
Routing Electric Vehicle Fleet for Ride-sharing
Jie Shi, Yuanqi Gao, and Nanpeng Yu

Department of Electrical Engineering and Computer Science
University of California, Riverside

Riverside, CA 92521 USA
Email: jshi005@ucr.edu, ygao024@ucr.edu, and nyu@ece.ucr.edu

Abstract—Providing ride-sharing services with an electric
vehicle (EV) fleet can significantly enhance urban mobility,
reduce transportation sector energy consumption, and improve
air quality. This paper develops an EV fleet routing algorithm for
ride-sharing services. The EV fleet routing problem is rigorously
formulated on a complete directed graph as a mixed integer
nonlinear programming problem. The intrinsic characteristics of
the EV routing problem allow us to transform the optimization
formulation into an equivalent mixed integer linear programming
problem. Numerical testing results show that the proposed
method can find globally optimal EV routes to provide ride-
sharing services. The simulation results also reveal a trade-off
between customer waiting time and total distance traveled by
the EV fleet.

Index Terms—Electric vehicle, vehicle routing problem, ride-
sharing, MILP.

I. INTRODUCTION

Stricter environmental regulations, higher emission stan-
dards, and generous government incentives accelerate the
global adoption of electric vehicles (EVs). It is estimated
that the global EV stock will range between 9 million and
20 million by 2020 and between 40 million and 70 million
by 2025 [1]. In the meantime, the rise of innovative ride-
sharing platforms such as Uber and Didi is transforming urban
mobility by providing timely and convenient transportation
services with great efficiency. Recently, the ride-sharing ser-
vice providers started to add EVs to their vehicle fleet to
further reduce greenhouse gas (GHG) emissions and improve
air quality. The electrification of ride-sharing services is es-
pecially beneficial to residents in disadvantaged communities
who face steeper barriers to clean vehicle adoption. Although
the introduction of EVs into the ride-sharing services has
great potential in reducing GHG emissions, it also complicates
the fleet routing and dispatch problem. Hence, it is critical
to develop an EV fleet routing algorithm which minimizes
customer waiting time, vehicle operating costs, and electricity
consumption. In this paper, we provide a rigorous formulation
and efficient solution to the EV fleet routing problem for ride-
sharing services.

The vehicle routing problem (VRP) has been extensively
studied since the seminal work on truck dispatch was pub-
lished in 1959 [2]. Many researchers have worked on solving
the original VRP and its variants. A comprehensive review
of the VRP and its solutions can be found in [3]. Recently,
the electric vehicle routing problem (EVRP) received a lot of
attention from the research community. In the EVRP, the EV

charging activities need to be considered. The EVRP is more
complicated than the VRP because EVs’ potential repetitive
visits to the same charging station need to be modeled. As a
pioneer, [4] first studied this type of problem with alternative
fuel vehicles. Inspired by [5], the dummy vertices were
leveraged to deal with vehicles’ multiple visits to the same
location. Using a similar technique, the EVRP is formulated
in [6] with time window constraints. The recharging processes
and calculation of EV arriving times at different locations
introduced bilinear terms in the problem formulation. The
EVRP is simplified as a mixed integer linear programming
problem (MILP) by forcing EVs to be fully charged in all
charging sessions [6]. Various extensions of the EVRP have
been studied by considering partial recharging of EVs [7], the
effects of EV load on energy consumption, a heterogeneous
EV fleet [8], the road conditions [9], and nonlinear charging
functions [10].

