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Abstract—Power distribution circuits undergo frequent net-
work topology changes that are often left undocumented. As
a result, the documentation of a circuit’s connectivity becomes
inaccurate with time. The lack of reliable circuit connectivity
information is one of the biggest obstacles to model, monitor, and
control modern distribution systems. To enhance the reliability
and efficiency of electric power distribution systems, the circuit’s
connectivity information must be updated periodically. This
paper focuses on one critical component of a distribution circuit’s
topology - the secondary transformer to phase association. This
topology component describes the set of phase lines that feed
power to a given secondary transformer (and therefore a given
group of power consumers). Finding the documentation of this
component is call Phase Identification, and is typically performed
with physical measurements. These measurements can take time
lengths on the order of several months, but with supervised
learning, the time length can be reduced significantly. This paper
compares several such methods applied to Phase Identification
for a large range of real distribution circuits, describes a method
of training data selection, describes preprocessing steps unique
to the Phase Identification problem, and ultimately describes
a method which obtains high accuracy (> 96% in most cases,
> 92% in the worst case) using only 5% of the measurements
typically used for Phase Identification.

Index Terms—Distribution Network, Machine Learning, Net-
work topology, Phase Identification, Smart Grid

NOMENCLATURE

a Neural nonlinearity input.
c Class.
C Class set.
D Dataset.
D∗ Dual dataset.
d Dimensionality.
f∗ Perfect predictor function.
H Hypothesis space.
J Objective function.
K Set of K-nearest neighbors.
L Likelihood function.
m Feature.
L Index set of labeled data.
p Probability density / mass function.
q Variational distribution.
S Representative set of power consumers.
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S∗ Representative set of features.
t Target.
U Index set of unlabeled data.
W Neural Network transformation matrix.
w Evidence vector.
X Design matrix.
X Input space.
x Voltage time series.
x̃ Voltage time series with pre-appended 1.
y Output class.
z Neural nonlinearity output.
δ Discrete Kronecker delta function.
θ Parameter set.
λ Bandwidth of Radial Basis Function Kernel.
µ Mean.
Σ Covariance matrix.
σ Nonlinear activation function.
# Cardinality.

I. INTRODUCTION

Power distribution circuits undergo frequent topology
changes that are often left undocumented. As time passes,
all current documentation of the circuit’s topology become
unreliable. But this topology documentation is critical to the
operation and planning of power distribution circuits. For
example, power flow analysis, state estimation, and Volt-VAR
control all depend on accurate topology information. For this
reason, the documentation is typically updated by periodic
field testing projects scheduled by the circuit’s utility company.
However, these tests can take time lengths on the order of
months. As a result, there are significant periods of time in
which the documentation of a distribution circuit is incorrect.
A faster and less expensive method of estimating distribution
circuit topology is necessary.

The topology of a distribution circuit is organized into
three hierarchical levels. At the primary level, primary feeders
partition the distribution circuit into relatively large sets. At
the lateral level, each primary feeder connects to a set of
step down transformers which are connected through some
combination of the feeder’s three phases. Finally, at the
secondary level, each step down transformer connects to a
set of energy consumers.

Each hierarchical level has a unique topology identification
problem associated to it. Identification at the primary level
corresponds to obtaining the set of secondary transformers
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Fig. 1. Hierarchical levels of a power distribution circuit.

connected to each primary feeder, identification at the lateral
level corresponds to obtaining the set of phase connections
with which each secondary transformer is fed, and identifica-
tion at the secondary level corresponds to obtaining the set of
power consumers that each secondary transformer feeds. This
paper focuses on the lateral level of topology identification: the
transformer to phase connection association - also called the
Phase Identification problem. This topology level is illustrated
by the shaded region in in Figure 1.

In this paper, we will present a survey of several shallow
supervised machine learning (ML) techniques applied to the
Phase Identification problem. To the knowledge of the authors,
such an analysis has not been performed in past literature.
The authors will attempt to be as comprehensive as possible,
and provide insights into why some methods work better than
others.

