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Abstract. WRF-Chem simulations of aerosol seasonal vari-
ability in the San Joaquin Valley (SJV), California, are eval-
uated by satellite and in situ observations. Results show that
the WRF-Chem model successfully captures the distribution
and magnitude of and variation in SJV aerosols during the
cold season. However, aerosols are not well represented in
the warm season. Aerosol simulations in urban areas dur-
ing the cold season are sensitive to model horizontal resolu-
tion, with better simulations at 4 km resolution than at 20 km
resolution, mainly due to inhomogeneous distribution of an-
thropogenic emissions and precipitation that is represented
better in the 4 km simulation. In rural areas, the model sen-
sitivity to grid size is rather small. Our observational anal-
ysis reveals that dust is a primary contributor to aerosols in
the SJV, especially during the warm season. Aerosol simu-
lations in the warm season are sensitive to the parameteriza-
tion of dust emission in WRF-Chem. The GOCART (God-
dard Global Ozone Chemistry Aerosol Radiation and Trans-
port) dust scheme produces very little dust in the SJV, while
the DUSTRAN (DUST TRANsport model) scheme overes-
timates dust emission. Vertical mixing of aerosols is not ade-
quately represented in the model based on CALIPSO (Cloud-
Aerosol Lidar and Infrared pathfinder Satellite Observation)
aerosol extinction profiles. Improved representation of dust
emission and vertical mixing in the boundary layer is needed
for better simulations of aerosols during the warm season in
the SJV.

1 Introduction

The San Joaquin Valley (SJV) in the southern portion of the
California Central Valley is surrounded by a coastal moun-
tain range to the west and the Sierra Nevada range to the
east. With cool wet winters and hot dry summers, the unique
natural environment makes SJV one of the most produc-
tive agricultural regions in the world (SJV APCD, 2012 and
references therein). However, SJV is also one of the most
polluted regions in the US due to its unique geographical
location. Frequent stagnant weather systems are conducive
to air pollution formation, while the surrounding mountains
block air flow and trap pollution. Large seasonal and spatial
variation in aerosol occurrence and distribution is observed
in the SJV. Although significant progress in improving lo-
cal air quality in past decades has been achieved through
strong emission controls, PM2.5 (particulate matter with a
diameter≤ 2.5 µm) concentrations in the SJV remain well
above the National Ambient Air Quality Standards (NAAQS)
threshold of 12 µgm−3 on an annual basis and 35 µgm−3 on
a daily basis, occurring mainly during the cold season. Im-
proved understanding of the aerosol variability and impacts
is needed to provide further guidance for emission control
strategies in the SJV.

Air quality models are a useful tool for understanding the
formation and evolution of aerosols and their impacts on air
quality, weather and climate. However, it is quite challenging
to accurately simulate aerosol properties (Fast et al., 2014).
Fast et al. (2014) summarized the factors contributing to the
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errors in regional-scale modeling of aerosol properties. They
include (1) emission sources, (2) meteorological parameter-
izations, (3) representation of aerosol chemistry, (4) limited
understanding of the formation processes of secondary or-
ganic aerosol (SOA), (5) spatial resolution and (6) boundary
conditions.

As one of the advanced regional air quality models
presently available to the community, the Weather Research
and Forecasting model with Chemistry (WRF-Chem) has
been widely used to study aerosols and their impacts on re-
gional air quality, weather and climate (e.g., Misenis and
Zhang, 2010; Zhang et al., 2010; Zhao et al., 2010, 2013a, b,
2014; Gao et al., 2011; Wu et al., 2011a, b, 2013; Fast et
al., 2012, 2014; Scarino et al., 2014; Tessum et al., 2015;
Campbell et al., 2016; Hu et al., 2016). For example, Fast
et al. (2014) showed that WRF-Chem simulations at 4 km
horizontal resolution captured the observed meteorology and
boundary layer structure over California in May and June of
2010 and the spatial and temporal variations in aerosols were
reasonably simulated. Aerosol simulations by WRF-Chem
are usually sensitive to both local emission and long-range
transport of aerosols from the boundary conditions provided
by the global Model for Ozone and Related Chemical Trac-
ers, version 4 (MOZART-4). With a similar model set-up,
Zhao et al. (2013b) conducted a 1-year simulation at 12 km
horizontal resolution and found that the WRF-Chem model
represented the observed seasonal and spatial variation in
surface particulate matter (PM) concentration over Califor-
nia. However, underestimation of elemental carbon (EC) and
organic matter (OM) was noticed in the model simulation,
with weak sensitivity to horizontal resolution.

In this study, we focus on simulating aerosol seasonal vari-
ability in the SJV, California, using similar model config-
urations to those used in Zhao et al. (2013b) and Fast et
al. (2014). This paper serves as the first step for future inves-
tigation of the aerosol impact on regional climate and the wa-
ter cycle in California. Previous studies have demonstrated
that aerosols are better simulated at higher model resolution
(Misenis and Zhang et al., 2010; Qian et al., 2010; Stround
et al., 2011; Fountoukis et al., 2013). However, most regional
climate studies are still performed with coarse model resolu-
tions (of the order of 10 km) due to the availability of compu-
tational resources. This study will investigate the sensitivity
of aerosol simulations to horizontal resolution and identify
optimal model physical choices for reasonable representation
of aerosol variabilities in the SJV.

Another application of air quality modeling is to provide
initial a priori fields for remote sensing retrievals. The WRF-
Chem model has been proposed as an input for retrieval al-
gorithms to be developed for the recently selected NASA
MAIA (Multi-Angle Imager for Aerosols) mission, which
aims to map PM component concentrations in major urban
areas (including the SJV, a test bed for the MAIA retrieval
algorithm development). A significant challenge for aerosol
remote sensing in retrieving spatial information on specific

aerosol types, especially near the surface, is caused by the
lack of information on the vertical distribution of aerosols in
the atmospheric column and limited instrument sensitivity to
aerosol types over land. The WRF-Chem model will be used
to provide near-real-time estimation of particle properties,
aerosol layer heights and aerosol optical depths (AODs) to
constrain the instrument-based PM retrievals. A reasonable
estimate of aerosol properties from WRF-Chem is critical to
ensuring retrieval speed and quality. Considering the sensi-
tivity of WRF-Chem simulations to various factors such as
initial and boundary conditions, model parameterizations and
emission sources (e.g., Wu and Petty, 2010; Zhao et al., 2010,
2013a, b; Wu et al., 2011a, 2015; Fast et al., 2014; Campbell
et al., 2016; Morabito et al., 2016), careful model evaluations
are needed before the simulations can be used operationally
for remote sensing retrievals. Thus, this study is important
for the development of MAIA retrieval algorithms, which are
critical to the success of the MAIA mission.

