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Abstract—The distribution system state estimation (DSSE)
problem is very challenging due to complexities at the distribution
network structure level and sensor level. This paper first develops
a DSSE formulation similar to the real world settings. In
particular, unbalanced single-phase and two-phase measurements
are considered. In addition, constraints associated with zero
injections and center tapped transformers are carefully modeled.
An orthogonal elimination based DSSE solution algorithm is
developed to solve the nonlinear optimization problem with
equality constraints. The proposed algorithm have better nu-
merical properties than the existing methods and do not require
tunable parameters. The simulation results from modified IEEE-
13 bus test feeder show that the proposed DSSE formulation and
algorithm yield accurate state estimation results.

Index Terms—Advanced Metering Infrastructure, Distribution
System, Orthogonal Elimination, Smart Meter, State Estimation.

I. INTRODUCTION

State estimation is one of the most important functions in
modern energy management systems (EMS) of interconnected
transmission networks [1]. Various key applications such as
contingency analysis, preventive control, and corrective control
all depend on state estimation solutions. The power system
state estimation algorithm was first introduced by Schweppe
[2] in 1970 and has since been implemented in almost every
EMS of transmission networks around the world. However,
the state estimation algorithm has not seen similar level
of adoption and application in the distribution management
systems (DMS).

An increasing amount of distributed energy resources
(DERs) is being integrated into the electric power distribution
systems. To proactively manage the large-scale and hetero-
geneous DERs, the distribution system operators first need a
robust distribution system state estimator (DSSE). The instal-
lation of supervisory control and data acquisition (SCADA)
system at the feeder level [3] and the widespread adoption of
advanced metering infrastructure (AMI) have finally made the
implementation of a reliable DSSE feasible.

It is not simple to extend the state estimation algorithm
developed for the transmission system to the distribution
system due to reasons on two levels [4]. Unlike the transmis-
sion systems, the distribution systems are typically radial and
unbalanced at the network structure level. The unbalanceness
is reflected in two ways. First, the electricity loads are unbal-

anced on three phases. Second, there is a mixture of single-
, two-, and three-phase laterals in the distribution feeders.
At the sensor level, the DMS typically only has access to
low-frequency smart meter readings due to the bottleneck of
communication systems. In addition, the level of measurement
redundancy in distribution networks is much lower than that of
transmission systems. Finally, the smart meter measurements
are asynchronous as the built-in real-time clock of smart
meters is only periodically synchronized with actual time
[5]. The low level of measurement redundancy can cause the
system to be unobservable. Asynchronous measurements make
it difficult to interpret the state estimation results.

Several researchers have attempted to address the state
estimation problem in the electric power distribution systems.
Baran et al. pointed out that the voltage and electric load mea-
surements at customer sites can be used for state estimation
in the distribution systems [3]. As shown in [6], the access
to accurate AMI data can improve the state estimation results
in power distribution systems. In [7], the author provided a
detailed discussion of three-phase distribution system model-
ing, measurement functions, and constraints. In terms of the
DSSE algorithm design, the early work in distribution system
state estimation adopted the weighted least squares (WLS)
method [8]. A current-based fast decoupled state estimation
algorithm was developed for distribution systems [9]. A dis-
tribution system state estimation algorithm considering non-
synchronized smart meter data was developed by modeling
the load variations [10].

The previous literature did not provide a detailed mea-
surement model for distribution networks with a mix of
single-phase, two-phase, and three-phase laterals. In addition,
previous literature is also missing the modeling for electrical
connections among customers/smart meters, the center-tapped
transformers, and the secondary feeders. Regarding the solu-
tion technique for state estimation problem, the previous algo-
rithms rely on a tunable parameter to solve the linear equality
constrained least square problems. However, it is difficult
to find an appropriate parameter for all distribution feeders.
This paper fills the knowledge gap by providing a detailed
measurement model for all customer/smart meter connection
types. This paper also develops an orthogonal elimination
based method within the sequential quadratic programming
framework to solve the nonlinear DSSE problem with equality



constraints. The proposed DSSE algorithm no longer needs
any tunable parameter and has good numerical stability.

