasts.
Reference [16] first proposed to capture the nonlinear behavior
of the charging process using a piecewise linear approxi-
mation in the EVRPs. Inspired by this idea, [17] proposed
an improved formulation of EVRP with nonlinear charging
functions, in which an arc-based tracking of the time and the
state of charge is proposed. Reference [18] incorporated the
queuing time of EVs at the charging stations into the EVRP
formulation by enforcing the constraint of limited capacities
of the charging stations.

All the EVRPs mentioned above share the following two
assumptions. First, all the vehicles start and return to the
same depot. Second, the transportation request information is
fully known in the beginning of the operating process. These
two strong assumptions hinder the above methods from being
directly applied in the ride-hailing applications. Recently, [19]
and [20] removed the first assumption by extending the EVRP
formulation to a multiple depot version. Both of these two
works and our problem fall into the pickup-and-delivery prob-
lems for passenger transportation. Nevertheless, [19] and [20]
still belong to the static VRPs due to the second assumption.
Thus, they are significantly different from our dynamic VRP.

Several papers have studied the dynamic electric vehicle
routing problem (DEVRP), which has a similar formulation
to our paper. In these papers, the transportation requests are
initially unknown and the initial EV locations are picked
arbitrarily. These studies are often called EV operating or
dispatch in the literature. To the best of our knowledge, [21]
is one of the earliest works on operating an EV fleet to serve
real-time customer trip requests. It was designed to minimize
the total customer waiting and traveling time cost. Every new
customer’s trip request is assigned to an EV that yields the
least incremental time cost. EVs are sent to recharge once their
remaining battery levels fall below some predefined threshold.
References [22] and [23] investigated the operations of a
shared autonomous EV fleet. Both of them use simple greedy
algorithms that assign new customer trip requests to the EVs
that are either closest [22] or lead to the least waiting time [23].
More recently, [24] solved a DEVRP in the context of ride-
hailing using approximate dynamic programming. In [24],
the operating region is divided into small square zones and
every zone is assumed to have one charging station.

C. Related Reinforcement Learning Works

Recently, researchers started applying reinforcement learn-
ing algorithms to solve VRPs. See [25] for an example of a
single vehicle routing problem. Reinforcement learning based
approaches are also taken to either dispatch or reposition
vehicles for ride-hailing services in real-time [5], [26], [27]. [5]
is closely related to our work. To overcome the curse of dimen-
sionality, a decentralized learning and centralized decision
making approach was proposed. However, our work differs
from [5] in the following aspects. First, [5] focuses on the
traditional vehicle operating problem instead of the EVs. Thus,

Fig. 1. Overall reinforcement learning framework.

they do not need to model the charging process. Second,
we design an entirely different reinforcement learning algo-
rithm. [5] uses an on-policy RL algorithm with the value
function represented by a table. In this work, we construct an
off-policy RL algorithm with the value function approximated
by a neural network. Third, the problem formulations have dif-
ferent objectives. [5] tries to maximize the gross merchandise
volume (GMV) while the goal of this work is to minimize the
customer waiting time and EV operational costs.

Reinforcement learning algorithms can be classified into
two groups, on-policy learning and off-policy learning. In the
on-policy approach, the learned policy (target policy) and the
policy that generates behaviors (behavior policy) are the same.
On the other hand, the target policy and behavior policy in the
off-policy methods are different. In other words, the learning
is from data “off” the target policy. The off-policy learning
approach is more powerful and general. It includes on-policy
approach as the special case in which the target and behavior
policies are the same. More importantly, the off-policy meth-
ods can exploit the historic data or data generated from other
conventional non-learning methods.

III. OVERALL FRAMEWORK AND

PROBLEM FORMULATION

In this section, we present the overall framework of our
proposed EV fleet operating algorithm for ride-hailing ser-
vices. The operating problem for a fleet of EVs to provide
ride-hailing services is formulated as a Markov decision
process (MDP). We propose a reinforcement learning frame-
work with decentralized learning and centralized decision
making to solve this MDP problem. The overall reinforcement
learning framework is illustrated in Fig. 1. In the learning
process, we treat EVs as individual agents with shared state-
value function. The parameters of the common state-value
function approximator are trained and updated based on the
collection of individual EVs’ experiences of interacting with
the environment. In the decision making process, the EV
fleet operating problem is solved in a centralized manner by
leveraging state-value function estimates from the learning
process.
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Before formulating the EV fleet operating for ride-hailing
service problem as an MDP, we first introduce some pre-
liminary information about MDP and reinforcement learning.
Within an MDP, we call the learner or decision maker an agent.
The agent interacts with the environment it lives in at each of
a sequence of discrete time steps, t = 0, 1, 2, · · · . At each
time step t , the agent senses the environment’s state St ∈ S

and takes a control action At ∈ A(s). When reaching the next
time step, the agent receives a reward Rt+1 ∈ R ⊂ R based
on previous state-action pair and the current state. Then the
agent reaches a new state St+1. The numerical reward and the
new state depend on the preceding state and control action
according to the following transition model [28]:

p(s′, r |s, a)
.= Pr{St+1 = s′, Rt+1 = r |St = s, At = a} (1)

where s, s′ ∈ S are the current and the next states. r ∈ R is
the reward, and a ∈ A(s) is the action taken by the agent.
The sequence of the interactions between the agent and the
environment from the starting state until the terminal state is
called an episode.