This paper is organized as follows. Section 2 describes ob-
servational datasets used for model evaluation. Section 3 pro-
vides the description of the WRF-Chem model and exper-
iment setup. Model simulations and their comparison with
observations are discussed in Sect. 4. Section 5 presents the
conclusions.

2 Observations

2.1 Column-integrated aerosol optical properties

AOD is a measure of column-integrated light extinction by
aerosols and a proxy for total aerosol loading in the atmo-
spheric column. The Aerosol Robotic Network (AERONET)
provides ground measurements of AOD every 15 min dur-
ing daytime under clear skies (Holben et al., 1998), with
an accuracy approaching ±0.01 (Eck et al., 1999; Holben
et al., 2001; Chew et al., 2011). The monthly level 2.0
AOD product with cloud screening and quality control is
used in this study. The Ångström exponent (AE) is an in-
dicator of aerosol particle size. Small (large) AE values
are generally associated with large (small) aerosol particles
(Ångström, 1929; Schuster et al., 2006). The AE between 0.4
and 0.6 µm is derived from AERONET observed AODs and
is used to evaluate the model-simulated AE. For compari-
son with simulated AOD, AERONET AOD is interpolated
to 0.55 µm from 0.50 to 0.675 µm using the AE. In the SJV,
only one AERONET station at Fresno, California (36.79◦ N,
119.77◦W), has regular observations throughout the Cali-
fornia water year of 2013 (WY2013) from October 2012 to
September 2013.

The Multiangle Imaging Spectroradiometer (MISR)
(Diner et al., 1998) instrument onboard the Terra satellite has
provided global coverage of AOD once a week since Decem-
ber 1999. The standard MISR retrieval algorithm provides
AOD observations at 17.6 km resolution using 16×16 pixels
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Figure 1. Daily mean anthropogenic PM2.5 emission rate (µgm−2 h−1) in (a) 20km and (b) 4km simulations. Domain-averaged emission
rate is shown at the top right of each panel. Red dashed lines in (a) represent the region used for the domain averages in the discussions.
Yellow circle: IMPROVE site; yellow diamond: EPA CSN site. Three urban sites: Fresno, Bakersfield and Modesto; two rural sites: Pinnacles
and Kaiser.

of 1.1km×1.1km each. About 70 % of MISR AOD retrievals
are within 20 % of the paired AERONET AOD, and about
50 % of MISR AOD falls within 10 % of the AERONET
AOD, except in dusty and hybrid (smoke and dust) sites
(Kahn et al., 2010). We use version 22 of the Level 3 monthly
AOD product at 0.5◦ resolution in this study.

2.2 Surface mass concentration

Surface PM2.5 speciation and PM10 (particulate matter with
a diameter≤ 10 µm) data are routinely collected by two
national chemical speciation monitoring networks: the In-
teragency Monitoring of Protected Visual Environments
(IMPROVE) and the PM2.5 National Chemical Speciation
Network (CSN) operated by the Environmental Protection
Agency (EPA) (Hand et al., 2011; Solomon et al., 2014).
IMPROVE has collected 24 h aerosol speciation every third
day at mostly rural sites since 1988. The same frequency
of aerosol speciation dataset has been collected at EPA
CSN sites in urban and suburban areas since 2000. The ob-
served organic carbon is converted to OM by multiplying by
1.4 (Zhao et al., 2013b; Hu et al., 2016). Some precursors
of aerosol pollution (such as NO2 and SO2) are observed
hourly by the EPA (data available at https://aqsdr1.epa.gov/
aqsweb/aqstmp/airdata/download_files.html) and are used in
this study. Selected IMPROVE and EPA CSN sites used in
this study are shown in Fig. 1a.

2.3 Aerosol extinction profile

The aerosol extinction coefficient profile reflects the attenu-
ation of the light passing through the atmosphere due to the
scattering and absorption by aerosol particles as a function of
range. Version 3 Level 2 532 nm aerosol extinction profiles

derived from Cloud-Aerosol Lidar with Orthogonal Polar-
ization (CALIOP) backscatter profiles collected onboard the
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Ob-
servation (CALIPSO) satellite are used (Omar et al., 2009;
Young and Vaughan, 2009). Seasonal mean profiles are de-
rived for WY2013 based on the methodology outlined in
Campbell et al. (2012), whereby quality-assurance protocols
are applied to individual profiles before aggregating and av-
eraging the data. We highlight that no individual profiles are
included in the averages if the CALIOP Level 2 retrieval
failed to resolve any extinction within the column, a poten-
tial issue for creating bias that has recently been described
by Toth et al. (2017). Level 2 532 nm aerosol extinction data
classify aerosols into six types: clean marine, dust, polluted
continental, clean continental, polluted dust and smoke. Dust
and polluted dust are distinguished in the averages in this
study for their seasonal contribution to total extinction and
the vertical profile in the SJV.

2.4 Meteorology

AIRS (Atmospheric Infrared Sounder) onboard the Aqua
satellite (Susskind et al., 2003; Divakarla et al., 2006) has
provided global coverage of the tropospheric temperature
and moisture at approximately 01:30 and 13:30 local time
since 2002. AIRS retrievals have a RMSE of ∼ 1 K for tem-
perature and ∼ 15 % for water vapor (Divakarla et al., 2006).
Level 3 monthly temperature and moisture retrievals (ver-
sion 6) on a 1◦× 1◦ grid are used in this study. The vertical
gradient of equivalent potential temperature (θe) marks atmo-
spheric stability and is computed from temperature and mois-
ture profiles observed by AIRS. Vertical profiles from the Eu-
ropean Center for Medium-Range Weather Forecasts Interim
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Re-Analysis (ERA-Interim; Dee et al., 2011) are also used
for comparison. Surface observations, including air temper-
ature, relative humidity (RH) and wind speed, are routinely
collected at the California Irrigation Management Informa-
tion System (CIMIS; http://www.cimis.water.ca.gov/). Pre-
cipitation used in this study is the Climate Prediction Center
(CPC) Unified Gauge-Based Analysis of Daily Precipitation
product at 0.25◦× 0.25◦ resolution.

