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Energy storage systems are well poised to mitigate uncertainties of renewable generation outputs. Grid-
scale energy storage projects are major investments which call for rigorous valuation and risk analysis.
This paper provides a stochastic energy storage valuation framework in wholesale power markets which
considers all key revenue streams simultaneously. As part of this framework, an operational optimization
model is developed to determine the energy storage system’s optimal dispatch sequences. A future curve
model is built to capture the volatilities of electricity prices. In addition, a frequency regulation service price
forecasting model is developed. Simulation results with a realistic battery storage system reveal that the
majority of the market revenues comes from frequency regulation services. Simulation results also show
that both round-trip efficiency and power-to-energy ratio are crucial to the cost effectiveness of energy
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1. Introduction

Distributed renewable generation, such as rooftop solar photo-
voltaic, has grown exponentially in the past few years. The intermit-
tency of renewable resources creates new operating and planning
challenges to the transmission and distribution system operators
around the world. These new challenges include loss of system iner-
tia, increasing needs for ancillary services, voltage excursions, and
unbalanced phase loading. Energy storage systems are well poised
to mitigate uncertainties of renewable generation outputs. They also
play a key role in facilitating the integration of renewable generation
resources into electric grids. However, there are several challenges
to the widespread deployment of energy storage. As identified in the
U.S. Department of Energy report (Gyuk et al., 2013), the most crucial
hurdle to energy storage system adoption is the uncertainty in its
cost competitiveness with other energy resources. The first step to
overcome this hurdle is to develop a comprehensive optimization
and valuation model which allows energy storage systems to provide
multiple electricity market products simultaneously.

Most of the existing literatures either ignores key energy storage
revenue streams or models various grid services separately. The eco-
nomics of electric energy storage for energy arbitrage and regulation
was evaluated in the New York and Pennsylvania, Jersey, Maryland
(PJM) Power Pool (Sioshansi et al., 2009; Walawalkar et al., 2007).
The energy shifting service and frequency regulation service are
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not co-optimized in the economic analysis. The authors in Oudalov
et al. (2007) only considered value of energy storage systems for
primary frequency control. Only energy shifting benefits are included
in estimating the value of energy storage systems in Denholm and
Sioshansi (2009), Mokrian and Stephen (2006). In Oudalov et al.
(2006), the revenue streams of battery systems are considered sepa-
rately. A real options approach is taken in evaluating the profitability
of investing in a battery bank (Bakke et al., 2016). The revenue
from energy shifting and ancillary services are modeled simulta-
neously. However, the capacity market value is ignored in Bakke
et al. (2016), Denholm and Sioshansi (2009), Mokrian and Stephen
(2006), Oudalov et al. (2007), Sioshansi et al. (2009). This paper
corrects these problems by developing a comprehensive energy stor-
age system valuation framework. The proposed valuation framework
optimally allocates and partitions available storage capacity to a
combination of grid services in order to maximize market value.

The lack of understanding of investment risks associated with
energy storage is another obstacle to its widespread adoption. Due to
peculiar properties of electricity, electricity prices exhibit excessive
volatility and spikes which are unmatched by any other commodi-
ties and financial assets (Yu et al., 2010b). Therefore, the value of
energy storage systems are highly uncertain. A stochastic valua-
tion framework is much needed to characterize the distribution of
energy storage revenue streams. A stochastic valuation framework
built upon the electricity price future curve is developed in this paper
to rigorously measure the risks associated with the energy storage
investment.

The remainder of this paper is organized as follows. Section 2
presents the stochastic energy storage valuation framework. Section 3
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derives the technical methods used in this paper which includes
electricity future price curve modeling, principal component analy-
sis, electricity spot price sample path generation and energy storage
system co-optimization. The numerical study results are shown in
Section 4. The conclusions are provided in Section 6.

2. Energy storage systems valuation framework

A comprehensive stochastic energy storage valuation framework
is proposed in this section and presented diagrammatically in Fig. 1.
The energy storage valuation framework jointly models key energy
storage system revenue streams including energy shifting, ancillary
services, and electricity supply capacity. The stochastic valuation
process consists of five steps and works as follows. In the first step,
a multi-factor stochastic process is developed to model the electric-
ity future price curve dynamics. The parameters of the multi-factor
model are estimated based on historical future price curves. In the
second step, Monte Carlo simulations are conducted to generate
sample paths for monthly electricity prices based on future prices at
the current time. The monthly price forecast samples are then con-
verted into hourly locational marginal prices for energy and ancillary
services in the third step. In the fourth step, these sample paths
are fed into a price-based energy storage optimization to generate
dispatch schedules. At last, stochastic valuation of energy storage
system is generated based on the optimal dispatch schedules and
capacity market value.