At time step t , the agent tries to achieve the maximum
discounted return Gt = ∑T

k=t+1 γ k−t−1 Rk , where γ is the
discount factor. T is the time step when the terminal state of
an episode is reached. When interacting with the environment,
the agent follows a policy π(s) = p(a|s), which maps a given
state s to a probability distribution of taking action a. In order
to evaluate how good it is for the agent to be in a given state
or take an action starting from a state, we define the state-
value function vπ (s) and action-value function qπ(s, a) under
a policy π as:

vπ (s) = Eπ [Gt |St = s] (2)

qπ(s, a) = Eπ [Gt |St = s, At = a] (3)

A policy is optimal if its expected return is greater than
or equal to that of any other policy for all states. The
corresponding action-value function of an optimal policy is
called the optimal action-value function. The goal of the agent
is to find an optimal policy for the MDP problem.

A. Framing the Problem of Operating an EV Fleet for
Ride-Hailing Services as MDP

Assume that a community operates an EV fleet for ride-
hailing services to meet its residents’ trip requests. The goals
of the EV fleet operator are to minimize customers’ waiting
time, electricity costs from charging, and vehicle operational
costs. It is assumed that EVs only receive dispatch signals
every T I (time interval). An EV’s status is available if it is
idle, being charged, or on its way to the charging station.
Otherwise, the EV’s status will be in-service. It is assumed that
all the EVs are available at the initial time step. The status of
an EV changes from available to in-service once a customer’s
trip request is assigned to it. At each time step, an EV can be
assigned to at most one more customer trip request. Once the
customer trip assignment is made, it can not be changed. All
EVs are required to serve the trip requests assigned to them
according to the ‘first-come-first-serve’ rule.

Next we will define the state domain, action domain,
and reward function of the MDP describing the problem of
operating an EV fleet for ride-hailing services.

1) State Domain: Let sE F ∈ SE F denote the state vector
of the entire EV fleet. sE F = [s1, · · · , sNEV ] is a tuple of
state vectors of individual EVs, where NEV represents the
total number of EVs. si ∈ SI E denotes the state vector of the
i th EV, which consists of three self states and one global state:

• Ei : Remaining battery level of the i th EV when it
becomes available.

• Li : Location of the i th EV when it becomes available.
• T A

i : Time length before the i th EV becomes available.
• t : Global state for time.

Note that in real-world applications, we can use high quality
estimates for Ei and T A

i as part of the state vector.
2) Action Domain: Let aE F ∈ AE F (sE F ) denote the action

vector of the entire EV fleet. aE F = [a1, · · · , aNEV ] consists
of actions of individual EVs, where ai ∈ AI E (si ) is the action
of i th EV. Each EV can take one of the following three actions:

• ai = Pass: If the i th EV is idle, then Pass action keeps
it idle during the next time interval. If the i th EV is in-
service, then Pass action has no effect on its existing
assignment.

• ai = Charge: If the i th EV is in a charging station, then
it starts charging or keeps being charged. If the i th EV is
not in a charging station, then it moves toward the nearest
charging station during the next time interval.

• ai = Assign c: This action means that a new customer
trip request c ∈ C(t) is assigned to the i th EV, where C(t)
is the set of customer trip requests to be processed at the
current time step (C(t) has a maximum capacity of NC ).
Note that there is a set of assignment actions to choose
from, each of which corresponds to a different customer
trip request c ∈ C(t).

An action is classified as a feasible action if the EV has
enough electricity left in the battery to return to the nearest
charging station after serving all its assigned customer trip
requests. Otherwise, the action is classified as infeasible.

3) Reward Function: Let r E F (sE F , aE F ) ∈ R denote the
immediate reward received by the entire EV fleet when taking
action aE F in state sE F . Let r(si , ai ) ∈ R denote the
immediate reward received by the i th EV when taking action
ai in state si . The reward received by the entire EV fleet
equals the sum of rewards received by the individual EVs
r E F (sE F , aE F ) = ∑NEV

i=1 r(si , ai ). The reward functions of
individual EVs are designed as follows:

• The reward for the pass action is:
r(si , ai = Pass) = 0 (4)

• The reward for the charge action is:

r(si , ai = Charge) =

⎧⎪⎨
⎪⎩

εC , if the i th EV is in

a charging station

−wC , otherwise

(5)

where εC is a small positive number and wC is a positive
tunable parameter.
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• The reward for assignment action is:
r(si , ai = Assign c) = rS − dc

i · wS (6)

where rS and wS are positive tunable parameters. dc
i is the

distance between Li and the pickup location of customer
trip request c. Note that the traveling costs (including
electricity consumption costs and operational costs) are
in proportion to dc

i . rS corresponds to the incentive for
an EV to serve a customer’s trip request. The design of
the reward function strikes a balance between incentives
and costs.

The design philosophy for the reward function is explained
below. Recall that the goals of the EV fleet scheduler are to
minimize customer waiting time, electricity costs, and EV
operational costs. The Pass action does not contribute to
achieving any of the three goals. Thus, the reward for the
Pass action should be 0. An EV with higher battery charge
level is capable of serving customer trip requests for a longer
ride. Hence, we encourage an EV to select Charge rather
than Pass when it is at a charging station by offering a small
positive reward. If an EV is not at a charging station, then we
use a negative reward −wC to discourage the EV to travel to a
charging station that is far away. In this way, we could reduce
the travel cost related to the charging activities, which includes
the electricity cost. Regarding the reward of the assignment
action, the second term dc

i · wS is a penalty for EVs to pick
up faraway customers. In this way, we implicitly reduce the
electricity consumption and operational costs of the EV fleet.