The remainder of this paper is organized as follows. Section
II presents the problem formulation. The unique measurement
models and equality constraints for distribution systems are
discussed in detail. Section III provides the solution techniques
for distribution system state estimation problems. Section IV
shows the simulation results on the IEEE 13-bus test feeder
to validate the proposed DSSE algorithm. Section V gives
concluding remarks.

II. PROBLEM FORMULATION

In this section, we present an overview of a typical dis-
tribution system, the general formulation for state estimation
problems, and the unique measurement functions associated
with different smart meter connections and equality constraints
in power distribution systems.

A. Distribution System Overview
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Figure 1. Illustration of a distribution system

The illustration of a typical electric power distribution
system is shown in Fig.1. Labels a, b, and c represent the three
phases. n represents the neutral wire. L stands for a lateral
and T stands for a transformer. The laterals can be single-
phase (L1 and L2), two-phase (L3 and L4), or three-phase.
Residential customers can be served by either a single-phase
transformer (T1, T2) or a center-tapped transformer (T3, T4).
Commercial customers are typically served by a three-phase
transformer (T5).

There are one or multiple service transformers on each sec-
ondary feeder in the distribution network. Each service trans-
former serves one or multiple buildings which are equipped
with smart meters. The smart meters measure the real power
consumption (kWh) and voltage magnitudes of each building
(e.g., ˜240V for center-tapped transformers). The SCADA
system at the distribution feeder level also measures the phase
currents, neutral current, line-to-line voltage, and complex
power flow on the secondary side of the substation transformer.

B. General Formulation for State Estimation Problems

The state estimation problem aims at finding the states of
the electric power distribution systems, given the network
connectivity information and measurement data. The state
variable vector x is typically defined as the voltage angles
and magnitudes at each node.

x =
[
|V a1 |, |V b1 |, · · · , |V cN |, θb1, · · · , θcN

]T
where |V pi | denotes voltage magnitude of bus i with phase
p. θpi stands for the voltage angle of bus i with phase p and
θa1 ≡ 0, is chosen as the reference angle.

The measurement model can be written as follows:

z = h(x) + e (1)

where h(·) is a system of nonlinear equations that map the
state variables into the measurement space. It is assumed that
all of the measurement noise terms e are additive and zero
mean Gaussian. In a typical distribution network, there are
many nodes with zero current injections. These zero injection
pseudo-measurements will create a set of equality constraints.

f(x) = 0 (2)

The state estimation result is defined as the solution of Equa-
tions (1) and (2) in the maximum likelihood sense. Under the
Gaussianity assumption, the estimation problem is equivalent
to the following non-convex programming problem.

min
x

(z − h(x))TR−1(z − h(x))

s.t. f(x) = 0
(3)

The measurement models and equality constraints are mod-
eled in the next two subsections.

C. Measurement Models

The development of measurement models and equality
constraints are based on three-phase power flow equations:

P pi = |V pi |
N∑
k=1

∑
m∈{a,b,c}

|V mk |(g
pm
ik cos(θpmik ) + bpmik sin(θpmik )) (4)

Qpi = |V pi |
N∑
k=1

∑
m∈{a,b,c}

|V mk |(g
pm
ik sin(θpmik )− bpmik cos(θpmik )) (5)

where P pi and Qpi are the real and reactive net injected power
at bus i with phase p. V pi is the voltage at bus i with phase
p. θpmik = θpi − θmk is the voltage angle differences between
bus i with phase p and bus k with phase m. The distribution
network admittance matrix is given by:

[ypmik ] = [gpmik + jbpmik ]

where i, k ∈ set of buses and p,m ∈ {a, b, c}.
Unlike transmission systems, there are two types of unique

measurement models in electric power distribution systems:
the single-phase and two-phase measurements. The single-
phase measurements include single-phase voltage magnitudes
and single-phase electricity loads. The two-phase measure-
ments include line to line voltage magnitudes and two-phase



electricity loads. The following assumptions are made in this
paper about distribution system measurements:

• At the distribution substation, phase-to-neutral voltage
magnitude, magnitude of current injection, and three-
phase complex power injection measurements are avail-
able.

• At every distribution center-tapped transformer, two-
phase voltage magnitude and aggregated real two-phase
power injection measurements are available.