Very few studies directly addressed the problem of deter-
mining the optimal routes of an EV fleet for ride-sharing
service (EVRP-RS). The EVRP-RS can be considered as
an extension of the vehicle routing problem with multiple
depots (MDVRP), which requires different vehicles leaving
from and returning to different locations. A comprehensive
review of the MDVRP can be found in [11]. The nonlinearity
induced by charging time and customer waiting time makes
the EVRP-RS more difficult to solve than the MDVRP. Several
papers studied the EVRP-RS. However, they either assumed
a well established routing algorithm already exists [12] or
used greedy algorithms [13], [14] to determine the charging
schedules and routes of EVs. These papers did not provide a
rigorous problem formulation to determine the optimal routes
and charging schedule for an EV fleet. A recent work [15] did
develop an optimization framework to solve the EVRP-RS.
However, it did not allow an EV to visit the same charging
station more than once and used a cumbersome three-index
formulation.

Building on top of existing literature, this work makes
two unique contributions. First, we define the EV fleet rout-
ing problem on a complete directed graph and formulate
the EVRP-RS as a mixed integer nonlinear programming
(MINLP) problem. The formulation not only has a compact
two-index form but also takes EVs’ multiple visits to the same
charging station into account. Second, we successfully trans-
formed the MINLP problem into an equivalent MILP problem
where global optimum can be found in many instances.



The rest of the paper is organized as follows. Section II
formulates the EVRP-RS problem as a MINLP. Section III
converts the MINLP into an equivalent MILP. Numerical stud-
ies are carried out in Section IV to validate the effectiveness
of the proposed method and analyze the trade-off between
customer waiting time and total distance traveled by the EV
fleet. Section V concludes this paper.

II. PROBLEM FORMULATION

In this section, the problem of determining the optimal
routes for an EV fleet for ride-sharing services is formulated
as a mixed integer nonlinear programming problem. The
optimization problem is equivalent to finding the set of active
edges in a complete directed graph.

A. Assumptions and Notations

The assumptions and notations used in the problem formula-
tion are introduced in this subsection. To derive an analytically
tractable formulation, three simplifying assumptions are made.
First, it is assumed that the desired pickup time, pickup
location, and drop-off location of all the customers are known
prior to the operating time window. Second, it is assumed
that EVs will start charging immediately after arriving at the
charging stations. Third, it is assumed that a homogeneous EV
fleet is being managed.

A complete directed graph can be used to describe all
possible routing and charging plans of an EV fleet for ride-
sharing. Let G = (V,E) denote a complete directed graph,
where V = {vi|i = 1, · · · , N} is the set of vertices and
E = {xij |i, j = 1, · · · , N} is the set of edges. Let SC , SI ,
ST , and SCS be a partition of V :
• SC = {vi|i = 1, 2, · · · , NC}
• SI = {vi|i = NC + 1, NC + 2, · · · , NC +NEV }
• ST = {vi|i = NC+NEV +1, NC+NEV +2, · · · , NC+

2NEV }
• SCS = {vi|i = NC+2NEV +1, NC+2NEV +2, · · · , N}

where NC is the number of customer requests. NEV is the
number of EVs in the fleet. Each vertex in SC represents a
customer request. Each vertex in SI denotes an EV parked
at its initial location. Each vertex in ST represents an EV
parked at its terminal location. Vertices in SCS denote copies
of charging stations that enable the modeling of multiple visits
to the charging stations. Let NCS be the number of charging
stations. Then the cardinality of SCS should not exceed (NC+
NEV ) × NCS . The size of SCS is a design variable which
determines the trade-off between graph complexity and the
potential benefits received from enabling multiple visits to the
charging stations.

Each vertex vi ∈ V contains a tuple Bi = {tSi , PST
i , PED

i }
that stores the starting time tSi , the starting position PST

i , and
the end position PED

i of vi. The definitions of the elements
in a tuple depend on the type of vi:
• If vi ∈ SC , then tSi is the desired pick-up time, PST

i is
the pickup location, and PED

i is the drop-off location of
the corresponding customer request.

SI SC SCS

EV 1

EV 2

EV 3

EV 4

ST

Fig. 1. A sample routing schedule.

• If vi ∈ SI , then tSi is the time when the EV departs from
its initial location. PST

i = PED
i is the initial location of

the corresponding EV.
• If vi ∈ ST , then tSi is the time when the EV reaches its

terminal location. PST
i = PED

i is the terminal location
of the corresponding EV.