IV. TECHNICAL METHODS

A. Decentralized Learning Process

The learning process aims to acquire a high quality estimate
of the state-value function for the EV fleet. It is assumed that
we have a homogeneous EV fleet, where each EV has the same
fuel economy rating, the same battery size, and the same travel
speed. To address the curse of dimensionality of dealing with
the entire EV fleet’s state domain, we adopt a decentralized
learning framework with the following two assumptions:

Assumption 1: We assume that state-value function of the
entire EV fleet vπ (sE F ) equals the summation of the individual
EVs’ state-value functions, i.e., vπ (sE F ) = ∑NEV

i=1 vπ,i (si ),
where vπ,i (si ) denotes the state-value function of the i th EV
under policy π .

Assumption 2: We assume all the individual EVs have the
same state-value function vEV

π (s), i.e., vπ,i (si ) = vEV
π (si ),∀i .

In other words, the state-value functions of all EVs share the
same form.

Note that these two simplifying assumptions have been
shown to be effective in multi-agent cooperative environ-
ments [5], [27], [29].

1) State-Value Function Approximation With Neural
Network: The size of the state space [Ei , Li , T A

i , t] of the
i th EV grows quickly when the resolutions of the map’s
grid, time, and remaining battery level increase. Hence, it is
infeasible to represent the value functions through tables
[28]. Recently, neural networks have been widely employed
to approximate the value functions to overcome the curse of

dimensionality. This idea has gained successes across various
reinforcement learning tasks [30]–[32]. In this study, we use
a parameterized deep feed-forward neural network (FNN)
to approximate the shared state-value function vEV

π (s) of
individual EVs. A deep FNN is composed of three parts: the
input layer, the hidden layers, and the output layer. Different
layers are interconnected in a feed-forward way. In this study,
the input layer carries the state vector si and the output layer
represents the value of the approximated state-value function.

The feed-forward neural network approximator vN N (s, θ)
is trained by using the gradient descent based method to
minimize a loss function. In this work, the loss function
is defined as the mean squared error (MSE) between the
approximated value function and the target value function:

loss = 1

Ns

∑
s∈Ss

(
v̂EV
π (s) − vN N (s, θ)

)2
(7)

where Ss is a set of sample states. Ns is its cardinality. Since
the true state-value function vEV

π (s) is unknown, we use an
estimate of it, i.e., v̂EV

π (s), as the training target. Specifi-
cally, we use temporal-difference (TD) prediction to calculate
v̂EV
π (s) [33] as follows:

v̂EV
π (s) =

{
r(s, a), s′ is terminal

r(s, a) + γ vN N (s′, θ), s′ is non-terminal
(8)

where s′ is the next state of the corresponding EV given
the current state-action pair (s, a). This particular approach
is called the TD(0) method since the estimate is updated
immediately after state transition from s to s′. TD(0) is
widely used in deep reinforcement learning frameworks for
its simplicity and efficiency. It is worth noting that TD(0)
prediction is a biased estimate and the corresponding gradient
includes only part of the true gradient. Nevertheless, using
TD(0) often makes the learning process faster, and more
importantly, allows continual and online learning.

2) Stabilize Reinforcement Learning With Experience
Replay and Target Network: It has been shown that rein-
forcement learning tends to be unstable when a deep neural
network is used to approximate the state-value function [30].
To stabilize the reinforcement learning process, we adopt two
innovative mechanisms called experience replay and target
network, which were originally proposed in [34] and [30],
respectively. The experience replay mechanism stabilizes the
learning process by removing correlations in the learner’s
past experiences and smoothing over variations of the data
distribution. The basic idea of experience replay is to keep a
fixed-sized memory that stores the historic experiences and
sample the training dataset from it for each training step.
More precisely, an experience is defined as a 4-tuple made
up of the current state, the action, the reward, and the next
state (s, a, r, s′). The agent’s most recent ND experiences are
stored in a memory. At each training step, we use samples
of experiences drawn uniformly from the memory to update
the parameters of the neural network approximating the state-
value function.

To further stabilize the online reinforcement learning
process, we use two separate neural networks, the evaluation
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network vN N (s, θ E ) and the target network vN N (s, θT ). The
loss function (7) and the estimate of training target for state-
value function (8) are reformulated with these two neural
networks as follows:

loss = 1

Ns

∑
s∈Ss

(
v̂EV
π (s) − vN N (s, θ E )

)2
(9)

v̂EV
π (s) =

{
r(s, a), s′ is terminal

r(s, a)+γ vN N (s′, θT ), s′ is non-terminal
(10)

The evaluation network and the target network share the
same structure but have different parameter update strategies.
The evaluation network’s parameters are updated during each
training iteration while the parameters of the target network
are only periodically updated. Specifically, the target network’s
parameters are replaced by the evaluation network’s parame-
ters every C steps. In other words, vN N (s, θT ) is a clone of
vN N (s, θ E ) with less frequent parameter updates. In this way,
the correlations between the evaluation and target are reduced,
thereby making the training process more stable.

B. Centralized Decision Making Process

The goal of the decision making process is to find the
optimal EV fleet dispatch policy π∗, which achieves the
maximum expected reward among all feasible policies for
all states. The state-value function of the optimal policy is
called the optimal state-value function v∗, which is defined as
v∗

.= maxπ vπ(s), for all s ∈ S. Similarly, the action-value
function of the optimal policy is called the optimal action-
value function q∗, which is defined as q∗

.= maxπ qπ(s, a),
for all s ∈ S and a ∈ A. For a traditional reinforcement
learning task, once the optimal action-value function is found,
then the action a to be taken in a given state s is the one
that yields the highest optimal action-value q∗(s, a). However,
in the EV fleet operating problem for ride-hailing services,
the following fleet-wide constraint needs to be satisfied at all
times. Any customer trip request can only be assigned to at
most one EV. Therefore, the dispatch of individual EVs should
be coordinated in a centralized decision making process.

