
Received: 24 February 2018 Accepted: 7 August 2018

DOI: 10.1002/hyp.13265

R E S E A R C H A R T I C L E

Impact of aerosols on reservoir inflow: A case study
for Big Creek Hydroelectric System in California

Farzana Kabir1 Nanpeng Yu1 Weixin Yao2 Longtao Wu3 Jonathan H. Jiang3

Yu Gu4 Hui Su3

1Electrical and Computer Engineering,

University of California, Riverside, Riverside,

California
2Department of Statistics, University of

California, Riverside, Riverside, California
3Jet Propulsion Laboratory, California Institute

of Technology, Pasadena, California
4Joint Institute for Regional Earth System

Science and Engineering and Department of

Atmospheric and Oceanic Science, University

of California, Los Angeles, Los Angeles,

California

Correspondence

Farzana Kabir, Electrical and Computer

Engineering, Suite 343 Winston Chung Hall,

University of California, Riverside, Riverside,

CA 92521-0429.

Email: farzana.kabir@email.ucr.edu

Funding information

California Energy Commission, Grant/Award

Number: EPC-14-064 ; NASA ACMAP; NSF,

Grant/Award Number: AGS-1701526 ; NASA

TASNPP, Grant/Award Number:

80NSSC18K0985

Abstract

Accurate and reliable reservoir inflow forecast is instrumental to the efficient operation of the

hydroelectric power systems. It has been discovered that natural and anthropogenic aerosols

have a great influence on meteorological variables such as temperature, snow water equivalent,

and precipitation, which in turn impact the reservoir inflow. Therefore, it is imperative for us

to quantify the impact of aerosols on reservoir inflow and to incorporate the aerosol models

into future reservoir inflow forecasting models. In this paper, a comprehensive framework was

developed to quantify the impact of aerosols on reservoir inflow by integrating the Weather

Research and Forecasting model with Chemistry (WRF-Chem) and a dynamic regression model.

The statistical dynamic regression model produces forecasts for reservoir inflow based on the

meteorological output variables from the WRF-Chem model. The case study was performed

on the Florence Lake and Lake Thomas Alva Edison of the Big Creek Hydroelectric Project in

the San Joaquin Region. The simulation results show that the presence of aerosols results in

a significant reduction of annual reservoir inflow by 4–14%. In the summer, aerosols reduce

precipitation, snow water equivalent, and snowmelt that leads to a reduction in inflow by

11–26%. In the spring, aerosols increase temperature and snowmelt which leads to an increase

in inflow by 0.6–2%. Aerosols significantly reduce the amount of inflow in the summer when the

marginal value of water is extremely high and slightly increase the inflow in the spring when the

run-off risk is high. In summary, the presence of aerosols is detrimental to the optimal utilization

of hydroelectric power systems.
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1 INTRODUCTION

Hydroelectric power plants play a key role in supporting the integration

of increasing amounts of wind and solar energy as they have high level

of operational flexibility and storage capability. Hydroelectric power

plants take on important responsibilities such as flood control, naviga-

tion, irrigation, agricultural and urban water supply, and recreation in

addition to enhancing the stability of power systems and security of

power supply. Hence, it is important to determine the optimal oper-

ational schedule of single-stage or multistage hydroelectric power

plants. An accurate and reliable reservoir inflow forecast model is in

crucial need to enable optimal and efficient scheduling of hydroelec-

tric resources (Gragne, Sharma, Mehrotra, & Alfredsen, 2015; Madsen,

Richaud, & Pedersen, 2009; Valipour, Banihabib, & Behbahani, 2013).

Typically, the river run-off in the Sierra Nevada region are highly

influenced by meteorological variables such as temperature, precip-

itation, and snow water equivalent (SWE) (Cayan, Riddle & Aguado,

1993). Because the reservoir inflows of this region are generated by

the run-off captured by the reservoirs, therefore, these meteorological

variables can be used as explanatory variables in reservoir inflow fore-

cast models. In the past decade, researchers have discovered that the

presence of aerosol particles in the atmosphere can exert great influ-

ence on the hydrological cycle in a region through the meteorological

variables (Barnett, Adam, & Lettenmaier, 2005; Lohmann, 2005; Qian,

Gustafson, Leung, & Ghan, 2009; Ramanathan et al., 2001).

Aerosols are a mixture of tiny particles or liquids that are suspended

in air and can range from 0.001 to 10 𝜇m in size. A discussion on impact

of aerosols on temperature, SWE, and precipitation has been provided
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in Section 6. A detailed description of effect of aerosol on precipitation

and snow water equivalent in California is provided in Wu et al. (2018).

Wu et al. (2018) showed that aerosols reduce precipitation and SWE

by 10% over mountain tops in the Sierra Nevada region. This is a

result of (both anthropogenic and naturally occurring) aerosols serving

as cloud condensation nuclei (CCN), which leads to an increase of

nonprecipitating clouds. CCN are aerosol particles that act as the

initial sites for condensation of water vapour into cloud droplets.

Aerosol deposition on snow increases absorption of solar radiation,

leading to warming and further reduction of SWE over mountain

tops. As the level of anthropogenic aerosol particles (such as sulfate

and carbonaceous aerosols) increases rapidly from preindustrial times

to the present-day over urban and industrial regions, their impact is

becoming more significant on the hydrological cycle and thereby on

reservoir inflow (Charlson, Langner, Rodhe, Leovy, & Warren, 1991;

Charlson et al. 1992; Lohmann, 2005; Schwartz, 1996). It is critical to

understand and quantify the impact of aerosols on reservoir inflow as

it can influence hydropower generation and reservoir operations. It

should be mentioned that the atmospheric lifetime of aerosols is very

short, typically 2 to 4 days, making their effect on climate and weather

more regional and less persistent into the future than those of the

long-lived greenhouse gases (Hansson & Bhend, 2015; Verheggen &

Weijers, 2010). Aerosols show large spatial and temporal variation

in atmospheric aerosols concentrations and properties. Therefore,

there are large differences in their effect on climate and weather

on a regional basis (Hansson & Bhend, 2015; Penner et al., 2001;

Ramachandran & Cherian, 2008; Regayre, et al., 2015; Samset, 2018;

Verheggen & Weijers, 2010). Because inflows into the reservoirs are

influenced by climatic variables, the impact of aerosols on reservoir

inflows should also vary from region to region and should therefore

be studied on a regional scale.

The primary objective of this paper is to fit a reservoir inflow

forecast model and subsequently quantify the impact of aerosols on

inflows into Florence Lake and Lake Thomas Alva Edison in the Big

Creek Hydroelectric System. Because Florence Lake and Lake Edison

are the higher elevation reservoirs of the system, an accurate fore-

cast of inflow into these reservoirs can also improve the operational

efficiency of the system greatly. The Big Creek Hydroelectric System

resides in the San Joaquin Valley, which is surrounded by the Sierra

Nevada mountain range in the east. San Joaquin Valley has one of the

highest pollutant concentrations in the United States due to its unique

geographical location. A detailed description of the study area is pro-

vided in Appendix B. Autoregressive integrated moving average model

(ARIMA) is a well-known univariate time series model frequently used

in hydrological forecasting. ARIMA models can predict a time series

variable based on its own past values (AR term) and past values of

the error term (MA term). Including exogenous variables in ARIMA

model improves forecasting accuracy and is commonly known as ARI-

MAX model or dynamic regression model. In this paper, we first fit a

statistical hydrologic model with dynamic regression method where

meteorological variables such as temperature, precipitation, and SWE

are used as explanatory variables. The best parsimonious dynamic

regression model is selected using the Akaike information criterion

(AIC), residual diagnostics and goodness of fit. Meteorological vari-

ables are then simulated using the Weather Research and Forecasting

model with Chemistry (WRF-Chem) with different aerosol emission

levels. These simulated meteorological variables with and without

aerosol impacts are fed into the dynamic regression model to quantify

the impact of aerosols on reservoir inflow in the Big Creek Hydro-

electric System. Detailed analysis of aerosol impacts on temperature,

precipitation and SWE in California is not the objective of this study

since it has been provided in Wu et al. (2018).

The unique contributions of this paper are listed as follows.

1. We developed an innovative and comprehensive framework for

evaluating the impact of aerosols on reservoir inflow. The frame-

work seamlessly integrates the numerical weather forecasting

model (WRF-Chem) and the statistical inflow forecasting model

(dynamic regression).

2. We fitted a dynamic regression model to forecast daily inflow

into the hydroelectric reservoirs. The model coefficients for

the meteorological variables provide an intuitive understanding

of how temperature, precipitation, and snow water equivalent

influence reservoir inflow.

3. We quantified the impact of aerosols on reservoir inflow in the

Big Creek Hydroelectric System based on the proposed dynamic

regression model and WRF-Chem model. The simulation results

show that the presence of aerosols resulted in a reduction of

the annual reservoir inflow by 4–14%.

The existing research on the effect of climate change and human

activities on streamflow (Gleick & Chalecki, 1999; Knowles & Cayan,

2002; Lettenmaier & Gan, 1990; VanRheenen, Wood, Palmer, &

Lettenmaier, 2004) and inflow into reservoirs (Brekke, Miller, Bashford,

Quinn, & Dracup, 2004) in the San Joaquin Basin focus on the effect of

carbon dioxide and several other greenhouse gases. There are very few

literature studying the effect of natural and anthropogenic aerosols

on streamflow and reservoir inflow (Givati & Rosenfeld, 2007). Our

study focuses on exploring the impact of aerosols on inflow at the Big

Creek Hydroelectric System located in the upper San Joaquin River

system in the Sierra Nevada Mountains of Central California.

The remainder of the paper is organized as follows. Section 2

summarizes existing studies on statistical inflow forecasting models

and discusses the rationality of choosing dynamic regression model.

Section 3 presents the overall framework of our study. Section 4

presents the technical methods used in fitting the dynamic regression

model to forecast reservoir inflow and the WRF-Chem model. Section

5 describes steps of fitting the dynamic regression model and their

goodness of fit. Section 6 shows the evaluation of the WRF-Chem

model and the impact of aerosols on inflow into the two hydropower

reservoirs. Section 7 concludes the paper by discussing the direction

of future research and limitations of the study. A list of acronyms

used in this study is provided in Appendix A. Appendix B describes the

study area. Lastly, Appendix C provides an overview of the dynamic

regression model and a description of the methods used in fitting

the model.

2 LITERATURE REVIEW
This section presents a review of research articles relevant to this

paper, which can be grouped into two categories: (a) statistical inflow

forecasting models and (b) impact of aerosols on reservoir inflow.
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2.1 Statistical inflow forecasting models

The existing models for hydrological modelling and forecasting can be

separated into three groups: time series models (Moeeni, Bonakdari,

Fatemi, & Zaji, 2017; Mohammadi, Eslami, & Dardashti, 2005;

Papamichail & Georgiou, 2001; Valipour et al., 2013; Valipour, 2015),

regression models (Galeati, 1990; Lall & Bosworth, 1994; Mohammadi

et al., 2005), and artificial neural network (ANN) models (Coulibaly,

Anctil, & Bobée, 2000; Jain, Das, & Srivastava, 1999; Kilinç & Ciğizoğlu,

2005; Mohammadi et al., 2005; Valipour et al., 2013; Xu & Li, 2002).

