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Abstract—Conservation voltage reduction (CVR) can effec-
tively reduce electricity consumption and peak demand by
keeping the customer voltages in the lower half of the permissible
range. To facilitate widespread adoption of CVR, a reliable and
robust CVR performance evaluation methodology is in critical
need. However, it is difficult to accurately estimate the load
reduction impact of CVR in practice. The data quality issues in
supervisory control and data acquisition and advanced metering
infrastructure make it challenging to distinguish a few percentage
of load reduction from measurement errors and bad data. This
paper develops a multilevel robust regression model within the
framework of statistical experimental design to address the data
quality issues. The proposed model is capable of providing
robust and reliable estimates of load and voltage reduction
from CVR at both distribution feeder and substation levels. The
effectiveness of the proposed methodology is validated with field
CVR demonstration data provided by a major California electric
utility.

Index Terms—Advanced Metering Infrastructure, Conserva-
tion Voltage Reduction, Distribution Voltage and VAR Control,
Robust Regression

I. INTRODUCTION

Rising electricity costs, stricter environmental regulations,
and increased stress of growing distributed energy resources
(DERs) on an aging energy infrastructure have attracted
continued interest in energy efficiency solutions for power
systems. The large infusion of investment in distribution
automation around the world has enabled electric utilities to
implement various energy efficiency programs in power distri-
bution systems. Besides adopting energy-efficient appliances,
conservation voltage reduction (CVR) is another effective
energy saving technology for electricity consumers.
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CVR reduces electricity consumption and peak demand
by keeping the customer voltages in the lower half of the
permissible range (114V - 126V) allowed under American
National Standards Institute (ANSI) standard for utilization
voltage C84.1 [1]. A lower voltage will directly lead to re-
duced consumption from the constant impedance and constant
current components of the electric load [2]. With the instal-
lation of supervisory control and data acquisition (SCADA)
and advanced metering infrastructure (AMI) systems, CVR
is now typically implemented as a part of the distribution
Voltage/VAR control (DVVC) system at the substation level
[3]. The controls of transformer load tap changer, voltage
regulators, capacitor banks, and smart inverters are coordinated
in DVVC to minimize the total electric loads of substations
subject to power factor and customer voltages constraints.

Although CVR has been successfully implemented in many
electric utilities around the world, there are still many barriers
to its widespread adoption. The most important barrier to
the successful evaluation and implementation of CVR tech-
nology is poor data quality issues. Missing data and bad
data are prevalent in the distribution management system
(DMS), geographical information system (GIS), SCADA and
AMI systems of electric utilities. Typically, these systems
do not have accurate secondary connectivity information [4]
which makes it difficult to model the voltage drop from
service transformers to customers in DVVC. Distribution
feeders constantly undergo reconfiguration due to network
faults, changing load and renewable generation. However, the
reconfiguration information are not always accessible in real-
time from the GIS or SCADA systems. Data gathered from
AMI and SCADA systems in distribution networks generally
have lower reliability than that of transmission networks due to
network clock synchronization errors [S5] and communication



failures. It is extremely challenging to distinguish a small
percentage of load reduction due to CVR from the above
mentioned data quality issues.

The existing literature on CVR performance evaluation
can be grouped into three categories: statistical experimental
design approach, load forecasting based approach, and bottom-
up appliance modeling and aggregation approach. In the
statistical experimental design approach, treatment and con-
trol groups are first selected. The treatment group represents
the substations/feeders or time periods where/when CVR is
implemented and turned on. The control group represents
the substations/feeders or time periods where/when CVR is
not implemented or turned off. A simple average compari-
son [6] or a statistical regression model [2] involving both
control and treatment group measurements can then be built
to estimate the load and voltage reduction from CVR. In
the load forecasting based approach, the electric load under
normal voltage condition is estimated with regression models
or support vector machine (SVM) [7]. The estimated load
under normal voltage condition can then be compared with the
load measured under CVR to quantify the load reduction. In
the bottom-up appliance modeling and aggregation approach,
the energy consumption of individual appliance as a function
of service voltage is quantified through physical tests [8]. The
electric load reduction produced by CVR for a distribution
substation or feeder can then be synthesized based on the load
composition of each customer class [9].