3. Technical methods

In this section, we present the technical methods used in
the energy storage stochastic valuation framework. The technical
methods include electricity future price curve modeling, principal
component analysis, multi-factor model parameter estimation, elec-
tricity spot price sample path generation, ancillary service price
modeling, and the energy storage operation optimization technique.

3.1. Electricity future price curve modeling

As a commodity, electricity has many peculiar characteristics
such as instantaneous delivery, limited storability, inelastic short-
term demand, and compliance with Kirchhoff's laws (Yu et al.,
2010b). Unlike many other commodities, the supply and demand
condition for electricity can change drastically in a few minutes.
These unique properties of electricity make ad-hoc financial models
for spot price dynamics less appropriate.

Instead of spot price models, future price curve models (Audet
et al., 2004; Bjerksund et al., 2010; Clewlow and Strickland, 1999;
Fleten and Lemming, 2003; Kiesel et al., 2009) are typically used to
characterize the stochastic behavior of electricity prices. Electricity
future price curve models make simplifying assumptions about how
the full future curve changes over time rather than making simpli-
fying assumptions about how the spot price changes. The electricity
future price curve summarizes the relationship between prices of

electricity at different times. It also reveals the market’'s view on
the supply and demand of electricity in the future and status of the
underlying physical power network.

Heath-Jarrow-Morton (HJM) Heath et al. (1992) framework is
adopted to describe the electricity future curve dynamics. Rather
than modeling the evolution of a single forward contract, HJM frame-
work models the interest rate forward curve as a whole. The changes
in the full set of future prices Fut;r, are characterized by the following
set of price equations. Note that Fut,r denotes the price of electricity
future contract traded at time ¢ for delivery in Month T.

N
dFuty = oFuter,t, T)dt + > Ti(Futr, t, T)AW(t)] (1)
i=1

The instantaneous change in future curve is represented by a
linear combination of the drift term o(Futr, t, T)dt and random per-
turbations. Each perturbation is specified as the product of a deter-
ministic function I;(Fer, t, T) and a Gaussian factor dW(t),.T (Eydeland
and Wolyniec, 2003).

Three simplifications can be made due to the specific characteris-
tics of the electricity future price curve (Goldberg et al., 1997). First,
it is recognized that the futures price of electricity is a martingale
under the risk-neutral measure P (Shreve, 2004). By following the
martingale representation theorem, we rewrite the full set of future
prices by the following set of price equations.

N

dFuter = Ti(Futer, t, TAW(t)] (2)
i=1

f(u) = (ﬁ(u), . ,fN(u)) (3)

The process W(t)T is an N-dimensional Brownian motion under P
and [(u) is an N-dimensional adapted process.

The second simplification is motivated by the fact that the future
price curve shifts in a fairly smooth manner (Eydeland and Wolyniec,
2003). This assumption can be explained by the fact that market dis-
turbances such as major generation outages and changes in market
design will persist over a period of time. This implies that a smaller
set of uncertain factors dW(t); can explain majority of the variations
in the electricity future price curve (Goldberg et al., 1997). The last
simplification is usually made in practice by assuming the uncer-
tain term [(Fut,r,t, T) is only a function of future price and time to
maturity 7 = T — t with seasonality.

Applying the above-mentioned three simplifications, the full set
of future prices can be rewritten as:

dFUttT

N
Rty = > O(O(T — )dW(t); “)

i=1

where & (t) represents the seasonality of the uncertain term.
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Fig. 1. Energy storage stochastic valuation framework.
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The solution of the stochastic differential Eq. (4) has the following
form.

N ot 5
Futyr = Futor x exp (—; > / G(s)*Ti(T — s)ds
~ Jo

+Z/ (s —de()) (5)

The spot price of electricity can be linked to future price by using
the relationship P; = Futy.

3.2. Principal component analysis

In this subsection, principal component analysis is conducted
to determine the number of uncertain factors needed to explain
majority of the variations.

To characterize the variations of the future price curve, the theo-
retical covariance of the change in logreturns of future prices needs
to be derived. First, applying It6-Doeblin formula for the Itd process
Fut,r in Eq. (5), we have

N
e = 2finai GO (7Pt (6)

N\»—t
KMZ

1

dIn(Futer) = In(Futeiqrr) — In(Futer) (7)

The covariance of the change in logreturns of the future prices has
the following form

din(Fer) dinF N )
COV( &(tg ) g OF(T — t)dt (8)

It is assumed that we have M observations of E electricity monthly
future contracts in the futures market. The corresponding covariance
matrix is denoted by ¢y and has a dimension of E x E. Let ¢y have
eigenvalue-eigenvector pairs (A;,p;) with Ay > Ay > ... > A\g > 0.
The covariance matrix iy can be expressed by its eigenvalues and
eigenvectors. To explain the covariance structure with a few factors,
we approximate the theoretical covariance matrix using the first K
eigenvalues.