Mohammadi et al. (2005) compared regression, ARIMA, and ANN

models to forecast spring inflows into the Amir Kabir reservoir in

the Karaj watershed. Valipour et al. (2013) compared ARMA, ARIMA,

and the autoregressive ANN models to forecast monthly inflows of

the Dez dam reservoir. Both of these studies chose ANN as the best

model. Moeeni et al. (2017) compared SARIMA (seasonal ARIMA)

and ANN-GA (ANN combined with genetic algorithm) models in mak-

ing short-term and long-term predictions of monthly inflow into a

dam where SARIMA model outperformed the ANN-GA model, espe-

cially in forecasting low values. Papamichail and Georgiou (2001)

used stochastic SARIMA model to forecast monthly inflow of one or

more months ahead into the planned Amopeos Reservoir in Northern

Greece which helped evaluate the optimal real time reservoir opera-

tion policies. The monthly forecasts were used to generate a synthetic

series of monthly inflows that preserves the key statistics of the

historical monthly inflows and their persistence Hurst coefficient, pro-

viding a probabilistic framework for reservoir design. Monthly means

and the monthly standard deviations of the forecasted inflows were

close to that of the measured inflows demonstrating the ability of

SARIMA models to forecast monthly inflows and generate synthetic

series of monthly inflows. Valipour (2015) investigated SARIMA and

ARIMA models for long-term run-off forecasting in the United States.

They found SARIMA model to be the best model in their study with

an error of < 5% for all states. Therefore, ARIMA model can be con-

sidered as an effective tool for forecasting reservoir inflow. Including

exogenous covariates in ARIMA model helps explain the dynamic rela-

tionship between the response time series and the explanatory variable

time series and improve forecast accuracy. This is called a dynamic

regression model. Dynamic regression model is also referred to as

ARIMAX model.

For time series data, using dynamic regression model is preferred

over ordinary regression because some of the underlying assumptions

of regression model, for example, normal distribution, homoscedas-

ticity and no autocorrelation of error terms, are frequently violated

when being applied to time series data (Makridakis, Wheelwright, &

Hyndman, 2008). Applying the ARIMA modelling approach to model

the information contained in the error term of the regression model can

take care of its autocorrelation. The transfer function in the dynamic

regression model captures the time-lagged relationship of input vari-

ables and the predictor variable. Therefore, the dynamic regression

model can also be thought of as a regression model with time-lagged

inputs and ARIMA model for disturbances. Lastly, though ANN mod-

els might improve forecast accuracy, it is challenging to interpret the

impact of aerosols on inflow by examining the weights on the mete-

orological input variables. In the light of all these considerations, we

decided to adopt the dynamic regression model to forecast inflow into

the hydropower reservoirs.

2.2 Impact of aerosols on hydrology

The presence of aerosol articles have impact on the hydrological

cycle through its impact on earth's radiative forcing, precipitation

and snow water equivalent (Barth et al., 2005; Lohmann, 2005;

Ramanathan, Crutzen, Kiehl, & Rosenfeld, 2001). It has been shown

that an increase in atmospheric aerosols primarily affects solar

radiation entering earth's atmosphere, snow albedo, cloud forma-

tion, and precipitation. Aerosol effects can be differentiated in

three pathways—aerosol-radiation interaction (ARI) or direct effect,

aerosol-snow interaction (ASI), and aerosol-cloud interaction (ACI) or

indirect effect. Reflective aerosol particles, such as nitrate and sulfate

particles, scatter the solar and thermal radiation and increase plane-

tary albedo cooling both surface and atmosphere (Andreae, Jones, &

Cox, 2005; Charlson & Schwartz, 1992; Haywood & Boucher, 2000;

Johnson, Shine, & Forster, 2004; Kaufman, Tanré, & Boucher, 2002;

Kiehl & Briegleb, 1993; Penner et al., 2006; Quaas, Boucher, Bel-

louin, & Kinne, 2008). However, light-absorbing aerosols, such as black

carbon absorb radiation known as LAA, decrease planetary reflec-

tivity and increase air temperature (Jacobson, 2001; Johnson et al.,

2004). Presence of soot particles and dust in snow darkens the sur-

face and reduces the snow albedo through ASI (Chýlek, Ramaswamy,

& Srivastava, 1983; Clarke & Noone, 1985; Doherty, Warren, Gren-

fell, Clarke, & Brandt, 2010; Flanner, Zender, Randerson, & Rasch,

2007; Grenfell, Light, & Sturm, 2002; Hansen & Nazarenko, 2004;

Jacobson, 2004; Lee-Taylor & Madronich, 2002; Marks & King, 2013;

2014; Reay, France, & King, 2012; Warren, 1984; Warren & Clarke,

1990; Wiscombe & Warren, 1980; Ye etal., 2012). Snow albedo

perturbations increase the surface air temperature and accelerate

snowmelt (Barnett, Adam, & Lettenmaier, 2005; Flanner et al. 2007;

Hansen & Nazarenko, 2004; Lau, Kim, Kim, & Lee, 2010; Ming et

al., 2009; Qian, Gustafson, Leung, & Ghan, 2009; Wiscombe & War-

ren, 1980; Xu et al., 2009). Further reduction of snow albedo takes

place by snow albedo feedback (Brandt, Warren, & Clarke, 2011;

Flanner et al. 2007; Hadley & Kirchstetter, 2012; Hansen & Nazarenko,

2004). Snow grain size, shape, and Black carbon-snow mixing type also

play important roles in ARI (He et al, 2017; Kokhanovsky, 2013; Liou

et al., 2014; Räisänen, Makkonen, Kirkevåg, & Debernard, 2017; Wis-

combe & Warren, 1980). Internal mixing of light-absorbing aerosols

and snow reduces snow albedo more than external mixing, which

enhances the aerosol-induced snow albedo reduction. Nonspherical

snow grains tend to show less aerosol-induced snow albedo reduc-

tions compared with spherical snow grains. These two opposite effects

on snow albedo reductions by light-absorbing aerosols may further

influence snowmelt and SWE and have merit for in-depth studies (He

et al., 2017; He, Liou, & Takano, 2018; Liou et al., 2014).

ACI or indirect effect of aerosols on climate includes a change in

microphysical and optical properties of cloud droplets, which is related

to aerosols acting as CCN. Increasing the number concentration of

CCN can lead to formation of more cloud droplets, which results in a

decrease in cloud droplet radius leading to higher cloud albedo (Jones,

Roberts, & Slingo, 1994; Twomey, 1974, 1991). Another effect of
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decrease in cloud droplet size is the reduced precipitation through the

‘‘second indirect effect’’ (Ramanathan et al., 2001; Rosenfeld, 2000).

This is due to the fact that small water droplets continue to drift in air

and are less likely to grow to sufficient size to fall out as precipitation

prolonging cloud lifetime (Ackerman, Kirkpatrick, Stevens, & Toon,

2004; Albrecht, 1989; Kaufman, Koren, Remer, Rosenfeld, & Rudich,

2005; Rosenfeld, 2000). Higher cloud reflectivity and increase in cloud

lifetime also produce a net cooling effect on earth's surface by shading

it from solar radiation. Absorptive aerosols can reduce low-cloud

cover through the ‘‘semidirect effect’’ (Hansen, Sato, & Ruedy, 1997;

Johnson et al., 2004) leading to positive radiative forcing. Glaciation

aerosol effect is a possible counteracting effect where an increase

in ice nuclei by anthropogenic aerosols (mineral dusts and a fraction

of hydrophilic soot particles) acting as ice nuclei causes supercooled

liquids to freeze (Lohmann, 2002; Lohmann & Feichter, 2005). The ice

crystals quickly grow at the expense of cloud droplets because the

vapour pressure over ice is lower than that over water, leading to more

frequent glaciation of supercooled clouds. The precipitation formation

via the ice phase is more efficient than in warm clouds, and therefore,

the glaciated clouds have a shorter lifetime than supercooled water

clouds leading to more precipitation. Chemical nature of the dust

determines whether glaciation or warm cloud lifetime effect is larger.

Borys, Lowenthal, Cohn, and Brown (2003) showed that the smaller

mean droplet size in supercooled cloud caused by anthropogenic

aerosols can significantly reduce ice particle riming efficiencies in mid

altitude orographic clouds, resulting in lower orographic snowfall rates.

2.2.1 Impact of aerosols on water resources

Surface run-off is a major component of the hydrological cycle. It is

defined as water from precipitation, snowmelt, or other resources that

flows over the land surface. Few studies were conducted to examine

the impact of anthropogenic aerosols on water resources. Painter et

al. (2010) studied the effect of dust radiative forcing on snow and

run-off from the Upper Colorado River Basin. Disturbance of soil

surfaces in the Colorado Plateau and biological crusts occurred in

mid-1800s due to dramatic growth in grazing, agriculture and resource

exploration. They used the Variable Infiltration Capacity model with

postdisturbance and predisturbance impacts of dust on snow albedo

and estimated the impact on run-off from the Upper Colorado River

Basin from 1996 to 2003 at Lees Ferry, Arizona. Dust loading observed

in 2005–2008 was used in the study. They found that the resulting

short duration of snow covers leads to a 3-week early peak run-off and

a decreased annual run-off (5%) due to increase in evotranspiration

from earlier loss of snow cover. The magnitude of difference in run-off

increased with the magnitude of the annual run-off. A follow-up of

the study was performed by Deems, Painter, Barsugli, Belnap, and

Udall (2013) developing a new snow albedo decay parametrization

based on observations of levels of dust loading in 2009–2010 as they

were unprecedentedly high, being on the order of five times that of

2005–2008. The extreme dust scenario caused the peak snowmelt to

occur an additional 3 weeks earlier and further reduced the annual

inflow by 1%.

In addition to studying the impact of the deposition of soot aerosol

on snow and the resulting impact on snowpack, Qian et al. (2009)

also studied its effect on the hydrological cycle in the western United

States. They performed a yearlong simulation of WRF-Chem to sim-

ulate an annual cycle of soot aerosol deposition on snow and used it

to estimate snow albedo perturbations induced by the soot within the

western United States. This was followed by three regional climate

simulations at Columbia River Basin, the Sacramento-San Joaquin

River Basin, the Central Rockies, and the Sierra Nevada mountains.

They used WRF in meteorology only mode (WRF-RCM) to capture

precipitation, snowpack, and run-off, but with or without the per-

turbed snow albedo. They found that snow albedo reduction and the

snow albedo feedback accelerated snowmelt and altered the stream-

flow that includes a trend towards earlier melt dates. In western

United States, the main contribution to total run-off during winter is

surface run-off generated by liquid rain. During spring, both precipita-

tion and snowmelt contribute to run-off. As a result of warming in the

soot-perturbed simulation, there are significant reductions in snow-

pack during the snowy winter period, which are reflected in reduced

snow accumulation and more run-off during winter and less snow

melt during spring. Run-off increases during late winter because the

higher surface temperature in the soot-perturbed simulation causes

more precipitation to come in the form of rain rather than snow. By

contributing directly to run-off or by causing snowmelt, a higher per-

centage of rainfall versus snowfall during the cold season increases

run-off. As less snow accumulates during winter, run-off as a result

of snowmelt decreases during late spring. Qian, Flanner, Leung, and

Wang (2011) used a global climate model to simulate the effect of

black carbon and dust in snow on the hydrological cycle of the Tibetan

Plateau. They found that surface air temperature increased by around

1◦C averaged over the Tibetan Plateau and the spring snowpack was

reduced due to the presence of black carbon and dust in snow. This

had a significant impact on the hydrology, with the discharge increas-

ing during late winter and early spring and decreasing during late

spring and early summer showing a trend towards earlier melt dates.