None of the existing literature directly addresses the data
quality issues in the CVR evaluation problem. In this paper,
we propose a multilevel robust regression method to quantify
the load and voltage impacts of CVR. The proposed multi-
level model is capable of assessing both the feeder and the
substation level impacts of CVR. Most importantly, the robust
regression method proposed in the paper is not sensitive to
outliers or violations of assumptions by the underlying data-
generating process. Therefore, it can be easily adopted by
utilities to reliably quantify the load and voltage reduction
from CVR in the presence of bad and missing data.

The rest of this paper is organized as follows. Section
IT introduces the CVR evaluation problem and provides the
overall framework of our proposed methodology to evalu-
ate the effectiveness of a CVR implementation. Section III
presents the technical details of multilevel robust regression
model and how it can be applied to solve the CVR evaluation
problem. Section IV shows a case study to evaluate the
effectiveness of CVR in Southern California Edison’s systems.
The conclusions are stated in section V.

II. PROBLEM STATEMENT
A. CVR Performance Metrics and Data Sources

The effectiveness of a CVR program is typically evaluated
by the following metrics: percentage of voltage reduction
(PV R), percentage of load reduction (PLR), and conser-
vation voltage reduction factor (CV Ry), where CV Ry is
defined as CVR; £ LLE PV R depends on the Volt-VAR

PVR®
control strategy before the CVR implementation, the actual

CVR control algorithm, the spatio-temporal distribution of
electric loads, and the topology and network parameters of
the distribution feeders under the substation. CV Ry depends
on the load composition of each customer and how the energy
consumption from individual appliance responds to voltage
variations.

CVR is usually implemented at the substation level which
involves multiple distribution feeders. The control objective
of CVR is typically minimizing the substation electric loads
or losses subject to voltage and power factor constraints. The
operations of equipment such as capacitor banks and smart
inverters in one distribution feeder will certainly affect the
voltage and electric load of another feeder. Hence, the effec-
tiveness of CVR should be evaluated at both distribution feeder
level and substation level. The bi-level evaluation will not only
reveal the overall effectiveness of the CVR at the substation
level but also the varying degrees of CVR effectiveness at the
distribution feeder level.

To conduct a comprehensive evaluation of a CVR imple-
mentation, we need to extract information from many data
sources which include SCADA and AMI data. The SCADA
system provides the electric load, voltage, and current data at
the substation and feeder level. It also contains information
about the operating status and voltage measurement for in-
dividual substation, field capacitors, and smart inverters. The
operating schedule of CVR is also included in the SCADA
system. The AMI records information about the individual
customers’ electric power consumption and voltage magnitude.

B. CVR Evaluation Framework

This subsection provides a high-level overview of the pro-
posed CVR evaluation framework. The general framework
consists of four steps.

In step one, data preprocessing is performed to remove
outliers. For example, the distribution substation/feeders’ load
may change drastically due to unexpected reconfiguration or
restoration activities. The data set recorded in the reconfigura-
tion and restoration periods may be excluded from the analysis.

In step two, the pairs of treatment and control substa-
tions/feeders are selected based on geographical location,
network topology, voltage level, and electric load profile.
The details of the treatment and control substations/feeders
selection method are described in Section IIL.A.

In step three, multilevel robust regression models are de-
veloped to quantify the load reduction and voltage reduction
impacts of CVR.

In step four, the PLR, PVR and CV R; are calculated
at both feeder and substation levels based on the multilevel
robust regression model outputs.

III. TECHNICAL METHODS

A. Treatment/Control Pair Selection

CVR is implemented on the treatment substations. Each
treatment substation is paired with a control substation on
which the CVR is not implemented. The control substation
is selected based on the similarity between its geographical



location, load composition and those of the treatment sub-
station. Specifically, in this study each treatment substation
is paired with a control substation of similar load profile
within a 15 miles radius. Each treatment substation consists
of multiple distribution feeders. Each one of the feeders in
the treatment substation is paired with a feeder in the corre-
sponding control substation. The control feeders are selected
based on the goodness of fit of a series of regression models.
In these regression models, the dependent variable is the
treatment feeders’ electric load and the independent variables
are the feeders’ electric load in the control substation. The
feeder whose electric load serves as the best predictor for the
treatment feeder’s electric load in terms of the goodness of fit
will be selected as the control feeder.