3 Model description and experiment setup

The WRF-Chem model Version 3.5.1 (Grell et al., 2005) up-
dated by the Pacific Northwest National Laboratory (PNNL)
is used in this study (Zhao et al., 2014). This study uses
the CBM-Z (carbon bond mechanism) photochemical mech-
anism (Zaveri and Peters, 1999) coupled with the sectional-
bin MOSAIC (Model for Simulating Aerosol Interactions
and Chemistry) aerosol scheme (Zaveri et al., 2008) as the
chemical driver. The major components of aerosols (nitrate,
ammonium, EC, primary OM, sulfate, sea salt, dust, water
and other inorganic matter) as well as their physical and
chemical processes are simulated in the model. For compu-
tational efficiency, aerosol particles in this study are parti-
tioned into four sectional bins with a dry diameter within
0.039–0.156, 0.156–0.625, 0.625–2.5 and 2.5–10.0 µm. Zhao
et al. (2013a) compared the impact of aerosol size partition
on dust simulations. It showed that the four-bin approach rea-
sonably produces dust mass loading and AOD compared with
the eight-bin approach. The size distribution of the four-bin
approach follows that of the eight-bin approach with coarser
resolution, resulting in ±5 % difference in the ratio of PM2.5
dust /PM10 dust in dusty regions (more large particles and
less small particles). Dust number loading and absorptivity
are biased high in the four-bin approach compared with the
eight-bin approach.

Aerosols are considered to be spherical and internally
mixed in each bin (Barnard et al., 2006; Zhao et al., 2013b).
The bulk refractive index for each particle is calculated
by volume averaging in each bin. Mie calculations as de-
scribed by Ghan et al. (2001) are used to derive aerosol op-
tical properties (such as extinction, single-scattering albedo
and the asymmetry parameter for scattering) as a func-
tion of wavelength. Aerosol radiation interaction is included
in the shortwave and longwave radiation schemes (Fast et
al., 2006; Zhao et al., 2011). By linking simulated cloud
droplet number with shortwave radiation and microphysics
schemes, aerosol cloud interaction is effectively simulated in
WRF-Chem (Chapman et al., 2009). Aerosol snow interac-
tion is implemented in this version of WRF-Chem (Zhao et
al., 2014) by considering aerosol deposition on snow and the
subsequent radiative impacts through the SNICAR (SNow,
ICe, and Aerosol Radiative) model (Flanner and Zender,
2005, 2006).

The model simulations start on 1 September 2012 and run
continuously for 13 months. With the first month used for the
model spin-up, our analysis focuses on WY2013 from Octo-
ber 2012 to September 2013. The model is configured with
40 vertical levels and a model top at 50 hPa. The vertical res-
olution from the surface to 1 km gradually increases from 28
to 250 m. The model center is placed at 38◦ N, 121◦W, with
250× 350 grid points at 4 km horizontal resolution (referred
to as “4km” hereafter; Table 1), covering California and the
surrounding area. To test the sensitivity of the aerosol simula-
tions to horizontal resolution, one simulation with the same
model settings and domain coverage is conducted at 20 km
horizontal resolution (referred to as “20km” hereafter).

The physics parameterizations used in the simulations in-
clude the Morrison double-moment microphysics scheme
(Morrison et al., 2009), Rapid Radiative Transfer Model
for general circulation models (RRTMG) model shortwave
and longwave radiation schemes (Iacono et al., 2008), and
the Community Land Model (CLM) Version 4 land sur-
face scheme (Lawrence et al., 2011). The Yonsei Univer-
sity (YSU) planetary boundary layer (PBL) scheme (Hong
et al., 2006) is used in all of the simulations, except one
sensitivity experiment that uses the ACM2 (Asymmetric
Convective Model with non-local upward mixing and local
downward mixing; Pleim, 2007) PBL scheme (referred to
as “20km_P7” hereafter, Table 1). Previous studies showed
that both the YSU and ACM2 schemes have good perfor-
mance in simulating boundary layer properties (e.g., Hu et
al., 2010; Xie et al., 2012; Cuchiara et al., 2014; Banks and
Baldasano, 2016; Banks et al., 2016; Chen et al., 2017).
Sub-grid convection, convective transport of chemical con-
stituents and aerosols, and wet deposition from sub-grid con-
vection are parameterized using the Grell 3-D ensemble cu-
mulus scheme (Grell and Devenyi, 2002) in the 20 km simu-
lations, while convective processes are resolved in the 4 km
simulations. The ERA-Interim reanalysis serves as the ini-
tial and boundary meteorological conditions for WRF-Chem.
The MOZART-4 global chemical transport model (Emmons
et al., 2010) is used for initial and boundary chemical con-
ditions. Fast et al. (2014) found that the MOZART-4 model
overestimates aerosols in the free troposphere over Califor-
nia, which is also found in one of our sensitivity exper-
iments (“20km_BC1” in the Supplement). Following Fast
et al. (2014), the chemical initial and boundary conditions
from MOZART-4 are divided by 2 in all simulations except
20km_BC1.

Anthropogenic emissions are provided by US EPA 2005
National Emissions Inventory (NEI05), with area-type emis-
sions on a structured 4 km grid and point-type emissions at
specific latitude and longitude locations (US EPA, 2010).
Aerosol emissions include SO4, NO3, EC, organic aerosols,
and total PM2.5 and PM10 masses, and 19 gases (includ-
ing SO2, NO, NH3, etc.) are emitted. Anthropogenic emis-
sions are updated every hour to account for diurnal variabil-
ity, while their seasonal variation is not considered in the
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Table 1. Experiment description.

Experiment ID Experiment description

20km Simulation with the GOCART dust scheme at 20 km horizontal resolution.
20km_D2 Same as 20km, but with the DUSTRAN dust scheme.
20km_P7 Same as 20km_D2, but with the ACM2 PBL scheme.
4km Same as 20km, but at 4 km horizontal resolution.
4km_D2 Same as 4km, but with the DUSTRAN dust scheme.

simulations. A sensitivity experiment with 2011 NEI emis-
sions (“20km_NEI11” in the Supplement) did not produce
significantly different results from the 2005 NEI emissions.
Biogenic emissions are calculated online using the Model
of Emissions of Gases and Aerosols from Nature (MEGAN)
(Guenther et al., 2006). Biomass burning emissions are ob-
tained from the Global Fire Emissions Database version 2.1,
with 8-day temporal resolution (Randerson et al., 2007) and
monthly updates. Sea salt emissions are derived from the
PNNL-updated sea salt emission scheme that includes the
correction of particles with a radius less than 0.2 µm (Gong,
2003) and dependence on sea surface temperature (Jaeglé et
al., 2011).

Following Zhao et al. (2013b), dust emission is com-
puted from the GOCART (Goddard Global Ozone Chemistry
Aerosol Radiation and Transport) dust scheme (Ginoux et
al., 2001) in the 20 km and 4 km simulations. The GOCART
dust scheme estimates the dust emission flux F as

F = CSspu
2
10 m (u10 m− ut) , (1)

where C is an empirical proportionality constant, S is a
source function for potential wind erosion that is derived
from the 1◦×1◦ GOCART database (Freitas et al., 2011), sp
is a fraction of each size class dust in emission, u10 m is 10 m
wind speed and ut is a threshold speed for dust emission.