The total population variance is equal to the sum of vari-
ances of the principal components > ;_;A;. The proportion of the
total variance explained by the first K principal components is
P 7\1'/ SN

Next, we conduct the principal component analysis on the
California electricity market data. Four California electricity future
contracts are traded on Intercontinental Exchange (CAISO, 2015).
They are on-peak and off-peak contracts at the existing zone gen-
erator trading hub, north/south of path 15(SP15). In this study, the
future prices at SP15 are studied. The study period is chosen to be
between April 1, 2009 and Dec 31, 2012. April 1, 2009 is chosen as
the start date of the study period because it is the “go live” date of the
California Independent System Operator's Market Redesign and
Technology Upgrade (MRTU). Before April, 1 2009, CAISO had been
operating under a zonal market structure. The MRTU introduced
the location market pricing mechanism. Therefore, there is regime
change in the price volatility structure on April 1, 2009.

As shown in Table 1, the principal component analysis results
show that the top 3 factors explain more than 90% of the variability
of the electricity future price curves. Note that this finding from the
California electricity market is very different from that of the Nordic
electricity market (Koekebakker and Ollmar, 2005) where 8 factors
are needed to explain 90% of variation. In this empirical study, we

Table 1
Variance Explained from PCA.

Number of factors % Variance % Cumulative
explained variance explained
1 84.5% 84.5%
2 54% 89.9%
3 1.8% 91.7%
4 1.2% 929%
5 11% 94.1%
6 09% 949 %
7 08% 95.8%

choose a 3-factor model so that more than 90% of variation can be
explained.

The volatility factors in the California electricity future market
have similar shapes as that of yield curves in interest rate theory. To
accurately model the 3 volatility factors, we adopt a variation of the
Nelson-Siegel model for yield curve in interest rate theory (Nelson
and Siegel, 1987).

(T =0 =0 + [o] + 0T - )] el 9)

3.3. Estimate a parametric multi-factor model for electricity future
curve

The multi-factor model parameters can be estimated through
minimizing the difference between the theoretical and empirical
covariance of log-returns. The initial condition of the optimization
problem can be estimated by using deterministic seasonal volatility
factors and volatility parameters estimated from the PCA (Benth et
al., 2008).

The nonlinear optimization problem is solved by using the
Nelder-Mead simplex algorithm (Lagarias et al., 1998). It is imple-
mented in the fminsearch function of MATLAB. The estimated model
parameters using the the fminsearch function are shown in Table 2.
The parameter estimates from Table 2 are used later in the electricity
spot price sample path generation. The estimated volatility function
parameters are not very sensitive to the study period. For example,
if the study period is shortened to be between April 1, 2009 and Nov
30, 2012, then the model parameters only change 0.77% on average.

3.4. Electricity spot price sample path seneration

In the 3-factor model, the relationship between the spot price and
future price can be written as

Pt:FutO[exp|: Z/o i(t—s) ds—i—Z/ G(s)Ti(t—s)dW(s )}

(10)
Table 2
Volatility function parameters estimated from fminsearch function.
January February March April
0.2729 0.2616 0.3061 0.2804
May June July August
0.3187 0.2745 03197 0.2582
September October November December
0.2974 0.2837 0.3491 03210
o? ol o? ki
04330 1.1682 -0.2165 0.9754
od ol o? ky
-0.2387 0.7970 —-0.6892 1.4750
of o) o2 ks
—0.0656 -1.1043 7.6830 4.9629
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By defining w;(t) as follows,
t 3 t B
- / 5(s)00dW(s), + et / 5(s) [0} + 0Pt —5)] eksdW(s);
0 JO
(11)

The relationship between the spot price and future price can be
simplified as

3

P; = Futgrexp (—le )%t + Zwi(t)) (12)
i=1

where

ety 2 %var[ln Py)] i(t — s)2ds (13)

z/o

In order to simulate P;, we need to generate sample paths for w;(t)
where i = 1,2,3. Since w;(t),i = 1,2,3 have similar structures, we
use wy(t) as an example in the following derivations. By using the
functional form of volatility function in Eq. (9), w(t) can be written
as:

wi(t) = /:6(5) {o? + [o} +o$(t—s)] eklt=s }dW( " (14)

wq(t) can be represented as the sum of three Itd integrals, I}(t). If(t),
and B(t).