The purpose of this paper is to act as guidance to prac-
titioners and as a first step to researchers wishing to study
the Phase Identification problem. For the practitioner, this
paper will reveal which ML methods are most accurate, and
include full descriptions of those methods. It will reveal what
preprocessing steps are useful and/or necessary, and it will
describe how to obtain an initial set of training data for high
accuracy. For the researcher, it will reveal the directions of
machine learning models and analysis that are most worth
investigating further.

The rest of the paper is structured as follows. Section II
describes and discusses past approaches to the Phase Identifi-
cation problem. Section III first discusses supervised machine
learning in general and then discusses, in detail, each of the
machine learning methods that were tested for the Phase Iden-
tification problem. Section IV describes a method of selecting
a good batch of training data to use as input for each of the
algorithms. Section V discusses preprocessing transformations
to the voltage data which are unique to the Phase Identification
problem and describes a method for reducing the size of the
dataset under consideration. Section VI presents comparisons
of each technique applied to a wide range of real distribution

circuits. The paper concludes with Section VII.

II. RELATED WORK

Most phase identification research focuses on physical
measurements which improve the accuracy of the periodic
field testing projects themselves. Reference [1] develops a
Phase Identification system based on high resolution timing
measurements communicated between the base station and the
feeder transformer secondaries. Reference [2] patents a method
for Phase Identification through signal injection. This is the
most common field testing method used. A signal generator is
placed at the base substation and a unique signal is created for
each phase. These signals are then detected by a signal dis-
criminator at each secondary transformer. To save costs, only
one signal discriminator is typically used, and it is relocated
and reinstalled on a new secondary after each measurement.
While fairly inexpensive, this method takes time scales on
the order of several months for a whole distribution circuit.
Reference [3] describes a Phase Identification technique using
micro-synchrophasors. While these solutions are important,
they rely on the field tests which are currently the standard
operation of utility companies. As we’ve mentioned, these field
tests are lengthy and expensive.

Some research has been done in a data driven approach to
phase identification. Reference [4] predicts phase connectivity
by comparing the results of a load flow analysis to measured
substation voltages. This method achieved only 50% accuracy,
but was improved to 78.5% by including nodal measurements
of the network. This improvement, however, is highly sensitive
to the locations of these added nodal measurements. Reference
[5] identifies phase connectivity by finding a partition of power
consumers such that the total power consumed on each phase
matches the power fed by each line of the substation. There
are several problems with this method. First, if there is any
missing consumption data, then there will be no partition
which satisfies the matching requirement. Secondly, even if
a partition is found, it may not be unique - several incorrect
configurations can satisfy the matching requirement. Finally, it
assumes that each customer is connected to a single phase and
thus does not perform well on circuits containing line-to-line
connections or three phase connections. Reference [6] attempts
to identify phase by computing the correlations between the
voltages at the customer and lateral levels of the network.
Good results were obtained, but obtaining voltage measure-
ments at the lateral level requires extra, costly infrastructure.
In reference [7] voltage magnitude data is compared to the
base substation rather than the voltage at the laterals. A
linear regression model is assumed to represent the measured
voltage levels as a linear function of substation power on an
assumed phase, substation voltage on that phase, and the power
consumed by the customer. The fit with the highest R2 value
is taken. The accuracy of this method was uncertain due to
model uncertainties and it is not fit for substations in delta
connection or for customers that have line-to-line connections.
A final track of Phase Identification research is in unsupervised
learning [8] [9]. In unsupervised learning, no measurements
are taken until potentially after the training phase of a given
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method. These methods have the potential to be much faster
than supervised methods, but the use of such techniques for
Phase Identification is still in its infancy.