• At every single or three phase distribution transformer,
phase-to-neutral voltage magnitudes and real power in-
jection measurements are available.

• The center-tapped transformers and the single-phase
transformers are assumed to be ideal. The series
impedance and shunt admittance of the lines from the
service transformers’ secondary to the customers’ build-
ings are negligible.

The single-phase measurement equations are listed below:

|V pi |meas = |V pi |+ e|V p
i | (6)

P pi meas = P pi + ePp
i

(7)

Qp1meas = Qp1 + eQp
1

(8)

|Ip1 |meas =
∥∥∥[Re(Ip1 ) Im(Ip1 )

]T∥∥∥
2

+ e|Ip1 |

Re(Ip1 ) =
N∑
k=1

∑
m∈{a,b,c}

|V mk |(g
pm
1k cos(θmk )− bpm1k sin(θmk ))

Im(Ip1 ) =
N∑
k=1

∑
m∈{a,b,c}

|V mk |(g
pm
1k sin(θmk ) + bpm1k cos(θmk )) (9)

The two-phase measurement equations are listed below:

|V pmi |meas =
√
|V pi |2 + |V mi |2 − 2|V pi ||V mi |cos(θpi − θmi ) + e|V pm

i |
(10)

P pmi meas = |V pi |
N∑
k=1

∑
n∈{a,b,c}

|V nk |(g
pn
ik cos(θpnik ) + bpnik sin(θpnik ))−

|V mi |
N∑
k=1

∑
n∈{a,b,c}

|V nk |(g
pn
ik cos(θmnik ) + bpnik sin(θmnik )) + ePpm

i

(11)
where |V pmi | = |V pi − V mi | denotes line-to-line voltage
magnitudes and P pmi = Re((V pi − V mi )Ip∗i ) stands for two-
phase real power injections.

D. Equality Constraints

Two types of equality constraints are modeled in the dis-
tribution state estimation problems. The first type of equality
constraints are associated with buses with neither load nor gen-
eration. These constraints are called zero injection constraints
where the net injected power must be zero.

P ptap,i = 0 (12)

Qptap,i = 0 (13)

The second type of equality constraints are associated with
center-tapped transformers where the sum of currents flowing
through the two phases must be zero.

Re(Ipi ) + Re(Imi ) = 0 (14)
Im(Ipi ) + Im(Imi ) = 0 (15)

The measurement functions and equality constraints are
incorporated into the objective function and constraints of the
optimization problem of the state estimation algorithm. Note
that a distribution system node may have a combination of
these constraints and measurements. For example, in Fig.2,
node i has two measurement functions, two zero injection
constraints, and two equality constraints associated with the
center tapped transformer. The measurement functions are real
power P bci meas and line-to-line voltage magnitude |V bci |meas.
The zero injection constraints are P ai = 0 and Qai = 0. The
equality constraints associated with center tapped transformers
are Re(Ibi ) + Re(Ici ) = 0 and Im(Ibi ) + Im(Ici ) = 0.
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Figure 2. Constraints and measurements at node i

III. TECHNICAL METHODS

In this section, the algorithm to solve the state estimation
problem stated in (3) is presented. To solve this nonconvex
optimization problem, the Lagrange multiplier theorem is
invoked [11]. The theorem (expressed as equations (16) and
(17)) states that the gradient of the Lagrangian must vanish at
local minima or maxima.

∇xL = −2HTR−1∆z − FTλ = 0 (16)
∇λL = −f(x̂) = 0 (17)

where H = ∂h
∂x

∣∣
x=x̂

, F = ∂f
∂x

∣∣∣
x=x̂

, and ∆z = z − h(x̂).
x̂ denotes a local minimum or maximum. Equations (16) and
(17) are the necessary but not sufficient conditions for local
optimum solutions.

