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Abstract—Buildings account for nearly 40% of the total energy consumption in the United States. As a critical step toward smart cities,
it is essential to intelligently manage and coordinate the building operations to improve the efficiency and reliability of overall energy
system. With the advent of smart meters and two-way communication systems, various energy consumptions from smart buildings can
now be coordinated across the smart grid together with other energy loads and power plants. In this paper, we propose a
comprehensive framework to integrate the operations of smart buildings into the energy scheduling of bulk power system through
proactive building demand participation. This new scheme enables buildings to proactively express and communicate their energy
consumption preferences to smart grid operators rather than passively receive and react to market signals and instructions such as
time varying electricity prices. The proposed scheme is implemented in a simulation environment. The experiment results show that the
proactive demand response scheme can achieve up to 10% system generation cost reduction and 20% building operation cost
reduction compared with passive demand response scheme. The results also demonstrate that the system cost savings increase
significantly with more flexible load installed and higher percentage of proactive customers participation level in the power network.

Index Terms—Smart building, smart grid, demand response, proactive participation, MPC control, energy cost reduction
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1 INTRODUCTION

BUILDINGS account for nearly 40% of the U.S. primary
energy consumption and 70% of the electricity use [1].

To build smart cities with efficient and reliable energy
systems, it is critical to intelligently manage various energy
demands of buildings and coordinate such management
across buildings in the smart grid.

A key aspect in improving building energy efficiency
is to leverage the scheduling flexibility provided by var-
ious energy demand loads in buildings, including HVAC
(heating, ventilation and air conditioning), plug loads, and
emerging loads such as EV (electric vehicle) charging, etc. In
particular, HVAC system consumes around 50% of the total
building energy consumption [1]. Its energy demand may
change based on the dynamic physical environment (e.g.,
outside air temperature and sun radiation) and building oc-
cupancy activities. It also needs to be carefully managed to
satisfy the building temperature and air flow requirements.
The building thermal flywheel effect allows temporarily
unloading the HVAC systems without immediate impact on
building occupants [2], and therefore provides significant
flexibility in managing the demand. Furthermore, battery
storage has been increasingly used at building level to store
energy during off-peak hours (or from renewable energy
sources) and release energy at peak hours. This provides
additional flexibility for building energy scheduling.

To leverage the flexibility provided by building energy
loads such as HVAC systems, various energy management
methods have been proposed, however they mostly focus
on developing load control algorithms to reduce energy
consumption and shave peak demand for individual build-
ings. There are also a variety of demand response (DR)
strategies in the literature for leveraging such flexibility
to improve electricity market efficiency. However, they are
mostly price-based or incentive-based, in which the building
energy management system passively follows the electricity

price and load reduction signals from the utilities [3].
Indeed, little work has been done to consider integrating

the intelligent building energy scheduling process with the
electricity market economic dispatch strategy in a holistic
framework. Currently, almost all demand response cus-
tomers still schedule their own energy demand by pas-
sively reacting to the real-time varying price and demand
reduction instructions dispatched from market system op-
erator [4]. This passive and single-direction communicating
demand response mode greatly limits the potential effec-
tiveness of demand response strategy in leveraging the
tremendous amount of building energy load flexibility. Such
structural rigidity results in low customer engagement [3],
and is part of the reason why the U.S. demand response
penetration level is only at 6% [5].

As estimated in the FERC demand response report [6],
the total peak power demand in the U.S. can be reduced by
150 GW assuming the participation of the entire customers.
To further exploit the huge potential of demand response in
improving power system efficiency and facilitate customers’
engagement level in electricity market, in this paper, we
propose an innovative demand response scheme based on
proactive demand participation from smart buildings. Under
this proactive demand response scheme, physical dynamic
models, embedded in intelligent building energy scheduling
agents, are able to capture the characteristics of various
loads and predict buildings’ operating states evolution. In
electricity market, the intelligent energy scheduling agent in
each individual building submits demand bids for its elec-
tricity consumption based on the electricity price forecast
and current operating states. Then the demand bid informa-
tion is aggregated by distribution system operators at the
substation level and sent to the wholesale market operator.
After receiving all demand bids and supply offers, the
wholesale market operator solves the security constrained



2

economic dispatch (SCED) problem to clear the demand
and supply in electricity market. Finally the market clearing
results (i.e., electricity prices and dispatch operating points)
are disaggregated into individual customer’s dispatching
quantity. Those electricity dispatching instructions are sent
back to each individual customer. The customers strictly
follow their dispatching quantities to operate various types
of load inside buildings.

The main contribution of this paper is to propose and
develop above-mentioned demand response scheme with
intelligent scheduling and proactive participation of smart
buildings. This includes the following aspects:
• At the building scheduling level, we construct a building

thermal dynamics model to characterize heat transfer
process and forecast building temperature evolution. We
develop a model predictive control (MPC) based algo-
rithm to intelligently schedule the HVAC system and
battery usage for reducing energy cost. Then, based on
the building scheduling algorithm, we generate a demand
bid curve for each building to quantify its energy load
flexibility under various price forecasts.

• At the power system level, we develop algorithms to
first aggregate individual demand bid curves from build-
ings at the substation (distribution network) level and
then solve the SCED problem at the wholesale market
(transmission network) level to maximize the sum of total
surplus of all customers and power generation compa-
nies. The SCED optimization determines the electricity
price and quantity, which are then disaggregated to the
individual building customer level.