There are two technical obstacles to be addressed in the
centralized decision making process. First, how do we approx-
imate the optimal action-value and state-value functions for the
EV fleet? Second, how do we determine the optimal dispatch
for the entire EV fleet considering the operating constraints?
These two problems are dealt with separately below.

1) Approximation of the Optimal Action-Value and State-
Value Functions for the EV Fleet: Let v∗(sE F ) and
q∗(sE F , aE F ) denote the optimal state-value function and
action-value function of the entire EV fleet, respectively. Note
that the optimal action-value function gives the expected return
for taking an action in a state and following an optimal
policy thereafter. Thus, the optimal action-value function can
be derived in terms of the optimal state-value function as [28]:

q∗(sE F , aE F )

= E[RE F
t+1 + γ v∗(St+1)|St = sE F , At = aE F ]

=
∑

sE F ′ ∈SE F

p(sE F ′ |sE F , aE F )(r E F + γ v∗(sE F ′
)) (11)

where sE F ′
is the next state vector of the entire EV fleet.

In this particular MDP formulation, the next state sE F ′
and

reward r E F are assumed to be determined once the current
state-action pair (sE F , aE F ) is given. Therefore, the above
equation can be further reduced to

q∗(sE F , aE F ) = r E F (sE F , aE F ) + γ v∗(sE F ′
) (12)

With Assumption 1 and 2, the optimal state-value function can
be estimated as the summation of individual EVs’ state-value
function approximators:

v̂∗(sE F ′
) =

NEV∑
i=1

vN N (s′
i , θ

E ) (13)

where s′
i is the next state of i th EV. Let q̂∗(sE F , aE F ) denote

the approximator of the optimal action-value function of the
EV fleet. By substituting (13) into (12), we can express
q̂∗(sE F , aE F ) as a function of individual EVs’ rewards and
state-value function approximators:

q̂∗(sE F , aE F ) =
NEV∑
i=1

r(si , ai ) + γ

NEV∑
i=1

vN N (s′
i , θ

E ) (14)

Next, we explain how to find the optimal EV fleet dispatch,
which maximizes q̂∗(sE F , aE F ) while satisfying the opera-
tional constraints.

2) EV Fleet Dispatch Problem: The problem of finding
the optimal EV fleet dispatch with the maximum action-value
function can be converted into a linear assignment problem.
In other words, solving argmaxaE F q̂∗(sE F , aE F ) is equivalent
to finding a maximum weight matching between EVs and
actions in a weighted bipartite graph.

The formulation of the linear assignment problem is given
as follows. First, let M = {m1, · · · , mNEV } denote the set of
vertices that represent individual EVs. Let N = {n1, · · · , nNA }
denote the set of vertices that represent different actions,
where NA = 2 × NEV + |C(t)|. N includes NEV Pass
actions, NEV Charge actions, and |C(t)| Assign c actions.
We need to reserve NEV vertices for both Pass and Charge
actions because each of them might be taken by all the EVs
simultaneously. Next, we define {xi j |i = 1, · · · , NEV ; j =
1, · · · , NA} as the decision variables, where xi j is a binary
variable that equals 1 if mi and n j is connected, 0 otherwise.
Connecting mi and n j means the i th EV takes the action
corresponding to n j . Define b(i, j) as the weight of the edge
between mi and n j . It represents the contribution of the i th EV
to the objective function (14) by taking action n j . The weights
between EVs and their infeasible actions should be sufficiently
small such that no connections would exist between them.
Formally, b(i, j) is calculated as:

b(i, j) =
{

r(si , ai = n j ) + γ vN N (s′
i , θ

E ), n j is feasible

−W, otherwise

(15)

where W is a positive number that is sufficiently large.
Now, the problem of finding the optimal EV fleet dispatch

schedule with the maximum action-value function can be
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formulated as the following optimization problem:

max
xi j

NEV∑
i=1

NA∑
j=1

b(i, j) · xi j (16)

subject to:
NEV∑
i=1

xi j ≤ 1, ∀ j = 1, · · · , NA (17)

NA∑
j=1

xi j = 1, ∀i = 1, · · · , NEV (18)

xi j ∈ {0, 1}, ∀i = 1, · · · , NEV

∀ j = 1, · · · , NA (19)

The above linear assignment problem can be solved in
polynomial time. In this work, we solve the linear assignment
problem with an adapted Munkres algorithm [35], which has
a time complexity of O(n3).

To improve convergence of the reinforcement learning algo-
rithm, we need to ensure that all actions are selected infinitely
often. This can be implemented via the ε-greedy policy during
the online training session. In other words, with probability
1−ε, the EV fleet’s dispatch will be determined by solving the
optimization problem (16)-(19), but with probability ε, each
EV will be assigned a feasible action at random. The initial
value of ε is 1 and then gradually decreases to 0.1 at the speed
of �ε per training step.

C. Summary of the Overall Algorithm

The decentralized learning and centralized decision mak-
ing processes are discussed in the previous two subsections.
During the online training process, the steps for solving the
problem of operating an EV fleet for ride-hailing services are
summarized and shown in Algorithm 1. During the testing
session, we can use the same algorithm by removing the neural
network training and the ε-greedy components. Note that
graphical processing units (GPUs) can be used to speed up
the process of solving the linear assignment problem and the
training of deep neural networks.