III. TECHNICAL METHODS

A. Supervised Machine Learning for Phase Identification

To perform supervised machine learning for the Phase
Identification problem, we first obtain a voltage magnitude
time series for each customer in the distribution circuit over
some set period of time. Next, we select a small representative
set of customers from the circuit to act as training data and
obtain their phase connections through physical means; we
will discuss the construction of this training data set in section
IV, and phase labeling of this representative set is usually
done via reference [2]. The goal of machine learning is to
find a constrained function of the voltage time series which
correctly predicts (or at least predicts as accurately as possible)
the phase connections of this representative set. Finding this
function is called training. The type of function returned, as
well as its ability to generalize to the unlabeled data points,
depends strongly on the machine learning technique used.
Finally, the function is applied to every test data point’s voltage
time series to obtain all of the phase connections in the
distribution circuit.

The main challenge with Phase Identification is keeping the
size of the training data set small while still obtaining high
accuracy on the rest of the customers. Since the representative
set must be measured physically, the length of time needed
to complete the Phase Identification problem for a given
distribution circuit scales rapidly with its cardinality.

This paper focuses on discriminative models of machine
learning [10]. In subsection III-B, we discuss discriminative
methods in general and introduce the notation that will be used
throughout the rest of the paper. The remaining subsections
each describe a particular discriminative model of interest.

B. Notation

In a discriminative model, the training data Dl is used to
learn a conditional probability distribution over the customer
classes p(t|x,Dl). This conditional distribution is then used
to predict the labels of any point x ∈ Rd through

y(x) = argmax
c∈C

p(t = c|x,Dl) (1)

Which minimizes the expected classification error

E[l(x, t)] =

∫ (∫
l(x, y(x))p(t|x,Dl)dt

)
p(x)dx

where l(x, t) =

{
0 y(x) = t

1 y(x) 6= t

(2)

In most of the models we consider, learning occurs in the
estimation of p(t|x,Dl). Once this conditional distribution is
estimated, the decision y always follows equation (1). This
conditional probability is often parametric. When this is the
case, we will denote the set of parameters in the model as θ.
Parametric discriminative models are illustrated in Figure 2.
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Fig. 2. Probabilistic graphical model for (parametric) discriminative methods.

In several cases, we will only be interested in a point
estimate of the full conditional p(t|x,Dl) conditioned on a
particular choice of parameters p(t|x, θ∗,Dl) (e.g. in max-
imum likelihood (ML) and maximum a posteriori (MAP)
methods). However, there are some techniques which use the
fully marginalized conditional probability

p(t|x,Dl) =

∫
p(t|x, θ)p(θ|Dl)dθ (3)

For notational convenience, we will assume that all proba-
bility distributions are conditioned on the labeled dataset Dl
unless stated otherwise. We will omit this explicit conditioning
from now on.

We will denote the perfect predictor function f∗ : D → C
as the function which perfectly maps each data point (labeled
and unlabeled) to its phase connectivity. We will denote the
set of possible functions returned from training a model as
H, the Hypothesis Space of that model. We will label the set
of possible hypotheses returned from an algorithm trained on
a dataset A ⊂ D as HA. In general, we want H to contain
f∗, or at least contain a very close approximation to f∗. This
is true if and only if there exists a sequence of increasing
training datasets {Ai}i=1 ↗ D, and f∗ ∈ limsup HAi . We
test this condition by training each classifier on an increasing
chain of datasets and observing the accuracy on each subset.
If the accuracy of the method converges to 1, then this
condition is true. This last statement is sufficient but not
necessary as a different chain of datasets could exist which
does lead to such convergence. However, for i large enough,
the differences between chains becomes negligible (as all
chains must converge to D), so if the condition is not achieved
on a given chain, it is unlikely to be achieved on a different
chain. On the other hand we need HA ≈ HD for small A
because we want to use as little training data as possible, and
we want this to be true for any small A. If the sufficiency
condition above is satisfied, then this means that we also
want H to be relatively small. Finding the correct size of the
hypothesis space is an implementation of the bias-variance
problem [11].