As shown later, a significant amount of dust is observed
in the SJV, whereas the GOCART dust scheme produces
little dust. Two sensitivity experiments at 20 km and 4 km
horizontal resolution (hereafter referred to as “20km_D2”
and “4km_D2”, respectively) are conducted by switching
the dust emission scheme to the DUST TRANsport model
(DUSTRAN) scheme (Shaw et al., 2008). The DUSTRAN
scheme estimates F as

F = αCu4
∗

(
1−

fwu∗t

u∗

)
, (2)

where C is an empirical proportionality constant, α is the
vegetation mask, u∗ is the friction velocity, u∗t is a thresh-
old friction velocity and fw is the soil wetness factor. The
C value in both GOCART and DUSTRAN is highly tunable
for different regions. The original C values, 1.0 µgs2 m−5 in
GOCART (Ginoux et al., 2001) and 1.0× 10−14 gcm−6 s−3

in DUSTRAN (Shaw et al., 2008), are used in this study.

4 Model simulation results

Shown in Fig. 1a, our model domain includes three ur-
ban sites (Fresno, Bakersfield and Modesto) and two rural
sites (Pinnacles and Kaiser) where surface measurements of
aerosols are available. Because aerosol properties and model
performance are similar at all urban sites, our discussion is
focused on the results at Fresno and the simulations for other
urban sites are provided in the Supplement. Model simula-
tions in the rural areas are presented in the last subsection.

4.1 Sensitivity to horizontal resolution

Figure 1 features daily mean anthropogenic PM2.5 emission
rates used in the 20km and 4km simulations, respectively. Al-
though both emission rates are derived from the 4km NEI05
dataset, localized high emission rates with sharp gradients
are evident in urban areas from the 4km simulation (Fig. 1b).
The 20km simulation exhibits lower emission rates in the ur-
ban areas with weaker gradients due to the reapportionment
process (Fig. 1a). As precipitation is an important process
that removes aerosols, we examine the simulated precipi-
tation for the 20km and 4km runs and find that the 20km
simulation produces 51 % more precipitation, although the
domain-averaged precipitation is lower in the 20km run than
the 4km run (Fig. 2a).

Consistent with higher emission rates and lower precipita-
tion at Fresno, the 4km run simulates higher AOD than the
20km run in the cold season (October–November–December
and January–February–March; OND and JFM in Fig. 3). Av-
eraged over a broad area encompassing Fresno and Bakers-
field, the most polluted region in the SJV (red box in Fig. 1a),
the AOD is 0.090 in the 4km simulation and 0.073 in the
20km simulation, a 23 % difference. Compared to the MISR
observations, the 4 km simulation reproduces the spatial dis-
tribution and magnitude of AOD in the cold season. How-
ever, the AOD difference between the 20 km and 4 km runs
is small in the warm season (April–May–June and July–
August–September; AMJ and JAS in Fig. 3), and both runs
underestimate AOD by ∼ 50 % with respect to the MISR ob-
servations.

Comparing the point values at Fresno in the 4km and 20km
simulations (Fig. 4a), we find similar results: the 4km AOD
is closer to the AERONET measurements and is about 23 %
higher than that in the 20km run during the cold season, while
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Figure 2. (a) Monthly precipitation (mmday−1) from CPC, 20km
and 4km; (b) monthly wind speed (ms−1) from CIMIS, 20km and
4km. 4km_D2 (not shown) is similar to 4km.

Figure 3. Spatial distribution of seasonal mean 550 nm AOD
from MISR and the WRF-Chem (20km and 4km) simulations in
WY2013. OND: October–November–December; JFM: January–
February–March; AMJ: April–May–June; JAS: July–August–
September.

both runs are biased low in AOD during the warm season.
The different model sensitivities to horizontal resolution be-
tween the cold and warm seasons suggest that the dominant
aerosol sources may be different for the two seasons. We will
elaborate upon the aerosol composition in the following sec-
tion. MISR and AERONET observations display weak sea-
sonal AOD variation in the SJV and at Fresno, respectively,
which is not well represented in the 20km and 4km simula-
tions (Figs. 3 and 4a).

Aside from AOD, significant seasonal variability in AE
(Fig. 4b) is shown at Fresno. AE exhibits a maximum of

Figure 4. (a) Monthly mean 550 nm AOD; (b) monthly mean 400–
600 nm Ångström exponent at Fresno, CA, from October 2012 to
September 2013.

about 1.50 in January and a minimum of 0.98 in April, sug-
gesting relatively small particles in the winter and large par-
ticles in the spring. A relatively large AE value of 1.40 (cor-
responding to small particles) is observed in July, possibly
related to the wild fires in late July in the SJV. WRF-Chem
captures the seasonal variability in the AE well, with a cor-
relation of 0.90 in both the 20km and 4km simulations. The
magnitude of AE is also approximately simulated in the cold
season, with a mean of 1.15 (1.20) in the 20km (4km) run
compared to 1.33 in the observation. However, the simulated
AE is underestimated by ∼ 30 % in the warm season, indi-
cating that the simulated particle size is biased high during
this period.

Significant seasonal variability in PM2.5 is observed in
the SJV urban areas (Figs. 5a and S4a and S5a). PM2.5 at
Fresno peaks in January (26.18 µgm−3) and reaches a mini-
mum of 7.03 µgm−3 in June, with an annual non-attainment
value of 12.64 µgm−3 (Fig. 5a). Both the 20km and 4km
runs approximately capture the observed seasonal variabil-
ity in PM2.5, with a correlation around 0.90 (Table 2). In
the cold season, the 4km simulation overestimates PM2.5 by
27 % while the 20km simulation exhibits a low bias of 19 %
compared with IMPROVE observations at Fresno (Table 3).
The 4km simulation of PM10 is in good agreement with IM-
PROVE in the winter (December, January and February), but
has significant low biases of between 30 and 85 % in other
months (Fig. 5b). The 20km simulation underestimates PM10
throughout WY2013.

PM2.5 is a mixture of nitrate (NO3), ammonia (NH4), OM,
EC, sulfate (SO4), dust and other aerosols. High concen-
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Figure 5. Aerosol mass (µgm−3) for different species from observations and the 20km and 4km simulations at Fresno, CA. NH4 observations
are from the EPA; other observations are from IMPROVE. PM2.5_NO3 represents NO3 with a diameter≤ 2.5 µm. Similar definition for NH4,
EC, OM and SO4 in the figures.

trations of PM2.5 are primarily the result of NO3 at Fresno
(Fig. 5c). Both simulations produce the seasonal variability
in NO3 with a correlation of 0.94, but a high bias of 17 %
(75 %) is found in the 20km (4km) simulation during the cold
season. As one precursor of NO3, NO2 is underestimated by
43 % in the 20km run (Fig. 6a). The overestimation in NO3
and underestimation in NO2 suggest that the precursor emis-
sions may not be the reason for the high biases in NO3. NH4
shows a similar performance to NO3, with an overestimation
by 38 % (111 %) in the 20km (4km) run during the cold sea-
sons (Fig. 5d). As shown later in Sect. 4.3, both NO3 and
NH4 simulations are quite sensitive to the PBL scheme ap-
plied.

