
Forecast Load Impact from Demand Response 

Resources 

Xiaoyang Zhou‽, Nanpeng Yu‡*, Member, IEEE, Weixin Yao‽, Raymond Johnson†, Member IEEE 

‡University of California, Riverside 
Department of Electrical and 

Computer Engineering, Riverside, CA 

‽University of California, Riverside, 

Department of Statistics, Riverside, 

CA, 92521 

†Southern California Edison, Power 

Supply Division 

Rosemead, CA, 91770

 

  
Abstract—To improve forecasting accuracy for baseline load and 

load impact from demand response resources, this paper develops 

three innovative statistical models. These models are regression 

spline fixed effect model, fixed effect change point model and 

mixed effect change point model. The models developed are 

applied to forecast baseline load and load impact from air 

conditioning cycling demand response program in Southern 

California. All three forecasting models yield accurate forecasts 

for baseline load and load impact from demand response events. 

Noticeable rebound effect from demand response events are 

observed from the dataset. 

Index Terms—Baseline Load, Demand Response, Load Impact, 

Mixed Effect Model, Rebound Effect 

I. INTRODUCTION 

Renewable energy market has been surging in the United 
States and around the world. In particular, the recently passed 
California Senate Bill No. 350, Clean Energy and Pollution 
Reduction Act of 2015 will boost renewable penetration level 
in California to 50% by 2030 [1]. To mitigate increasing 
renewable generation uncertainty and intermittency, supply 
following resources such as demand response resources are in 
critical need. In the past ten years, traditional and passive price-
based and incentive based demand response programs have 
been implemented throughout United States. In recent years, 
proactive demand response algorithms and programs are 
proposed and developed to further improve utilization of load 
flexibility and increase power system operational efficiency [2] 
[3]. One of the biggest challenges faced by system operators is 
how to accurately forecast load impact from demand response 
resource and control the operations of demand response 
resources. Many literatures focused on the control architecture 
and algorithm for demand response resources. The problem of 
load impact forecast and estimation for demand response 
resources has not been well studied. The load impact from a 
demand response resource is usually estimated as the difference 
between load baselines and metered load when demand 
response event is triggered. Although North American Energy 
Standards Board provided some guidelines [4] for demand 
response measurement and verification standard, there is still a 
lack of advanced methodology for load baseline estimation and 

forecasting. It is crucial to develop an accurate demand 
response load impact estimation and forecast methodology for 
two reasons. First, a reliable load impact estimation method 
gives credit to customers for the exact amount of demand 
response they provide. Second, an accurate demand response 
load impact forecast method allows market operator to deploy 
demand response resources with confidence to improve the 
efficiency and reliability of power system and electricity 
market. 

This paper fills the knowledge gap by introducing 
innovative baseline load forecasting and estimation 
methodologies which significantly improve demand response 
load impact forecast accuracy. Three types of statistical 
forecasting methods are proposed and developed for 
forecasting baseline load. These models include fixed effect 
model, regression spline model and mixed effect change point 
model. The forecast methodologies’ accuracy are validated 
through Southern California Edison’s residential smart meter 
data and air conditioning cycling demand response program. 

The remainder of this paper is organized as follows. Section 
II presents an overview of the demand response load impact 
estimation and forecasting problem. The particular problem of 
load impact estimation for residential loads with air 
conditioning cycling program is also described. Section III 
provides a brief review of existing baseline estimation 
methodology and rigorous formulations for three statistical 
baseline estimation and forecasting methodologies. Section IV 
shows the experimental set up and forecasting performance of 
the proposed methodologies. Section V states the conclusions. 

II. PROBLEM DESCRIPTION 

A. Demand Response Load Impact Estimation and Forecast 

Traditionally, demand response is defined as a change in the 
electric energy consumption by customers in response to 
changes in the price of electricity or direct instruction from 
utilities in response to a grid reliability problem [5]. Customer 
participation in demand response program reply upon the 
incentive payment which depends on the magnitude of demand 
response resources’ load impact. The load impact is defined as 
the difference between baseline, the electricity that would have 
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been consumed by a customer in the absence of a demand 
response event, and the actual metered electricity consumption. 
It is surprisingly difficult to estimate the load impact from a 
demand response resource because the baseline electricity 
consumption is immeasurable. A good baseline estimation 
methodology should represents an appropriate tradeoff between 
simplicity and accuracy. The existing baseline methodology 
can be categorized into two types [4]. In Type-I baseline 
methodology, the baseline is estimated by using similar day-
based algorithm which depends on historical interval meter data 
and similarity metrics such as weather and calendar data. 
Simplicity is the biggest advantage of Type-I baseline method. 
In Type-II baseline methodology, more sophisticated statistical 
methods are adopted to estimate and forecast the baseline 
electricity consumption. Typically, Type-II baseline method 
yields better forecasting accuracy. Most of the existing Type-II 
baseline method is based on multiple linear regressions. This 
paper develops two new classes of baseline estimation 
algorithms, regression spline model and mixed effect change 
point model within the Type-II category. The forecasting 
results are compared with the fixed effect model and Type-I 
baseline methodology. 