C. K-Nearest Neighbors Classifier

Let K be a fixed natural number. Let x be a point that
we wish to classify. The K-Nearest Neighbors classifier first
finds the set K ⊆ Dl containing the K points with the shortest
distance to x. This is done exhaustively via K linear searches
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through Dl. Since this search must be performed for each
unlabeled data point, the complexity of this algorithm is O(K ·
#(Du × Dl)) where Du is the set of unlabeled data points.
Approximations can be made to speed up the search [12], but
this is usually unnecessary for Phase Identification because
#Du � #Dl and the data set is not typically very large in
the first place. Once K is found, the conditional probability of
t given x is

p(t = c|x) =
µc
K

where µc = #{(xl, tl) ∈ K | tl = c}
(4)

D. Decision Trees, Random Forests, and Adaboost

A decision tree classifies a data point by ’asking’ a series of
yes or no questions about its features [13]. Each question is of
the form ’Is feature m greater than value v?’ The parameters
m and v at each step are decided on as follows. Suppose we
have already asked a series of questions and desire to ask
another in a way that would help classify our dataset. We
first select only training data points in which the answer to
every question thus far has been ’yes’. We call this subset of
training data points S. For each feature, the following score
is then calculated.

score(mi) = max
v
{H(S)−H(Syes(v))−H(Sno(v))} (5)

where H is the sample entropy across classes, Syes(v) is the
subset of S that is greater than v and Sno(v) is the subset of
S that is less than v. The feature mi with the highest score is
then selected (with corresponding v).

A random forest is nothing more than a series of decision
trees. Each tree is built in the same way as above, except the
feature is selected randomly instead of according to its score.
The chosen value of v is still the argmax of the optimization
problem in (5). Classification in a random forest is done by
having each tree in the forest vote on a given data point’s
class.

A different set of voting trees can be formed by boosting
[14]. The most popular version of boosting is called Adaboost.
When building a new tree in Adaboost, we keep track of all
training data points that the previous trees classified incorrectly
and ’focus’ on these points by giving them higher weights in
equation (5).

The weights of each training data point are initially equal to
1

#Dl . Every time a tree is built, the misclassified data points
are collected. Call these points Xmiss. The data weights of
these misclassified data points are then updated by

wx 7→ wxe
α, (∀x ∈ Xmiss) (6)

where

α = log
1− ε
ε

(7)

ε =

∑
Xmiss

w∑
X w

(8)

After this update, all weights are renormalized such that they
sum to 1. In the final classification stage, each tree votes with
weight given by that tree’s corresponding α.

E. Softmax / Perceptron Classifier

In Softmax classification, the conditional distribution of
class given a data vector and the parameters θ is modeled
parametrically by

p(t = c|x, θ) =
ew

T
c x̃∑

c′∈C
ew

T
c′ x̃

where x̃ =
[
1 x

]T (9)

The parameters of the model are θ = {wc}c∈C . These are
d + 1 dimensional vectors. The first element of each vector
represents a bias term which influences the inner product wT

c x̃
independently from x.

A point estimate of θ can be found through maximum
likelihood. The likelihood function is

p(Dl|θ) =
∏
l∈L

∏
c∈C

pc(xl, θ)
tlc

where tlc :=

{
1 c = tl

0 c 6= tl

(10)

Where we have denoted p(t = c|x, θ) as pc(x, θ) for notational
simplicity.

Taking the logarithm of this likelihood function and max-
imizing with respect to θ yields the following optimization
problem

minimize
θ

J(θ) = −
∑
l∈L

∑
c∈C

tlclog pc(xl, θ) (11)

in which the objective function can be seen as a minimization
of the cross entropy between p(tl|xl, θ) and an observed one-
hot distribution tlc. The optimization can be solved through
gradient descent or Newton’s method where the gradient and
the block components of the Hessian are given by

∇wcJ(θ) =
∑
l∈L

(pc(xl, θ)− tlc) x̃l

∇wc2
∇wc1

J(θ) =
∑
l∈L

pc1(xl, θ)(δc1,c2 − pc2(xl, θ))x̃lx̃
T
l

(12)