• If vi ∈ SCS , then tSi is the time when the EV reaches
the corresponding charging station. PST

i = PED
i is the

location of the corresponding charging station.

B. Control Variables

There are two sets of control variables. The first set,
{TCS

i |vi ∈ SCS}, defines the charging time spent on each
visit to one of the charging stations. The second set, {xij |i, j =
1, · · · , N}, is related to the edges in the directed graph. xij
is a binary variable which takes the value of 1 if the edge
from vi to vj is active and 0 otherwise. Here, an active edge
is defined as follows:
• If vi ∈ SC , then an active edge from vi to vj means

there exists one and only one EV that serves customer
request of vi and moves to the starting position of vj
immediately after the service is completed.

• If vi ∈ SI , then an active edge from vi to vj means the
corresponding EV leaves from its initial location at initial
operating time and moves to the starting position of vj .

• If vi ∈ SCS , then an active edge from vi to vj means
an EV gets charged at the corresponding charging station
and moves to the starting position of vj immediately after
the charging session is completed.

The following edges are always set as inactive. We denote
this set of inactive edges as EIA.
• All the edges pointing toward vertices in SI are set as

inactive since they are the initial vertices.
• All the edges leaving from vertices in ST are set as

inactive since they are the terminal vertices.
• The edges between any two vertices in SCS are set

as inactive to avoid consecutive visits to the charging
stations.

Fig. 1 shows a sample routing schedule with 4 EVs, 6
customer requests, and 1 charging station. The size of SCS

is set to be 4. At the start of the operating window, 4 EVs are



located at their initial locations. The active edges represent
the routing schedule of EV fleet. For example, the routing
schedule of EV 1 is as follows. In the beginning, EV 1 leaves
its initial location to serve the first customer. Then it goes to
the charging station to charge the battery. After the charging
session, it continues to serve the second customer and then
get back to the charging station. Finally, it serves the third
customer and heads to its assigned terminal location.

C. Objective Function

The objectives of the EV fleet routing algorithm are to min-
imize the operating cost of the EV fleet and the total customer
waiting time. The operating cost is composed of two parts: EV
maintenance cost and charging cost. The maintenance cost and
the charging cost are assumed to be proportional to the total
distance traveled by the EV fleet and the total charging time,
respectively. The objective function can be formulated as

min
{xij |i,j=1,··· ,N},{TCS

m |vm∈SCS}
Costop + Costwt (1)

where

Costop =
∑
i 6=j

i,j=1,··· ,N

sijxijC
M +

∑
{m|vm∈SCS}

TCS
m PCSCE

(2)

Costwt = β

NC∑
k=1

wk (3)

where sij is the distance between the end position of vi and
the starting position of vj . TCS

m is the charging time (h) of
the corresponding EV at vertex vm. PCS is the charging rate
(kW) of the EV. wk is the waiting time (h) of kth customer.
CM is the maintenance cost per mile ($/mile) of an EV. CE

is the cost of electricity ($/kWh). β is the cost of customer
waiting time ($/h).

D. Constraints

Three groups of constraints need to be enforced when
routing EV fleet for ride-sharing. These groups of constraints
are: path constraints, energy constraints, and time constraints.
We formulate the three groups of constraints below.

1) Path Constraints: The path constraints ensure that the
EV routing schedule is feasible and efficient. They are listed
as follows. ∑

vj∈V,vj 6=vi

xij =1, ∀vi ∈ SC (4)

∑
vj∈V,vj 6=vi

xij ≤1, ∀vi ∈ SCS (5)

∑
vj∈V,vj 6=vi

xji −
∑

vk∈V,vk 6=vi

xik =0, ∀vi ∈ SC ∪ SCS (6)

∑
vj∈V,vj 6=vi

xij =1, ∀vi ∈ SI (7)

∑
vi∈V,vi 6=vj

xij =1, ∀vj ∈ ST (8)

xij =0, ∀xij ∈ EIA (9)

(4) ensures each customer request is only served once. (5)
ensures that the charging stations do not have to be visited
an EV. (6) enforces the flow conservation. (7) and (8) ensure
each EV leaves from its initial location and reaches its terminal
location. (9) represents the inactive edges defined in Section
II.B.