B. Multilevel Regression Models

1) Background and Notations: Multilevel regression mod-
els will be developed in this subsection to estimate PLR,
PV R and CV Ry. A treatment and control substations pair is
selected by the criterion described in Section III.A. Suppose
there are J pairs of treatment and control feeders in the
treatment and control substation pair.

We define the following notations which will be used in the
multilevel regression models. Let ¢ denote hour ¢ during the
testing period. Let U, Tt and V + represent the average electric
load and average voltage magmtude of the jth treatment feeder
in hour t. Similarly, in the corresponding jth control feeder,
U " and V]C; represent the average electric load and average
Voltage magnitude in hour ¢. Let D, denote the CVR operation
status of the treatment feeder. If D; = 1, then the treatment
feeder is operated under CVR in hour ¢. If D; = 0, then CVR
is turned off on the treatment feeder in hour ¢.

Next multilevel regression models will be constructed to
quantify PLR and PV R respectively.

2) Percentage Load Reduction: For each substation, the fol-
lowing multilevel regression model is constructed to estimate
the treatment feeder electric load U JT i

log(U) = Bo + B11og(US ) + B2 Dy + B3,;C ¢ (D
+ B4,jcj7t - Dy + ﬁ57j IOg(Uj%) . Cj7t + GUEt

where C; is the indicator of jth pair of treatment/control
feeders. If the data collected in hour t is from the jth
treatment/control pair, then C;; = 1. Otherwise, C;j; = 0.
eyr, are independent and identically distributed errors with
zero mean. For the identifiability of coefficients, we assume
> B3 > B >.;iBs; = 0. By including the
interactions between C; , and {D,, log(U Jct)} in Equation (1),
we allow the effects of conservation voltage reduction D, and
control feeder load log(U Jct) on the treatment feeder load to
be different in each treatment feeder. The feeder indicators
C.+ are introduced to unify the regression models for different
feeders in the same substation so that we can leverage Equation
(1) to model the entire substation directly instead of fitting a
separate regression model for each feeder. In this way, we
estimate the CVR impact at the substation level with each
feeder as a block factor.

The log transformation is applied on the feeder loads in
Equation (1) so that the regression parameters can be easily
interpreted. For example, the coefficient 52 + (4 ; represents
the impact of CVR on load reduction in the jth treatment
feeder. In order to express PLR; in terms of (2 + (4 ;, we
define two more load time series. Denote UTO" and U Tof 7 as
the average electric load of the jth treatment feeder i 1n hour t
if CVR was turned on and off respectively.

From Equation (1), we have

TO n TO n
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Then, the percentage load reduction on the jth feeder PLR;
due to CVR can be quantified as,

Tors _ prTon
PLR; =100 - 51—t
uyor 3)

=100 [1 — exp (B2 + Bu,;)]

After PLR is calculated for all feeders under the substation,
the percentage load reduction for the treatment substation can
be calculated by Equation (4) below.

J T
PLR = Zj:l(U§ ,fLR]) 4)
25 Uj
where UjT is the average load of the jth treatment feeder. The
PLR at the substation level is calculated as a weighted sum
of individual feeder’s PL R where the weights are the electric
loads of each feeder.

Note that based on the unified model (1), we can also test
if the impacts of CVR on the load reduction varies across
different feeders for each substation. This can be done by
running a statistical test with the null hypothesis that 3, ; = 0
for j =1,...,J.