F. Shallow Feedforward Neural Networks

We consider a fully connected neural network with a single
hidden layer. To obtain the output class probabilities under
this model, An input point x is first fed through an affine
transformation W x̃. The result is then passed through an
element-wise nonlinear activation function σ, and that output
is fed into a Softmax classifier. In symbolic notation,

z(x) = σ(W x̃)

p(y = c|x, θ) =
ew

T
c z̃∑

c′∈C
ew

T
c′ z̃

(13)

The parameters of this network are the matrix W , and the
vectors wc (∀c ∈ C). The activation function σ is considered a
hyperparameter and is not trained directly. Most recent results
in Neural Networks suggest the use of the rectified linear unit
as activation function [15] or one of its variants [16] [17].
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Denoting the input to the nonlinearity as a = W x̃, the ith

component of the rectified linear unit output is given by

σ(a)i =

{
0 ai < 0

ai ai ≥ 0
(14)

The parameters of a neural network are estimated via
maximum likelihood (11) but with the additional matrix pa-
rameter W . The optimization is estimated via gradient descent,
where the gradients are calculated through a technique called
backpropagation [18].

G. Bayesian Neural Networks and MC Dropout

A Bayesian Neural network [19] has the same architecture
as a standard neural net, but we consider the entire posterior
distribution over the parameters instead of the mode of that
posterior.

p(t|x,Dl) =

∫
p(t|x, θ)p(θ|Dl)dθ (15)

Thus, if several configurations of weights predict the training
data with high accuracy, then all of those configurations are
taken into account when predictions are made on the remaining
data. Using the full posterior may increase accuracies when
low amounts of training data are used.

The trouble with this method is that the posterior p(θ|Dl)
is intractable for general neural networks. Thus we must
use some sort of approximation scheme to implement this
technique. One popular method, called variational inference
[10], adheres to the following logic.

Consider any probability distribution over θ, q(θ). Re-
gardless of what q is, the log posterior distribution can be
decomposed as.

log p(θ|Dl) =

∫
q(θ)log p(Dl, θ)dθ+H(q)+KL(q||p) (16)

where H(q) is the entropy of the distribution q and KL(q||p)
is the Kullback-Keibler Divergence between q(θ) and p(θ|Dl).
Since the KL term is always positive, the sum of the first
two terms represents a lower bound on the posterior. We
will denote this term, called the Evidence Lower Bound
(ELBO) [20], as L(q). To perform variational inference, we
first make some assumptions about q (chosen carefully to
make q tractable), and then maximize L(q) subject to these
assumptions. The optimization occurs with respect to q or the
parameters of q if we assume that q is parametric.

This maximization has two interpretations. The first is made
by noting that the sum L(q) + KL(q||p) is constant with
respect to q by equation (16). Thus maximizing the ELBO
is equivalent to minimizing the KL divergence between the
assumed distribution q and the true posterior distribution
(which is an intractable optimization problem due to the
presence of the posterior in the objective function). The second
interpretation is found by looking at the terms in the ELBO.
Optimizing the first term corresponds to putting high weight
on parameters that explain the training data, and the second
term limits this behavior by forcing q to have high entropy.

When the variational distribution is parametric, i.e. q(θ) =
q(θ|λ), optimization of the lower bound can be performed

stochastically via black-box variational inference [21]. The
gradient of the ELBO is given by

∇qL(q) = Eq[(∇qlog q(θ|λ)) {log p(Dl, θ)− log q(θ|λ)}]
(17)

In particular, if q(θ|λ) is a member of the exponential family,
then every term on the inside of the expectation is tractable and
can be sampled for a Monte Carlo estimate of this gradient.