Equations (16) and (17) can be solved using the Newton-
Raphson (N-R) method. First, we approximate the second
order derivative of the original objective function (3) as:

∇xx(z − h(x))TR−1(z − h(x)) ≈ 2HTR−1H (18)

Then, at each N-R iteration, a system of linear equations is
constructed and solved. This linear equation is the same as the
closed form solution of the system of equation corresponding
to the KKT condition for the following problem [14]:

min
∆x

(∆z −H∆x)TR−1(∆z −H∆x)

s.t. F∆x = ∆f
(19)



where ∆x = x − xk and ∆f = −f(xk). Jacobian matrices
are evaluated at current iterate xk. Note that the approximation
in (18) is reasonable when the measurement residuals and
nonlinearity of the measurement models are small. The closed
form solution to Equation (19) can be ill-conditioned, as
the KKT matrix is indefinite. Therefore, the performance of
different algorithms varies. A desirable algorithm to solve
Equation (19) should:

1) have good numerical properties (e.g. small condition
number of coefficient matrix)

2) preserve sparsity of the problem
Hachtel’s augmented matrix method [12] satisfies the sec-

ond condition. However, it requires a good tuning parameter to
satisfy the first condition. It is difficult to develop an algorithm
to find an appropriate tuning parameter for a general DSSE
problem.

To eliminate the tuning process, we advocate the adoption
of an orthogonal elimination based method [13]. Note that
the linearized equality constraints define an affine space. The
affine space has the following form:

∆x = xp + xh (20)

One possible particular solution can be xp =
FT(FFT)−1∆f , this is the minimum 2-norm solution
to the constraints. All the homogeneous solutions (xh

denotes any one of them) constitute the nullspace of
constraints Jacobian, which can be expressed as arbitrary
linear combinations of nullspace basis vectors:

xh = V2β ∀β (21)

Multiple matrix factorization methods can find such bases.
For example the SVD gives an orthonormal set of basis
vectors. However, It is preferable to have a sparse nullspace
basis. In this paper, we adopt the work proposed by the authors
of [14], who described a computationally efficient procedure
for finding a sparse nullspace basis.

If we substitute ∆x = xp + xh into the objective, then
minimize it with respect to β, we get the following necessary
optimality condition:

VT
2 H

TR−1HV2β = VT
2 H

TR−1(∆z −Hxp) (22)

In forming Equation (22), it is likely that the sparsity of
the problem was destroyed. However one can show that, if
there are no structural nonzeros in both H and V2, then the
product HV2 is still sparse in a sparsely connected distribution
network. Equation (22) can be solved using numerical robust
methods such as QR factorization:

R−
1
2HV2 = QU =

[
Q1 Q2

] [U1

0

]
(23)

The author of [15] advocated the use of Givens rotation for
computing the QR factorization when the matrix is large and
sparse. After the QR factorization Equation (22) is reduced to:

U1β = QT
1R
− 1

2 (∆z −Hxp) (24)

where U1 is an upper triangular matrix. Note that in (24),
forming the gain matrix G

′
= VT

2 H
TR−1HV2 was avoided.

After ∆x is obtained using (20), the overall iteration proceeds.
When close to the optimal solution, ∆f → 0, minimum 2-
norm particular solution vanishes. In that case, substituting
nullspace of constraints into the objective is sufficient for
finding the solution to the subproblem.

IV. SIMULATION RESULTS

The proposed orthogonal elimination based DSSE algorithm
is implemented on a modified IEEE-13 bus test feeder. Both
state estimation results and numerical properties of the pro-
posed method are presented in this section.

The IEEE-13 bus test feeder [16] is modified to include
center-tapper transformers as follows.
• Node 650 is considered as the secondary side of the

substation transformer. The primary side is assumed to
be connected to an infinite bus. The voltage regulator is
ignored.

• The circuit breaker between node 671 and 692 is re-
moved.

• The uniformly distributed loads are removed from the
feeder.

• Node 646 is assumed to be connected to a center-tapped
transformer across phases b and c.

The simulations are set up as follows. First, load flow
calculations are carried out using Newton-Raphson method.
Noise corrupted measurements are then generated using the
measurement models described in Section.II. Second, the
measurements are fed into the DSSE algorithm. At last, the
differences between the load flow results and the DSSE results
are recorded. The simulations are repeated M times. The
normalized root-mean square errors of DSSE are computed.