3) Percentage Voltage Reduction: Similarly, for each sub-
station, the following multilevel regression model is con-
structed to estimate treatment circuit voltage VJTt

log(V},) = bo + br log(V) + b2 Dy + b3 jC (5)
+ b4,jCj)t - Dy + b5ﬁj 10g(‘/7’6;) . Cj}t + EVJTt

where Cj; is the indicator of jth pair of treatment/control
feeders, and €y, are independent and identically distributed
errors with zerd mean. For the identifiability of coefficients,
we assume > bz ;=3 baj =3 bs5;=0.

The log transformation is applied on the feeder voltages in
Equation (5) so that the regression parameters can be easily
interpreted.

Similar to the derivation in the multilevel regression model
for load reduction, the percentage voltage reduction on the jth
feeder PV RR; due to CVR can be quantified as

PVR; =100 - [1 — exp (by + ba ;)] (6)



After PV R is calculated for all feeders under the substation,
the percentage voltage reduction for the treatment substation
can be calculated by Equation (7) below:

J T
PVR = Z]‘l(zvf, V]TDVR]) )
Where VT is the average voltage of the jth treatment feeder.
The PVR at the substation level is calculated as a weighted
sum of individual feeder’s PV R where the weights are the
average voltage of each feeder.

Note that based on the unified model (5), we can test if the
impact of CVR on the voltage reduction varies across different
feeders for each substation. This can be done by running a
statistical test with the null hypothesis that b, ; = 0 for all
i=1.,J.

C. Model Parameter Estimation

The methods for estimating the coefficients in Equations (1)
and (5) are presented in this subsection. Both the ordinary least
squares (OLS) method and robust regression methods will be
discussed.

1) OLS Method: To better explain how to estimate the
model parameters in (1) and (5), we write them in a unified
model

yi = ;B8 + €, (®)
where x; is the observed p x 1 covariate vector, 3 is an
unknown p x 1 vector and the €}s are iid with E(e) = 0.

The most popular and simplest method to estimate 3 is the
OLS estimator which minimizes the sum of squared residuals.
The OLS estimates are given by

Bors = argmmz — 2B)? ©

The OLS estimate ﬁo s has an explicit formula and thus is
simple to compute and use.

2) Robust Regression Method: As explained in Section I,
real-world data most likely contain outliers or problematic
observations. It is widely known that the OLS estimate is
highly sensitive to the outliers that do not follow the rela-
tionship/model assumption of the majority of the data samples.
Even a single outlier can have large effect on the OLS estimate
and may give a misleading result.

A practical method to deal with the outliers is to first remove
them and then apply the OLS to the “clean data”. However,
in most of situations, the outliers can not be fully or easily
identified and some of them may occur due to unexpected
or unknown reasons. One could use the residual plot from
the OLS estimates to identify outliers. However, the OLS
estimates can be severely affected by the outliers and thus
its resulting residuals can not be effectively used to identify
outliers. Due to the masking effect, some outliers might even
have small residuals based on the OLS estimates and thus will
be missed from the residual plot of OLS [10], [11].

We propose to apply the M-estimate [12], which replaces
OLS criterion (9) with a robust criterion, to estimate regression

parameters in the presence of outliers. M-estimate of 3 is given

by the equation below.
n 1
5 _ . yi — ;8
Bm = argmin ;:1 p (& )

where p(-) is called the robust loss function and its derivative
¥(-) = p'(+), is called the influence function. & is an error
scale estimate. One commonly used robust influence function
is called Huber’s v function [13], where

Ye(t) (1)

The value of ¢ = 1.345 is recommended in practice and
provides approximately a 95% relative efficiency when the
error density is normally distributed. Therefore, the Huber’s
M-estimate can provide comparable performance to the OLS
estimate where there are no outliers, but much better perfor-
mance than OLS when there are outliers.

One of the major advantages of the Huber’s M-estimate
(10) over OLS is that it is not necessary to detect outliers
in advance and can be applied to the original source data
directly in the presence of outliers. The Huber’s M-estimate
can downweight the outliers automatically when estimating
the regression coefficients.