ot 5
£) = /O o(s)o0dW(s),

. y
n eflqt/ o(s)[o] — o?sleksdW(s),

+te"‘1f/ o(s

=1(t) + B(t) + B(t) (15)

oZek1sdW(s),

Apply It6 -Doeblin formula in differential form to the three Itd
processes I (t) separately, we have

dil(t) = a(s)oYdW(s), (16)

di(t) = —ka () + 6(5) [ 0] - oFt] dW(s), (17)
3 — 1=tk S A52dTA

di(t) = ———LB(0)dt + to(DotdW(e), (18)

It can be shown that the solution to differential Eqs. (16) and (17)
have the following form:

t ~
1) = 1(0) + /O 5(s)0%dW(s), (19)
t ~
(t) = e 2(0) + /0 5(5) [0 — oFs] e Iar(s), (20)
Similarly, for any 0 < u < t, we have
t ~
IHOES eOI}(u)+/ I(s)oddW(s) (21)
u

B(t) = e hE=0Ry) + / I _ o s] e k=) dw(s), (22)

The solution to differential Eq. (18
(Glasserman, 2003).
ForanyO<u <t

) has the following form

t ~
I?(t)zl?(u)(%e"l(”‘t)) n / gekl(s‘f)s(j(s)ade(s)l (23)
u

Given I}(u), (u), () the vector [1}(6), (), B(1)] follows a joint
normal distribution with a mean vector of it and a covariance matrix

3.

To simulate I1(t), 2(t), and B(t) at times 0 < t; < ... < tp, we
may therefore set
M) = 11(8) + 21, (24)
B(tisq) = P(t)ealtin=t) 4 72 (25)
B(tit1) = B(t) (%eklu,._tm)) +2z, (26)
where (Z1,72,73,... ,Z},,Zﬁ,Zﬁ) are independent draws from

N(0, 3(t;, t;+1)). The elements of the covariance matrix can be derived
as follows.

tit1 5 5

2(ti tivi ) = /[ a(s)2(0))?ds
G 2

3(ti, ti+1)22 Z/ o 6(5)2[01] —0125] e~?ilti1=)ds

G

S 1 et 22 g212
3(t;, ti1)33 :/t St ) s a(s)?(0?)2ds

liv1
2(ti, tip1he = / a(s)op [(711 - 0125] ekiltivi=s)ds (27)
Jt;
fi1 21012 ki (&
3(ti, tizi h3 :/ ti+10(s) oj07e” 1(li1-S) s
G
fit1 sie22 [ 1 2] o2kt
3t tiv1)23 =/ ti10(s)’ 07 [01 — 07 s] e-2k1(tiy1-5)dg
i
Note that in the first iteration I1(t;)

=Z1LB(t) =2 1(t3) = Z3.

3.5. Ancillary service price modeling

Ancillary services are important electricity market products
which help maintain electric grid stability and reliability. In the
CAISO market, there are four types of ancillary services products
which are listed in the order of decreasing quality: regulation up,
regulation down, spinning reserve, and non-spinning reserve (CAISO,
2016). Regulation up and down services have the highest quality
because the energy resources providing them must be synchronized
to the electric grid and able to receive and follow automatic gener-
ation control (AGC) signals. In order to provide spinning reserve, an
energy resource is required to be synchronized to the electric grid
but not require to have AGC capabilities. The lowest quality ancil-
lary service, non-spinning reserve, only requires the energy resource
to deliver the ancillary service award within 10 min and the energy
resource do not need to be synchronized (CAISO, 2015). The CAISO
tariff (CAISO, 2016) contains an ancillary services substitution rule
that allows a higher quality ancillary service to substitute for a lower
quality ancillary service when it is economic to do so. Therefore, the
price of a higher quality ancillary service is always higher than or
equal to that of a lower quality ancillary service. In this subsection,
the prices of regulation service, the highest quality ancillary service,
are modeled in detail. Most of the lithium ion battery storage system
can accurately follow the AGC signals. Therefore, we only considered
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frequency regulation services in the case study. The prices of other
ancillary services can be modeled in a similar way.