˜|V pi | =

√√√√∑M
k=1(

|V p
i |−

ˆ|V p
i |k

|V p
i |

)2

M
θ̃pi =

√∑M
k=1(

θpi−θ̂
p
i k

2π )2

M
(25)

where ( ˆ|V | θ̂) denote results of state estimation. The stopping
criterion for the load flow calculation and the state estimation
are set to be the same as follows: max

i
|∆xi| < 0.00001

p.u..The measurement noise covariance matrix was set to be
R = diag

[
σ2, σ2, · · · , σ2

]
. With σ = 0.01 p.u., the results of

DSSE are shown in Table.I.
The simulation results show that under 0.01 p.u. measure-

ment noise, most of the voltage magnitude estimation errors
are less than 1%, and all of the voltage angle estimation errors
are less than 1% · 2π. Additional simulations are conducted to
analyze the impact of measurement noise on state estimation
errors. The standard deviation of the measurement noise σ is
increased systematically from 0.0001% to 1.5%. Under each
setting of σ, Monte Carlo simulations are conducted. The
state estimation errors under each measurement noise setting
are reported in Fig.3. In the figure, each curve represents the



Table I
RMSE OF |V̂ | AND θ̂ (PER UNIT)

˜|V | θ̃

Node
Ph

a b c a b c

ref 0.0092 0.0099 0.0089 0.0 0.0036 0.0056
650 0.0066 0.0074 0.0080 0.0020 0.0038 0.0029
646 - 0.0091 0.0061 - 0.0045 0.0031
645 - 0.0094 0.0061 - 0.0046 0.0031
632 0.0072 0.0058 0.0062 0.0021 0.0042 0.0031
633 0.0088 0.0069 0.0073 0.0022 0.0043 0.0033
634 0.0102 0.0088 0.0084 0.0022 0.0043 0.0033
611 - - 0.0103 - - 0.0044
684 0.0068 - 0.0067 0.0027 - 0.0038
671 0.0082 0.0073 0.0083 0.0025 0.0043 0.0034
675 0.0090 0.0087 0.0076 0.0032 0.0049 0.0040
652 0.0091 - - 0.0039 - -
680 0.0082 0.0073 0.0083 0.0025 0.0043 0.0034

σ (%)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

˜ |V
|
(p
.u
.
×
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−
2
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Figure 3. Estimation error v.s. measurement noise

change of estimation error in response to measurement noise
for one node and one phase. As expected, the measurement
errors increase as the measurement noise level increases.
The numerical stability and computational efficiency of the
proposed algorithm is compared to that of the Hachtel’s
augmented matrix method. The numerical stability is evalu-
ated by measuring the condition number of the coefficient
matrix which is used in solving the linear equation (24).
The computational efficiency of the proposed algorithm is
evaluated by measuring the number of nonzero elements (nnz)
in the coefficient matrix. The nnz and condition number of
coefficient matrices are reported in Tables II and III. As shown
in Tables II and III, the coefficient matrix in the proposed

Table II
nnz OF COEFFICIENT MATRICES

Augmented
matrix

Orthogonal
elimination

nnz 1526 496

Table III
CONDITION NUMBER OF COEFFICIENT MATRICES (×103), σ = 0.01 P.U.

Method
Iteration

k = 0 k = 1 k = 2 k = 3

Augmented
matrix

α = 1 18.628 21.871 24.747 23.678
α = 0.1 3.500 3.142 3.396 3.209
α = 0.05 6.998 4.574 4.727 5.058

Orthogonal
elimination - 0.937 1.069 1.073 1.029

algorithm has a smaller number of nonzero elements and
lower condition number. This demonstrates that the proposed
algorithm is more computational efficient and numerically
stable than the Hachtel’s augmented matrix method.

V. CONCLUSION

In this paper, a distribution system state estimation problem
is formulated considering unbalanced single-phase and two
phase measurements. Constraints associated with zero injec-
tions and center tapped transformers are incorporated into
the problem formulation. An orthogonal elimination based
algorithm is developed to solve the DSSE problem. The
proposed solution algorithm yields better numerical stability
and computational efficiency than existing methods. The sim-
ulation results on a modified IEEE test feeder validated the
accuracy, numerical stability, and computational efficiency of
the proposed algorithm.
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