2) Energy Constraints: The energy constraints describe the
electricity consumptions of EVs in the routing process and
enforce the battery capacity limits.

sijE
PM · xij − (1− xij)Emax ≤ Ei − Ej ≤
sijE

PM · xij + (1− xij)Emax,

∀vi ∈ SI , vj ∈ V, vj 6= vi (10)

(sijE
PM + EC

i )xij − (1− xij)Emax ≤ Ei − Ej ≤
(sijE

PM + EC
i )xij + (1− xij)Emax,

∀vi ∈ SC , vj ∈ V, vj 6= vi (11)

(sijE
PM − TCS

i PCS)xij − (1− xij)Emax ≤ Ei − Ej ≤
(sijE

PM − TCS
i PCS)xij + (1− xij)Emax,

∀vi ∈ SCS , vj ∈ V, vj 6= vi (12)

Ei + TCS
i PCS ≤ Emax, ∀vi ∈ SCS (13)
Ei ≥ 0, ∀vi ∈ SCS (14)

Ei = Eini
i , ∀vi ∈ SI (15)

Ei ≥ min
c∈{1,2,··· ,NCS}

(
∥∥PED

i − PCS
c

∥∥ · EPM ),

∀vi ∈ ST (16)

where sij is the distance between the end position of vi and the
starting position of vj . EPM is the EV electricity consumption
per mile. EC

i is the electricity required for serving customer
request vi ∈ SC .

∥∥PED
i − PST

i

∥∥ is the distance between PED
i

and PST
i . Hence ∀vi ∈ SC , EC

i =
∥∥PED

i − PST
i

∥∥ ·EPM . Ei

is the remaining energy in the battery of the corresponding
EV when it reaches the starting position of vertex vi. Emax

is the battery capacity of EVs. PCS
c is the position of the cth

charging station.
(10) defines the difference in battery energy between Ei

and Ej when vi ∈ SI . If the edge from vi to vj is active,
then the difference in battery energy should be equal to the
energy consumed for trip sij . (11) defines the difference in
battery energy between Ei and Ej when vi ∈ SC . If the
edge from vi to vj is active, then the difference in battery
energy should be equal to the summation of energy consumed
for the customer service and energy consumed for making
the trip corresponding to sij . (12) defines the difference in
battery energy between Ei and Ej when vi ∈ SCS . If the edge
from vi to vj is active, then the difference in battery energy
should be equal to the energy received from the charging
station subtracted from the energy consumed for making trip
corresponding to sij . Note that if the edge from vi to vj
is inactive, then the above constraints are not enforced. (13)
ensures that the remaining battery energy never exceeds the



battery capacity when the corresponding EV leaves a charging
station. (14) ensures the remaining battery energy is greater
than or equal to zero when EV arrives at a charging station.
This constraint, along with the energy transition constraints,
enforce that Ei ≥ 0 when vi ∈ SC . (15) defines the initial
battery energy of EVs. (16) ensures each EV has enough
energy to reach the nearest charging station from its terminal
location.

3) Time Constraints: The time constraints describe the
temporal relationships among different vertices and specify
the waiting times of customers.