Matt, Burkhart, and Pietikäinen (2018) developed a snow algorithm

that allowed for the deposition mass flux of difference species of

light-absorbing aerosols as an input variable for application in a

rainfall–run-off model allowing determination of the effect of various

light-absorbing aerosols at the catchment scale. They demonstrated

the effect of black carbon deposition on snow on the hydrologic cycle

through the implications for snowmelt and discharge generation on a

remote southern Norwegian catchment over a period of 6 years. Their

results indicate a significant impact of black carbon in snow at the

catchment with run-off increasing in the spring followed by a decrease

in discharge because of a trend towards earlier melt date and decrease

in the catchment's snow-covered area.

Givati and Rosenfield (2004, 2005) quantified the suppression of

orographic precipitation by anthropogenic aerosols over hills down-

wind of major coastal urban areas in California and Israel and

subsequently extended it in Givati and Rosenfeld (2007) to study the

impact of anthropogenic aerosols on available water resources in the

Sea of Galilee in northern Israel and outflows of the main springs

of Jordan River where large portion of water resources result from

orographic precipitation. In Givati and Rosenfield (2004, 2005), they

defined the suppression of orographic precipitation as a reduction in

the orographic enhancement factor Ro , where Ro is defined as the

ratio between the precipitation amounts in the hills to the precipi-
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tation in the upwind lowland. Time series of Ro from 1880 to 2000

based on annual precipitation from rain gauges downwind of major

urban areas was compared with rain gauges sidewind of the area. A

decrease in Ro with time at locations downwind of air pollution sources

was explained by the increase in small-particulate air-pollution emis-

sions with the growth of urban areas. The suppression rate was found

to be 15–20% in hilly areas in California and Israel. Such decreas-

ing trend was not found in hills downwind of pristine areas. They

applied this methodology in Givati and Rosenfeld (2007) to measure

trends of the ratio of annual precipitation between hilly to upwind

lowland rain gauges and subsequently quantified the trend in oro-

graphic precipitation in the catchment areas. Then, they related it to

trends in run-off and spring outflows by examining the relation of the

trends of the spring outflow and the recharging area of the springs,

thereby correlating the loss of precipitation to loss of overall water

inflow. They concluded that, air pollution is the main reason behind

the suppression of orographic precipitation over the hilly areas and

the subsequent decreasing trend in the available water in the Sea

of Galilee.

These studies of impact of aerosols on hydrology focuses only

on one of the aerosol sources or pathway and few focus on reser-

voirs. Our study presents a complete account of the aerosol impacts

from different sources through three pathways on two hydropower

reservoirs in the Sierra Nevada region of California.

3 FRAMEWORK

This study aims at quantifying the impact of aerosol particles on

inflow into Florence Lake Reservoir and Lake Thomas Alva Edison

and calculating daily inflow forecasts for these two reservoirs. A

dynamic regression model was fitted to forecast the inflow that uses

meteorological variables like daily mean temperature, accumulative

snow water equivalent, and incremental precipitation as explanatory

variables. Observed inflow data and observed meteorological vari-

ables data were split into a training set and a test set. Test set

was formed by withholding the data for the last water year from

the model identification and estimation process, and the rest are

used as the training set. The training data set was used to esti-

mate the model parameters. The forecasting accuracy of the model

was assessed by performing out-of-sample forecasting on the test

set. Forecasts of the predictor variables considering the impact of

aerosols on regional climate were calculated in the San Joaquin Val-

ley of California using a version of Weather Research and Forecasting

model with Chemistry (Grell et al., 2005; Zhao et al., 2014) with

fully coupled aerosol-meteorology-snowpack. Meteorological variable

forecasts without the impact of aerosols were also calculated for the

same region. Both forecasts were used as respective test sets for cal-

culating inflow forecasts with and without impact of aerosols. Yearly

and seasonally aggregated inflow forecasts were then compared with

an aim to quantify the impact of aerosols on inflow into Lake Edi-

son and Florence Lake. The procedure is summarized schematically in

Figure 1.

4 TECHNICAL METHODS

4.1 Dynamic regression model
A dynamic regression model or ARIMAX model (Pankratz, 1991) uses

time-lagged explanatory variables to forecast the dependent variable

while modelling the error term with an ARIMA model (Box, Jenkins,

Reinsel, & Ljung, 2015). Reasons for choosing dynamic regression

model were discussed in Section 2. The model can be written as

Equation 1.

Yt = 𝜇 +
M∑

i=1

𝜔i (B)
𝛿i (B)

Bbi Xi,t +
𝜃 (B)
𝜙 (B)

at, (1)

Yt = dependent variable

Xi,t = ith explanatory variable

𝜔i (B) = numerator polynomial of the transfer function

𝛿i (B) = denominator polynomial of the transfer function

bi = dead time for input Xi,t

B = backshift operator

𝜙 (B) = autoregressive operator

𝜃 (B) = moving-average operator

at = white noise.

We conducted model fitting by applying relevant theory to choose

the input variables and then following standard methodology for

fitting dynamic regression models. The linear transfer function (LTF)

method suggested by Pankratz (1991) was applied here to specify

the transfer functions, and the methodology described by Box et al.

(2015) was applied to determine ARMA order of the error time series.

Finally, the coefficients of the entire model were estimated, and

the model was checked for adequacy. An overview of the dynamic

regression model and linear transfer function method is provided

in Appendix C.

4.1.1 Performance metrics

Out-of-sample forecasting was performed to assess the forecasting

accuracy of the model (Makridakis et al., 2008). Some of the sample

data at the end of the time series were withheld as the test data set.

They were not used in the model identification and estimation process.

The fitted model was used to forecast the response variable. Root

mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe

efficiency (NSE), a modified version of NSE (Garrick, Cunnane, &

Nash, 1978; Legates & McCabe Jr., 1999), percent bias (PBIAS),

and RMSE-observations standard deviation ratio (RSR; Moriasi et al.,

2007) were used as accuracy metrics to evaluate the performance

of the proposed model and the benchmark models introduced in

Section 5.4.2.

Moriasi et al. (2007) used three quantitative statistics, for model

evaluation, namely Nash-Sutcliffe efficiency (NSE), percent bias

(PBIAS), and RMSE-observations standard deviation ratio (RSR). In

addition to the above three statistics, we used a modified version of

NSE proposed by Garrick et al. (1978) and Legates and McCabe Jr.

(1999) for model evaluation.

MAE and RMSE

RMSE and MAE values signify the goodness of fit of the forecast to

the observed inflow and hence can evaluate the performance of the

dynamic regression model.

RMSE =

√√√√ n∑
i=1

(
Yfi − Yoi

)2

n
, (2)
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FIGURE 1 The overall framework for quantifying the impact of aerosols on reservoir inflow

MAE =
n∑

i=1

||Yfi − Yoi
||

n
. (3)

Here, i denotes the day in a water year, Yfi represents the forecasted

inflow on day i, Yoi denotes the observed inflow on day i, and n is the

number of days in the water year.

NSE and modified NSE

The Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe 1970) is the

most widely used indicator in hydrology because of its flexibility to

apply to different types of mathematical models and intuitive inter-

pretability (McCuen, Knight, & Cutter, 2006; Ritter & Muñoz-Carpena,

2013; Schaefli & Gupta, 2007). It has been used widely in streamflow

and run-off predictions (Criss & Winston, 2008; Krause, Boyle, & Bäse,

2005; Li, Luo, Jiang, Wan, & Li, 2017; Moriasi et al., 2007; Noh et al.,

2016; Schaefli & Gupta, 2007). It is a normalized measure comparing

the mean square error generated by a model simulation to the variance

of the observed values. NSE effectively compares the performance of

a particular model to a simple model that uses mean of the observed

values as prediction. NSE ranges from minus infinity to 1, with higher

values indicating better forecast.

NSE = 1 −

N∑
i=1

(
Yoi − Yfi

)2

N∑
i=1

(
Yoi − Ȳo

)2

. (4)

Here, Ȳo is the mean of the observed inflow of the test period. Several

researchers have suggested modifications to the NSE owing to its lim-

itations, such as using mean of the observations as the baseline model

and possible effect of outliers on NSE (Garrick et al., 1978; Krause

et al., 2005; Legates & McCabe Jr., 1999; Oudin, Andréassian, Math-

evet, Perrin, & Michel, 2006). Garrick et al. (1978) termed the use of

mean of observed values as primitive, and proposed using the daily

mean value of the predictor variable for the calibration period so that

the baseline model can indicate seasonal variation of the predictor

variable. This modification of NSE is also recommended by the World

Meteorological Organization (1986). Schaefli and Gupta (2007) rec-

ommends using benchmark models appropriate to the particular case

study. The modified NSE or benchmark efficiency (BE) indicates per-

formance improvement of the hydrologic model over the benchmark

model and can be written as

BE = 1 −

N∑
i=1

(
Yoi − Yfi

)2

N∑
i=1

(Yoi − Ybi)2

. (5)

Here, Ybi represents the forecasted inflow on day i by the benchmark

model. Because NSE is calculated by squaring the deviations between

observation and model-calculated values, it is sensitive to extreme val-

ues leading to misevaluation of model performance (Criss & Winston,

2008; Krause et al., 2005; Legates & McCabe Jr., 1999; Willmott,

Robeson, & Matsuura, 2012). Legates and McCabe Jr. (1999) pro-

posed NSE
′
, a modification of NSE using absolute values instead of

squared deviation reducing the effect of squared terms. In Legates and

McCabe (2012), they maintain the recommendation of NSE and NSE
′

because of their intuitive interpretability and having a fundamental

meaning at zero. In general, NSE
′

has a lower value than NSE.

NSE = 1 −

N∑
i=1

(
Yoi − Yfi

)2

N∑
i=1

(
Yoi − Ȳo

)2

. (6)

PBIAS

Percent bias (PBIAS) measures the average tendency of the simulated

data to be larger or smaller than their observed counterparts (Gupta,

Sorooshian, & Yapo, 1999). Optimal value of PBIAS is 0 with low

magnitude values indicating accurate model simulation. Positive values

indicate model underestimation bias and negative values indicate

model overestimation bias.

PBIAS =

N∑
i=1

(
Yoi − Yfi

)
× 100

N∑
i=1

Yoi

. (7)
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RSR

RSR standardizes RMSE using the observation standard deviation

and is calculated as the ratio of the RMSE and standard deviation

of measured data with lower RSR indicating better model prediction

performance.