OM, the second largest species contributing to cold sea-
son PM2.5 in the SJV (Table 3), is significantly underesti-
mated by 82 % in the 20km simulation (Fig. 5f). The 4km
simulation produces higher OM, but it is still lower than
the IMPROVE observations by 63 %. The underestimation
of OM is expected because SOA processes are not included
in our model infrastructure. Fast et al. (2014) used the simpli-
fied two-product volatility basis set parameterization to sim-
ulate equilibrium SOA partitioning in WRF-Chem although
SOA was still underestimated in their simulation. Research

Table 2. Correlation with observations for different species at
Fresno, CA.

Species 20km 4km 4km_D2 20km_D2 20km_P7

PM2.5 0.89 0.90 0.86 0.78 0.03
PM2.5_NO3 0.94 0.95 0.94 0.94 0.91
PM2.5_NH4 0.97 0.96 0.96 0.98 0.96
PM2.5_OM 0.93 0.93 0.94 0.93 0.91
PM2.5_EC 0.98 0.98 0.98 0.98 0.96
PM2.5_SO4 0.63 −0.16 −0.14 0.61 0.63
PM2.5_dust −0.55 −0.50 0.48 0.55 0.36
PM10 −0.25 −0.23 −0.08 0.01 −0.03

on how to correctly represent SOA processes in regional cli-
mate models remains ongoing.

Both the 20km and 4km simulations reproduce the sea-
sonal variability in EC, with a correlation of 0.98 between
the modeled and observed time series (Table 2). The 20km
simulation underestimates EC by 52 % (16 %) in the cold
(warm) season (Fig. 5e and Table 3). The 4km simulated
EC (1.12 µgm−3) exhibits good agreement with IMPROVE
(1.08 µgm−3) in the cold season, but overestimates EC by
53 % in the warm season.
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Table 3. Surface aerosol mass (µgm−3) for different species at Fresno, CA.

Species Cold season Warm season

OBS 20km 4km 4km_D2 20km_D2 20km_P7 OBS 20km 4km 4km_D2 20km_D2 20km_P7

PM2.5 16.84 13.71 21.38 22.48 14.90 13.77 8.44 4.91 6.29 12.85 10.12 14.85
PM2.5_NO3 5.43 6.36 9.54 9.22 6.22 3.16 0.84 0.55 0.69 0.79 0.66 0.57
PM2.5_NH4 1.42 1.97 2.99 2.88 1.91 0.98 0.40 0.19 0.24 0.20 0.16 0.13
PM2.5_OM 5.39 0.92 2.07 2.07 0.93 1.04 2.47 0.49 0.87 0.87 0.50 0.55
PM2.5_EC 1.08 0.52 1.12 1.13 0.52 0.58 0.32 0.27 0.49 0.49 0.27 0.30
PM2.5_SO4 0.87 0.53 0.82 0.81 0.53 0.46 1.04 0.54 0.61 0.60 0.53 0.49
PM2.5_dust 0.90 0.11 0.11 1.65 1.50 4.18 2.08 0.04 0.03 6.49 5.16 10.05
PM10 31.55 14.93 22.81 28.32 20.10 24.52 34.82 7.08 8.69 38.12 30.19 48.02

The seasonal variability in SO4 at Fresno is very differ-
ent from other PM2.5 species. It peaks in May at 1.35 µgm−3

and reaches the minimum of 0.67 µgm−3 in August (Fig. 5g).
The 20km simulated SO4 exhibits good correlation of 0.63
with the observation (Table 2), but is biased low by 28 to
63 % throughout WY2013 (Fig. 5g). Although the observed
SO2, the precursor of SO4, has approximately similar sea-
sonal variation to the observed SO4 (Fig. 6b), the 20km
simulated seasonal variability in SO2 resembles other an-
thropogenic emissions, with high values in the cold sea-
son and low values in the warm season, out of phase with
the simulated SO4 and the observed SO2. The 4km sim-
ulation produces higher SO4 than the 20km run, resulting
in better agreement with the observation (0.82 µgm−3 vs.
0.87 µgm−3) during the cold season (Fig. 5g and Table 3).
However, the 4km run produces an increase in SO4 by only
13 % comparing to the 20km run in the warm season, result-
ing in a correlation of−0.16 between the 4km simulation and
the observation.

To explore the possible cause for the underestimation of
SO4 and SO2 in the warm season in both the 20km and 4km
simulations, we conduct a sensitivity experiment with dif-
ferent chemical boundary conditions from the baseline runs
(20km_BC1 in the Supplement). We find that SO4 in the
SJV is partly contributed to by marine intrusions (the differ-
ent chemical boundary conditions between 20km_BC1 and
20km_D2) throughout the year (Fig. S2g), as pointed out
by Fast et al. (2014). Including the marine intrusions, the
20km_BC1-simulated SO4 tracks the observation at a cor-
relation of 0.78. Doubled chemical boundary conditions in
the 20km simulation result in a 41 % increase in SO4 at
Fresno, with a stronger increase in the warm season. Com-
pared to the observed SO4 of 1.04 µgm−3 in the warm sea-
son, the simulated SO4 of 0.79 µgm−3 in the run is closer
to the observation than that simulated in the 20km_D2 run
(0.53 µgm−3). The relative contributions of local emissions
and remote transports (as well as other emission sources,
such as wild fires) to SO4 concentrations in different seasons
of the SJV require further investigation.

Overall, the 4km simulation produces higher AOD and
surface PM than the 20km simulation in urban areas of the

Figure 6. (a) NO2 and (b) SO2 from the EPA (OBS) and the 20km
run at Fresno, CA.

SJV, especially during the cold season, resulting in better
agreement with satellite and surface observations than the
20km simulation. Both the 20km and 4km simulations ap-
proximately capture the seasonal variability in PM2.5 and
most of its speciation. However, significant low biases of
AOD and PM10 are found during the warm season in both
simulations. The underestimation also exists in a sensitivity
experiment (not shown) with the same model setups except
initialized in April, indicating that the identified model biases
during the warm season are not caused by potential model
drift after a relatively long simulation period. The relatively
good performance in simulating PM2.5 but not PM10 during
the warm season suggests that coarse aerosol particle mass
(CM; 10 µm≥ particulate matter with a diameter> 2.5 µm),
mainly dust in the SJV, is not properly represented in the
model. The impact of dust parameterizations is investigated
in the 4km_D2 experiment.
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Figure 7. (a) PM2.5_dust; (b) PM2.5 and (c) PM10 from IMPROVE
and the 4km and 4km_D2 simulations at Fresno, CA.