• We conduct a set of experiments on an IEEE 30-bus
network to evaluate the effectiveness of our proposed
proactive demand response scheme.
Compared with existing passive demand response

strategies, our proactive scheme enables building customers
to actively participate in the electricity market operation,
instead of just passively following demand reduction sig-
nals and reacting to real-time prices. The experiment results
demonstrate that our approach can greatly reduce power
system generation cost and building operation cost.

The remainder of this paper is organized as follows.
Section 2 summarizes some of the existing approaches on
building energy management and DR programs in the lit-
erature. Section 3 introduces the structural overview of our
proposed framework with proactive demand participation
from smart buildings. Section 4 presents design details of the
framework. Section 5 introduces a baseline passive demand
response mechanism as a comparison reference. Section 6
shows experiment results and conducts critical analysis of
our proposed approach, and Section 7 concludes the paper.

2 RELATED WORK

Many current research efforts focus on the design of
price-based demand response models and control strate-
gies [7]. Various price-based DR pricing strategies have
been proposed [8], such as real-time pricing (RTP) [9]–
[12], critical peak pricing [13], [14], peak load pricing [15],
[16], peak day rebates pricing [17] and time-of-use [18]–
[20]. Among the existing price-based demand response

frameworks, the iterative real-time pricing mechanism [10]
is shown to be one of the most effective and efficient
approaches in managing distributed demand response re-
sources. In the iterative RTP approach, system operators
(or utility companies) and customers iteratively compute
electricity prices and optimal electricity consumptions until
a suitable set of prices and energy consumption schedules
is reached. Due to the inflexibility of the communication
scheme, it usually takes a high number of iterations [21]
to achieve the optimal allocation point, assuming constant
external conditions during the entire process. When applied
in practical electricity market environment, the iterative RTP
mechanism suffers from two critical drawbacks. First, the
combination of a high number of iterations and the com-
plexity of unit commitment problem in a regional electricity
market makes the iterative negotiation process too slow for
real-time operations. In some cases, the convergence of the
algorithm cannot be guaranteed with a lossy and delayed
communication platform. Second, we have to assume that
both generation company agents and consumers adhere to
the same consumption and bidding strategy without the
ability to learn and adjust based on external shocks and past
bidding experiences.

Although there have been numerous studies on loca-
tional marginal pricing in wholesale power market, there
has not been much literature that focuses on retail market
pricing and designing interface between retail market and
wholesale market. In [22], the authors propose a distributed
approach to derive retail market spot pricing in a radial
distribution network. To enhance efficiency of distributed
generation, nodal pricing mechanism for distribution net-
works is developed in [23]. A novel pricing mechanism
for locational marginal pricing with significant distributed
generation penetration is constructed in [24]. An iterative
approach is presented in [25] to integrate the transmission
and distribution grid together with residual demand mod-
eling in transmission network [26]. None of these existing
pricing mechanisms allows joint optimization of flexible en-
ergy demands and generation power plants in an integrated
framework with price sensitive demand bids derived from
building control models.

At the individual customer level, there has been a variety
of work on scheduling flexible energy loads such as HVAC
system and EV charging for demand response. For energy-
efficient HVAC control, a set of system models and algo-
rithms is proposed in [27]–[33]. In [27], a non-linear model of
the overall cooling system is proposed, and an MPC scheme
for minimizing energy consumption is developed. In [28], a
system model is proposed that is bilinear in inputs, states
and weather parameters, and a form of sequential linear
programming (SLP) is developed for solving the control
optimization problem. In [30], a building thermal behavior
is modeled as RC networks and validated against historical
data, and a tracking linear-quadratic regulator (LQR) is pro-
posed for HVAC control. The work in [32] uses the similar
building model as in [30], and proposes a set of HVAC
control algorithms that address the sensing data inaccuracy
using unscented or extended Kalman filters. In addition
to scheduling energy loads, there are also approaches pro-
posed for scheduling heterogeneous energy sources such
as battery storage at individual customer level [34]–[38].
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Fig. 1: Integrated Market Operations Framework with Proactive Demand Participation

Despite these approaches for scheduling HVAC control, bat-
tery storage and other energy sources, little work exists for
combining the demand response consideration at individual
customer level together with the optimization at network
level, which is the focus of our approach.

3 OVERVIEW OF PROPOSED FRAMEWORK

Our proposed integrated market operations framework
with proactive demand participation from smart buildings
is illustrated in Fig. 1. The framework integrates demand
response and network optimization across three levels of the
smart grid – individual (building) customers, distribution
system, and transmission system – through the interactions
of three key decision making entities, including intelligent
building energy scheduling agent, distribution system oper-
ator/customer aggregator and wholesale market operator.

Intelligent Building Energy Scheduling Agent: At the
building customer level, intelligent energy scheduling agent
is designed to reduce energy cost and enable proactive
demand participation. First, as part of the building automa-
tion and control system, the agent minimizes the building
operating energy cost by scheduling the energy consump-
tions of various subsystems and controlling the usage of

heterogeneous energy supply sources, while satisfying the
requirements from building occupants. In this work, we ad-
dress the scheduling of HVAC systems and battery storage
systems with an MPC control algorithm.