A second way to obtain a full posterior is called MC
Dropout. MC dropout still uses variational inference, but does
not perform optimization through equation (17). This method
is motivated by reference [22], which shows that a forward
pass through a neural network containing dropout layers (a
layer which randomly sets hidden units to zero) is equivalent
to a sample of a Gaussian process approximated through a
variational distribution qgp. That is, if pdr(x) is the result of
a forward pass trough a neural network with dropout layers,
then

p(t|x, θ) ≈ pdr(x), θ ∼ qgp(θ) (18)

Then the full posterior can be Monte-Carlo estimated as

p(t|x) ≈ 1

S

S∑
s=1

pdr(x) (19)

Thus an approximate full posterior can be obtained by per-
forming S forward passes through a dropout network and
averaging the results.

IV. TRAINING DATA SELECTION

Before applying any of these techniques, we need to select
a set of customers S to measure as training data. Since these
measurements are labor intensive, we wish for this set to
be small but still satisfy fS ≈ f∗. We suggest a greedy
submodular selection approach as described in reference [23].

First, we construct a similarity matrix A from the dataset.
There are many ways to do this; the most common of which
are listed below [24].
• Radial Basis Function Kernel.

Aij = e
−λ‖xi−xj‖

2

2 (20)

• Symmetrized k-Nearest-Neighbors Graph.

Ãij =

{
1 xi ∈ Neighk(xj)

0 else

A =
1

2
(Ã+ ÃT ) (21)

• Cosine Kernel.

Aij =
xTi xj
‖xi‖‖xj‖

(22)

With the similarity matrix chosen, we use the facility location
function r : 2D → R to score subsets S ⊆ D of training data.

r(S) =
∑
xi∈D

max
j∈S

Aij (23)

Intuitively, r is large when every data point in D is well
represented by a training data point is S. furthermore, r has
the following three properties.
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(a) Untransformed (b) Transformed

Fig. 3. Projection of data points for circuit III before and after the 120V
stability transformation (25).

• r is submodular. If S ⊆ T ⊆ D and {x} ∈ D − S − T ,
then r(S ∪ {x})− r(S) ≥ r(T ∪ {x})− r(T ).

• r is nondecreasing in #S.
• r(∅) = 0.

Such submodular functions have been studied extensively in
terms of approximate optimization. In particular, it can be
shown that greedy optimization of r achieves the following
bound [25].

r(Sgreedy) ≥ (1− 1

e
) max
S∈2D

r(S) s.t. #S = K (24)

Thus, a good training data set can be found through a greedy
search over unlabeled data points.

V. PREPROCESSING

A. Voltage Transform

Voltage magnitude data comes in two discrete chunks; one
with values near 120V and the other with values near 240V .
This is due to center tapped transformers on the customer side
of a secondary transformer which are capable of providing
either value. Most data points will have values near 240V ;
only a small subset will have values near 120V . These 120V
points have an outlier-like effect on most supervised machine
learning methods; that is, they cause significant instability in
the training phases. Unfortunately, we cannot remove them
as they consist of a sizable portion of customers in the
distribution circuit.

We can, however, take care of these instability problems by
removing the projection of each data point along the direction
of the d-dimensional vector 1 =

[
1 1 ... 1

]T
. That is,

each data point is transformed through

x 7→ x− 11Tx

d
(25)

The usefulness of this transformation is illustrated in Figure
3, which shows that a dataset mapped through this transfor-
mation is much more well conditioned than its untransformed
counterpart.

B. Feature Reduction

It is often the case in machine learning that removing redun-
dant features in a dataset can lead to increased performance.
In the case of Phase Identification, this means that we should
remove a set of hours from each customer’s voltage time series
in which no novel information is contained.

For this task, we consider the dual dataset D∗. This dataset
is constructed as follows. Let X be the design matrix of
the original dataset D. That is, X is the matrix formed by
stacking the row vectors xT ∀(x, y) ∈ D. Then D∗ =
{m | m is a column of X}. Each point in D∗ corresponds
to one timestamp of observation.