Note that the proposed reinforcement learning algorithm is
an off-policy algorithm. The target policy being learned is the
optimal policy π∗, while the behavior policy that generates
real actions is the ε-greedy policy πε .

V. NUMERICAL STUDIES

Numerical studies with three test cases are carried out
to validate the performance of the proposed reinforcement
learning based EV fleet operating algorithm for ride-hailing
services. The first test case represents a single region/city
where the majority of the customer trip requests come from
the center of the region/city (downtown area). The second test
case represents a scenario where people commute between
two regions on a daily basis. The third test case is a small-
scale single region case used to evaluate the optimality of the
proposed framework.

The proposed reinforcement learning algorithm will be
compared with two benchmark algorithms. The first one is

Algorithm 1 Complete Algorithm for the Training Process

1 Initialize ε = 1;
2 Initialize replay memory D to capacity ND ;
3 Initialize evaluation neural network vN N (s, θ E ) with

random weights θ E ;
4 Initialize target neural network vN N (s, θT ) with weights

θT = θ E ;
5 for episode=1:N do
6 Initialize the EV fleet’s state;
7 for t=1:T do
8 Update the list of customer trip requests C(t);
9 for EV i = 1 : NEV do

10 Calculate ri (si , ai ) and vN N (s′
i , θ

E ) for each
feasible action ai ∈ AI E (si );

11 Calculate the EV fleet dispatch solution aE F
sol by

solving optimization problem (16)-(19);
12 Draw a sample p from uniform distribution

U(0, 1);
13 if p ≤ ε then
14 Draw a feasible sample action aE F at random

and use it to dispatch the EV fleet;
15 else
16 Use aE F

sol to dispatch individual EVs of the fleet;

17 for EV i = 1 : NEV do
18 Calculate vN N (s′

i , θ
T ) where s′

i is the next state
given state-action pair (si , aE F

sol [i ]);
19 Update replay memory D with transitions

{(si , r(si , aE F
sol [i ]), aE F

sol [i ], s′
i )} where

i = 1, · · · , NEV ;
20 Sample a minibatch of experiences uniformly at

random from D;
21 Update θ E by using gradient descent method with

the sampled minibatch of experiences;
22 if ε > 0.1 then
23 ε = ε − �ε;

24 Reset θT = θ E every C time steps;

the greedy algorithm adapted from [22] and [23]. The sec-
ond one is a state-of-the-art optimization-based algorithm
proposed by [36], which performs well in solving a typical
dynamic VRP for meal delivery applications. We call it the
optimization-based algorithm in the numerical studies section.
The greedy algorithm can be implemented via the following
three steps:

• Step 1: Select the first NC unassigned customer trip
requests sorted by the request time.

• Step 2: Process the customers trip requests on a first come
first serve basis. Assign customer trip requests to the EVs
that result in the least waiting time.2

• Step 3: Send the EVs to charge if they do not have
assigned customer trip requests.

2The trip requests can only be assigned to EVs that have enough energy to
return to the charging station after service.
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The optimization-based algorithm tackles the dynamic VRP
with a rolling horizon matching-based framework that solves
a linear assignment problem every few time intervals. The
weights in the assignment problem are designed to balance
the “throughput” and the customer waiting time. It is similar
to our centralized decision making process without considering
future rewards. Specifically, the weights are adapted as follows
to make this approach compatible with our problem.

• For the pass action:
b(i, j) = 0 (20)

• For the assignment action:

b(i, j) = 1

dc
i + dc

− θwc
i (21)

where dc
i is the distance between the i th EV’s available

location Li and the pickup location of customer request
c. dc is the distance between the pickup location and the
drop-off location of customer request c. wc

i is the waiting
time of customer request c between the current time and
the pickup time if the request is assigned to the i th EV.

• For the charge action:

b(i, j) =
⎧⎨
⎩

rM

pC S
i + pE

i + 0.1
, pE

i < 0.5

−rM , else
(22)

where rM is a positive tunable parameter. pC S
i is the ratio

between the i th EV’s current distance to the charging
station and the maximum possible distance from any point
to the charging station. pE

i is the ratio between the i th
EV’s current remaining battery level and its full battery
level.

We set θ = 0.01 and rM = 0.008 for all the test cases.
The societal costs over all the operating horizon of the

proposed reinforcement learning approach will be compared
with that of the above two benchmarks. The societal costs of
operating an EV fleet for ride-hailing services of an episode
e equals the summation of traveling costs of all EVs and the
waiting costs of all customers:

Cs(e) =
NEV∑
i=1

di (e)Cp +
NT C (e)∑

c=1

wc(e)Cw (23)

where di (e) denotes the total distance traveled by the i th EV
in episode e. wc(e) is the waiting time of the cth customer in
episode e. NT C (e) is the total number of customer requests
in episode e. Note that the cost of electricity is implicitly
modeled as part of the EV traveling cost. Cp and Cw are the
costs of EV traveling and customer waiting, respectively. The
equivalent traveling cost of an electric taxi in New York is
given in [37], which ranges from $0.29 to $0.61 per mile. The
traveling cost of an EV in Austin, Texas ranges from $0.392 to
$0.876 per mile as shown in [22]. Therefore, we set the EV
traveling cost Cp to $0.5/mile in this numerical study. The
customer waiting cost Cw is set to $2/hour. Note that these
parameters can be easily adjusted by the user for their specific
community and operating condition.