−Tmax(1− xij) + max(tRj − ti, Ti + Tij)xij ≤ tj − ti
≤ Tmax(1− xij) + max(tRj − ti, Ti + Tij)xij ,

∀vi ∈ V, vj ∈ SC , vi 6= vj (17)
−Tmax(1− xij) + (Ti + Tij)xij ≤ tj − ti
≤ Tmax(1− xij) + (Ti + Tij)xij ,

∀vi ∈ V, vj ∈ SCS ∪ ST , vi 6= vj (18)
Ti = 0, vi ∈ SI ∪ ST (19)

Ti =

∥∥PED
i − PST

i

∥∥
vEV

, vi ∈ SC (20)

Ti = TCS
i , vi ∈ SCS (21)

Tij =
sij
vEV

, ∀vi ∈ V, vj ∈ V, vi 6= vj (22)

ti = tinii , vi ∈ SI (23)

wi = max(0,
∑

j∈V,j 6=i

(Tj + Tji + tj − tRi )xji), ∀vi ∈ SC

(24)

where Tmax denotes the maximum length of system operating
time. tRj is the desired pickup time of customer request vj ∈
SC . ti is defined as follows:
• If vertex vi ∈ SC , then ti is the time when corresponding

EV starts its customer service of vi.
• If vertex vi ∈ SCS ∪ ST , then ti is the time when the

corresponding EV reaches the starting position of vi.
• If vertex vi ∈ SI , then ti is the initial operating time of

the corresponding EV.
Ti denotes the time spent on vertex vi. Tij is the time spent
on moving from the end position of vi to the starting position
of vj . vEV is the average speed of an EV.

(17) defines the time difference between tj and ti where
vj ∈ SC . If the edge from vi to vj is active, then the time
difference should be max(tRj − ti, Ti+Tij). As shown in Fig.
2, if the corresponding EV reaches the start position before
the desired pickup time, it has to wait for the customer. Thus
tj = tRj . If the corresponding EV reaches the starting position
later than the desired pickup time, then the customer has to
wait for the EV. Hence tj = ti + Ti + Tij . (18) defines the
time difference between tj and ti where vj ∈ SCS∪ST . If the
edge from vi to vj is active, then the time difference should
be Ti + Tij . Note that if the edge from vi to vj is inactive,
then these two constraints are not enforced. (19) defines the
time spent on any vertex in SI∪ST being zero. (20) calculates

Fig. 2. Time constraints under two scenarios.

the time spent on serving customer request of vertex vi ∈ SC .
(21) defines the time spent on charging at vertex vi ∈ SCS .
(22) calculates the time spent on traveling between the end
position of vertex vi and the starting position of vertex vj .
(23) specifies the initial operating time of corresponding EV.
(24) calculates the waiting time of each customer.

E. MINLP Problem

The EV ride-sharing routing problem formulated above is
a MINLP due to the bilinear terms and max(·) functions in
the energy and time constraints. By regrouping the constraints
into two sets according to their linearity, the problem can be
summarized as follows:

min
{xij |i,j=1,··· ,N},{TCS

m |vm∈SCS}
Costop + Costwt

subject to:

Linear constraints: (4)-(11), (13)-(16), (19)-(23)
Nonlinear constraints: (12), (17), (18), (24)

In general, it is difficult to final globally optimal solutions for
a MINLP problem. However, we can convert the nonlinear
constraints of this particular problem into linear ones. Hence,
the MINLP problem can be transformed into a MILP problem.

III. REFORMULATION OF NONLINEAR CONSTRAINTS

In this section, the nonlinear constraints of the original
optimization problem are converted into linear ones. The
resulting MILP problem can then be solved with existing
commercial solvers such as Gurobi and Mosek.

A. How to Deal with Nonlinear Conditional Constraints?

Note that the nonlinear constraints in Section II have a
special structure. They can be described by if-else statements
in an algorithm. Here we demonstrate how to convert these
conditional nonlinear constraints into linear ones using (17)
and (24) as an example.