RSR = RMSE
STDEVobs

= 1 −

√√√√ N∑
i=1

(
Yoi − Yfi

)2

√√√√ N∑
i=1

(
Yoi − Ȳo

)2

. (8)

4.2 WRF-Chem model

The WRF-Chem model (Grell et al., 2005) is a weather research and

forecasting system that simulates chemistry and aerosols simultane-

ously with meteorology. This model has been extensively used to

study regional air quality and their interactions with weather and cli-

mate (e.g., Barnard, Fast, Paredes-Miranda, Arnott, & Laskin, 2010;

Chapman et al., 2009; Fast et al., 2014; Fast et al., 2012; Qian et al.,

2009; Wu, Su, & Jiang, 2011a; 2011b; 2013; Wu et al., 2017; Wu

et al., 2018; Zhao et al., 2010; Zhao et al., 2013; Zhao et al., 2014).

In this study, we used the WRF-Chem version 3.5.1 which includes

aerosol interactions with radiation, cloud and snowpack (Zhao et al.,

2014). In the WRF-Chem control (CTRL) experiment, the model is run

at 4 km horizontal resolution with the model domain covering Cal-

ifornia and surrounding regions. The major components of aerosols

(nitrate, ammonium, elemental carbon, primary organic matter, sul-

fate, sea salt, dust, water, and other inorganic matter) are simulated in

the model along with their physical and chemical processes. Anthro-

pogenic aerosol emissions are obtained from US EPA 2005 National

Emissions Inventory (NEI05; US EPA, 2010). Aerosol emissions com-

prise SO4, NO3, EC, organic aerosols, and total PM2.5 and PM10

masses. Anthropogenic emissions are updated every hour to account

for diurnal variability. However, their seasonal variation is not con-

sidered in the simulation. Biogenic emissions are calculated online

using the Model of Emissions of Gases and Aerosols from Nature

(Guenther et al., 2006). Biomass burning emissions are obtained from

the Global Fire Emissions Database version 2.1, with 8-day temporal

resolution and monthly updates (Environmental Sciences Division, O.

R. N. L., 2013). However, year-to-year variability in biomass burning

aerosols is not taken into account. Dust emissions are calculated using

the DUST TRANsport model scheme (Shaw, Jerry Allwine, Fritz, Rutz,

Rishel, & Chapman, 2008) following Wu et al. (2017). Sea salt emis-

sions are derived from the PNNL-updated sea salt emission scheme

that includes the correction of particles with a radius less than 0.2

𝜇m (Gong, 2003) and dependence on sea surface temperature (Jaeglé,

Quinn, Bates, Alexander, & Lin, 2011).

To derive aerosol optical properties (e.g., extinction, single-

scattering albedo, and the asymmetry parameter for scattering)

as a function of wavelength, Mie calculations (Ghan et al., 2001) are

used. ARI is included in the shortwave and longwave radiation schemes

(Fast et al., 2006; Zhao, Liu, Ruby Leung, & Hagos, 2011). ACI is

effectively simulated in WRF-Chem (Chapman et al., 2009) by linking

simulated cloud droplet number with shortwave radiation and micro-

physics schemes. In this version of WRF-Chem (Zhao et al., 2014),

aerosol snow interaction is implemented by considering the deposition

of aerosol on snow and the subsequent radiative impacts through the

SNICAR (SNow, ICe, and Aerosol Radiative) model (Flanner & Zender,

2005; 2006). The Morrison double-moment microphysics scheme

(Morrison, Thompson, & Tatarskii, 2009), rapid radiative transfer

model for general circulation models model shortwave and longwave

radiation schemes (Iacono et al., 2008), and Community Land Model

Version 4 land surface scheme (Lawrence et al., 2011) are the physics

parametrizations used in the simulations. The Yonsei University plan-

etary boundary layer scheme (Hong, Noh, & Dudhia, 2006) is used in

the simulations. The initial and boundary conditions are provided by

the European Center for Medium-Range Weather Forecasts Interim

Re-Analysis (Dee et al., 2011) for meteorology and the global Model

for Ozone and Related chemical Tracers, version 4 (Emmons et al.,

2010) for chemistry. Wu et al. (2018) showed that the model sim-

ulations reproduced the spatial and temporal variation of observed

precipitation well. More details of the model set-up can be found in

Wu et al. (2018).

Wu et al. (2017, 2018) evaluated the model performance on simu-

lating aerosols and meteorological variables in California. It has been

shown that the model reasonably captures the distribution and sea-

sonal variability of aerosols from October to June but underestimates

aerosols from July to September. Because precipitation, snowpack,

and inflow are mainly within October–June, the underestimation of

aerosols in July–September has limited impacts on our results. The

model reproduced the seasonal variations of temperature, precipita-

tion, and SWE in California with some overestimation of temperature

and SWE. In a CLEAN simulation, we turned off local aerosol emis-

sions and set aerosols from boundary conditions as zero, but kept

chemical components from boundary conditions with aerosol chem-

istry on. The CCN in the CLEAN experiment was on the order of 10

cm−3, representing a clean environment. The simulations of clouds,

precipitation, and radiation are reasonable in the CLEAN run. Thus,

meteorological variables from the WRF-Chem CTRL and WRF-Chem

CLEAN simulations represent conditions with and without consider-

ing impact of aerosols, respectively. Aerosol impacts on temperature,

precipitation, and SWE were investigated in Wu et al. (2018) and

discussed in Sections 1 and 6.

5 FITTING INFLOW FORECASTING MODEL

In this section, we explain how to fit the dynamic regression model to

forecast reservoir inflow of Florence Lake and Lake Edison, which are

part of the Big Creek Hydroelectric Project in California.

5.1 Data description

The data set contains the daily average reservoir inflow in cu ft/s

for five consecutive water years 2010–2014. A water year or a

hydrological year is a 12-month period between October 1 of one year

and September 30 of the next year. To predict the reservoir inflow, we

collected the meteorological data such as the daily air temperature,

SWE, and incremental precipitation data from the website of California
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FIGURE 2 Study area with grid box and weather stations identified.
Snow depth distribution averaged over water year 2013 is overlaid
on the map

data exchange centre. Data for meteorological variables, inflow, and

WRF-Chem simulations used in this study can be found in Department

of Water Resources, C. (2017). The meteorological data were collected

and averaged over three weather stations of Kaiser Point (KSP),

Volcanic Knob (VLC), and Upper Burnt Corral (UBC) located within

the 0.4 × 0.4◦ grid box with centre at (37.32 ◦ N, −118.97◦ E). The

study area with the grid box is shown in Figure 2 with the snow depth

distribution map averaged over water year 2013 overlaid on it. The

observations of these meteorological variables are plotted in Figure 3.

5.2 Predictor/variable selection

Selection of appropriate predictors or explanatory variables is essential

for accurate forecast and simple model interpretation. The inflows

are generated by the run-off captured by the reservoirs from the

San Joaquin River. Streamflow in the Sierra Nevada region has high

correlation with temperature, SWE, and precipitation (Cayan et al.,

1993). Therefore, these three variables were included in the model to

forecast the inflow.

Being a mountainous region, run-off in the Sierra Nevada region is

dominated by snowmelt. Maximum run-off in the San Joaquin water-

shed occurs during the snowmelt run-off period (April–July; Serreze,

Clark, Armstrong, McGinnis, & Pulwarty, 1999; Stewart, Cayan, &

Dettinger, 2004). Accordingly, most of the reservoir inflows occur in

the late spring and early summer between April and July in both Flo-

rence Lake and Lake Edison (Figure 3). Therefore, snowmelt during

this period is a useful predictor for reservoir inflow. Snowmelt can be

calculated by max (SWEt−1 − SWEt,0).
To handle the seasonality, four dummy variables were introduced

in Table 1 to represent four periods in a year. These periods are

early spring, late spring, early summer, and late summer. We also

added interaction terms between the four meteorological variables,

temperature, SWE, precipitation, and snowmelt with seasonal dummy

variables to model different effects of meteorological variables in

different seasons. Because there is a lag of several months between

the peak snow accumulation and peak inflow in our study area as seen

from Figure 3, lagged snow water equivalent in the late summer was

included in the dynamic regression model to capture this effect. To

choose the appropriate lag, a stepwise regression is performed with

up to 3-month lag of SWE as regressors along with current and lagged

temperature, precipitation, and snowmelt as independent variables.

Statistically significant lags of SWE are chosen as suitable candidates

for inclusion in the final model. Eighty days lagged SWE minimized

the AIC of the model during training period and is therefore chosen to

be included in the final model. The complete list of variables used in

fitting the statistical dynamic regression model is tabulated in Table 2.

5.3 Model fitting

We explored the model performance with and without natural log

transformation of the response and explanatory variables and chose

untransformed variables for further model fitting as it offered bet-

ter prediction results and model interpretation. Steps of fitting

the dynamic regression model for Florence Lake inflow forecast is

described here. Similar procedure can be followed for Lake Edi-

son. Fitting dynamic regression model has three stages: (a) model

identification, (b) model estimation, and (c) model diagnostic checking.

5.3.1 Model identification

As the first step to identify the appropriate dynamic regression model,

a free-form distributed lag for the transfer function of the explanatory

variables was estimated with a low order regular AR term as proxy for

the disturbance series autocorrelation pattern. A multiple regression

model was formed, and stepwise regression was performed to pre-

liminarily select candidate variables and their time lags for fitting the

free-form distributed lag model. The orders of v (B) for the explanatory

variables in the free-form distributed lag model were determined to

be 15 based on their t-test statistics. It can be argued that the inflow

is zero when the explanatory variables are zero i.e. when there is no

snowmelt or precipitation and the temperature is 0◦F. Therefore, no

constant term was included in the model.

The disturbance series Nt was then checked for stationarity by aug-

mented Dickey-Fuller test and found to be stationary. A parsimonious

rational distributed lag transfer function model of order (b, r, h) was

identified by comparing the estimated impulse response weights with

theoretical impulse response weight patterns. To demonstrate the

process, the estimated impulse response weights of the variable X4D3

that corresponds to snowmelt in early summer are shown in Table 3

and plotted in Figure 4.

There are six significant v weights at Lags 1, 2, 4, 7, 9, and 15

having t value more than 2.0. This suggests that the dead time,

b1 = 1. Because the six significant impulse response weights fol-

low an exponential decay pattern, the order of the denominator

operator was determined to be r = 1. The number of unpatterned
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FIGURE 3 Response variables (inflow at Florence Lake and Lake Edison) and the explanatory variables (daily average temperature, SWE,
incremental precipitation, and snowmelt averaged over three weather stations—UBC, KSP, and VLC) for water year 2010–2014

TABLE 1 Description of dummy variables used in the dynamic
regression model

Dummy Description Season

variables

D1 1 if Date 03/21–04/30, 0 otherwise Early Spring

D2 1 if Date 05/01–05/31, 0 otherwise Late Spring

D3 1 if Date 06/01–06/21, 0 otherwise Early Summer

D4 1 if Date 06/22–09/22, 0 otherwise Late Summer

terms is u = 0. Finally, the order of the numerator operator is

h = u + r − 1 = 0 + 1 − 1 = 0. The order of the rational dis-

tributed lag transfer function for input variable snowmelt in early

summer (X4D3) was thus determined to be (b, r, h) = (1,1,0), and

the transfer function could be written as 𝜔i

1−𝛿i B
B. Similar procedure

was followed for other input variables, and the dynamic regression

model with parsimonious rational distributed lag transfer function was

determined.