A. Single Region Test Case
1) Simulation Settings: The single region/city test case

simulates a scenario where the majority of the customer trip
requests come from the region/city center. A fleet of 50 EVs
are dispatched to offer ride-hailing services in a square region
consisting of a 10×10 grid. Each small square in the grid has
a dimension of 2×2 miles. An EV can either stay at its current
grid point or move to an adjacent grid point in the next time
step. The grid points can be located by their coordinates. For
example, (3,4) is the coordinates of the grid point located at the
3rd column and the 4th row. The charging station is assumed
to be located at grid point (1,1). The time interval T I used
in the simulation and decision making process is assumed to
be 0.1 hours. The maximum number of customer trip requests
being processed at each time step is 65, i.e., |C(t)| ≤ NC = 65.
The battery capacity of each EV is set at BEV = 80 kWh.
The EVs are randomly placed across the test region at the
initial time step with random remaining battery levels. Note
that the remaining battery levels should be sufficient for the
corresponding EVs to reach the charging station.

The parameters of the reinforcement learning and testing
process are set up as follows. One training episode represents
an operating day, which consists of 240 time steps. The state-
value functions of individual EVs are estimated by a three-
layer feed-forward neural network with two fully connected
hidden layers. Each hidden layer has 200 neurons. The input
variables of the neural network are scaled as follows. Remain-
ing battery level Ei is normalized by battery capacity BEV .
The available location of the i th EV Li is normalized by L,
which is the number of grid points in a column of the test
region. T A

i is normalized by the number of time steps it takes
for an EV to travel from the bottom left corner of the region
to the upper right corner. t is normalized by the time length of
one episode. The replay memory of the reinforcement learner
has a capacity of 2,000 experiences and the size of training
minibatch is 10. The target network’s parameters are updated
every 5 time steps, i.e., C = 5. The annealing step �ε is
fixed at 4 × 10−6. The discount factor γ is 0.9999. The four
parameters of the reward functions εC , wC , rS , and wS are
set to be 0.0001, 0.01, 2, and 0.06, respectively. We use a
gradient descent based algorithm called Adam [38] to update
the parameters of evaluation network at each training iteration.
The learning rate of the Adam optimizer is set at 2 × 10−5.
We train the evaluation network for 4,000 episodes and save
the network parameters every 80 episodes for out-of-sample
testing and evaluation.

The customer trip requests are produced randomly for every
training episode. The time stamps of customers’ trip requests
are generated from a Poisson process with an expectation
of 20 trip requests per hour. The coordinates of the trip
requests’ pick up locations are generated by Algorithm 2.
Note that more trip requests are generated from the region/city
center in this test case. The drop-off locations of the trip
requests are sampled uniformly across the whole region. The
pickup location and the drop-off location of a trip request must
be different. Otherwise, they will be re-sampled.

2) Performance of State-Value Function Estimation: The
effectiveness of the proposed RL method highly depends
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Algorithm 2 Pickup Location Generation

1 Draw a sample pair (x, y) from multivariate normal

distribution N(

[
0
0

]
,

[ 0.5L
3 0
0 0.5L

3

]
);

2 if x < −0.5L then
3 x = 1;
4 else if x > 0.5L then
5 x = L;
6 else
7 x = �x	 + 0.5L;

8 Repeat lines 2-7 for y;
9 Return (x, y)

on the performance of the state-value function estimation.
In this subsection, we will assess the quality of the state-
value function estimation by varying certain variables of the
state vector and observing if the corresponding changes in
vN N are reasonable. Specifically, we vary one state variable
at a time and leave the other scaled state variables fixed at
0.5. The parameters of the state-value function estimator at
the end of all training episodes are used in the evaluation.
The value-function estimation results under different scenarios
are recorded and plotted in Fig. 2. Fig. 2a depicts the state-
values of different EV locations. As an EV moves closer
to the center of the region, its state-value increases. This
pattern is consistent with the fact that both traveling cost
and customer waiting time can be reduced when an EV is
strategically located close to the region center, which is the
preferred customer pickup location. Fig. 2b shows that the
estimated state-value decreases monotonically as the global
time t increases. Recall that the state-value function equals
the summation of expected discounted rewards up to the
end of the episode. Thus, the state-value should, in theory,
continue to decrease as we approach the terminal time state.
Fig. 2c and 2d suggest that EVs with a higher remaining
battery level and less service load tend to have higher state-
value functions. This pattern is again consistent with our
expectations.

3) Out-of-Sample Testing: We save the trained reinforce-
ment learning (RL) model every 80 training episodes as the
training process proceeds. For each saved RL model, we eval-
uate its performance on a fixed out-of-sample testing set con-
taining 50 different episodes. The performance of the proposed
RL model is evaluated by measuring the average societal cost
of operating the EV fleet of all the testing episodes. Fig. 3
shows both the average episodic return (red line) and the aver-
age societal cost of the testing episodes (blue line). The black
horizontal solid line and the dash line represent the average
societal cost of operating the EV fleet following the bench-
mark greedy algorithm and the optimization-based algorithm,
respectively. As the training process proceeds, the average
episodic return of the proposed RL based method increases
and the average episodic societal cost decreases. After a few
hundred episodes of training, the proposed RL based EV fleet
dispatch algorithm outperforms both the benchmark greedy
algorithm and the optimization-based algorithm. At the end of

Fig. 2. Performance of the state-value function estimation in the single region
test case.