4.2 Sensitivity to dust scheme

Limited amounts of PM2.5_dust (dust with a diame-
ter≤ 2.5 µm) are observed in the SJV cold season, with a
minimum of 0.37 µgm−3 in December (Fig. 7a). The amount
of PM2.5_dust increases in the warm season, with a peak
of 3.86 µgm−3 in September. The 4km simulation produces
comparable PM2.5_dust relative to IMPROVE in the winter,
but almost no dust in other months (Fig. 7 and upper panel
in Fig. 8). Conversely, the dust emission rate in the 4km_D2
run is significantly higher than the 4km run. We have found
that the source function, S, for potential wind erosion in the
SJV is set to zero in the 1◦× 1◦ GOCART dataset used for
the 4km simulation (Fig. 9). An updated source function, S,
at higher resolution is needed for the GOCART dust scheme
to correctly represent dust emissions in the SJV.

The 4km_D2 simulation reproduces the amount of
PM2.5_dust in OND (Fig. 7a). However, it overestimates
PM2.5_dust by up to a factor of 3 in the warm season, re-
sulting in an overestimation of PM2.5 by 52 % (Fig. 7b and
Table 3). PM2.5_dust is not sensitive to long-range transport
(from chemical boundary conditions in the model simulation;
Fig. S2h). Both the 4km and 4km_D2 simulations capture the
seasonal variability in PM2.5, but not that in PM10 (Fig. 7c).
The magnitude of PM10 in the 4km_D2 run is larger than
the 4km simulation. PM10 in the 4km_D2 run is overesti-
mated in AMJ but underestimated in JAS, leading to a com-
parable season mean of 38.12 µgm−3 with IMPROVE ob-

Figure 8. Mean dust emission rate (µgm−2 s−1) from the 4km and
4km_D2 runs.

 

Figure 9. Fraction of erodible surface in the GOCART dataset used
in this study.

serving 34.82 µgm−3. The overestimation of AMJ PM10 and
PM2.5_dust in the 4km_D2 run is likely associated with the
high bias in the simulated wind speed (Fig. 2b).

As for the relative contribution of different aerosol species,
IMPROVE observations at Fresno show that NO3 is the pri-
mary contributor (32.3 %) to PM2.5, while only 5.3 % of
PM2.5 is dust in the cold season (panel 1 of Fig. 10). Both
the 4km and 4km_D2 runs roughly reproduce the relative
contributions to PM2.5 in the cold season, with an overes-
timation of NO3 and NH4 and an underestimation of OM,
consistent with the time series in Fig. 5. Relative contribu-
tions of dust to PM2.5 are better simulated in the 4km_D2
run (7.3 %) than the 4km one (< 1.0 %). IMPROVE shows
that 46.6 % of PM10 is CM in the cold season (panel 2 of
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Figure 10. Relative contribution (%) of aerosol species from IMPROVE and the WRF-Chem (4km and 4km_D2) simulations at Fresno, CA,
in WY2013. (Panel 1) Contribution to PM2.5 in the cold season; (panel 2) relative contribution of PM2.5 and coarse mass (CM) to PM10 in
the cold season; (panel 3) same as panel 1 but in the warm season; (panel 4) same as Panel 2 but in the warm season. “Other” refers to the
difference of PM2.5 total mass and specified PM2.5 (NO3, NH4, OM, EC, SO4 and dust).

Fig. 10). Both the 4km (6.3 %) and 4km_D2 (20.6 %) runs
underestimate the contribution of CM to PM10, mainly in
October and November. In the warm season, dust (24.6 %)
becomes the primary contributor to PM2.5, while the contri-
bution from NO3 decreases to 9.9 % in IMPROVE observa-
tions (panel 3 of Fig. 10). Almost no PM2.5_dust is simulated
in the 4km run, while too much PM2.5_dust is produced in
the 4km_D2 (50.5 %) run during the warm season. The rel-
ative contribution of CM to PM10 is too small (27.6 %) in
the 4km run, while the 4km_D2 run reflects a better relative
contribution of 66.3 % as compared to IMPROVE-observed
75.8 % (panel 4 of Fig. 10).

AOD simulations are improved in the 4km_D2 experiment
(Fig. 11), with better agreement found for MISR (Fig. 3)
in AMJ. AOD (0.114) in the 4km_D2 run is comparable

Figure 11. Spatial distribution of seasonal mean 550 nm AOD from
the 4km_D2 run in WY2013.

to observations (0.131) in AMJ but are still underestimated
by 53 % in JAS. Consistent with AOD, the vertical distri-
bution of aerosol extinction is reasonably simulated during
the cold season in the WRF-Chem simulations, while large
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discrepancies are found in the warm season (Fig. 12). As ob-
served by CALIOP at 532 nm, aerosols are confined below
1 km in the cold season and decrease sharply with height.
During AMJ, aerosols are well mixed between the surface
and the altitude of 1.5 km and then gradually decrease with
height. During JAS, the well-mixed aerosol layer is shallower
than that in AMJ and the vertical profile of aerosol extinction
is in-between the cold season and AMJ. Model simulations
roughly capture the bottom-heavy structure of the extinction
profiles observed by CALIOP especially in the cold season,
but significant biases exist. One common problem for all four
seasons is the low bias in the boundary layer and high bias in
the free atmosphere. Similar discrepancy between the model
simulations and CALIOP is shown in other studies (Wu et
al., 2011a; Hu et al., 2016). The model does not capture
the well-mixed aerosol layer during AMJ. The difference in
the aerosol extinction profiles between the 4km and 4km_D2
runs is small during the cold season.

Dust in the boundary layer is a primary factor contributing
to aerosol extinction in the SJV, as illustrated by the differ-
ences between the bulk seasonal CALIOP mean profile and
those excluding the contributions of the dust and polluted
dust (CALIOP_nodust) profiles (Fig. 12). Simulated aerosol
extinction falls between the two in all seasons, suggesting
that dust is the primary factor contributing to the model bi-
ases in aerosol extinction. Although a small portion of PM2.5
is dust in the cold season, it contributes to about 50 % of to-
tal aerosol extinction (Fig. 12a and b). A predominant por-
tion of aerosol extinction in the lower troposphere is con-
tributed by dust in the warm season (Fig. 12c and d). There,
the 4km_D2 simulation produces higher aerosol extinction
between 0.3 and 3 km than the 4km simulation, although it is
still lower than CALIOP. The simulated aerosol extinction in
the free troposphere is close to or larger than CALIOP, sug-
gesting that aerosols transported from remote areas through
chemical boundary conditions (e.g., the differences between
the 20km_BC1 and 20km_D2 runs in Fig. S3) may not be
the major factors contributing to the underestimation of dust
between 0.3 and 3 km in the SJV.