Then, the agent constructs demand bid curves that cap-
ture the potential building energy demand under various
possible grid electricity price. Those demand bid curves will
then be sent to the distribution system operator/customer
aggregator via wide-area network. After the day-ahead and
real-time markets are cleared by the electricity wholesale
market operator, the building intelligent agent will receive
the dispatch operating points in the same way as a regular
power plant. By following the total electricity dispatch in-
struction, the intelligent agent will then coordinate various
flexible loads to determine the amount of electricity that
should be allocated to each of them.

Distribution System Operator/Customer Aggregator: The
number of building customers in a regional electricity mar-
ket could easily add up to millions. It is inefficient and
impractical to deal with every individual customer’s de-
mand bid curve directly in the electricity market. To reduce
the complexity of unit commitment and economic dispatch
process when flexible load demand bids are considered,
distribution system operator/customer aggregator needs to
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accurately aggregate individual demand bid curves at the
substation level. Namely, the distribution system operator
needs to find a set of equivalent overall demand bids which
reflect integral demand bid characteristics of all individual
customers at the transmission interconnection node while
considering the physical models of distribution system. In
the distribution system, there could exist participations from
both proactive customers and passive customers who do not
participate in the proactive demand bid program. To deal
with the mixed customer structure, it is essential for dis-
tribution system operator/customer aggregator to predict
the flexible load demand from passive customers based on
smart meter data and current weather information.

The demand bid aggregation process follows an iter-
ative process if the distribution network is radial. The
load at downstream node could be related to upstream
node by considering distribution network losses [22]. The
locational marginal price (LMP) at the downstream nodes
could depend on the transmission interconnection nodes
when marginal distribution losses due to power injection
at the downstream node is considered [23]. Finally, the
aggregated demand bid information will be incorporated
into the day-ahead and real-time market clearing process.
After these markets are cleared, the distribution system
operator is responsible for disaggregating the distribution
system dispatch operating point into individual customers.

Wholesale Market Operator: Currently, in most indepen-
dent system operators’ five-minute real-time operations,
demand is treated as fixed injection into the power network.
The wholesale market operator typically uses very short-
term load forecasting algorithm to estimate total load in a
region and then disaggregates the total load to individual
nodes based on load distribution factors estimated from
state estimation solutions. In our integrated market oper-
ations framework, the distribution system operators will
submit demand bids at each transmission interconnection
point as described above. The aggregated demand bid rep-
resents overall willingness to pay of all customers under
the same pricing node. Therefore, apart from minimizing
the total purchase cost of energy and ancillary services,
the market operator will also try to maximize the sum of
expected surplus of both generators and customers. The
wholesale market operator is responsible for sending the
dispatch operating points of the aggregated demand bids
back to the distribution system operator.

4 DESIGN OF PROPOSED FRAMEWORK

In this section, we introduce the design details of our
proposed framework. In subsection 4.1, we present the intel-
ligent energy scheduling algorithm at the building customer
level, the creation and aggregation of demand bid curves for
individual buildings. In subsection 4.2, we present the mar-
ket operation optimization at the network level and disag-
gregation of dispatching points. Subsection 4.3 summarizes
our proposed proactive demand participation scheme.

4.1 Intelligent Building Energy Scheduling and De-
mand Bid Curve Creation and Aggregation

At individual building customer level, it has been shown
in our previous work that appropriately managing flexible

energy loads such as HVAC systems and battery storage
can effectively reduce both peak power demand and total
energy cost of buildings [39], [40]. Furthermore, it is essen-
tial to control the HVAC energy consumption (by turning
on/off air conditioning and changing air flow volume)
and the usage of battery storage (by charging/discharging
storage battery) collaboratively in a holistic formation to max-
imize building energy efficiency, as the two aspects have
significant impact on each other [39].

Next, we will introduce our building thermal dynamics
model, the MPC-based building energy scheduling algo-
rithm that addresses both HVAC control and battery stor-
age usage (refined from the proof-of-concept formulation
in [39]), and the demand bid curve creation method.

4.1.1 Building Thermal Dynamics Model

We use a building thermal dynamics model similarly as
in [30], [41], where a building is considered as a network.
The building can be modeled by using two types of nodes:
walls and rooms. Suppose there are in total n nodes, m

of which are room nodes and n � m are wall nodes. The
temperature of the i-th wall is governed by equation (1).
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where T
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ity and air mass flow into the room i, respectively. c

a

is the
specific heat capacity of air. A
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The above heat transfer differential equations of walls

and rooms can be transformed into the following state space
equation of the system dynamics (3).

ẋt = f(xt,ut, d̂t) (3)
yt = Cxt

where xt 2 Rn is the state vector representing the temper-
ature of the nodes in the thermal network. ut is the input
vector representing the air mass flow rate of conditioned air
into each thermal zone. yt 2 Rm is the temperature of each
thermal zones. C is a matrix of proper dimension used to
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calculate thermal zones’ temperature out of system states
and d̂t represents environment disturbance.

The original nonlinear model is used for state estima-
tion, filtering and as a plant model to calculate the actual
temperature evolution. While for control purpose, linear
thermal dynamics model is used to reduce the complex-
ity of the system. The original system dynamics model
is linearized around the system operating point by using
Jacobian linearization (details in [42]). The system equilib-
rium point is obtained by starting from an initial point and
using a Sequential Quadratic Programming(SQP) search
algorithm [43] until it finds the nearest equilibrium point
to the specified system operating point (through solving a
series of Quadratic Programming(QP) subproblems). We use
zero-order hold to discretize the state space realization and
derive the following discrete time LTI system (4).

xk+1 = Axk +Buk +Ed̂k (4)
yk = Cxk

In equation (4), A is the system state coefficient matrix, B
and C are control and output matrices respectively, while
matrix E combines the impacts of various environmental
factors on room temperature. In this work, we use the
linear thermal dynamics model to capture the building
heat transfer characteristics and develop the MPC-based
building energy scheduling algorithm.