In day-ahead market operations, the electricity market opera-
tor co-optimizes the dispatch of energy and ancillary services. For
an energy resource, the energy and ancillary service awards are
dependent on each other through the resource capacity constraint
(Yu et al., 2010a). The upward capacity constraint limits the summa-
tion of the energy service award and the upward ancillary service
award by the resource’s maximum charge/discharge power. There-
fore, the ancillary service clearing price can be modeled as the
summation of the ancillary service bidding price and a nonnegative
opportunity cost. The opportunity cost is positive if the energy
resource is selected for both energy and ancillary services and the
LMP for energy is greater than the energy supply offer price. There-
fore, the ancillary service price is highly correlated with energy
supply offer price. The high correlation allows us to simplify the
modeling of regulation up/down prices by selecting the ratio of
monthly average regulation up price and monthly average energy
price as the dependent variable. The relationship between monthly
average regulation up prices and LMPs for energy in 2012 is depicted
in Fig. 2. The relationship between monthly average regulation down
prices and LMPs for energy is similar.

The price of frequency regulation services depends on the
relationship between its supply and demand on a seasonal basis.
Various explanatory variables are explored to model the regulation
up and down prices which include monthly average CAISO system
load, monthly average CAISO system level renewable generation
variability, monthly average CAISO hydroelectric generation, and
seasonality dummy variables. The monthly average CAISO system
level renewable generation variability is estimated as the average of
hourly absolute changes in CAISO system level renewable genera-
tion quantity. There are three seasonality dummy variables Qq;, Qy;,
and Qs; which represent dummy variables for winter, spring, and
summer respectively.

In order to further simplify the model, forward selection (Derksen
and Keselman, 1992) is applied to provide the best subset or com-
bination of predictors for frequency regulation prices. Two years of
historical CAISO data from 2010 to 2011 were used in the model
selection process. With stepwise selection, the final regression model
has the following form:

Regt /P =Po + B11Qu1cYe + B12Q 2 Yr
+ B22Q 2Rt + B23Q 3Rt (28)

where Reg!' denotes monthly average on-peak regulation up price
in month t. P; represents monthly average on-peak energy price
in month t. Y; denotes hydroelectric generation in month t during

40.00
35.00 s °
30.00 °

25.00 ®

20.00

15.00
3.00 4.00 500 6.00 7.00 800 9.00 10.00

Monthly Average LMP for Energy (S/MWh)

Monthly Average Frequency Regulation Up Price ($/MW)

Fig. 2. Relationship between CAISO monthly average ancillary service price and LMP
for energy.

on-peak hours. R; represents average hourly changes in renewable
generation output in month ¢ during on-peak hours.

The model parameters are estimated by using the maximum
likelihood estimation method. The model parameters, standard
errors, and p-values are reported in Table 3. The model fitting
results can be intuitively explained as follows. With fast and accu-
rate ramping capabilities, hydroelectric generation resources have
important effects on the supply side of frequency regulation services
in CAISO. In the Spring and Winter, if the hydroelectric generation
level is high, then the headroom left to provide upward frequency
regulation service will be limited. This will tighten the supply of
regulation up service and put upward pressure on regulation up
prices. Therefore, the coefficients of 3;; and [3;, are both positive.
With more than 20% renewable penetration, intermittent renewable
generation resources have high impact on the demand side of fre-
quency regulation service in CAISO. In the Spring and Summer, a
higher renewable variability level will call for more demand for fre-
quency regulation which will push regulation up price higher. Thus,
the coefficients of 3,, and 3,3 are both positive as well.

3.6. Energy storage optimization in electricity market

Energy storage systems can provide multiple services simultane-
ously to the wholesale power markets. These services include energy
shifting, ancillary services, and electricity supply capacity. In this
section, an energy storage scheduling algorithm will be developed
to optimally allocate and partition available storage capacity to a
combination of grid services in order to maximize its market value.
The objective function of energy storage optimization problem is to
maximize the market value of energy storage systems in wholesale
power markets as shown in Eq. (29). The net revenue of an energy
storage system in the wholesale power markets includes the rev-
enues received from energy shifting service, frequency regulation
services, and variable operating and maintenance costs.

H
Maximize " {(dh + pirt — pﬁrﬁ) LMPA
h=1
+ri'Reg! + riReg

- (|dh| + pirt +pﬁrﬁ) x VOM} (29)

The decision variables are: day-ahead energy award at hour h, dj,
frequency regulation-up award in day-ahead market at hour h, r¥,
frequency regulation-down award in day-ahead market at hour h, rj,
and state-of-charge at hour h, Sj,.

The external variables are: locational marginal price for energy
in day-ahead market at hour h, LMPEA, energy storage variable oper-
ations and maintenance costs V OM, regulation-up price at hour
h, Regj, regulation-down price at hour h, Regﬂ, utilization factor
of regulation-up service at hour h, pj, and utilization factor of
regulation-down service at hour h, pﬁ.