Overall, the poor simulations of dust play a dominant role
in the low bias of aerosols in the boundary layer during the
warm season. Both the GOCART and DUSTRAN dust emis-
sion schemes used in this study have difficulties in reproduc-
ing dust emissions in the SJV, with an underestimation in
GOCART and an overestimation in DUSTRAN (Fig. 7). Im-
provement on the dust emission schemes is needed for cap-
turing the seasonal variability in aerosols in the SJV.

4.3 The role of meteorology

The WRF-Chem simulations approximately reproduce the
seasonal variations in meteorological variables near the sur-
face (correlations> 0.80), including temperature, RH, wind
speed and precipitation (Fig. S6 and Table S1). All of the
model simulations exhibit warm and dry biases near the sur-

Figure 12. Vertical distribution of seasonal mean 532 nm aerosol
extinction coefficient (km−1) from CALIOP (blue) and the WRF-
Chem (4km and 4km_D2) simulations over the red box region in
Fig. 1a in WY2013. Blue dashed lines (CALIOP_nodust) represent
the CALIOP profiles without dust (dust and polluted dust).

Figure 13. Vertical distribution of season mean equivalent poten-
tial temperature (θe; K) from AIRS, ERA-Interim (ERA-I) and the
WRF-Chem (4km_D2, 20km_D2 and 20km_P7) simulations over
the red box region in Fig. 1a in WY2013. The 4km run (not shown)
is similar to the 4km_D2 run.
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Figure 14. Aerosol mass (µgm−3) for different species from OBS, the 4km_D2, 20km_D2 and 20km_P7 simulations at Fresno, CA. NH4
observations are from the EPA; other observations are from IMPROVE. PM2.5_NO3 represents NO3 with a diameter≤ 2.5 µm. Similar
definition for NH4, EC, OM, SO4 and dust in the figures.

face and in the boundary layer, with cold and wet biases
in the free atmosphere (Figs. S6–S8 and Table S2). The
dry bias in the 4km_D2 run is about 10 % near the sur-
face throughout WY2013. Due to the relative dry environ-
ment (RH< 50 %) in the warm season, the underestimation
of boundary layer aerosol extinction and column-integrated
AOD is unlikely caused by the hygroscopic effects (Feingold
and Morley, 2003). In the cold season, the surface wind speed
is underestimated by 0.67 ms−1 (1.00 ms−1) in the 4km_D2
(20km_D2) runs. In the warm season, the 4km_D2 run over-
estimates wind speed by 0.78 ms−1, while the 20km_D2 run
has an underestimation of 0.16 ms−1. These results suggest
that wind speed is not a major factor contributing to the low
biases of aerosols in the boundary layer between 0.3 and
3 km. Furthermore, the seasonal variability in precipitation is
well captured in the simulations, while the magnitude of pre-
cipitation is weaker than the observations during the warm
season (Table S2). Thus, we conclude that wet removal pro-
cesses would not be a primary reason for the aerosol biases
in the warm season.

In the warm season, more aerosols are observed above
1.5 km than in the cold season (Fig. 12). A well-mixed layer
of aerosols is observed below 1.5 km in AMJ (Fig. 12c),
consistent with the unstable lower troposphere below 1.5 km
shown in AIRS and ERA-Interim (Fig. 13c). The WRF-
Chem model simulates neutral (or weakly stable) layers be-
low 1.5 km, which may limit uplifting of aerosols from the
surface, failing to create a deep well-mixed layer of aerosols
(Fig. 12c). Although the dust emission at the surface is over-
estimated in AMJ in the 4km_D2 run, the simulated neutral
or weakly stable thermal structure does not favor convective
vertical mixing, resulting in the low biases of aerosols be-
tween 0.3 and 3 km.

Similar biases of aerosol and instability in the lower tro-
posphere are also shown in JAS (Figs. 12d and 13d). The sta-
ble boundary layer limits vertical transport of aerosols from
the surface, contributing to the low bias of column-integrated
AOD in JAS (Fig. 11). In JAS (Fig. 12d), aerosol extinction
close to the CALIOP observation is simulated in the free at-
mosphere, suggesting that the low bias in AOD is not due to
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Figure 15. Vertical distribution of seasonal mean 532 nm aerosol
extinction coefficient (km−1) from CALIOP, CALIOP_nodust and
the WRF-Chem (4km_D2, 20km_D2 and 20km_P7) simulations
over the red box region in Fig. 1a in WY2013.

the halved chemical boundary conditions from MOZART-4.
In the cold season, in spite of some discrepancies in the mag-
nitude of atmospheric stability, all of the simulations cap-
ture the stable lower troposphere (Fig. 13a and b), consistent
with relatively good performance of aerosol simulations in
the cold season.

As biases in the model simulations are found mainly
within the boundary layer, a sensitivity experiment is con-
ducted at 20 km resolution using the ACM2 PBL scheme
(20km_P7). Although the changes in the meteorological vari-
ables (Figs. S6–S9) and atmospheric static stability (Fig. 13)
are rather small, the simulated surface NO3 and NH4 in the
20km_P7 run decrease by 50 % compared to the 20km_D2
run (Fig. 14c, d and Table 3). Considering that more NO3
and NH4 are simulated at 4 km resolution than at 20 km res-
olution as shown in Sect. 4.1, the use of the ACM2 PBL
scheme at 4 km simulation would largely resolve the high
biases of NO3 and NH4 in the 4km_D2 simulation. The de-
crease in NO3 and NH4 near the surface is because more
aerosols are transported to the layers above 0.5 km (Fig. 15a
and b), possibly resulting from different convective vertical
mixing in the PBL schemes. However, PM2.5_dust is signif-
icantly overestimated by a factor of 4 in the 20km_P7 sim-
ulation (Fig. 14h), leading to a small decrease in PM2.5 of
only 8 % compared with the 20km_D2 run in the cold sea-
son. In the warm season, PM2.5_dust in the 20km_P7 run
is overestimated by a factor of 5, causing an overestimation

of PM2.5 and PM10 (Fig. 14a and b). Aerosol extinctions in
the boundary layer above the surface increase in the warm
season (Fig. 15c and d), possibly related to overestimation of
dust emissions and more conducive convective vertical trans-
port in the PBL scheme.