4.1.2 MPC-based Building Energy Scheduling Algorithm
Based on the building thermal dynamics model, we for-

mulate an MPC-based control algorithm to co-schedule the
HVAC control and the battery storage usage for reducing
energy cost, while meeting HVAC system requirements on
room temperature and airflow:
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The MPC-based algorithm is applied periodically. At
each time instance t, it determines the optimal air
flow volume trajectory [u(t),u(t + 1), · · · ,u(t + w � 1)]
and battery charging/discharging trajectory [eB(t), eB(t +
1), · · · , eB(t + w � 1)] for a predicting window w (in our
experiments the window is set to 24 hours). The optimiza-
tion takes into account the electricity price forecasts and
the building operation constraints such as room tempera-
ture constraints and battery storage charging/discharging

restrictions. The room temperature within the predicting
window is predicted based on the thermal dynamics model,
the air flow volume trajectory, and the forecasted environ-
mental disturbances. Once the optimal air flow volume and
battery charging/discharging trajectories are determined,
the MPC algorithm will implement the first entry u(t) and
eB(t) to control the HVAC system and operate the battery
storage. Next, the time instance will advance to t + 1 and
the predicting window will advance by one time interval
accordingly (in our experiments the time interval is one
hour), and the MPC algorithm will be applied again.

Variables and parameters of the MPC formulation are
listed in Table 1. Objective function (5) minimizes the total
energy cost within the predicting window. The first term of
(5) captures the energy consumption cost of the grid elec-
tricity, while the second term calculates the battery depreci-
ation cost (based on battery manufacturing cost and battery
maximum charging/discharging cycles). Battery discharg-
ing energy is denoted by eb(t) and calculated in equation
(15), where eB(t) < 0 represents battery discharging energy
while eB(t) > 0 denotes battery charging energy. As shown
in objective function (5), the battery depreciation cost is
calculated during the battery discharging process. Equation
(6) follows equation (4) and calculates the temperature of
building thermal zones, where d̂(t) is the environment
disturbance vector that represents sun radiation intensity,
ambient temperature, etc. Constraint (7) sets bounds for air
flow input volume. Constraint (8) sets bounds for room
temperature, which has to be satisfied for building occu-
pants comfort. Constraint (9) sets the relation among grid
electricity consumption eg(t), HVAC energy consumption
eH(t), and battery charging/discharging energy eB(t). The
HVAC energy consumption eH(t) is calculated in equa-
tion (10) as a function of air flow volume, and is based
on the result from [44]. Constraint (11) restricts battery
maximum charging/discharging rate. Equation (12) updates
battery state-of-charge in the next interval by considering
battery energy decay and round-trip efficiency. Constraint
(13) sets the battery charging/discharging safety boundary.
Constraint (14) is the battery end-of-day energy limit, which
requires the battery to have the same initial state-of-charge
condition when the next day begins.

4.1.3 Demand Bid Curve Creation
The intelligent building energy scheduling algorithm

provides the optimal energy schedule of buildings for each
time interval within the predicting window, given the fore-
casting information of real-time prices and environment
disturbances. The pair of electricity demand and price fore-
cast reflects the amount of electricity that customers would
be willing to buy at the corresponding price in current
time interval. As we increase (or decrease) the electricity
price forecast for current time interval while keeping price
forecasts for the rest of the time intervals fixed 1, the cor-
responding optimal energy consumption for current time
interval decreases (or increases). These pairs of electricity
price and quantity forecast explicitly quantify the flexibility

1. The real-time electricity price time series may exhibit autocorrela-
tion, higher volatility and frequency of spikes, in which case a Markov
regime switching model could be adopted to model the price series [45].
For simplicity, these stochastic factors are not modeled in this paper.
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TABLE 1: MPC Algorithm Variables Definition

i current time interval w predicting window length
⌧ length of interval N total number of intervals
c
r

max charging rate p
b

battery depreciation cost
d
r

max discharge rate d̂ environment disturbances
u air flow volume pg electricity price vector
Tc node temperature eH HVAC energy demand

eg building energy consumption
eb battery discharging energy
eB battery charging/discharging energy
Soc battery state-of-charge
E0 battery initial state-of-charge
� battery energy decay rate
⇢ battery round-trip efficiency

A,B,C,E building thermal dynamics state space matrices
U�, U+ air flow volume lower/upper bounds
T

�
, T

+ comfort zone temperature lower/upper bounds
E�, E+ battery charging/discharging range bounds

c1, c2, c3, c4 HVAC energy demand function coefficients

of buildings in current time interval. The locus of points
traced out by following the price-quantity pairs when we
gradually increase price forecast for current time interval,
forms the building’s flexible load demand bid curve [3]. An
example of an individual customer flexible loads demand
bid curve in a specific time interval is shown as Fig. 2.
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We develop Algorithm 1 to derive the demand bid curve
of an individual customer. All notations used in Algorithm
1 are declared in Table 2. In the following, bold notations
represent vectors and plain notations represent scalars.