TABLE 2 List of variables used in the dynamic regression model

Variables Symbols

Reservoir inflow Y

Temperature X1

SWE X2

Precipitation X3

Snowmelt X4

Dummy variables D1,D2,D3,D4

Interaction terms X1D1,X1D2,X1D3,X1D4,X2D1,X2D2,

X2D3,X2D4,X3D1,X3D2,X3D3,

X3D4,X4D1,X4D2,X4D3,X4D4

5.3.2 Model estimation

An estimate of the parameters of the dynamic regression model was

obtained at this stage. An appropriate ARMA model was identified for

the error series Nt , and the entire model was refit using the ARMA

model for error and the transfer function for the input variables.

The parameter estimates of all candidate models were estimated by

maximum likelihood estimation.
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TABLE 3 Impulse response weights of input variable X4D3

Lag Estimate t-value Lag Estimate t-value p-value

0 −59.55 −0.67 8 −300.71 −4.03 < 0.0001

1 862.75 10.83 9 217.35 3.33 0.0009

2 220.73 2.88 10 −240.18 −3.94 < 0.0001

3 84.11 1.01 11 65.52 1.09 0.2769

4 548.99 6.67 12 −31.77 −0.57 0.5714

5 67.09 0.84 13 8.60 0.15 0.8773

6 −30.91 −0.42 14 −46.42 −0.81 0.4191

7 192.40 2.56 15 190.53 3.39 0.0007

FIGURE 4 Impulse response weights of input variable X4D3

FIGURE 5 Autocorrelation function (ACF) and partial autocorrelation
function (PACF) of noise series Nt

First, the model was fit using only the transfer function of the input

variables. The orders of AR and MA component of the model were

identified by matching empirical autocorrelation patterns, for example,

autocorrelation function (ACF) plot and partial autocorrelation func-

tion (PACF) plots of the residual series with the AR and MA signature

patterns. The ACF and PACF plots of the residual series are plotted

in Figure 5. Both ACF and the PACF exhibit large spikes that gradu-

ally die out indicating that they have both autoregressive and moving

averages properties. Though the ACF decays rather slowly and cuts

off at Lag 6, an AR order of p = 6 is not realistic. An AR order of

p = 1 was selected based on the AIC and ACF of the residuals. The

PACF cuts off at Lag 1. Therefore, the final ARMA model for the error

series was determined to be (p, q) = (1,1). At this stage, the dynamic

regression model for Florence Lake can be written as Equation 9.

5.3.3 Diagnostic checking

The Ljung-Box test for white noise was used to statistically evalu-

ate the degree to which the residuals are free from serial correlation.

For seasonal time series, the lag for Ljung-Box test is recommended

to be h = min
(

2m,
T
5

)
where m is the period of seasonality and

T is the sample size. In our study, the lag was calculated to be

h = 365 × 3∕5 = 219. Though the residuals are not perfect white

noise after lag = 25; for a long time series, this is acceptable. More-

over, Durbin Watson Statistic was calculated to detect presence of

autocorrelation in the residuals and found to be 2, which shows that

the residuals are not autocorrelated. Normality check of the model

residuals was performed by checking a histogram of the residuals and

the Q-Q normal plot of the residuals. The residuals were found to

be approximately normally distributed, and the Q-Q normal plot is

approximately a straight line. The explanatory variables in the final

model were checked for multicollinearity. For all explanatory vari-

ables, variance inflation factor (VIF) was calculated. A VIF close to 1

for an explanatory variable indicates no correlation of that predictor

and the remaining explanatory variables. For all explanatory variables

in this model, VIF was found to be < 1.60. Hence, there is no multi-

collinearity. Because there is no significant residual cross correlation

and autocorrelation left, the model is adequate. Similar procedure was

followed for Lake Edison. The dynamic regression model for Florence

Lake and Lake Edison can be written as Equations 9 and 10.

Yt =
(
𝜔0,0 + B𝜔0,1 + B2𝜔0,2 + B3𝜔0,3 + B4𝜔0,4

)
X3,t

+
(
𝜔1,0 + B𝜔1,1 + B2𝜔1,2 + B3𝜔1,3

)
X1,tD1,t

+
(
𝜔2,0 + B𝜔2,1 + B2𝜔2,2 + B3𝜔2,3

)
X1,tD2,t +

𝜔3

(1 − 𝛿3B)
X4,tD2,t

+
(
𝜔4,0 + B𝜔4,1 + B2𝜔4,2 + B3𝜔4,3

)
X1,tD3,t +

𝜔5

(1 − 𝛿5B)
X4,tD3,t

+ 𝜔6B80
(

X2,t

)
D4,t +

𝜔7

(1 − 𝛿7B)
BX4,tD4,t +

(1 − 𝜃1B)
(1 − 𝜙1B)

at.

(9)

Yt =𝜔0X1,t + 𝜔1X3,t +
(
𝜔2,0 + B𝜔2,1 + B2𝜔2,2 + B3𝜔2,3

)
X1,tD1,t

+
(
𝜔3,0 + B𝜔3,1 + B2𝜔3,2 + B3𝜔3,3 + B4𝜔3,4

)
X1,tD2,t

+ 𝜔4

(1 − 𝛿4B)
X4,tD2,t +

(
𝜔5,0 + B𝜔5,1 + B2𝜔5,2 + B3𝜔5,3

)
X1,tD3,t

+
𝜔6

(1 − 𝛿6B)
X4,tD3,t + 𝜔7B80

(
X2,t

)
D4,t

+ 𝜔8

(1 − 𝛿8B)
BX4,tD4,t +

(1 − 𝜃1B)
(1 − 𝜙1B)

at.

(10)

The estimated parameter values of the dynamic regression models

are shown in Tables 4 and 5. The estimated parameter values of the

dynamic regression models with their t-values, p-values, and standard

error are shown in Tables 4 and 5.

5.4 Results and analysis

5.4.1 Parameter estimates and interpretation

The estimated parameter values of the dynamic regression models

with their t-values, p-values, and standard error are shown in Tables 4

and 5. A large value of absolute t-statistic and low p-value (< 0.05)

imply that the true parameter value is not 0. It can be observed

that temperature, SWE, and precipitation play important roles in

forecasting reservoir inflow. For both lakes, snowmelt during spring

and summer has a strong and positive correlation with inflow. With
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TABLE 4 Parameter estimates for inflow forecast model of Florence
Lake

Coefficient Value Standard error t-value p-value

𝜃1 0.07 0.04 1.91 0.06

𝜙1 0.78 0.02 33.60 < 0.0001

𝜔0,0 14.06 8.81 1.60 0.1

𝜔0,1 6.37 9.08 0.70 0.5

𝜔0,2 9.24 9.10 1.01 0.3

𝜔0,3 7.74 9.079 0.85 0.4

𝜔0,4 12.79 8.83 1.45 0.1

𝜔1,0 1.16 1.27 0.92 0.3

𝜔1,1 6.17 1.38 4.47 < 0.0001

𝜔1,2 1.06 1.38 0.77 0.4

𝜔1,3 2.10 1.26 1.66 0.09

𝜔2,0 2.13 1.23 1.73 0.08

𝜔2,1 8.40 1.29 6.51 < 0.0001

𝜔2,2 −0.50 1.31 −0.38 0.7

𝜔2,3 0.06 1.23 0.05 0.9

𝜔3 93.18 23.23 4.01 < 0.0001

𝛿3 0.95 0.02 50.05 < 0.0001

𝜔4,0 0.86 1.29 0.66 0.5

𝜔4,1 3.05 1.12 2.72 0.006

𝜔4,2 1.97 1.12 1.76 0.08

𝜔4,3 2.49 1.10 2.25 0.02

𝜔5 324.03 38.22 8.48 < 0.0001

𝛿5 0.79 0.03 26.68 < 0.0001

𝜔6 12.92 1.94 6.66 < 0.0001

𝜔7 149.15 19.66 7.59 < 0.0001

𝛿7 0.92 0.01 62.27 < 0.0001

high t-values, snowmelt is the most important variable in explaining

the variability of inflow. This result is consistent with the fact that the

run-off in the Sierra Nevada region is dominated by snowmelt. Prior

season's SWE is also found to be a useful predictor for inflow during

late summer. This can be explained by the fact that the snowpack

during cold seasons plays a crucial role in run-off and subsequent

reservoir inflow during warmer seasons in the Sierra Nevada region.

Current season's temperature has a positive correlation with reservoir

inflow in early/late spring and early summer. This is because, in higher

elevation rivers, warmer temperature produces faster run-off and less

snow (Cayan et al., 1993). Apart from early/late spring and early

summer, temperature does not have a significant impact at Florence

Lake but has moderate impact at Lake Edison. As shown in the model

fitting results, the same season precipitation has significant impact on

reservoir inflow at both Florence Lake and Lake Edison. As expected,

precipitation is positively correlated with inflow since a higher level of

precipitation generally results in more inflow.

5.4.2 Inflow forecast using dynamic regression model

The performance of the dynamic regression model during the calibra-

tion period is evaluated using NSE, NSE
′
, PBIAS, RSR, RMSE, and MAE.

The statistical indexes of model performance are shown in Table 6.

Limits of acceptability of the performance metrics depends on

model applications and is therefore subjective (Beven, 2006). Follow-

TABLE 5 Parameter estimates for inflow forecast model of Lake
Edison

Coefficient Value Standard error t-value p-value

𝜃1 −0.03 0.03 −0.89 0.4

𝜙1 0.86 0.02 49.14 < 0.0001

𝜔0 0.52 0.24 2.25 0.02

𝜔1 21.55 2.75 7.85 < 0.0001

𝜔2,0 0.31 0.46 0.69 0.5

𝜔2,1 2.39 0.45 5.36 < 0.0001

𝜔2,2 0.97 0.44 2.17 0.03

𝜔2,3 0.56 0.43 1.30 0.2

𝜔3,0 1.16 0.45 2.58 0.0099

𝜔3,1 2.18 0.42 5.15 < 0.0001

𝜔3,2 1.75 0.43 4.06 < 0.0001

𝜔3,3 0.64 0.42 1.51 0.1

𝜔3,4 0.47 0.37 1.27 0.2

𝜔4 56.90 12.65 4.50 < 0.0001

𝛿4 0.31 0.23 1.35 0.2

𝜔5,0 0.58 0.46 1.26 0.2

𝜔5,1 0.68 0.37 1.80 0.07

𝜔5,2 1.38 0.37 3.69 0.0002

𝜔5,3 2.12 0.37 5.71 < 0.0001

𝜔6 126.80 14.58 8.70 < 0.0001

𝛿6 0.84 0.02 34.52 < 0.0001

𝜔7 2.48 0.88 2.82 0.0048

𝜔8 85.75 8.24 10.40 < 0.0001

𝛿8 0.94 0.008 107.91 < 0.0001

ing Motovilov, Gottschalk, Engeland, and Rodhe (1999), the model

performance at daily time step is generally considered to be good

when NSE ≥ 0.75 and satisfactory when 0.36 ≤ NSE < 0.75. On the

basis of examples of various existing models and research data, Moriasi

et al. (2007) proposed general performance ratings for these statis-

tics. Those are provided in Table 7. However, because typically model

simulations are poorer for shorter time steps than longer time steps

(e.g., daily vs. monthly) (Bernard, Dan, Mike, Jeff, & Mazdak, 2007), a

less strict performance rating is required for daily time steps used in

our study (Moriasi et al., 2007). In general NSE
′

has a lower value than

NSE. For NSE
′
, the model can be considered satisfactory if NSE

′
ranges

from 0.51 to 0.71 (Licciardello, Zema, Zimbone, & Bingner, 2007).