Next, we create a similarity matrix over D∗ with the cosine
kernel (22) and again perform greedy optimization of the
facility location function (23) to obtain an approximate optimal
subset of S∗ ⊆ D∗ such that every feature in the original
dataset is well represented in the subset. From these selected
points, we create the matrix X̃ whose columns are the vectors
in S∗. Finally, we take the reduced feature dataset D̃ obtained
from the rows of X̃ .

VI. RESULTS

A. Description of Data Sets

This analysis will be performed over 7 circuits of varying
complexity from Southern California Edison, Pacific Gas and
Electric Company, and FortisBC. The details of these circuits
are contained in the Table I. Each circuit contains 31 days of

TABLE I
DISTRIBUTION CIRCUITS CHARACTERISTICS

Name Nconsumers Phase Connections Degree of Balance
I 1892 All Low
II 3166 All Low
III 4629 All High
IV 3638 All High
V 1310 line-line Low
VI 358 line-neutral Low
VII 1773 line-neutral Low

voltage magnitude data, sampled hourly for a feature vector
of dimension 744.

Empirically, circuits with more potential phase connections
(e.g. A, B, C, AB, BC, CA vs. just A, B and C) typically
have lower Phase Identification accuracy. This is firstly due
to the fact that the difficulty of a classification task is related
to the number of classes, but also due to the fact that there
are nontrivial dependencies between some of these classes; for
example, transformers of the AB class take current from the A
line and send it back along the B line, which complicates the
dynamics of transformers attached to just A or B. Balanced
circuits also have lower Phase Identification accuracy than
unbalanced ones, but the effect is less significant. The more
phase connections available and the more balanced the circuit
is, the more ’difficult’ that circuit is to identify.

In phase identification, we want to use as little training data
as possible, so creating a validation set is impractical. On the
other hand, we typically want to perform phase identification
on several circuits in a given region - all of which have
similar sizes and dynamics. Thus, hyperparameters that work
well for one circuit in this region are likely to work for the
rest. Thus, for phase identification, we replace the notion of
a validation set with that of a validation circuit; i.e. we take
the labels of one entire circuit and train our hyperparameters
by testing (full) accuracies on that circuit. In this paper, all
hyperparameters were tuned on the circuit III with a random
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5% training sample. The same set of hyperparameters were
used for every circuit. Thus results relating to circuit III
should be considered as validation results (i.e. they carry less
significance), while results relating to the rest of the circuits
should be considered as out of sample results.

500 hidden units were used for the hidden layers of all
neural networks and a dropout rate of 0.7 was used for MC
Dropout. 100 samples were used for monte-carlo estimation
of the posterior distribution. Euclidean distance was used for
nearest neighbors. The random forests contained 25 trees each
and 25 trees were used for adaboost as well.

Every test (except those using strategically selected training
data) uses 10 random samples of the specified training portion,
and the accuracy results are averaged across each trial.

B. Hyperparameters

In the tests conducted in this paper, Nearest Neighbors was
tested with 1 and 5 neighbors. Our binary decision trees used
a maximum depth of 100, and our random forests used 10
trees with the same depth limit. We found that increasing
the number of trees held the accuracy relatively constant.
We tested several values of number of hidden units for and
number of layers for the shallow neural network and found 500
hidden units with two layers to be sufficient; these obtained
the condition for f∗ ∈ limsup HAi , so more complicated
models would just add variance to a problem with little bias.
We found that standard L1 and L2 regularization did not
increase accuracies on either the linear or the neural network
models. However, MC dropout can be viewed as a form of
regularization, so in this sense some regularization is reported.
Several dropout rates were tested for MC dropout and the best
performing rate of 0.1 was reported.

C. Baseline Accuracies

Figure 4 shows the accuracy of each method vs. the portion
of (randomly) selected training data for the four circuits with
all seven types of phase connections available. Figure 5 shows
the same for circuits in which the number of possible phase
connections is limited. We see that, as expected, the circuits
with more phase connections typically achieve lower accuracy
than those with limited phase connections. One interesting
exception to this rule is the circuit VII, which performs fairly
poorly compared to the other circuits. We suspect this accuracy
drop to be due to the low amount of customers in that circuit;
the low number of total customers leads to a very low total
number of training data points.