As shown in Algorithm 1, calculating demand bid curve
at current time interval i requires a price forecast vector pr

(whose length is the same as the predicting window size
in MPC). P

lower

and P

upper

bound the possible price for
current time interval i. Line 2 determines the number of
distinct bid points. During each iteration, a possible price
for interval i is stored into �

i

in line 4 and pr is updated
in line 5. Then line 6 runs MPC algorithm to compute
the optimal energy scheduling d within current predicting
window based on the updated price forecast profile pr . Line
7 and 8 store the possible price value and the corresponding
demand bid into w and P

d
j , respectively. Finally those

Algorithm 1 P

d
j = Demand Curve(i,pr)

1: Set P
lower

and P

upper

2: L (P
upper

� P

lower

)/P
incr

+ 1
3: for l := 1 to L do
4: �

i

 P

lower

+ P

incr

⇤ (l � 1)
5: pr[i] �

i

6: d MPC(i,pr)
7: w[l] �

i

8: P

d
j [l] d[1]

9: return P

d
j

TABLE 2: Algorithm 1 and 2 Variables Definition

�
i

possible price at interval i pr electricity price vector
l indices of bid points in demand bid curve
L total number of price points in demand bid curve
P
incr

price increment
d optimal energy scheduling within predicting window
w customer willingness to pay for energy consumption P

d
j

P
lower

lower bound of price at interval i
P
upper

upper bound of price at interval i
n
j

number of buildings on bus j

P

d
j energy consumption of individual demand bids set j

P

d
j,k energy consumption of building k in demand bids set P d

j

P

D
j energy consumption of aggregated demand bids set j

isolated price-demand pairs are connected sequentially to
form the demand bid curve of current time interval i.

4.1.4 Individual Demand Bid Curve Aggregation

The individual demand bid curves derived by Algorithm
1 need to be properly aggregated at substation level in
order to solve the electricity market economic dispatch
optimization problem. Without considering power losses in
distribution lines, individual demand bid curves could be
linearly added up to form the substation-level demand bid
curve. This is shown in Algorithm 2 with notations defined
in Table 2. Line 1 in Algorithm 2 initializes the aggregated
demand bids set PD

j . In line 3, all individual demand bids
set P d

j,k in demand bids set j are linearly added up to derive
the aggregated demand bid set on bus j.

Algorithm 2 P

D
j = Bid Aggregate(j,P d

j )

1: P

D
j  [0]1⇥L

2: for k := 1 to n

j

do
3: P

D
j  P

D
j + P

d
j,k

4: return P

D
j

4.2 Integrated Market Operations

4.2.1 Network Optimization Formulation

The real-time market clears the supply offers with de-
mand bids by maximizing the sum of the surplus of gener-
ation companies and retail customers. In each time interval,
the wholesale market operator clears demand and supply
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in the network by solving a security constrained economic
dispatch (SCED) problem [46] [47], as shown below.
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j
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w

lj
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D

lj

(21)

C

i

(P̂G

i

) = a

i

P̂

G

i

+ b

i

(P̂G

i

)2 (22)

The notations in SCED algorithm are presented in Ta-
ble 3. The objective function (16) maximizes the sum of
total surplus of all customers and power generation com-
panies. Meanwhile it also minimizes the total generation
cost. The first term of equation (16) denotes customers’
utility function, while the second term denotes the sum
of generation cost. Customer utility function u

j

and gen-
erator cost function C

i

are calculated in equation (21) and
(22), respectively. Equation (17) is power supply/demand
constraint for each bus. We use � to denote the multiplier
vector of constraints (17). It represents the shadow price of
real power balance constraint on each bus. � corresponds
to the LMP in electricity market. Constraint (18) guarantees
that the power flow will not exceed the thermal capacity on
each transmission line. Constraints (19) and (20) bound the
maximum and minimum power output of each generator.

TABLE 3: SCED Algorithm Variables Definition

P
k

bus k power injection J aggregated demand bids set
P
gk

bus k total generation I set of generators
P
dk

bus k total demand P̂G

i

generator i power generation
GSF

bk

generation shift factor from bus k to line b
F b

max

maximum power flow on line b

N
bus

number of buses in the power network
P̂D

j

dispatched energy consumption of aggregated

demand bids set j
P̂D

lj

segment l energy consumption of P̂D

j

w
lj

customer willingness to pay for electricity demand P̂D

lj

Pmin

i

minimum power output of generator i
Pmax

i

maximum power output of generator i

4.2.2 Substation Dispatching Points Disaggregation
After the wholesale market clears energy demand and

supply bidding, the dispatch points need to be disag-
gregated into individual dispatching instructions for each
building to manage its flexible loads. Algorithm 3 elaborates
this procedure, with notations shown in Table 4.

Without considering power losses in distribution system,
the disaggregation can be performed for two cases: (1)
clearing price is not at the jump point of the aggregated
demand bid curve, in which case the dispatch quantity for
each customer is exactly the energy consumption at clearing

price in its demand bid curve; and (2) clearing price falls
on the jump point, in which case the disaggregated dispatch
quantity consists of two parts. The first part is the same
as the quantity in case (1) and those quantities will be
subtracted from the total dispatch quantity Q[j]. Then the
remaining dispatch quantity is allocated to each customer
proportionally based on their energy demand variation at
current clearing price �[j] in its demand bid curve (line 7).