B. Demand Response from Air Conditioning Cycling 

A significant portion of building electricity consumption 
comes from air conditioning systems. The thermal storage 
capability of buildings allows short-term change in air 
conditioning system operations and electricity consumption 
without significant impact on occupants’ comfort. Therefore, 
direct control of air conditioning system is an ideal demand 
response program. For example, in California more than half a 
million customers have participated in the air conditioning 
cycling program of the three major investor owned utilities. In 
these programs, direct load switches and/or programmable 
thermostats are installed to react to economic and reliability 
based demand event triggers. Depends on desired comfort level, 
customers may choose different duty cycle options ranging 
from 30% to 100%. For instance, residential customers under 
50% duty cycle program are allowed to keep control of air 
conditioning systems up to 15 minutes of every half hour in 
exchange for a lower incentive compared with the 100% cycle 
option. This paper focuses on studying estimating load baseline 
and load impact of the air conditioning cycling demand 
response program. 

III. TECHNICAL METHODS 

A. Model Specifications 

The response variables and predictors in the model are 
described as follows. 

Response variable: Hourly electricity consumption data 
from customers enrolled in air conditioning cycling program 
were recorded through the smart meters. The consumption data 
are aggregated to 52 220kV transformer banks from 12/31/2012 
to 11/1/2013 in Southern California Edison’s service territory. 
In this paper, the prediction model was developed based on the 
sum of residential customers’ electricity consumption data at 
each 220 kV transformer bank on weekdays. Weekend data is 
excluded because most of the time demand response program 
events are not triggered during weekends and the predictors’ 

effect on consumption is expected to be different between 
weekdays and weekend. 

Independent variables: The two-day ahead demand 
response baseline and load impact prediction model are 
developed in this paper. The forecast model includes six 
predictors: daily average ambient temperature, humidity, 
hour/time of the day, two-day lagged electricity consumption, 
duty cycle percentage and total air conditioning tonnage of 
customers under the same transformer bank. The daily average 
temperature and humidity are included because they are highly 
correlated with electricity consumption. Two-day lagged 
electricity consumption variable is selected rather than one-day 
lagged variable because the demand response resources’ load 
impact estimates are submitted to the independent system 
operator one day before the actual operations. The duty cycle 
option variable indicates the percentage participation rate of air 
conditioning load in the program and has strong influence over 
the load impact for air conditioning cycling demand response 
program. 

Three prediction models are developed to estimate baseline 
load and load impact from demand response programs. These 
models are fixed effect change point model, regression spline 
model, and mixed effect change point model. 

Regression Spline Fixed Effect Model: In traditional Type-
II baseline method, the “hour” variable is treated as a 
categorical variable. In our proposed model, the ordinal 
characteristics of “hour” variable is exploited. As shown in 
Figure 1, the relationship between electricity consumption and 
hour is nonlinear. Therefore, a cubic regression spline model is 
developed to model the relationship between usage and hour 
without any parametric assumption [6]. In cubic spline, four 
points were chosen as knots based on percentile (20, 40, 60, 80 
percentile) of hours and inserted into hour variable. Two-way 
and three-way interactions are also included as explanatory 
variables. In order to further simplify the model, variable 
selection method is applied to provide the best subset or 
combination of predictors. With stepwise selection, the final 
regression spline fixed effect model has the following form 

log(Usage
per,t

) = Transformer Bank + s(Hourt) + Temprature
t

+ Humidity
t

+ Ac tonnage
per,t

+ log (Usage
per,t−48

) + s(Hourt)

× (Temprature
t

+ Humidity
t
)

+ {Temprature
t

+ Humidity
t

+ s(Hourt)