In summary, the WRF-Chem model captures the sea-
sonal variations in meteorological variables (temperature,
RH, wind speed and precipitation), despite some deviations
in magnitude. The low biases in aerosol optical properties
of the warm season likely do not originate from hygroscopic
effects, wet removal processes or dust emissions associated
with the wind speed bias. The model simulates a stable en-
vironment in the warm season, which is opposite to the
unstable environment observed. The simulated stable envi-
ronment may be most likely responsible for low biases in
the aerosol extinction above the surface (0.3–3 km) and the
column-integrated AOD in the warm season. Switching to
the ACM2 PBL scheme leads to improved vertical displace-
ment of aerosols in the boundary layer, thus an improvement
in the simulations of NO3 and NH4 in the cold season. How-
ever, dust emissions are significantly overestimated with the
ACM2 PBL scheme, which contributes partly to the better
simulation of aerosol extinction in the boundary layer and
AOD in the column. These results highlight that improving
the simulation of boundary layer structure and processes is
critical for capturing the vertical profiles of aerosol extinc-
tion.

4.3.1 Results in rural areas

In general, low values of PM concentration are observed in
the rural areas, Pinnacles and Kaiser (Figs. 16 and 17). The
rural areas share some similar model performance to the ur-
ban areas, such as the overestimation of NO3, reasonable
simulation of EC, good representation of SO4 in the cold sea-
son and underestimation of SO4 in the warm season. How-
ever, the results are not sensitive to model resolution. It sug-
gests that high resolution is particularly important for heavily
polluted areas due to the inhomogeneity of emission sources,
but less important for relatively lightly polluted areas.

In late July and early August, MODIS (Moderate Res-
olution Imaging Spectroradiometer) fire data (not shown)
showed active wild fires close to Kaiser, which resulted in
a high local concentration of aerosols (Fig. 17). Our model
simulations with monthly-varying fire emissions fail to re-
produce these fire events. Previous studies (e.g., Grell et
al., 2011; Wu et al., 2011a; Archer-Nicholls et al., 2015)
demonstrated that the WRF-Chem model can capture aerosol
distributions from wild fires based on fire locations from
satellite observations. Campbell et al. (2016) further de-
scribed the difficulties in constraining total aerosol mass
from operational satellite fire observations and the time
needed by the model for diffusion within the near-surface
layers to render both reasonable AOD and vertical profiles of
aerosol extinction. For operational application of the WRF-
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Figure 16. Aerosol mass (µgm−3) for different species from IMPROVE (OBS), the 4km_D2, 20km_D2 and 20km_P7 simulations at
Pinnacles, CA.

Chem model in MAIA retrievals, the observations of daily
fire events need to be more appropriately considered.

5 Summary

The WRF-Chem (Weather Research and Forecasting model
with Chemistry) model is employed to simulate the seasonal
variability in aerosols in WY2013 (water year 2013) in the
San Joaquin Valley (SJV). Model simulations are evaluated
using satellite and in-situ observations. In general, the model
simulations conducted at 4 km resolution reproduce the spa-
tial and temporal variations in regional aerosols in the cold
season, when aerosols are mainly contributed to by anthro-
pogenic emissions in the SJV. The magnitude of simulated
aerosols in the cold season however, especially in relatively
dense urban areas, is sensitive to model horizontal resolu-
tion. The 4km simulation has comparable magnitude to avail-
able observations, while the 20km simulation underestimates
aerosols. Differences in aerosol simulation fidelity as a func-
tion of variable resolutions are mainly due to the difference
in aerosol emissions and simulated precipitation. Emissions

at a higher resolution can better resolve the inhomogeneity of
anthropogenic emissions in the SJV than at lower resolution.
The sensitivity to horizontal resolution is small in rural ar-
eas and during the warm season, where and when the relative
contribution of anthropogenic emissions is small.

Previous studies in the SJV were mainly focused on PM2.5
(particulate matter with a diameter≤ 2.5 µm) and during the
cold season (e.g. Chow et al., 2006; Herner et al., 2006; Pun
et al., 2009; Ying and Kleeman, 2009; Zhang et al., 2010;
Chen et al., 2014; Hasheminassab et al., 2014; Kelly et
al., 2014; Baker et al., 2015; Brown et al., 2016). CALIOP
(Cloud-Aerosol Lidar with Orthogonal Polarization) and IM-
PROVE (Interagency Monitoring of Protected Visual Envi-
ronments) observations show that dust is a primary contribu-
tor to the aerosols in the SJV, especially in the warm season.
Dust contributes 24.6 % to PM2.5 and more than 75.8 % to
PM10 in the warm season. For all seasons, the major compo-
nent of aerosol extinction in the boundary layer is dust, as ob-
served by CALIOP, consistent with Kassianov et al. (2012).
For a complete understanding of aerosol impacts on air qual-
ity, weather and climate, the full spectrum of aerosols should
be considered during all seasons.
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Figure 17. Aerosol mass (µgm−3) for different species from IMPROVE (OBS), the 4km_D2, 20km_D2 and 20km_P7 simulations at Kaiser,
CA.

All the model simulations conducted fail to capture aerosol
vertical distribution and variability in the SJV warm season,
largely due to the misrepresentation of dust emissions, static
stability and vertical mixing in the boundary layer. The GO-
CART (Goddard Global Ozone Chemistry Aerosol Radiation
and Transport) dust emission scheme significantly underesti-
mates dust due to the non-active source function, S, for po-
tential wind erosion used in this study, while the DUSTRAN
(DUST TRANsport model) scheme may overestimate dust
emission in the SJV. Along with the bias in dust emissions,
our simulations produce a relatively stable boundary layer in
the warm season, in contrast with observations suggesting a
more unstable environment, leading to a weak vertical mix-
ing of aerosols in the boundary layer. Improved dust emission
and better simulations of the boundary layer properties are
needed for accurate simulation of aerosols in the SJV warm
season.

Other biases are also identified in the model simulations.
NO3 and NH4 in the cold season are overestimated in the
model, but the results are sensitive to the choice of the plan-
etary boundary layer scheme. The secondary organic aerosol
processes contribute to the underestimation of organic mat-

ter in this study. The underestimation of sulfate in the warm
season may be caused by the misrepresentation of emissions
and the chemical boundary conditions related to marine in-
trusions. Aerosols from wild fires are not captured in the sim-
ulations with monthly-updated fire data. Further investiga-
tions are needed to improve model simulations in the SJV
for both scientific and operational applications.

Data availability. The AERONET observation is available through
the following link: https://aeronet.gsfc.nasa.gov/. The MISR
data are available through the following link: https://www-
misr.jpl.nasa.gov/. The IMPROVE and EPA data are available
through the following link: http://views.cira.colostate.edu/fed/
DataWizard/. The CALIPSO data are available through the follow-
ing link: https://eosweb.larc.nasa.gov/project/calipso/calipso_table.
The AIRS data are available through the following
link: https://doi.org/10.5067/AQUA/AIRS/DATA324. The
CIMIS data are available through the following link:
http://wwwcimis.water.ca.gov/. The CPC data are available
through the following link:
https://www.esrl.noaa.gov/psd/data/gridded/data.unified..
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