Algorithm 3 q = Dispatch Disaggregate(j,�,Q)

1: q  [0]1⇥nj

2: for k := 1 to n

j

do
3: if �[j] 62 wj then . Clearing price is not at jump point
4: q[k] Pd

j,k

(�[j])
5: else . Clearing price is at jump point
6: q[k] Pd

j,k

(�[j])

7: +
P

d,�
j,k �P

d,�
j,kPnj

k=1(P
d,�
j,k �P

d,�
j,k )

·
⇥
Q[j]�

P
nj

k=1 Pd

j,k

(�[j])
⇤

8: return q

TABLE 4: Algorithm 3 Variables Definition

q set of disaggregated dispatch quantities
n
j

number of buildings on bus j

Q set of total dispatch quantity on each bus
� set of clearing price on each bus
wj set of prices in jump points of demand bid curve on bus j

Pd

j,k

mapping function between P

d
j,k and its bidding prices

PD

j

mapping function between P

D
j and its bidding prices

P
d,�

j,k

maximum energy consumption at price � in individual
demand bid curve k on bus j

P d,�

j,k

minimum energy consumption at price � in individual

demand bid curve k on bus j

4.3 Overall Proactive Demand Participation Algorithm
Based on the methodologies and algorithms introduced

in previous subsections 4.1 and 4.2, we summarize the algo-
rithm flow for our proposed proactive demand participation
strategy, as show in Algorithm 4 with notations in Table 5.

TABLE 5: Algorithm 4 Variables Definition

Pr price profile matrix prj price vector on bus j

D̂ fixed load demand N
bus

number of buses
�i set of clearing price on each bus in interval i
P

d
j energy consumption of individual demand bids set j

P

D
j energy consumption of aggregated demand bids set j

Qi set of total dispatch quantity on each bus in interval i
qi,j dispatching quantities on bus j in interval i

As shown in line 5 of Algorithm 4, at current time
interval i, Demand Curve algorithm (Algorithm 1) con-
structs flexible demand bid curves of individual buildings
by solving the MPC formulation in subsection 4.1. Then
in line 6, individual demand bid curves are aggregated
at substation level (Algorithm 2). The aggregated demand
bid curve contains the information of how much electricity
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Algorithm 4 Pr = Proactive Response(Pr)

1: Pr = [pr1 ,pr2 , ...,prNbus
]T

2: while i  24 do
3: for each j 2 J do
4: for k := 1 to n

j

do
5: P

d
j  Demand Curve(i,prj ) . Algorithm 1

6: P

D
j  Bid Aggregate(j,P d

j ) . Algorithm 2

7: (�i,Qi) SCED(PD
j , D̂)

8: for each j 2 J do
9: prj [i] �i[j]

10: qi,j  Dispatch Disaggregate(j,�i,Qi)
. Algorithm 3

11: for k := 1 to n

j

do
12: MPC(i,prj , qi,j [k])

13: i i+ 1
14: return Pr

customers would be willing to buy at different price rates.
Based on such information, in line 7, the SCED algorithm
introduced in subsection 4.2 determines the economic dis-
patching points, which contain both electricity market clear-
ing price �i and dispatch quantity Qi in interval i. The
substation-level dispatching points are disaggregated into
dispatch quantity for each individual building customer
in line 10 (Algorithm 3). Finally, in line 12 each building
operates its flexible load by strictly following the dispatch
quantity qi,j .

5 BASELINE PASSIVE DEMAND RESPONSE

To evaluate our proposed proactive demand response
scheme, we compare it with a conventional passive demand
response strategy as introduced below. In this baseline pas-
sive demand response process, the building energy man-
agement system uses the same MPC-based algorithm to
schedule HVAC control and battery storage usage, based
on the real-time electricity price forecast. Then customers’
current energy demand information is submitted to the
electricity market operator. Next the electricity market op-
erator is responsible for solving the SCED problem and
determining the electricity price for current time interval,
given customers’ energy demand information.

Fig. 3 illustrates the process of passive demand response
strategy for the first three intervals. When scheduling en-
ergy demand for the first time interval, the MPC algo-
rithm determines current time interval’s optimal flexible
load energy demand based on the initial electricity price
forecasts. Then the electricity market operator sets the elec-
tricity price and updates customers’ price forecast profile
for current time interval (shown by dash-line shadow). The
price forecasts of the rest intervals remain fixed. Next, the
predicting window in the MPC algorithm is moved forward
by one time interval and the algorithm solves the optimal
energy scheduling within the new predicting window. The
price forecast profile on the new predicting window is con-
structed by adding the updated price of last interval at the
end of the initial price forecast profile (as shown by solid-
line shadow), by assuming the following day’s price has
a similar characteristic as the corresponding time interval

i = 1

i = 2

i = 3

MPC(1 , pr)

MPC(2 , pr)

MPC(3 , pr)

Interval

......1 2 3 24 1 2

price forecast clearing price updated forecast 

Fig. 3: Passive Demand Response Diagram

at current day. We repeat the above process to obtain the
passive demand response in each time interval. The passive
demand response algorithm is shown in Algorithm 5.