Value of NSE is very high and PBIAS and RSR values are very

low during the calibration period indicating an excellent agreement

between the observed and simulated inflows into both Florence Lake

and Lake Thomas A. Edison. After calibrating the dynamic regression

model with the help of historical data, the next step of the study is to

simulate inflow corresponding to the future meteorological variables.

The forecast period is set to 365 days. The out-of-sample forecast-

ing ability of the model was assessed by forecasting the reservoir

inflow for both lakes in water year 2014 using a test set contain-

ing average meteorological data for the grid box region. Actual and

forecasted inflow for Lake Edison and Florence Lake are plotted in

Figure 6. Figure 6 shows good agreement between observed and

simulated inflows.
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TABLE 6 Error statistics of the dynamic regression model during calibration
period 2010–2013

Lake NSE NSE
′

PBIAS (%) RSR RMSE (cu ft/s) MAE (cu ft/s)

Florence 0.97 0.82 3.79 0.18 115.91 60.09

Edison 0.97 0.82 3.54 0.17 52.49 30.88

TABLE 7 General performance rating for recommended statistics for a monthly time
step (Motovilov et al., 1999)

Performance rating RSR NSE |PBIAS|

Very good 0.00 ≤ RSE ≤ 0.50 0.75 < NSE ≤ 1.00 |PBIAS| ≤ 10

Good 0.50 < RSE ≤ 0.60 0.65 < NSE ≤ 0.75 10 ≤ |PBIAS| < 15

Satisfactory 0.60 < RSE ≤ 0.70 0.50 < NSE ≤ 0.65 15 ≤ |PBIAS| < 25

Unsatisfactory RSR > 0.70 NSE ≤ 0.50 |PBIAS| ≥ ±25

FIGURE 6 Comparison of actual inflow and inflow forecast with observed meteorological variables in water year 2014

Statistical indexes of the model performance during the test period

are shown in Table 8.

The NSE of Florence Lake and Lake Thomas A. Edison are 0.78

and 0.72, respectively, which is considered to be good in Motovilov

et al. (1999). Comparing NSE, PBIAS, and RSR value of the model

with the general performance ratings recommendation in Moriasi et al.

(2007), it can be concluded that, for daily step, the fit of the dynamic

regression model during the test period is very good for both Florence

Lake and Lake Thomas A. Edison. The modified NSE proposed by

Garrick et al. (1978) is benchmark efficiency (BE) calculated using the

daily mean value of the predictor variable for the calibration period

as the baseline model. It is found to be 0.90–0.91 showing very high

performance of the dynamic regression model compared with the

baseline model. The NSE
′

value also indicates good performance of the

model. The small root mean square error in Table 8 also indicates that

the dynamic regression model is capable of producing a reasonable

forecast of inflows into the reservoirs. Moreover, the error in annual

inflow forecast for Florence Lake and Lake Edison are only 0.15% and

10%, respectively.

For further comparison, we included a benchmark model, which

is a multiple regression model containing the same explanatory vari-

ables as the dynamic regression model. The time lagged relationships

were incorporated by including the time lagged variables as separate

explanatory variables. Inflow of the previous day was also included as

an explanatory variable. Statistics indexes of the multiple regression

model performance are shown in Table 8. Another benchmark estima-

tor would be a ratio estimator based on the same day inflow from last

year, which can be written as Equation 11.

Yt = Yt−365 ×
Peak SWEcurrent year

Peak SWEprevious year
. (11)

The values of all the performance metrics indicate that the dynamic

regression model consistently outperforms the benchmark multiple

regression model and the ratio estimator. PBIAS values of regression

model and the ratio estimator are not satisfactory for both Florence

Lake and Lake Thomas A. Edison. Moreover, the dynamic regression

model is more parsimonious compared with the multiple regression

model. From the visual comparison of the observed and simulated

inflow in Figure 6, low error in annual inflow forecast, value of the

statistical indexes, and their comparison with regression and the ratio

estimator, it can be concluded that the dynamic regression model is

very good at forecasting reservoir inflows.

5.4.3 Robustness analysis of the dynamic regression
model

Global sensitivity analyis

A global sensitivity analysis (GSA) of the dynamic regression model was

performed with the purpose of assessing robustness of the model and
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TABLE 8 Forecast error statistics for water year 2014

Lake Statistics Dynamic regression Regression Ratio estimator

Florence RMSE (cu ft/s) 100.75 114.33 136.62

MAE (cu ft/s) 58.47 73.46 79.02

NSE 0.78 0.57 0.72

NSE
′

0.62 0.53 0.53

PBIAS (%) 0.16 31.47 −26.20

RSR 0.46 0.65 0.53

Edison RMSE (cu ft/s) 44.52 50.97 67.85

MAE (cu ft/s) 27.84 38.12 38.31

NSE 0.72 0.54 0.67

NSE
′

0.58 0.40 0.51

PBIAS (%) −8.85 44.32 −31.28

RSR 0.53 0.68 0.57

simulation results. Input values of the model were perturbed within

their reasonable range and subsequent changes in model output were

studied (Baroni & Tarantola, 2014; Chu-Agor, Muñoz-Carpena, Kiker,

Emanuelsson, & Linkov, 2011; Tomassini, Reichert, Knutti, Stocker, &

Borsuk, 2007; Uusitalo, Lehikoinen, Helle, & Myrberg, 2015). Changes

in input values automatically cause perturbations in parameter esti-

mates of the dynamic regression model. Little change in resultant

output values indicates robustness of the model to perturbations of

inputs and parameter estimates and shows the uncertainty of the

output variables to be relatively small (Uusitalo et al., 2015).

A qualitative GSA was performed in this study by visual inspection

of model predictions. All input values were varied simultaneously

within the entire allowable ranges of the input space and the effect

on the output was studied (Baroni & Tarantola, 2014; Pianosi et al.,

2016). This allowed GSA to evaluate the relative contributions of each

input factor to the model output variable and account for effects

of non-linear interactions between different inputs (Ciannelli, Chan,

Bailey, & Stenseth, 2004; Baroni & Tarantola, 2014; Harper, Stella, &

Fremier, 2011; Saltelli et al., 1999). Though local sensitivity analysis

where inputs are varied one at a time is more common, it assumes linear

relationship between inputs and outputs, making it only a perfunctory

sensitivity analysis for most models (Saltelli et al., 2010). GSA does

not assume any such specific relationship between inputs and model

predictions and, therefore, is recommended for any kind of model

(Makler-Pick, Gal, Gorfine, Hipsey, & Carmel, 2011; Rosolem, Gupta,

Shuttleworth, Zeng, & de Gonçalves, 2012; Saltelli et al., 2010).

We followed the general probabilistic framework (GPF) based on

Monte Carlo simulation for the global sensitivity analysis of determinis-

tic models proposed by Baroni and Tarantola (2014). The flowchart for

the GPF can be found in Baroni and Tarantola (2014). As is the norm,

output in the sensitivity analysis does not refer to the entire range of

temporal inflow variable produced by the model (Pianosi et al., 2016).

Rather, it is measured as the variability induced in the model perfor-

mance measure, RMSE of the test set. In the first step, all sources of

uncertainty in the input meteorological variables, Uxi, were character-

ized. Because meteorological data were taken as the average of three

weather stations—namely, KSP, UBC, and VLC, uncertainty may arise

due to variability of meteorological variables between the calculated

average and actual value at the location of Florence Lake and Lake Edi-

son. Errors and approximations in input data measurement are other

sources of uncertainty. Because meteorological variable measure-

ments are not available at Florence Lake and Lake Edison, to account

for the uncertainty, a grid box of 0.5 × 0.5◦ with centre at (37.32◦N,

−118.97◦E) was considered. Two more weather stations, Huntington

Lake (HNT) and Tamarack Summit (TMR), are located within the grid

box along with the three existing weather stations. Average of the

meteorological variables in at these five weather stations were cal-

culated. In accordance with the comparison between data from the

average of three weather stations and five weather stations, a random

error was introduced to the daily nominal value of each variable. Mea-

surement difference in the meteorological variables depend on type of

water year and season. As such, unnaturally big variability can be intro-

duced if random values are taken from the probability distribution of

the difference time series. To preserve the temporal correlation of the

meteorological variables, a random variable following uniform distribu-

tion in the interval [0, 1] was multiplied with X5 stations − X3 stations where

X denotes meteorological variables. The resultant random error was

added to the meteorological variable data to produce the perturbed

inputs. Each variable was physically constrained to avoid unrealistic

values (e.g., negative value for precipitation and SWE).

The realization of each uncertainty was then associated with a scalar

input factor Fi = 1...128 for i = 1..3. The three input factors were

assumed to be independent. To minimize the number of model runs,

a quasi-randomized, low-discrepancy sampling design called Sobol

sequence was used to sample the three discrete uniform distribution

according to the method present in Baroni and Tarantola (2014) and

Saltelli et al., (2010). No correlations among the three input factors

were considered in the sampling design. The simulations were run

using a number of sampling points N = 128, which corresponds to a

number of total number of model runs, NR = N(2 × 3 + 2) = 1,024.

A combination of MATLAB and SAS codes were run to perform the

sensitivity analysis.

Result and analysis

Figure 7 shows the probability distribution of the RMSE of forecasted

inflow with perturbed inputs at Florence Lake and Lake Edison in water

year 2014. Out of the 1024 model runs performed in the sensitivity

analysis, the model that produces median RMSE is selected for analysis

of results. Forecasts of the selected perturbed input model are plotted

in Figure 8 along with actual inflows and forecasts of reference model
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FIGURE 7 Probability distribution function (%) of the RMSE of forecasted inflow with perturbed inputs in water year 2014. RMSE of the
reference model is indicated with the dashed line

FIGURE 8 Comparison of actual inflow, simulated inflow from observed meteorological variables (reference), and simulated inflow from the
selected perturbed input model with median RMSE in water year 2014

for both lakes in water year 2014. The annual inflows of the selected

perturbed input model are compared with the observed and reference

model inflow forecasts for water year 2014 in Table 9. Here, reference

model is the inflow forecast model with unperturbed inputs. Annual

inflow for the perturbed model has less than 5% error for both Florence

Lake and Lake Edison. The RMSE results and forecasts show a general

good performance of the model under perturbed inputs that shows the

robustness of the model to perturbed inputs and parameter estimates.

Sensitivity of the dynamic regression model was also performed with

respect to number of water years used. Two models were estimated

using three and four water years in the training set, respectively, for

both lakes. Water years 2013 and 2014 work as the corresponding

test sets. Parameter estimates of both models are compared for

changes in sign. No parameter estimate changes sign between these

two simulations for both Florence Lake and Lake Edison. The annual

inflow error is 15% and 5%, respectively, at Florence Lake and Lake

Edison when three water years of data are used in the training set to

forecast inflow of water year 2013. Therefore, it can be argued that

the model is robust against increase in the amount of training data.