The optimization problem is subject to state-of-charge intertem-
poral constraints (30), state-of-charge upper and lower limit con-
straints (31), charging and discharging limit constraint in real-time
operations (32,33), charging and discharging limit constraint in
day-ahead market operations (34, 35), frequency regulation award

Table 3

Parameter estimates and p-value in ancillary service price model.
Parameter Estimated value Standard error p-value
Bo 8.94E-02 4.66E-02 5.81E-02
B 6.33E-05 1.67E-05 2.86E-04
B2 4.83E-05 1.92E-05 1.39E-02
Bxn 1.13E-03 7.83E-04 1.54E-01
B3 1.39E-03 5.45E-04 1.26E-02




182 N. Yu, B. Foggo / Energy Economics 64 (2017) 177-185

constraints (36), charging and discharging energy constraint in day-
ahead market operations (37, 38).

The external variables in the constraints include: energy decay
rate, , AC round-trip efficiency, p, maximum discharge power, PJ'%,
maximum charge power, P"®, and energy rating for energy storage
system, Epnqx. Note that AC round-trip efficiency is defined as the ratio
of energy put into the battery system to energy retrieved from the
battery system which also accounts for the efficiency of the AC-DC
inverter.

Subect to

S =Su(1 =) = (dn + pirt — piird)

= (1= Vp) x (|dal + pjri + pirt) (30)
0 < Sy < Emax (31)
—dp + pird — pir < pmax (32)
dp + piirt — pird < pmax (33)
—dy + 1 < P (34)
dp + 1) < PJ™ (35)
i, >0 (36)
—dp + 18 < Emax — Sh (37)
dp + 1 < Sy (38)

The optimization problem can be converted to a linear pro-
gramming problem by introducing dummy variables d; and d;,
constrained to be nonnegative, and letd = d,:“ —d, . Every occurrence
of |dy| is replaced with d; + d;.

Note that the above formulation does not consider optimal day-
ahead/hour-ahead bidding strategies for battery storage system with
price uncertainty in day-ahead/hour-ahead electricity markets. In
this paper, the battery storage system operator is assumed to have
perfect foresight within each price scenario generated in Section 3.4.
Therefore, the valuation provided in this study serves as an upper
bound of the battery storage system’s realistic value. The exact profit
for each battery system depends on the specific bidding strategy, the
variability of the electricity prices in day-ahead/real-time markets,
and the accuracy of the price forecasting methods. The topic of opti-
mal bidding strategy for battery storage system has been explored by
other researchers using the stochastic optimization (He et al., 2015)
and approximate dynamic program algorithms (Jiang and Powell,
2014). These optimal bidding strategies can be integrated into the
proposed valuation framework.

4. Setup of valuation study
4.1. Energy storage system specification

A lithium-ion battery storage system is selected in the case
study. The technical specification of the lithium-ion battery system is
selected based on the Tehachapi energy storage project which is the
largest battery energy storage project in north America as of 2015.
Note that the Tehachapi energy storage project is within the SP15
generator trading hub. The AC round trip efficiency of the lithium-ion
battery is assumed to be 88%. The power and energy ratings of the
battery storage system are 8 MW and 32 MWh. The usable energy
range of the battery system as a percentage of rated energy rating

is 95%. The system auxiliary load as a percentage of rated power
output is 0.875%. The self-discharge of the battery is assumed to be
1.65% per month. The rate of energy capacity performance degra-
dation is assumed to be 2.5% per year. The probability of dispatch
for regulation up and down services is estimated from historical
AGC signals. The auxiliary loads are electric loads that are necessary
to operate and protect the battery storage system which includes
controls, cooling systems, fans, pumps, and heaters.

The economic parameters of the battery storage system under
evaluation is as follows. The power-based and energy-based capital
cost are $551/kw and $614/kwh. The balance of plant costs including
land, labor, permitting is assumed to be 20% of the sum of power-
based and energy-based capital costs. The fixed and variable O&M
costs are assumed to be $8.18/kW-year and $0.00548/kWh.

4.2. Electricity market price data input

The lithium-ion battery storage system is assumed to be installed
in the CAISO system. The energy and ancillary services provided by
the battery system are assumed to be paid by the Day-Ahead LMP
for energy and ancillary services at SP15. The monthly average SP15
on-peak electricity prices are generated based on the price sample
path generation described in Section 3.4. Specifically, one thousand
sample paths of spot price are generated based on the price quotes of
SP15 On-Peak future contracts as of December, 31, 2012 with deliv-
ery dates from January 2013 to December 2014. The 3-factor model
coefficients used in the simulation are based on results in Table 2.
The simulated hourly LMPs profile is assumed to be the same as that
of actual DA LMPs of 2012.