Algorithm 5 Pr = Passive Response(Pr)

1: D = [d1,d2, ...,dNbus ]
T

2: Pr = [pr1 ,pr2 , ...,prNbus
]T

3: while i  24 do
4: for each j 2 J do
5: dj  MPC(i,prj )

6: �i  SCED(D, D̂)
7: for each j 2 J do
8: prj [i] �i[j]

9: i i+ 1
10: return Pr

TABLE 6: Algorithm 5 Variables Definition

Pr price profile matrix prj price vector on bus j

D demand profile matrix dj demand vector on bus j

D̂ fixed load demand �i clearing price in interval i
N

bus

number of buses in the power network

In Algorithm 5, Pr is the electricity price matrix that
contains the initial price forecast profile on each bus. D

denotes flexible load optimal energy demand matrix, and
each of its row stores the optimal energy demand on cor-
responding bus. In line 5, the MPC algorithm determines
the total energy demand d

j

within predicting window for
each bus based on its own price forecast profile prj at time
interval i. Line 6 solves the SCED problem to calculate the
clearing price for each bus.

6 EXPERIMENTAL RESULTS AND ANALYSIS

6.1 Experiment Setup
The IEEE 30-bus network, as shown in Fig. 4, is used to

evaluate our proposed proactive demand response scheme.
There are six generation plants in this power network. Gen-
erator locations and their maximum generation capacities
are listed in Table 7.
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Fig. 4: IEEE 30-Bus Power Network Diagram

TABLE 7: Generator Location and Capacity

Generator 1 2 3 4 5 6
Bus Number 1 2 22 23 27 13
Max(MW) 730 570 1040 700 1600 600

The effectiveness of demand response strategies, includ-
ing our proactive scheme, directly depends on the amount
of flexible energy loads in the power network. To more com-
prehensively evaluate our scheme, we conduct experiments
under different levels of available flexible energy loads (i.e.,
different amount of HVAC loads and battery storage in our
case). Specifically, we define five types of buildings. Each
building type has different flexible load ratio (0%, 25%, 50%,
75% and 100%) with respect to the total energy demand –
the rest is fixed energy load whose demand profile is given
and cannot be changed during scheduling. The flexible load
ratio is defined in equation (23), where D

flexible is the total
energy demand from flexible load and D

total is the entire
energy demand of a building.

R

flexible =
D

flexible

D

total

(23)

In total, 1000 buildings are deployed on each bus. Each
building operates an HVAC system and is equipped with
a battery storage system. Moreover, each building also has
certain amount of fixed load (e.g., lighting and office equip-
ment). Each type of load is characterized by a maximum
power demand rating. The total peak demand of all types
of load in each building is set to 150kW . The building’s
comfort temperature zone range is set to 20 �

C ⇠ 23 �
C .

The battery’s maximum charging/discharging rate in one
hour is 25% of its maximum capacity, and the battery state-
of-charge lower and upper bound is set to 20% and 80%
respectively. We calibrate the number of buildings for each
building type to obtain various desired flexible load ratios
to a bus, as shown below. In (24), m

i

denotes the number
of the i-th type of building, Rflexible is our desired flexible
load ratio for the bus.

5X

i=1

m

i

= 1000 (24)

P5
i=1 D

flexible

i

·m
iP5

i=1 D
total

i

·m
i

= R

flexible

Furthermore, customers in electricity market are al-
lowed to use different types of demand response strategies,
which means some buildings are passive demand response

users while some buildings may follow proactive demand
response instructions. We define the proactive-demand-
response ratio as shown in (25), where N

proactive

is the
number of buildings which participate in proactive demand
response scheme and N

total

is the total number of buildings
that contain flexible load in the power network (in our ex-
periments all buildings have the same peak demand. If the
buildings are heterogeneous in terms of energy demand as
in reality, a more accurate capturing of proactive-demand-
response ratio should be based on energy demand rather
than number of buildings).

R

proactive

=
N

proactive

N

total

(25)

In the experiment, a reasonable initial electricity price
forecast is constructed by running the passive DR algorithm
once. Firstly, each individual building solves the optimal
energy demand scheduling for 24 hours based on a real-time
price profile. Then the electricity market operator solves the
optimal power flow in each interval and derives the initial
price forecast that fits with the simulation power network. In
practice, time series and artificial intelligence models such
as multiple linear regression and artificial neural network
models could be used to generate electricity price forecasts.

6.2 Results and Analysis
6.2.1 Effectiveness of Proactive Demand Response
(1) Effect of Proactive-Demand-Response Ratio

We first conduct experiments to study the effect of proac-
tive demand response strategy on system cost at different
customer participation levels, assuming the flexible load
ratio is 100%. We gradually increase the ratio of proactive-
demand-response customers from 0% to 100%, and assume
the rest is passive demand response customers. In each
case, proactive customers bid for their electricity demand
and submit their demand bid curves to wholesale market
operator. The system operator performs economic dispatch
algorithm to clear the market based on both the flexible
demand bids from proactive customers and the rigid de-
mand bids from the passive customers. We calculate the
system generation cost in each case, and compare it with
the baseline approach where all building customers use pas-
sive demand response strategy (i.e., 0% proactive-demand-
response ratio).

As shown in Fig. 5, the system generation cost can
be significantly reduced with more proactive demand response
participation, and can achieve up to 10% in our experiment.
This clearly demonstrates the advantages of our proactive
demand response scheme over passive demand response.
When the proactive-demand-response ratio gets very high
(exceeding 70% in our example), the reduction curve gets
flat as the system has fully leveraged the scheduling poten-
tial from proactive customers.