Note that B v in (10) is a solution of the following equation

0= Z¢(Ti)wi = Zwﬂ?z(yz — z;3)
i=1 i=1

where r; = (y; — «;3)/6 is standardized residual and w; =
¥(r;)/r;. The weight w; plays an important role in (12) and
can downweight the effect of outliers with suitably chosen v
function. For OLS, w; = 1 since p(t) = 1t* and ¢(t) =
Therefore, OLS can not downweight the effects of outliers.
For Huber’s M-estimate,

w —{ 1
' c/|ril,

Therefore, the weights of Huber’s M-estimate are the same as
those of OLS (equal to 1) for small residuals and are smaller
for larger residuals. In addition, the weights go to 0 when
the residuals go to infinity (Figure 1). Therefore, Huber’s M-
estimate can effectively downweight the effect of outliers and
thus achieve robust parameter estimates. One might also use
some other robust regression methods. See, for example, [14]
for a review of some popular robust regression methods.

(10)

= max{—c¢, min(c, t)}

12)

Iri] < ¢

Iri] > c. (13)

IV. CASE STUDY
A. Data Description

Before Southern California Edison (SCE)’s territory-wide
implementation of CVR, it first started a CVR performance
evaluation project. 5 representative substations are selected as
treatment substations where CVR is implemented and then
turned on and off on a weekly basis. The CVR performance
evaluation project started on August 1, 2016 and ended on June
30, 2017. The 5 representative substations in the treatment
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Figure 1: The weights of Hubers M-estimate as a function of
standardized residuals

group include 28 distribution feeders. According to the control
substations and feeders selection methodology specified in
Section III.A, another 5 substations and 28 feeders are selected
as part of the control group.

Electric load and voltage data are collected from SCADA
and AMI systems. The electric load and voltage information
are aggregated at both distribution feeder and substation levels.
Both OLS estimation method and robust regression method
are leveraged to quantify the impact of CVR on electric load
and voltage at the feeder and substation level. In the OLS
estimation approach, a set of dates specified by the system
operators are excluded from the analysis based on network
reconfiguration schedule and manual identification of outliers.
In the robust regression approach, the M-estimates is leveraged
to automatically identify outliers.

B. CVR Evaluation Results

1) OLS estimation approach: For each of the treatment
and control substation pairs, a set of outliers specified by
the system operators are removed from the analysis. The
coefficients in Equations (1) and (5) are estimated by OLS
estimation based on Equation (9). The estimates for PLR,
PV R and CV Ry of all 5 treatment substations are reported
in Table I. According to the OLS estimation approach, CVR
resulted in 0.766% of voltage reduction and 0.716% of load
reduction on average over the 5 treatment substations. The
CVR factors (CV Ry) of the 5 treatment substations range
from 0.84 to 1.29.

2) Robust regression approach: In the robust regression
approach, we do not manually remove outliers. Instead Huber’s
M-estimate is leveraged to downweight the effect of outliers
automatically. The coefficients in Equations (1) and (5) are
estimated by M-estimates (with Huber’s 1 function) from
Equation (10). The estimates for PLR, PV R and CV R of
all 5 treatment substations are calculated and reported in Table

Table I: PLR, PV R and CV Ry of the Treatment Substations
Estimated by OLS Estimation Approach

Substation | PLR(%) | PVR(%) | CVR;
I 0.59 053 T
2 0.38 0.75 051
3 125 123 1.02
7 0.74 0.58 1.29
5 0.62 0.74 0.84

II. Under the robust regression approach, CVR is expected to
result in 0.746% reduction in voltage and 0.8% reduction in
load. The CVR factors (C'V Ry) of the 5 treatment substations
range from 0.8 to 1.46. The robust regression approach with
Huber’s M-estimate provides reasonable estimates for C'V Ry
for all representative treatment substations. The PLR and
PV R estimates from the robust regression approach are very
similar to that of the OLS estimation approach with manual
outlier removal.

Table II: PLR, PV R and C'V R of the Treatment Substations
Estimated by M-estimate (with Huber’s 1y Function)

Substation | PLR(%) | PVR(%) | CVRy
1 0.64 0.5 1.27
2 0.66 0.73 0.91
3 1.03 1.28 0.8
4 0.86 0.59 1.46
5 0.81 0.63 1.28
o
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Figure 2: Weights of the Huber’s M-estimate for excluded and
remaining data points.