As shown in Eq. (28), the simulation of frequency regulation
prices depends on predictions of monthly average renewable gen-
eration variability, hydroelectric generation, and SP15 On-Peak LMP
for energy. The monthly average renewable generation variability is
estimated based on the renewable energy interconnection plan in
CAISO and correlation between renewable generation capacity and
generation uncertainty. The monthly average hydroelectric genera-
tion is estimated based on the historical generation plans and inflow
forecasts. The simulated hourly regulation up/down prices profile
is also assumed to be the same as that of actual ancillary service
prices of 2012. The value of electric supply capacity is estimated
by blending short-run capacity price forecasts with long-run value
of capacity. The short-run capacity values are estimated based on
recent bids from request for offers. The long-run capacity values
are estimated using the cost of new entry method. The revenue
from electric supply capacity is calculated as the summation of the
products of capacity price and net qualifying capacity (NQC) of the
battery storage system. The NQC is determined by the maximum 4-h
continuous discharge capability of the battery storage system.

The valuation horizon of the battery storage system is from
January 2013 to December 2014. The reason why we chose a short
two year valuation horizon is that with a high discount factor and
huge policy uncertainty, battery storage system developers are more
likely to put emphasis on the more tangible short-term informa-
tion available. The methodology proposed in this paper will be
complementary to the long-term system-oriented analyses.

5. Valuation results
5.1. Probabilistic valuation results

The probability density function of the battery system net rev-
enue in the 2-year evaluation period is shown in Fig. 3. As shown
in the figure, the battery system net revenue follows a log-normal
distribution. The expected 2-year net revenue of the battery storage
system is $2.92 Million. The conditional value at risk (CVaR) of the
battery system net revenue at 95% confidence level is $1.80 Million.
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Fig. 3. Probability density function of battery storage system net revenue.

In other words, we are 95% certain that the battery system net
revenue will not be lower than $1.80 Million.

The breakdown of battery storage system revenue streams and
operating costs in the valuation period is shown in Table 4. It can
be seen from the table that if the battery storage system is capable
of following automatic generation control (AGC) signals, then 79% of
the battery system revenue comes from the provision of frequency
regulation services. The battery storage system operating costs are
relatively small compared to its revenues. Note that the valuation
results are not very sensitive to the selection of the fixed profile
for hourly LMPs and hourly regulation up/down prices. By chang-
ing the base profile year from 2012 to 2011, the total net revenue
is reduced by around 5%. The small change can be interpreted as
follows. Majority of the battery storage system revenue comes from
providing ancillary services. The ancillary service revenue is propor-
tional to the ancillary service price when the dispatch schedule is
fixed.

5.2. Effects of round-trip efficiency on energy storage valuation

Stochastic valuations are conducted based on the energy stor-
age system specification and electricity market data described in
Sections 4.1 and 4.2. The impact of round-trip efficiency on energy
storage system revenue streams in the wholesale power market is
illustrated in Fig. 4. As battery round-trip efficiency increases, the
revenue from energy service, regulation up and down services are
pushed higher. The simulation results also show that the percent-
age increase in energy service revenue is much higher than that
of ancillary services. In other words, the net revenue from energy
service has a much stronger dependence on round-trip efficiency
than ancillary services. Every percentage point change in battery
round-trip efficiency results in roughly 1% increase in total expected
net revenue for the battery storage system. However, diminishing

Table 4
Breakdown of battery storage system’s revenue streams.

Revenue/cost category Revenue/cost($)

Net revenue from energy service 121,367
Regulation up service revenue 1,254,524
Regulation down service revenue 812,698
Revenue from capacity payment 430,240
Auxiliary load cost 53,619
Fixed O&M cost 130,720
Total net revenue 2,918,349

return effects can be observed where the marginal improvement in
net revenue decreased from 1.03% to 0.87% as round-trip efficiency
increased from 80% to 94%. The simulation results reveal that techno-
logical advancement in energy storage round-trip efficiency is crucial
to the economic viability of energy storage systems in wholesale
power markets.

5.3. Effects of power-to-energy ratio on energy storage valuation

Power-to-Energy ratio is an important design variable in sta-
tionary energy storage deployment projects. It describes the ratio
of installed energy and maximum discharge power of the energy
storage system. A nominal configuration of 1-to-4 power-to-energy
ratio is typically used in large scale battery storage projects such
as AES Energy Storage’s 4th Generation Grid Storage Advancion™
(AES Energy Storage Advancion, 2016). The optimal power-to-energy
ratio for a battery storage system depends on the grid intercon-
nection location and electric grid services provided by the battery
system. The power-based capital cost and energy-based capital costs
are $551/kw and $614/kwh. The balance of plant costs is assumed to
be 20% of the sum of power-based and energy-based capital costs.