Fig. 3. Model performance as the training process proceeds for the single
region test case.

the training process, the proposed RL based algorithm yields
a 20.73% and a 10.17% societal saving on the testing episodes
compared with the greedy algorithm and the optimization-
based algorithm, respectively.

B. Commute Test Case

1) Simulation Settings: In the commute test case, we sim-
ulate a scenario where residents commute between a dwelling
region and a working region. Specifically, we assume that
each of these two adjacent regions consists of a 8 × 8 grid.
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Fig. 4. Temporal and spatial distributions of trip requests.

Together they form a rectangular area that consists of a
8 × 16 grid. The charging station is placed at grid point
(8, 4), which is in the middle of the two regions. The time
stamps of customer trip requests are generated through a
Poisson process with a time-varying expectation. Fig. 4a shows
the expected number of customer trip requests for different
hours in a day. This temporal distribution of trip requests
is derived by scaling down the average hourly customer trip
requests served by New York yellow cabs in a weekday [39].
The pickup and drop-off locations of each trip request are
sampled independently through two steps. The first step is
determining the pickup/drop-off region of the customer trip
request through a Bernoulli trial. The probabilities of the
trip pickup and drop-off locations belonging to the dwelling
region of different hours in a day are shown in Fig. 4b.
In the commute test case, the majority of the trip requests’
pickup locations are in the dwelling region during the morning
rush hours, while most of the trip requests’ pickup locations
are in the working region during the evening rush hours.
The second step is determining the specific coordinates of the
pickup/drop-off locations. We assume that both pickup and
drop-off coordinates are generated from Gaussian distributions
according to Algorithm 2 for the corresponding regions. The
other simulation settings of the commute test case are the same
as that of the single region test case.

2) Performance of State-Value Function Estimation: We
assess the quality of the state-value function estimation in the
commute test case by varying certain variables of the state
variables using the neural network with parameters obtained
at the end of the training session. Fig. 5a and 5b show the
estimated state-values of different locations at 8 am (morning
rush hour) and 6 pm (evening rush hour) when the scaled
Ei and T A

i are fixed at 0.5 and 0, respectively. As expected,
the dwelling region (left side of the rectangular area) has
higher state-values during the morning rush hours, while the
working region (right side of the rectangular area) has higher
state-values during the evening rush hours. Fig. 5c, 5d, and
5e show the change in estimated state-value with respect to
global time t , remaining battery level Ei , and time before

Fig. 5. Performance of the state-value function estimation in the commute
test case.

available T A
i . For each case, the EV location is fixed at grid

point (8,4) and the scaled values of the other input variables
are set at 0.5. As depicted in these subfigures, the changes
in state-values with respect to these three state variables are
similar to that of the single region case, which are consistent
with our expectations.

3) Out-of-Sample Testing: Similar to the single region case,
we save the trained RL model every 80 training episodes as
the training process proceeds. We evaluate the performance
of each saved RL model on a fixed out-of-sample testing
set containing 50 different episodes. The performance of the
proposed RL model is evaluated by measuring the average
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Fig. 6. Model performance as the training session proceeds for the commute
test case.

Fig. 7. Distribution of EV remaining battery levels when leaving the charging
station in one testing episode.

societal costs of operating the EV fleet for all of the test-
ing episodes. Fig. 6 shows the average episodic return (red
line), the average societal cost of RL model (blue line),
the benchmark greedy algorithm (black solid line), and the
optimization-based algorithm (black dash line). As the training
session proceeds, the average episodic return of the RL model
increases and the average episodic societal cost decreases.
After about 1,000 training episodes, the proposed RL-based
EV fleet dispatch algorithm outperforms both the greedy
algorithm and the optimization-based algorithm. At the end of
the training session, the proposed RL-based EV fleet dispatch
method achieves a 18.12% and a 3.20% societal cost saving
on the testing episodes compared with the greedy algorithm
and the optimization-based method, respectively.

It is worth noting that the proposed RL framework does
allow partial charging. We show this by recording the remain-
ing battery levels of EVs whenever they depart from the
charging station in one testing episode. The distribution of
the recorded EV remaining battery levels is shown in Fig. 7.
As shown in the histogram, the majority of the EV charging
sessions are not full recharge.

C. Optimality Evaluation

It is interesting to consider a baseline, where all the cus-
tomers’ trip requests are known in advance. In this case,
we could find the global optimal solution for a small-scale test
case within reasonable time. In this way, we can quantify the
performance gap between this optimal baseline, our proposed
RL-based algorithm, and the benchmark algorithms. In this
small-scale test case, we have a single region with 3 EVs
and 6 customers. The simulation settings are the same as the

Fig. 8. Model performance as the training process proceeds for the single
region test case.

previous single region test case except for the followings. The
test region is a 5 × 5 grid. The operating time horizon is
assumed to be 3 hours. The time stamps of the customers’ trip
requests are generated uniformly across the whole operating
time horizon. The EV travelling cost Cp is $0.2/mile. The
customer waiting cost Cw is $5/hour. wS is 0.5. The battery
capacity BEV is 10 kWh.

Similar to previous test cases, we train the RL model for
4,000 episodes and save the intermediate trained RL model
every 80 episodes. For each saved RL model, we evaluate its
performance on a fixed out-of-sample testing set containing
50 different sets of customer requests and initial EV states.
The results are shown in Fig. 8. The yellow dash-dot line is
the average optimal cost of all the scenarios in the testing set,
which is obtained by solving a mixed-integer programming
problem following the procedures from [20]. Note that the
optimal baseline is found by assuming that all of the customer
trip requests are known at the initial time. In this case,
the EVs can be routed to the exact pickup locations even before
the corresponding requests come up. However, our proposed
algorithm and the benchmark algorithms do not have perfect
foresight about the upcoming customer trip requests. Thus,
the optimal baseline solution is better than the solutions found
by the benchmark algorithms and our proposed method.