In order to illustrate the usefulness of the robust regression
methods, the weights of the Huber’s M-estimate are depicted
in Fig. 2. As shown in the figure, the weights of the manually
excluded hours are much lower on average than that of the re-
maining hours. Although the manual outlier removal procedure



in OLS estimation excludes some problematic data, it deletes
much more observations than necessary for conservativeness.

In order to evaluate the effectiveness of manual outlier
removal and the M-estimate method, we calculate the propor-
tions of outliers in excluded and remaining data set, respec-
tively. Any observation with a residual |r;| > 3 is considered
as an outlier from Huber’s M-estimate. Based on the estimates
from the robust regression, we found that in most of substa-
tions the proportions of outliers in the excluded data are much
larger than the proportions of outliers in the remaining “clean
data”. For example, in substation 1, the proportion of outliers
in the excluded data from the manual outlier removal step is
7.29%. However, the proportion of outliers in the remaining
“clean data” is only 0.47%. Therefore, the manual outlier
removal procedure did exclude a set of data with a much larger
proportion of outliers. However, there are still some outliers
in the remaining data set after the manual outlier removal
procedure.

3) The Homogeneity Effects of CVR on Electric Load and
Voltage: Based on the unified model (1), we can test whether
the effects of CVR on electric loads are the same across
different feeders of the same substation. One way to check
this is using an F-test. The null hypothesis is Hy : 84,; = 0
for j = 1,..., J. The alternative hypothesis is H,: at least one
Ba,; # 0. Failure to reject Hy means that the effect of CVR
on electric load reduction is the same across all the feeders in
a substation.

The F-test results for the 5 treatment substations are shown
in Table III. As shown in the table with a significance level of
a = 0.05, Hy is rejected only in substation 3 where two (4 ;s
are nonzero. Therefore, the effect of CVR on load reduction
differs by feeders only for substation 3.

Table III: F-test Results for Homogeneity Effects of CVR on
Electric Load in Treatment Substations

Substation | F-test Results | J | F value P-value
1 Fail to Reject | 8 1.2535 0.2693
2 Fail to Reject | 4 1.3108 0.2689
3 Reject Hog 5 3.8351 0.00405
4 Fail to Reject | 5 2.0695 | 0.08193
5 Fail to Reject | 6 1.8467 0.1001

Table IV: F-test Results for the Homogeneity Effects of CVR
on Voltage in Treatment Substations

Substation F-test Results J | F value P-value
1 Reject Ho 8 | 11196 | <2.2x10-16
2 Reject Ho 4] 26945 | <2.2x10716
3 Reject Ho 5 1 63207 | <22x10°16
4 Reject Hy 5 | 43761 | <2.2x 10716
5 Reject Ho 6 48.2 <2.2x10716

A similar F-test was conducted to test the homogeneity
effects of CVR on voltage in all feeders under the same
treatment substations. The F-test results are reported in Table
IV. As shown in the table, the effects of CVR on voltage are
the same across different feeders in every substation.

V. CONCLUSIONS

A multilevel robust regression method with Huber’s M-
estimate is proposed to estimate the impact of CVR on electric
load and voltage reductions at both distribution feeder and
substation level. A real-world CVR evaluation study shows
that the proposed robust regression method can successfully
address the data quality issues by downweighting the outliers
automatically. The CVR evaluation results show that the robust
regression method produces reliable and reasonable estimates
of the percentage load reduction, percentage voltage reduction,
and conservation voltage reduction factor for all treatment sub-
stations. Furthermore, the multilevel model structure is very
flexible in evaluating whether the impacts of CVR on voltage
and electric load are the same across different distribution
feeders of a treatment substation.

In the future, we would like to include the DERs in the
CVR evaluation framework as their penetration level in the
distribution network continues to increase. With access to
granular AMI data, the impacts of CVR on different types
of customers in different hours will be studied in detail. From
the methodology perspective, other robust regression methods
such as LMS estimates and S-estimates will be evaluated and
compared with the proposed M-estimate [14].
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