6 QUANTIFYING THE IMPACT OF
AEROSOLS ON RESERVOIR INFLOW

6.1 Evaluation of the WRF-Chem simulation

We investigate the WRF-Chem model performance in our region of

interest (the small box in Figure 2). WRF-Chem CTRL and WRF-Chem

CLEAN simulation are WRF-Chem model with and without consid-

ering impact of aerosols, respectively. As shown in Figure 9, the

meteorological variables simulated from the WRF-Chem model are

reasonably close to the observed variables. The WRF-Chem model

results are highly correlated with the observed meteorological vari-

ables for both water years. The correlation coefficients between the

observed and WRF-Chem CTRL simulations for temperature and SWE

range from 0.88 to 0.97 for 2013. The correlation coefficient for pre-

cipitation ranges from 0.66 to 0.73, which is adequate for our model

because it has lesser impact on inflow as shown in Tables 4 and 5.

Both visual inspection of Figure 9 and one-way ANOVA show that

the WRF-Chem model underestimates temperature and precipitation
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TABLE 9 Annual reservoir inflow for the selected perturbed input model with median
RMSE and reference model in water year 2014

Lake Actual (acre ft) Reference model (acre ft) Perturbed model (acre ft)

Florence 99,979 99,818 94,872

Edison 49,339 54,062 49,270

FIGURE 9 Comparison of observed and WRF-Chem CTRL and CLEAN simulated meteorological variables

in our region of interest. The model underestimates the SWE from

December to March and overestimates the SWE from April to June.

The meteorological variables simulated from the WRF-Chem CTRL

and WRF-Chem CLEAN models are highly correlated. The RMSE of

the simulated meteorological variables with the observed variables are

shown in Table 10. It can be observed from Table 10 that the meteo-

rological variables from the WRF-Chem CTRL simulations are closer to

the observed meteorological variables than those of the WRF-Chem

CLEAN simulations. In general, temperature from WRF-Chem CTRL

simulations is higher than those of the CLEAN simulations because

aerosol deposition increases impurity of snow (Wu et al., 2018). Pre-

cipitation and SWE from WRF-Chem CTRL simulations are lower than

the CLEAN simulations. In order to understand how the aerosols

affect these two variables, Wu et al. (2018)s examine the effects of

ARI, ACI, and ASI separately and found that ACI plays a dominant

role in increasing cloud water but reducing precipitation, leading to
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TABLE 10 RMSE of WRF-Chem simulated meteorological variables with
respect to observed variables

Year Simulation Temperature (◦F) SWE (inch) Precipitation (inch)

2013 CTRL 4.86 2.10 0.20

CLEAN 4.91 2.61 2.61

2014 CTRL 5.78 2.48 0.23

CLEAN 5.93 2.85 0.25

FIGURE 10 Comparison of actual inflow, simulated inflow from observed meteorological variables, and WRF-Chem CTRL and CLEAN simulated
meteorological variables

reduced SWE. Increase of nonprecipitating clouds can be explained

by the fact that more CCN are available for the formation of clouds

with smaller cloud droplets when more aerosols are present in the

atmosphere. More detailed analysis on aerosol impacts on precipita-

tion and snowpack in our region of interest can be found in Wu et al.

(2018). Higher temperature, snow albedo effect, and feedback lead to

higher snowmelt with aerosols in the late spring. However, snowmelt

is lower with aerosols during early/late summer because of lower prior

season's SWE and higher snowmelt in the late spring. From the cor-

relation coefficient of WRF-Chem CTRL and CLEAN simulations, and

ANOVA, the difference between the simulated SWE and precipitation

in the CTRL and CLEAN simulations is larger in 2013 compared with

2014. In other words, the impact of aerosols on these meteorological

variables is stronger in 2013 within the grid box.

6.2 Quantification of the impact of aerosols

on reservoir inflow

The impact of aerosols on reservoir inflow was quantified for two

water years 2013 and 2014. In order to quantify the impact of aerosols

on inflow, we ran dynamic regression model using the meteorologi-

cal variables simulated from both the WRF-Chem CTRL and CLEAN

models as inputs of the test data set. The actual inflow (red) is com-

pared with simulated inflow from observed meteorological variables

(blue) and WRF-Chem simulated meteorological variables (green and

purple) in Figure 10. The inflow simulated by the meteorological vari-

ables from the CTRL simulations match well with the actual inflow.

The difference in inflow between the CTRL and CLEAN simulations

(InflowCTRL-InflowCLEAN) represents the impact of aerosols, which is plot-

ted in Figure 11. The observed inflow and meteorological data for

2010–2012 are used as the training set while simulating inflow for

water year 2013.

It can be observed from Figure 11 that for the same year, the impact

of aerosols on inflow is consistent in direction and similar in magnitude

in both lakes. After simulating inflow for both water years under CTRL

and CLEAN conditions, annual and seasonal inflows with and without

considering the impact of aerosols were calculated. The impact of

aerosols on inflow into reservoirs was then calculated by Equation 12.

Infloww/ Aerosols − Infloww/o Aerosols

Infloww/o Aerosols
× 100%. (12)

The impact of aerosols on weekly inflow in percentages is plotted in

Figure 12. Compared with Figure 11, the percentage change in inflows

due to aerosols peaks in July–August whereas the difference in inflow

magnitude between CTRL and CLEAN simulations peaks in June. This
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FIGURE 11 The impact of aerosols on reservoir inflow (InflowCTRL − InflowCLEAN)

FIGURE 12 The impact of aerosols on weekly reservoir inflow (%)

is because the volume of inflow is considerably lower in July–August

compared with June. The impact of aerosols on annual and seasonal

inflow are tabulated in Table 11. For seasonal analysis, we first define

the four seasons—fall is defined as the period of 10/01–12/21, winter

is defined as 12/22–03/20, spring is defined as 03/21–05/31, and

summer is defined as 06/01–09/30.

It can be observed from Figure 11 that the difference between

WRF-Chem CTRL and CLEAN inflow is negligible during low inflow

period. Inflow during fall and winter season is extremely low in

both Florence Lake and Lake Thomas Alva Edison. During this

period, the main contribution to reservoir inflows comes from sur-

face run-off generated by rainfall. As winter is the wet season

in this region, most of the rainfall occur during fall and winter.

We also modelled the inflows during this period by temperature

because temperature influences precipitation and snow accumulation.

From Figure 9, it can be observed that precipitation forecast with

and without considering impact of aerosols (WRF-Chem CTRL and

WRF-Chem CLEAN) have up to 6% difference. Temperature forecast

from WRF-Chem CTRL and WRF-Chem CLEAN have up to 4% dif-

ference. Extremely low inflow combined with small difference in key

meteorological variables, temperature, and precipitation leads to small

difference between inflows with and without considering the impact

of aerosols.

Impact of aerosols is pronounced during the high inflow period

from May to June. In general, aerosols lead to slightly higher inflow in

the late spring and significantly lower inflow during summer (11–26%

reduction) as seen from Figure 11 and Table 11. These results can

be explained by the seasonal variation of the impact of aerosols on

the meteorological variables. During spring, the presence of aerosols

leads to enhanced solar absorption by dust aerosol leading to higher

temperature and snowmelt that translate into a higher inflow. On the

other hand, aerosols lead to lower precipitation that results in a small

reduction in the inflow. The aggregated effect of aerosols on inflow

through temperature, snowmelt, and precipitation is slightly higher

inflow in the spring. Lower prior season's SWE and lower current

season's snowmelt together with lower precipitation result in lower
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TABLE 11 Impact of aerosols (%) on annual and seasonal reservoir inflow

Lake Year Annual (%) Fall (%) Winter (%) Spring (%) Summer (%)

Florence 2013 −14 −11 −5 −.01 −26

2014 −4 −2 −1 2 −11

Edison 2013 −8 −1 0.2 1 −18

2014 −5 −0.4 0.3 0.6 −11

TABLE 12 Annual reservoir inflow under different aerosol conditions

Lake Year Actual (acre ft) CTRL (acre ft) CLEAN (acre ft)

Florence 2013 117,390 113,610 13,163

2014 99,980 119,740 125,410

Edison 2013 58,572 61,004 66,240

2014 49,339 55,446 58,247

inflow in summer. Low inflow in summer due to impact of aerosol

creates the sudden dip in Figure 11 from May to June. This is consistent

with the observation in Wu et al. (2018) that over mountaintops in the

Sierra Nevada region, surface run-off slightly increases in spring and

decreases after April. It is helpful to mention again that Florence Lake

and Lake Thomas A. Edison are higher elevation lakes which generate

inflow by capturing run-off from the San Joaquin River. The presence

of aerosols suppresses precipitation which leads to lower inflow for the

Florence Lake during fall and winter. In the Lake Edison, inflow in fall

and winter is simulated using precipitation and temperature. Aerosols

lead to lower precipitation and higher temperature that translate into

lower inflow in fall and slightly higher inflow in winter. The overall

effect of aerosols is a reduction in annual inflow by 4–14% for both

lakes as shown in Tables 11 and 12. Wu et al. (2018) observed a 10%

decrease in surface run-off from October to June in the mountaintops

of the Sierra Nevada region due to the impact of aerosols that agrees

with our calculated annual impact on reservoir inflow in the region.

The impact of aerosols is more significant in water year 2013 than

in water year 2014 for both lakes. This is because the impact of

aerosols on the meteorological variables is more pronounced in water

year 2013 as seen from the mean of the meteorological variables

from CTRL and CLEAN simulations. The annual impact of aerosols is

stronger in Florence Lake. This is because the fall and winter inflow

are simulated using only precipitation for Florence Lake. For Lake

Edison, the fall and winter inflow is simulated using both precipitation

and temperature. The higher temperature effect from aerosols offsets

some of the reduction in inflow in Lake Edison. Therefore, the annual

impact of aerosols on inflow is lower in Lake Edison.

6.3 Robustness analysis of the estimation of impact

of aerosols

It can be observed that the difference between CTRL and CLEAN

inflows is between 4% and 15%. On the other hand, the differ-

ence between annual observed and simulated inflow varies between

0.1–17% at Lake Florence and 7–9% at Lake Thomas A. Edison, which

is in the same range as the impact of aerosols on inflows. However, in

Subsubsection 5.4.3, it was shown that the dynamic regression model

built is robust against perturbations of input variables and number of

water years used in the training set.

Moreover, the most significant impact of aerosols occurs in the

late spring and summer when the WRF-Chem simulations of SWE

have a large error. Therefore, forecasts of inflow in water years 2013

and 2014 and the impact of aerosol on inflow were calculated with

perturbed test set inputs to gain more confidence in the impact of

aerosol results. To account for the discrepancy between the observed

meteorological variables and WRF-Chem CTRL simulation outputs, the

difference between these two time series was calculated for all of the

meteorological variables. A random error was introduced to the daily

values of the meteorological variables of the WRF-Chem simulated

test set. To preserve the temporal correlation of the meteorological

variables, a random variable following uniform distribution in the

interval [0,1]was multiplied with Xobs − XWRF −Chem CTRL where X denotes

meteorological variables. The resultant random error was added to

the meteorological variables of the test set to generate the perturbed

inputs. Both CTRL and CLEAN simulations were perturbed by the

same error. Input meteorological variables of the training set are not

perturbed. The dynamic regression model was then simulated with

the perturbed WRF-Chem CTRL and CLEAN test sets for Florence

Lake for both water years; 1,024 model runs were performed in

the same fashion as Section 5.4.3. Out of the 1,024 models, the

model that produced the median RMSE was selected for analysis

of results. The difference in inflow between the CTRL and CLEAN

simulations was then calculated and plotted in Figure 13 for the

selected model.