× Humidity
t
} × Ac tonnage

per,t
 , 

where s(Hourt) = Hour𝑡 + Hourt
2 + Hourt

3 + ∑ (Hourt − Ki)+
34

i=1  
is a regression spline approximation for the nonparametric effect of 
hours. (Hourt − K𝑖)+ = max(Hourt − K𝑖 , 0), 𝑖 = 1, 2, 3, 4. Ki are 
the knots of hours and are taken as 20, 40, 60, 80 percentile of hours in 
our analysis. The transformed variables log (Usageper,t) and 

Ac tonnage
per,t

 are defined as follows. 

log (Usageper,t) = log (Usage𝑡 Total Ac tonnage⁄ ) 

Ac tonnage
per,t

= Duty cycling tonnage
𝑡

Total Ac tonnage⁄  

𝑈𝑠𝑎𝑔𝑒𝑡 in the above equation denotes aggregated 

residential customer electricity consumption at the transformer 



bank level. The transformed response variable is derived by 

dividing the aggregated usage by total air conditioning tonnage 

of residential customer in the air conditioning cycling problem 

under the transformer bank and applying the log-

transformation. The new response variable indicates electricity 

consumption level of customer with one unit of air 

conditioning tonnage. The transformed explanatory variable 

Ac tonnageper,t shows the percentage of occupying air 

conditioning tonnage and can be used to estimate the demand 

response from air conditioning cycling program. The 

Ac tonnage
per,t

  is set to 1, when estimating the baseline load and 

set to 1 minus the percentage participation rate (for example 0 

if the cycling percentage is 100%) when the Air Conditioning 

Cycling program is operated. Then the difference of two 

predicted consumptions is the estimate of load impact from 

demand response programs. 

 

 Figure 1. Hourly electricity usage on Aug 9, 2013. 

In our model, transformer bank is included as a fixed effect 
factor to allow the inherent difference among transformers.  

   Fixed Effect Change Point Model: Based on Figure 1, the 
hourly curve can be separated into three segments with two 
change points of hours (one in the early morning and the other 
one in the late afternoon). Each segment can be approximated 
by a linear function. To simplify the regression spline model, 
a change point model for the hour variable is proposed [7]. Our 
proposed change point model is more homogeneous with 
fewer parameters than traditional Type-II baseline method. It 
possesses better prediction power by borrowing consumption 
information from neighboring hours. After running variable 
selection procedure, the fixed effect change point model has 
the following form. 

log(Usageper,t) = Transformer Bank + Hourt + (Hourt − 8)+

+ (Hourt − 17)+ + Tempraturet + Humidityt

+ Ac tonnageper,t + log (Usageper,t−48)
+ [(Hourt − 8)+ + (Hourt − 17)+]
× (Tempraturet + Humidityt)
+ [Tempraturet + Humidityt + (Hour − 8)+

× Humidityt] × Ac tonnageper,t,  

where (Hourt − h)+ = max(Hourt − h, 0) , t = 1, … 24. 

   Mixed Effect Change Point Model: Note that the collected 
hourly electricity consumption data are essentially 
longitudinal/panel data, since the data are frequently measured 
across time [8]. The observations collected over time within the 
same transformer bank are correlated. Ignoring such correlation 
by fixed effect model would result in inefficient estimates and 

lose prediction power. In order to incorporate such correction, 
we further propose a mixed effect change point model by 
treating transformer banks as random-effects. Using a random 
effects model can also drastically reduce the number of 
unknown parameters in the model and thus has more efficient 
parameter estimates.    

   With stepwise selection, the final model is of the form 

log(Usageper,t) = Transformer Bank + Hourt + (Hourt − 8)+

+ (Hourt − 17)+ + Tempraturet + Humidityt

+ Ac tonnageper,t + log (Usageper,t−48)
+ [(Hourt − 8)+ + (Hourt − 17)+]
× (Tempraturet + Humidityt)
+ [Tempraturet + Humidityt + (Hour − 8)+

× Humidityt] × Ac tonnageper,t,  

where Transformer Bank ~N(0, σTransformer Bank
2 𝐈) 

Two change points “8” and “17” are identified for the 

variable “hours” by maximizing the profile log-likelihood. 

Therefore, the change point model can well capture the usage 

changing pattern by noting that people tend to leave for work 

after 8:00 in the morning and come back from work after 17:00 

in the afternoon. 

B. Model Prameter Estimation Process 

All the parameters in mixed-effect change point model are 

estimated via restricted maximum likelihood (REML) [10]. 

REML includes an adjustment for degrees of freedom used in 

estimating fixed effects from the general linear mixed model. 