VI. CONCLUSION

This paper develops a RL based algorithm to dispatch an
EV fleet for ride-hailing services. The proposed RL based
algorithm is built on a novel framework with decentralized
learning and centralized decision making components. The
decentralized learning component allows the entire EV fleet
to share their experiences and parameters of the approximated
state-value function in the training process, which greatly
improves the scalability of the algorithm. The centralized
decision making process enables coordination of the individual
EVs by formulating the EV fleet dispatch problem as a linear
assignment problem, which maximizes the EV fleet’s action-
value function. A comprehensive numerical study is carried
out to evaluate the performance of the proposed RL based
algorithm. The simulation results show that the RL agent
quickly learns how to dispatch an EV fleet to provide ride-
hailing services. Our proposed RL algorithm outperforms the
benchmark algorithms in terms of societal costs, which include
the EV operational costs and the customer waiting time.
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[8] S. Erdoǧan and E. Miller-Hooks, “A green vehicle routing problem,”
Transp. Res. E, Transp. Rev., vol. 48, no. 1, pp. 100–114, Jan. 2012.

[9] J. Bard, L. Huang, P. Jaillet, and M. Dror, “A decomposition approach
to the inventory routing problem with satellite facilities,” Transp. Sci.,
vol. 32, no. 2, pp. 189–203, May 1998.

[10] M. Schneider, A. Stenger, and D. Goeke, “The electric vehicle-routing
problem with time windows and recharging stations,” Transp. Sci.,
vol. 48, no. 4, pp. 500–520, Mar. 2014.

[11] A. Felipe, M. T. Ortuño, G. Righini, and G. Tirado, “A heuristic approach
for the green vehicle routing problem with multiple technologies and
partial recharges,” Transp. Res. E, Logistics Transp. Rev., vol. 71,
pp. 111–128, Nov. 2014.

[12] J. Lin, W. Zhou, and O. Wolfson, “Electric vehicle routing problem,”
Transp. Res. Proc., vol. 12, pp. 508–521, Jan. 2016.

[13] D. Goeke and M. Schneider, “Routing a mixed fleet of electric and
conventional vehicles,” Eur. J. Oper. Res., vol. 245, no. 1, pp. 81–99,
Aug. 2015.

[14] G. Hiermann, J. Puchinger, S. Ropke, and R. F. Hartl, “The electric fleet
size and mix vehicle routing problem with time windows and recharging
stations,” Eur. J. Oper. Res., vol. 252, no. 3, pp. 995–1018, Aug. 2016.

[15] R. Basso, P. Lindroth, B. Kulcsár, and B. Egardt, “Traffic aware electric
vehicle routing,” in Proc. IEEE 19th Int. Conf. Intell. Transp. Syst.
(ITSC), Nov. 2016, pp. 416–421.

[16] A. Montoya, C. Guéret, J. E. Mendoza, and J. G. Villegas, “The electric
vehicle routing problem with nonlinear charging function,” Transp. Res.
B, Methodol., vol. 103, pp. 87–110, Sep. 2017.

[17] A. Froger, J. E. Mendoza, O. Jabali, and G. Laporte, “Improved
formulations and algorithmic components for the electric vehicle rout-
ing problem with nonlinear charging functions” Comput. Oper. Res.,
vol. 104, pp. 256–294, Apr. 2019.

[18] M. Keskin, G. Laporte, and B.Çatay, “Electric vehicle routing problem
with time-dependent waiting times at recharging stations,” Comput.
Oper. Res., vol. 7, pp. 77–94, Jul. 2019.

[19] T. Chen, B. Zhang, H. Pourbabak, A. Kavousi-Fard, and W. Su, “Optimal
routing and charging of an electric vehicle fleet for high-efficiency
dynamic transit systems,” IEEE Trans. Smart Grid, vol. 9, no. 4,
pp. 3563–3572, Jul. 2018.

[20] J. Shi, Y. Gao, and N. Yu, “Routing electric vehicle fleet for ride-
sharing,” in Proc. IEEE 2nd Conf. Energy Internet Energy Syst. Integr.
(EI2), Oct. 2018, pp. 1–6.

[21] J. Jung, R. Jayakrishnan, and K. Choi, “Shared-taxi operations with
electric vehicles,” Inst. Transp. Stud. Work. Paper Ser., Irvine, CA, USA,
May 2012.

[22] T. D. Chen, K. M. Kockelman, and J. P. Hanna, “Operations of a
shared, autonomous, electric vehicle fleet: Implications of vehicle &
charging infrastructure decisions,” Transp. Res. A, Policy Pract., vol. 94,
pp. 243–254, Dec. 2016.

[23] N. Kang, F. Feinberg, and P. Papalambros, “Autonomous electric vehicle
sharing system design,” J. Mech. Des., vol. 139, no. 1, Jan. 2017,
Art. no. 011402.

[24] L. Al-Kanj, J. Nascimento, and W. B. Powell, “Approximate dynamic
programming for planning a ride-sharing system using autonomous fleets
of electric vehicles,” Oct. 2018, arXiv:1810.08124. [Online]. Available:
https://arxiv.org/abs/1810.08124

[25] M. Nazari, A. Oroojlooy, L. V. Snyder, and M. Takáč, “Reinforcement
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