It can be observed that, for all of the simulations, the sign and

magnitude of the difference in inflow with the selected perturbed

input model are similar to the reference model. Here, the reference

model denotes the unperturbed input model. The annual and sea-

sonal impacts of aerosol are compared with the reference model in

Table 13, which shows that they are similar. Therefore, it can be safely

argued that the difference between the inflows arises from the dif-

ference between meteorological variables with and without impact

of aerosol.

7 SUMMARY AND CONCLUSION

A comprehensive framework to quantify the impact of aerosols

on reservoir inflow was developed by synergistically combining the
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FIGURE 13 The impact of aerosols on reservoir inflow (InflowCTRL − InflowCLEAN) for the selected perturbed input model with median RMSE

TABLE 13 Comparison of impact of aerosols on annual and seasonal reservoir inflow for the
reference and selected perturbed input model with median RMSE

Lake Year Model Annual (%) Fall (%) Winter (%) Spring (%) Summer (%)

Florence 2013 Reference −14 −11 −6 −.07 −26

Perturbed −13 −10 −5 0.05 −23

2014 Reference −4 −2 −1 2 −11

Perturbed −4 −0.10 −0.09 2 −10

Edison 2013 Reference −8 −1 0.2 1 −18

Perturbed −8 −1 0.1 1 −17

2014 Reference −5 −0.4 0.3 0.6 −11

Perturbed −5 −0.2 0.4 0.7 −104

WRF-Chem model and a dynamic regression model. The dynamic

regression model can also be leveraged to perform 1-year ahead daily

inflow forecast. A case study was conducted using Florence Lake and

Lake Thomas Alva Edison of the Big Creek Hydroelectric Project. The

dynamic regression model was found to be adequate and performed

well compared with the benchmark models.

We investigated the impact of aerosols on the inflow into these

hydropower reservoirs over two water years. Aerosols exert influ-

ence on reservoir inflows through their influence on meteorological

variables. The simulation results show that the presence of aerosols

significantly reduces the annual inflow into the hydropower reser-

voirs of the Big Creek Hydroelectric Project. The impact of aerosols

on inflows is pronounced during the high inflow season (spring and

summer), whereas it is negligible during the low inflow seasons (fall

and winter). Extremely low inflow combined with small difference in

key meteorological variables (temperature and precipitation) leads to

small difference between inflows with and without considering the

impact of aerosols during the low inflow period. Seasonal variation

of the aerosol's impact on meteorological variables leads to the sea-

sonal variation of the aerosol's impact on reservoir inflows. Aerosols

significantly reduce the amount of inflow in the summer (11–26%

reduction) as a result of a reduction in precipitation, snow water equiv-

alent, and snowmelt due to presence of aerosols. Aerosols slightly

increase the inflow in the spring (up to 2%) as a result of an increase

in temperature and snowmelt due to presence of aerosols.

The marginal value of water is high in summer, and the run-off risk is

high during spring. Therefore, it can be concluded that the presence of

aerosol is detrimental to the optimal utilization of hydroelectric power

systems. The change in inflow due to impact of aerosol in different

seasons with different water and electricity demands can assist the

reservoir operators in determining the optimal operation policy for

the reservoirs. Further scarcity of reservoir inflow during dry seasons

can motivate the San Joaquin River region water resources planners

to focus their efforts on mitigation strategies. The findings from this

research can provide another justification for stricter environmental

regulations to reduce anthropogenic aerosol emissions.

There are a few limitations to our study. The limited historical

reservoir inflow data prevented us from capturing the long-term trend

in reservoir inflow and evaluating the long-term impact of aerosols on

the reservoir inflow. The daily temperature, snow water equivalent,

and precipitation records for 2010–2014 were not available at the

weather stations located at Florence Lake and Lake Thomas Alva

Edison. These additional observations could have improved the quality

of inflow forecast. The quantification of the impact of aerosols on

inflows into reservoirs strongly depends on the accurate estimation

of the difference in meteorological variables between the WRF-Chem
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CTRL and CLEAN simulations. WRF-Chem model run in a higher

resolution in the grid box could deliver more accurate results. At last, a

rigorous outlier detection algorithm can be applied on the inflow data,

which can further improve the forecast performance of the dynamic

regression model.

Forecast of the inflow into the hydropower reservoirs obtained

from this study can assist in optimizing the cascaded hydropower

system. The framework for evaluating the impact of aerosols on

reservoir inflow is easily extendable to reservoirs located in other

regions. The time series of the meteorological variables and reservoir

inflows need for dynamic regression model fitting are usually available

from the nearby weather stations. WRF-Chem simulations of the

relevant meteorological variables with and without aerosol can be

performed in other regions with similar experimental set-up. With

these data available, the impact of aerosols on inflow into the reservoirs

located in other regions can be evaluated in a similar fashion. In

the future, we plan to integrate the year ahead inflow forecast of

Florence Lake and Lake Edison into the long-term scheduling of the Big

Creek Hydroelectric Project. The impact of aerosols on hydroelectric

generation and economic value will be assessed. Future studies will

also address the drawbacks of the study. Reservoir inflow data from

2015 onwards will be available, and they will be used to forecast

reservoir inflow for water year 2017 onwards and quantify the impact

of aerosols on reservoir inflow.
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APPENDIX B: SAN JOAQUIN REGION AND BIG CREEK

HYDROELECTRIC PROJECT

The Big Creek Hydroelectric Project is an extensive hydroelectric

system that accounts for 12% of California's total hydroelectric gen-

eration. The project is located on the upper San Joaquin River system

in the Sierra Nevada Mountains of Central California. Sierra Nevada is

a mountainous region where most precipitation are retained as snow

until temperatures are sufficient for melt (Cayan et al., 1993).

The hydroelectric project is owned and operated by Southern Cali-

fornia Edison (SCE), which has a total installed capacity of 1,000 MW

accounting for approximately 20% of SCE's total generation capacity.

The hydroelectric system includes 27 dams, 23 generating units in 9

power houses, miles of underground tunnels, and 6 major reservoirs

with a combined storage capacity of 560,000 acre ft. Water from

lakes in higher elevation are routed through the nine powerhouses and

discharged to lakes in lower elevations that are connected through tun-

nels and penstocks. The water travels a combined vertical distance of

6,655 feet before being discharged through the last powerhouse into

the San Joaquin River. Florence Lake and Lake Thomas Alva Edison are

the higher elevation reservoirs of the system having surface elevation

of 7,300 and 7,648 feet, respectively. The dam at Florence Lake cap-

tures run-off from the South Fork of the San Joaquin River, diverting

it through the Ward Tunnel towards the Portal Powerhouse, which is

the first powerhouse in the system to receive water. Lake Thomas Alva

Edison is formed by the Vermillion Valley Dam constructed across the

Mono Creek, a tributary of the South Fork of the San Joaquin River. It

discharges some of its water to the Ward Tunnel and thereby further

regulates the water supply to the Portal Powerhouse. Water running

through Portal Powerhouse gets discharged into the Huntington Lake

where it is in turn diverted to lakes of lower elevation through other

power houses. Thus, an accurate forecast of inflow into Lake Thomas

Alva Edison and Florence Lake can greatly improve the operational

efficiency of the Big Creek Hydroelectric Project.

APPENDIX C: A BRIEF OVERVIEW OF DYNAMIC REGRES-

SION MODEL

A brief overview of the dynamic regression model is presented in this

section. A dynamic regression model is shown in Equation C1. A crucial

assumption in dynamic regression is that the explanatory variables are

not affected by the dependent variable, that is, there is no feedback

between the variables.

Yt = v (B)Xt + Nt, (C1)

where

Yt = dependent variable

Xt = the vector of explanatory variables

v (B) = transfer function

Nt = noise time series.

A free-form distributed lag transfer function model like Equation C2

for M explanatory variables can be estimated where the noise series is

approximated by a low order regular AR term proxy. The order of the

transfer function, ki, is chosen based on the empirical understanding

of the model.

Yt =
M∑

i=1

ki∑
j=0

vi,jXi,t−j +
1

𝜙 (B)
at, (C2)

where

Xi,t = ith explanatory variable

𝜙 (B) = low-order autoregressive proxy

at = white noise.

The individual weights vi,j are called impulse response weights.

The transfer function can be written in a parsimonious form known

as a rational distributed lag transfer function model as shown in

Equation (C3).

Yt = 𝜇 +
M∑

i=1

𝜔i (B)
𝛿i (B)

Bbi Xi,t + Nt, (C3)

where

𝜔i (B) = 𝜔i,0 + 𝜔i,1B + 𝜔i,2B2... + 𝜔i,hi
Bhi

𝛿i (B) = 1 − 𝛿i,1B − 𝛿i,2B2 − ... − 𝛿i,ri
Bri

bi = dead time for input Xi,t .

It should be noted that ri, hi, and bi are constants for the ith

explanatory variable. (b, r, h) are the orders of the rational distributed

lag transfer function. The numerator of the transfer function model

captures the lagged effect of the covariates, and the denominator

represents the decaying effects of the covariates. The noise series Nt

may have an autocorrelated time structure that can be described by

an ARIMA model.

The autoregressive (AR) component in the ARIMA model refers to

the lagged values of the dependent variable time series; the moving

average (MA) component refers to the lagged error terms, that is,

residuals; and the integrated component represents the number of

times a time series must be differenced to achieve stationarity. A

general notation for ARIMA models is ARIMA (p, d, q), where p denotes

the number of autoregressive terms, q denotes the number of moving

average terms, and d denotes the number of times a series must be

differenced to induce stationarity. Using the general notations of an

ARIMA model, the noise series can be written as

Nt =
𝜃 (B)
𝜙 (B)

at, (C4)

where

𝜙 (B) = 1 − 𝜙1B − · · · − 𝜙pBp

𝜃 (B) = 1 − 𝜃1B − · · · − 𝜃qBq .

Here, at is assumed to be white noise. The white noise assumption

implies zero mean, normal distribution, and constant variance.

C.1 Linear transfer function method

The LTF method suggested by Pankratz (1991) was applied in this

study to handle multiple inputs. The order of the rational form transfer
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function (bi, ri, hi) for each variable i needs to be determined together

with the order of ARIMA (p, d, q) model for the noise time series Nt .

LTF method uses a free-form distributed lag model to estimate the

impulse response weights in Equation (C2) together with an initial

autoregressive proxy for the autocorrelation term of the disturbance

time series Nt . If Nt is not stationary with time varying mean, then

both the input and output time series should be differenced

accordingly. A parsimonious rational form transfer function similar

to Equation (C3) is then identified by comparing the estimated impulse

response weight pattern with theoretical impulse response weight

patterns. The methodology described by Box et al. (2015) is then

applied to determine ARMA order of the error time series Nt . Finally,

the coefficients of the entire model are estimated and the model is

checked for adequacy.
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