Suppose the mixed-effect change point model has the 

following form 

log (Usage
per,t

) = 𝐲 = 𝐗𝛕 + 𝐙𝛍 + 𝐞, 

where 𝐗 is the first design matrix containing all fixed-effect 
parameters’ observations and 𝛕 is unknown fixed-effect for the 
parameters in 𝐗. The relationship between log (Usageper,t) and 

𝐗𝛕 is the same as linear model. The second design matrix 𝐙 
includes random-effect information for each observation. 𝛍 
represents random block effects for all transformer banks and 

is normally distributed 𝝁~N (𝟎, σTransformer Bank
2 𝐈). 𝐞 is a 

vector of residual errors with 𝐞~N (𝟎, σ2𝐈). Estimates of fixed 
and random effects can be achieved from solving the mixed 
model equations 

[
𝐗′𝐗
𝐙′𝐗

𝐗′𝐙
𝐗′𝐗 + 𝐆−𝟏] (

𝛕
𝛍) = (

𝐗′𝐲

𝐙′𝐲
) , where 𝐆 = var(𝛍)/σ2. 

IV. FORECAST MODEL PERFORMANCE  

A. Model Coefficents, p-value and Goodness-of-fit 

The performance of the proposed three models are very 

similar for our collected data. To save the space, we only report 

the results for mixed effect change point model. R package 

“lme4” is applied to estimate the model parameters. Table 1 

presents fixed effect parameter estimates and Table 2 shows 

random effect parameter estimates. 

Based on the above fitting results, all variables have 

significant effects on usage. In addition, we can see that the 

main effects of temperature, humidity, Ac tonnageper,t, and 

two-day lagged usage are all positive.  



In addition, the hours’ effect on usage is positive before 8:00 

am, negative between 8:00 am and 17:00 pm, and positive again 

after 17:00 pm. Based on the interaction terms, we can also see 

that the hours’ effects depend on temperature, humidity, and 

Ac tonnage
per,t

 .The effect of Ac tonnageper,t also depends on 

temperature and humidity. 

 

Parameter Estimate p-Value 

Intercept -3.50E+00 <0.001 

Hour 9.26E-03 <0.001 

(Hourt − 8)+ -6.18E-02 <0.001 

(Hourt − 17)+ 1.41E-01 <0.001 

Temperature 9.95E-03 0.003 

Humidity 9.46E-03 0.002 

Ac tonnageper,t 8.99E-01 0.005 

log (Usageper,t−48) 6.51E-01 <0.001 

(Hourt − 8)+ × Tempraturet 1.12E-03 <0.001 

(Hourt − 17)+ × Tempraturet -2.78E-03 <0.001 

(Hourt − 8)+ × Humidityt -9.86E-04 0.002 

(Hourt − 17)+ × Humidityt 2.16E-04 <0.001 

Tempraturet × Ac tonnageper,t -6.85E-03 0.046 

Humidityt × Ac tonnageper,t -9.56E-03 0.001 

(Hour − 8)+ × Humidityt

× Ac tonnageper,t 
9.66E-04 0.002 

Table 1. Fixed effects estimates and p-value in mixed effect change point 
model. 

 

Groups Std. Dev. 

Transformer 0.1127 

Residual 0.2329 
Table 2. Random-effects standard deviation estimates in mixed effect 

change point model. 

 
Figure 2. Residual plot for mixed-effect change point model 

B. Baseline Load Forecast Accuracy 

We employ two typical performance metrics, mean absolute 
percentage error (MAPE) and mean absolute percentage error 
(RMSE), as evaluation criteria. MAPE is a measure of 
prediction accuracy, which accounts for the scale effect of the 
measures and has the following form 

MAPE =
1

𝑛
∑ ∑ ∑

|𝑦𝑖𝑗𝑘 − �̂�𝑖𝑗𝑘|

𝑦𝑖𝑗𝑘𝑘𝑗𝑖
,  

𝑖 = 1,2, … ,52, 𝑗 = 1, … , 𝑁𝑑, 𝑘 =  1,2, … , 24 

where 𝑦𝑖𝑗𝑘 is observed electricity consumption of transformer 

bank 𝑖, on date 𝑗 at hour 𝑘 and �̂�𝑖𝑗𝑘 stands for the predicted 

electricity consumption based on the mixed effect change point 

model. The RMSE is another measure of prediction accuracy, 

which has the following form 

RMSE =
√∑ ∑ ∑ (y

ijk
− ŷ

ijk
)

2

kji

n
, 

𝑖 = 1,2, … ,52, 𝑗 = 1, … , 𝑁𝑑, 𝑘 =  1,2, … , 24 
When performing model prediction, the electricity 

consumption data in the last fifteen observed days are chosen 
as testing sample. The corresponding training dataset for each 
testing date is collected from the beginning to two-day before 
the testing date. 