In general, softmax regression and shallow neural networks
have far greater accuracy than other methods, with shallow
neural networks winning by a small margin in most cases. MC
Dropout provides a sizable advantage over the standard neural
network at low training data, and this advantage diminishes as
the amount of training data increases.

Importantly, in every circuit except I, only the shallow
neural network approaches 100% accuracy as the training
portion approaches 1.0. Thus, for all of these networks, we can
only guarantee that f∗ lives in the hypothesis space defined
by the two layer neural network. Since the softmax classifier

(a) I

(b) II

(c) III

(d) IV

Fig. 4. Accuracy vs. selected training portion for circuits with all possible
connections.

is equivalent to a single layer neural network, the increase in
complexity from the softmax classifier to the two layer neural
network is small, and so the latter’s hypothesis space has the
desired properties detailed in section III-B.

D. Training Data and Feature Selection Accuracies

Table II shows the accuracies of the shallow neural network
with MC dropout for each circuit for each of the 3 following
cases: 5% random, 5% selected, and 1% random. The 5%
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(a) V

(b) VI

(c) VII

Fig. 5. Accuracy vs. selected training portion for circuits with only phase to
neutral or only phase to phase connections.

random condition is identical to the results of the previous
subsection at 5% training data. Condition 5% selected uses
the methodology of section IV to obtain a 5% training set of
selected data. Condition 1% random is the average accuracy
over ten trials of MC dropout when the training data portion
is reduced to a stratified 1% sample.

For training data selection, we found that all of the listed
similarity matrices worked well for circuit III, but the RBF
kernel outperformed the others slightly. Thus the reported
accuracies use the RBF kernel for training data selection with
λ = 1

#D .
Figure 6 shows the effect of feature reduction on the three

largest circuits. The dotted lines labeled threshold are each
0.005 below each curves respective maximum. Interestingly,
the effect of feature selection appears small. While feature
selection does not improve Phase Identification accuracy, it
also does not reduce it significantly until less than about 30%
of the features are used. Thus the feature set used in this
analysis is highly redundant, but removing this redundancy
does not yield higher accuracy.

TABLE II
ACCURACY RESULTS FOR GIVEN TRAINING CONDITIONS.

circuit 5% random 5% selected 1% random
I .934 .979 .733
II 0.910 .953 .858
III 0.952 .967 .876
IV 0.933 .972 .828
V .988 .996 .935
VI .880 .919 .641
VII .972 .986 .903

Fig. 6. Accuracy vs. selected feature portion for the three largest circuits.
Dashed lines correspond to constant accuracies at each curves respective
maximum minus 0.005.

Table II shows the results of training data selection. In all
such cases, every class was represented before the 5% cutoff.
Strategically selecting training data according to section IV
yields an increase in Phase Identification accuracy for every
circuit; the average increase being 3% (a 48.75% average
reduction is classification errors).

Using a 1% training data sample yields an expected drop in
identification accuracy. Accuracies this low are probably not
useful to a utility company wishing to use machine learning for
Phase Identification. Furthermore, the training data selection
process is unlikely to find a representative data point of each
phase connection type at such a low subset of training data.
Effectively reducing the necessary training data percent to such
a low value is the primary goal of future research.

VII. CONCLUSION

We have provided an analysis of shallow learning for the
Phase Identification problem over a diverse set of distribution
circuits. For all circuits, a 2 layer neural network with 500
hidden units and relu activation out-performs all other meth-
ods, and MC dropout provides a slight boost to accuracy over
this method at low training data portions.

When the number of customers in a circuit is low (e.g. on
the order of 100 instead of 1000), machine learning techniques
may see lower accuracy than in circuits with more customers.

Feature selection is found to have little effect on Phase
Identification accuracy. However, selection of training data
according to a greedily optimized facility location function
yields significantly improved and consistent results.
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