In this paper, the impact of power-to-energy ratio on an energy
storage system’s value is evaluated in detail. Experimental design
is carried out by varying the power-to-energy ratio from 1-to-1 to
1-to-8 while fixing the maximum discharge power of the battery
system at 8 MW as specified in Section 4.1. The stochastic valuation
results are shown in Fig. 5. As demonstrated in the figure, when the
power-to-energy ratio is close to 1-to-2, then an investor of the bat-
tery system can gain the maximum net revenue from every dollar
invested. This optimal power-to-energy ratio is very different from
the nominal configuration of 1-to-4. An investor will receive an extra
$27,687 of return for every $1 million invested in the first two years
by changing the battery configuration from 1-to-4 to 1-to-2. The
reason why a 1-to-2 power-to-energy ratio battery is a better invest-
ment than a 1-to-1 or 1-to-4 power-to-energy ratio battery is that by
operating at 50% of state of charge, the battery could simultaneously
commit to frequency regulation up and down services up to the max-
imum charge/discharge power. Note that this result is derived for a
typical battery storage system primarily providing grid services such
as frequency regulation, electric supply capacity, and energy shifting
in the transmission system. If an energy storage system is integrated
at a different voltage level and provides a different set of services to
the power system, then the optimal power-to-energy ratio can be
quite different from the optimal ratio shown above.

6. Conclusions

This paper develops a stochastic energy storage valuation frame-
work which allows an energy storage system to provide multi-
ple services simultaneously. The frequency regulation service and
energy shifting service are co-optimized in the wholesale power
market operations. Within the stochastic valuation framework, a
future curve dynamics model is developed to model the vari-
ability of electricity price and quantify the risks associated with
energy storage system investment. Empirical results from the Cal-
ifornia electricity future market reveal that three uncertain factors
can explain more than 90% of the variability in electricity future
price. Valuation studies are conducted to demonstrate the useful-
ness of the proposed stochastic energy storage valuation framework.
It is shown in the valuation results that the stochastic valuation
methodology can provide an accurate estimation of both expected
return and investment risk associated with a battery storage system.
In addition, the valuation results show that both round-trip effi-
ciency and power-to-energy ratio are crucial battery system design
parameters for achieving cost effectiveness. Every 1% improvement
in battery round-trip efficiency results in a roughly 1% increase



184 N. Yu, B. Foggo / Energy Economics 64 (2017) 177-185

$3,000,000
$2,500,000
- $2,000,000
7]
S
£ $1,500,000
)
=)
& $1,000,000
3
o
$500,000
$0 || | | | | | | | | | | | | | |
-$500,000
80.00% 81.00% 82.00% 83.00% 84.00% 85.00% 86.00% 87.00% 88.00% 89.00% 90.00% 91.00% 92.00% 93.00% 94.00%
Round-Trip Efficiency
M Net Revenue from Energy Service M Regulation Up Service Revenue m Regulation Down Service Revenue
M Revenue from Capacity Payment Auxillary Load Cost M Fixed O&M Cost
Fig. 4. Impact of round-trip efficiency on energy storage value.
$160,000 $140,000
o T
o
7] 120,000
9 $120,000 $ £
5 3
b $100,000 >
8 & $s0000 . 2
@ £ $80,000 S
v 9 RS
S 9 $40,000 =
§ = $60,000 S
o € S0 — — il v
x S - _— $40,000 5
o = a
£ = -$40,000 $20,000 %
o c
(] (]
Q -$80,000 S0 1
o 1:1 1:2 1:3 1:4 1:5 1:6 1.7 1:8 (o
Power-to-Energy Ratio g

mm Net Revenue from Energy Service
m Revenue from Capacity Payment

—Expected Net Revenue in First Two Years

I Regulation Up Service Revenue

m Auxillary Load Cost

B Regulation Down Service Revenue

m Fixed O&M Cost
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in total expected net revenue. The optimal power-to-energy ratio
for wholesale power market is much higher than the nominal
configuration of 1-to-4 typically used in existing energy storage
projects.

Future studies will consider more detailed models for energy
storage degradation and life-time economic analysis of energy
storage systems. A comprehensive cost effectiveness analysis will
be conducted to compare energy storage systems with traditional
fossil-fueled power plants. In addition, optimal penetration level of
energy storage systems will be studied under different renewable
penetration scenarios.
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