It is known that large transformer banks have most impact 
on the Air Conditioning Cycling Program. Therefore, we 
mainly report the prediction results for the top 80% transformer 
banks (42 transformer banks out of 52). Table 3 and 4 present 
the performance of baseline load prediction in terms of MAPE 
and RMSE for both training sample and testing sample. 

 
Mixed Effect 
Change Point  

Fixed Effect 
Change Point  

Regression 
Spline Fixed 

Effect 
Training average 

MAPE 
9.76% 9.76% 9.37% 

Testing average 
MAPE 

6.96% 6.96% 6.66% 

Table 3. Average MAPE for baseline prediction 

 
Mixed Effect 
Change Point  

Fixed Effect 
Change Point  

Regression 
Spline Fixed 

Effect 
Training average 

RMSE 
2162.3 2162.3 2148.0 

Testing average 
RMSE 

642.3 642.7 634.0 

Table 4. Average RMSE for baseline prediction 

From the previous tables, these three prediction models 
have very similar forecasting average MAPEs for both training 
dataset and testing dataset. Note that the average RMSE of 
training data is higher than the testing data. One possible reason 
is that the RMSE depends on the scale of observations and the 
testing data which are collected at the end of October have 
relatively smaller usage than the average of training data. In 
addition, note that Tables 3 and 4 report the prediction accuracy 
for individual transformer Banks. If we want to estimate the 
overall usage, MAPE will be much smaller. 

C. Forecast Results: Load Reduction Forecasting 

The air conditioning cycling program triggered on 10 days 
during the third quarter of 2013. The demand response event 
information is presented in Table 5. Since the reduced duty 
cycle program resulted in short-term change in air conditioning 
system operations and lower electricity consumption, we expect 
to see the reduction of electricity usages compared with 100% 



duty cycle option. We can use mixed-effect change point model 
to forecast electricity consumption under reduced duty cycle 
and 100% duty cycle options and then use their difference for 
load reduction forecasting.  

Date Start Time  End Time 

06/28/13 4:00 PM 6:00 PM 

07/02/13 4:00 PM 6:00 PM 

07/19/13 4:00 PM 5:00 PM 

08/22/13 3:00 PM 5:00 PM 

08/28/13 3:00 PM 5:00 PM 

08/29/13 2:00 PM 5:00 PM 

09/04/13 3:00 PM 5:00 PM 

09/05/13 4:00 PM 5:00 PM 

09/06/13 2:00 PM 6:00 PM 

09/09/13 3:00 PM 5:00 PM 
Table 5. Execuation dates of air conditioning cycling program 

 

Figure 3. Load impact from demand response events 

When predicting reduction influence, we skip the first 
executing day (6/28/2013), since there is no relevant 
information about reduced duty cycling. The last 9 days’ hourly 
load reductions are plotted in Figure 3. The green dotted line 
represents predicted 100% duty cycle; red solid line indicates 
observed reduced electricity consumption and blue dash line 
means the predicted values. Since 100% duty cycle option is the 
same as baseline load, the load reduction is reflected by the 
difference between green line and red line. In order to present 
load reduction effect visually, the secondary vertical axis in 
Figure 3 shows the reduction percentage. Note that the load 
reduction effects for the first few events might not be very 
accurate due to lack of previous event data. However, for the 
last few dates, the predictions are very accurate and the MAPEs 
ranges from 0.002 to 0.019. If more event data is available, the 
prediction accuracy could be further improved. 

D. Rebound Effect 

After a demand response event, utilities may observe a 

phenomenon known as the “rebound effect” where the 

customer air conditioning loads typical overshoots normal load 

baseline level. The difference between the observed electricity 

consumption and the load baseline is defined as the load 

rebound. The rebound effect for the air conditioning cycling 

program is quantified based on the baseline forecast method 

proposed in this paper. The aggregated rebound effects at the 

transformer bank level are demonstrated in Figure 4. As shown 

in the Figure, following most of the demand response events, 

a positive rebound phenomenon can be observed for at least 3 

hours.  

Figure 4. Rebound effect after demand response events 

V. CONCLUSIONS 

Three innovative statistical models are developed in this 

paper to forecast load baseline and load impact from demand 

response resources. The out-of-sample forecast results show 

that the proposed forecasting models performed well. The 

estimated load impact and air conditioning load rebound 

effects are significant based on the baseline load forecast 

model. 
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