Constraints (17) and (24) can be expressed by Algorithm 1.
Note that the nested if-else statements shown in Algorithm
1 can be represented by a set of linear constraints. Let’s
start with the inner if-else statements. A binary variable
αj is introduced to construct the following linear inequality
constraints to represent the inner if-else statements.

tRj − ti − Ti − Tij ≥ −M(1− αj) (25)



Algorithm 1: Representation of constraints (17) and
(24).

if xij = 0 then
do nothing;

else
tj − ti = max(tRj − ti, Ti + Tij)
if tRj − ti > Ti + Tij then

tj = tRj ;
wj = 0;

else
tj = ti + Ti + Tij ;
wj = ti + Ti + Tij − tRj ;

tRj − ti − Ti − Tij ≤Mαj (26)

−M(1− αj) ≤ tj − tRj ≤M(1− αj) (27)

−M(1− αj) ≤ wj ≤M(1− αj) (28)
−Mαj ≤ tj − ti − Ti − Tij ≤Mαj (29)

−Mαj ≤ wj − ti − Ti − Tij + tRj ≤Mαj (30)

where M is a real number that is sufficiently large.
When αj = 0, (26), (29), and (30) are binding. This

corresponds to the else part of the inner if-else statements.
Similarly when αj = 1, (25), (27), and (28) are bindings.
This corresponds to the if part of the inner if-else statements.

Now, denote this set of linear inequalities (25)-(30) as Aj ≤
0. Then we can represent the outer if-else statement as

Aj ≤M(1− xij) · 1 (31)

When xij = 0, none of constraints are enforced. When xij =
1, Aj ≤ 0 is enforced and the constraints represented by
the inner if-else statements are enforced. Now, the nonlinear
constraints (17) and (24) are successfully transformed into a
set of equivalent linear inequality constraints.

B. Other Nonlinear Constraints

We apply the same procedures to the other nonlinear con-
straints in the MINLP formulation and derive the equivalent
linear constraints below.

(12) can be transformed to

Ei − Ej + TCS
i PCS − sijEPM ≤M(1− xij) (32)

Ei − Ej + TCS
i PCS − sijEPM ≥−M(1− xij) (33)
∀vi ∈ SCS , vj ∈ V, vj 6=vi

(18) can be transformed to

tj − ti − TCS
i − Tij ≤M(1− xij) (34)

tj − ti − TCS
i − Tij ≥−M(1− xij) (35)

∀vi ∈ V, vj ∈ SCS∪ST , vi 6= vj

Now, all the nonlinear constraints have been converted into
linear ones. The original MINLP problem is transformed into
an equivalent MILP problem. In this study, we use the Gurobi’s
MILP engine to solve the EV ride-sharing scheduling problem.

IV. NUMERICAL STUDY

To demonstrate the effectiveness of the proposed EV fleet
routing method, various case studies are carried out. First,
the optimality of the EV routing solutions derived from the
proposed algorithm is validated through 50 small-scale test
cases with randomly generated customer requests. Globally
optimal solutions are found in all test cases. Second, the
trade-off between customer waiting time and total distance
traveled by the EV fleet is explored by gradually changing the
cost associated with customer waiting time β. The simulation
results show that as β increases, the total customer waiting
time decreases and the total distance traveled by the EV fleet
increases.

A. Simulation Settings

In the case studies, it is assumed that the EV fleet has four
vehicles with a battery configuration similar to that of the
2017 Nissan LEAF. The per mile electricity consumption of
an EV, EPM , is 0.25 kWh/mile. The battery capacity, Emax,
is assumed to be 30 kWh. The charging rate, PCS , is 6 kW.
The average travel speed of an EV, vEV , is assumed to be 20
mph. The fleet of EV provides ride-sharing service within a
square region. The length of each side is 40 miles. The square
region can be represented by a 2D coordinate system with its
centroid located at (20, 20) and one corner located at (0, 0).
All EVs can only move either horizontally or vertically. There
is one charging station located at the center of square, which
can provide charging services to all EVs simultaneously.

Suppose we have 6 customer requests to be served. Their
desired pick-up times are generated through a Poisson process
with an expectation of 2 customer requests per hour. The
coordinates of pick-up and drop-off locations are sampled
independently from a uniform distribution defined on the
square. The cardinality of copies of charing station, SCS , is set
to be 4. The maintenance cost of an EV is set as CM =0.04
$/mile. The electricity cost, CE , is set to be 0.15 $/kWh. This
is selected based on the average retail price across California
in 2016 according to U.S. Energy Information Administration.

B. Optimality of EV Fleet Routing Solution

50 simulation cases were conducted to show that the op-
timality of EV fleet routing solution can be achieved for a
small-scale EV ride-sharing program. In each of the test cases,
the EVs are assumed to be parked at the charging station
in the beginning of each operation window. At the end of
the operation window, all EVs are required to return to the
charging station. The customer requests are generated through
a Poisson process as described in the simulation settings.
The initial battery levels of EVs are sampled from a uniform
distribution of [0, 30] kWh. The customer waiting time, β, is
set as 5 $/h. The EVRP-RS problems of the 50 simulation
cases are solved by the proposed optimization algorithm. The
duality gap of all the solutions are zero, which means the
global optimum is obtained for every simulation case. The
average computation time of the small-scale EV fleet routing
problem is 23.3 seconds on an entry level Dell workstation.
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Fig. 3. Total customer waiting time and total distance traveled by EVs under
different values of β.

TABLE I
CUSTOMER REQUESTS INFORMATION

Customer Pick-up Pick-up Drop-off
time (h) location location

1 0.450 (11.586, 18.294) (5.007, 5.643)
2 1.629 (9.696, 23.088) (7.024, 22.211)
3 1.813 (24.722, 24.839) (8.801, 9.281)
4 2.137 (9.759, 24.955) (24.309, 16.710)
5 2.805 (20.417, 7.010) (13.693, 11.537)
6 3.114 (29.751, 22.657) (29.414, 7.043)

TABLE II
INITIAL STATES OF EVS

Initial battery Initial location
EV 1 30 kWh (30, 30)
EV 2 20 kWh (10, 10)
EV 3 10 kWh (20, 20)
EV 4 0 kWh (20, 20)

C. Trade-off between Wait Time and Total Distance Traveled

In this subsection, we explore the trade-off between cus-
tomer waiting time and total distance traveled by the EV
fleet. We first select one of the 50 customer requests samples
generated in Section IV.B. The detailed customer requests
information can be found in Table I. The initial locations
and battery levels of the four EVs are reported in Table II.
This EVRP-RS problem is repetitively solved by varying the
customer waiting cost β from 0 $/h to 6 $/h.

Fig. 3 shows the total customer waiting time and total
distance traveled by EVs under different values of β. The total
waiting time of the customers reaches the highest level when
β = 0. Since no penalty is assigned for the customer waiting
time, the EV fleet routing algorithm yields a dispatch solution
which minimizes the total travel distance. As β increases, the
total customer waiting time decreases while the total distance
traveled by the EV fleet increases. The saturation effect takes
place when β becomes greater than 3 $/h.

V. CONCLUSIONS

This paper develops an algorithm to determine the optimal
routes for an EV fleet to provide ride-sharing services. The
EV fleet routing problem is formulated on a complete directed
graph as a MINLP problem. The MINLP problem is then
converted into an equivalent MILP problem. Numerical studies
show that the proposed method can easily find globally optimal

EV routes for small-scale problems. The simulation results
also show that as we increase the costs associated with cus-
tomer waiting time, the total customer waiting time decreases
while the total distance traveled by the EV fleet increases.
Hence, the EV ride-sharing service providers need to strike a
balance between fleet operating costs and user waiting time.

Although the proposed MILP-based algorithm does provide
globally optimal EV routes for small-scale problems, the MILP
problem is NP-hard and does not scale well with the number
of customers and EVs. In the future, we plan to develop deep
reinforcement learning based approach to solve the EV fleet
routing problem for ride-sharing services.
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