(2) Effect of Flexible-Load Ratio
We then study the effect of flexible load ratio on the

power system generation cost, assuming 100% proactive-
demand-response ratio. We vary the flexible load ratio from
0% to 100%. For each case, we compare the system gen-
eration cost against the baseline passive DR approach. As
shown in Fig. 6, our approach again provides significant
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Fig. 5: Power System Generation Cost Reduction under
various Proactive Demand Response Ratios

cost reduction with respect to the baseline, and the reduction
increases when the flexible load ratio increases.
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Fig. 6: Power System Generation Cost Reduction under
various Flexible Load Ratios

(3) Joint Effect of Proactive-Demand-Response Ratio and
Flexible-Load Ratio

We also conduct experiments to evaluate our proactive
demand response scheme under various flexible load in-
stallment percentage and various proactive customers par-
ticipation level (essentially a more comprehensive study
that includes the previous two aspects). We jointly change
the proactive-demand-response ratio and flexible-load ratio,
and compare power system generation cost reduction at
each setting point versus the baseline case. The results are
shown in Fig. 7. The reduction of system generation cost
increases when proactive-demand-response ratio increases
and/or flexible-load ratio increases.

(4) Electricity Market Pricing
In proactive demand response process, because of the

joint optimization of electricity market dispatch and build-
ing energy management, the electricity wholesale market
operator can fully leverage the advantage of building’s
flexibility. The market operator can determine the electricity
quantity dispatched to each individual customer, instead of
just trying to meet customers’ energy demand and simply
using real-time prices to guide buildings’ energy consump-
tion. On the other hand, the decision of buildings’ final elec-
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Fig. 7: System Generation Cost Reduction with various Flex-
ible Load Ratios and Proactive Demand Response Ratios

tricity demand takes power system’s generation capacity
and operating conditions into consideration by providing
market operator more flexibility in demand bid curve and
letting market operator decide their electricity consumption.
Thus the energy demand on different buses can be appropri-
ately coordinated to avoid the synchronization of customers’
peak energy demand. Consequently the proactive demand
response scheme can effectively avoid utilizing high-cost
generators to supply high power demand.
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Fig. 8: Clearing Price

In Fig. 8, under 50% of flexible load installment level, the
electricity market price profiles in both passive DR process
and proactive DR process are presented together. We can
see that the price profile in proactive DR is much smoother
than that in passive DR. This demonstrates that the proactive
demand response scheme can help mitigate volatility in electricity
market pricing.

6.2.2 Comparison with Iterative RTP Scheme
We have briefly discussed about iterative real-time pric-

ing approaches in Section 2. In this work, we implemented
an iterative passive RTP scheme and compared it with our
proactive scheme. In the baseline passive demand response
strategy introduced in Section 5, we only update the price
forecast at each time interval once. In this iterative RTP
scheme, there are multiple iterations between the building-
side energy scheduling and market clearing in transmission
network, following the methodologies from [10]. Specifi-
cally, when determining the electricity price for customers
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at each time interval, building customers first decide their
electricity demands based on the current price forecasts
(by solving the MPC-based formulation), and the market
operator determines a clearing price in the electricity market
after receiving the demands from all buildings. Then the
building customers will repeat the energy scheduling based
on the new price, and the market operator will determine
a new price based on the new demands. This process will
continue for multiple iterations. In this way, the building-
side electricity demand scheduling and the market-side
price settling might evolve toward an optimal solution.
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Fig. 9: System Generation Cost Comparison between Proac-
tive Demand Response and Iterative RTP Scheme at Differ-
ent Flexible Load Ratios: (a) 50% Flexible Load Ratio, (b)
100% Flexible Load Ratio

We conducted experiments to compare the system gen-
eration cost of our proactive scheme with the cost of the
iterative RTP scheme, under two different levels of flexible
load ratios. The results are shown in Fig. 9. From the results
we can see that with more iterations, the power system
generation cost of iterative RTP scheme may decrease and
get close to our proactive scheme, however still higher and
oscillating. Such iterative method could be too slow for real-
time operations due to high number of iterations.

6.2.3 Building Customer Incentives from Cost Savings

In this section, we study the effect of our proactive
demand response scheme on building operating cost and
evaluate how this might incentivize building customers to
participate in the scheme. In passive demand response pro-
cess, buildings simply schedule their energy demand base
on the real-time price forecast at each time interval. Because
energy management system in buildings simply manage the
electricity consumption in the best interest of their own, a
large number of buildings can lead to a very high electric-
ity demand in power grid, which may lead to very high
electricity charge rate for customers in return. While in our
proactive demand response process, the electricity market
operator is trying to maximize all customers’ utility and
simultaneously minimize the power system generation cost.
It will typically make a compromising decision between the
two and lead to a relatively low price rate.

Fig. 10 shows the total building operating cost reduction
by using proactive DR under different flexible-load ratio
levels, compared with the baseline passive DR approach.
It demonstrates that building customers may achieve sig-
nificant operating cost reduction when they leverage their
flexible loads and participate in the proactive DR process (in
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Fig. 10: Building Operating Cost

comparison with the passive approach) . In many commer-
cial and residential buildings, flexible loads such as HVAC
systems account for 50% or more of buildings’ total energy
demand [1], and the flexibility could be even higher when
leveraging battery storage. This shows significant incentives for
building customers to participate in the proactive DR scheme.

6.2.4 Trade-off between Building Comfort Level and Cost
Building operating costs and the overall power system

generation cost may be significantly impacted by the re-
quired building comfort levels. In this section, we study
the trade-off between these two aspects. We assume 50%
of flexible-load installment level, and gradually relax build-
ing’s comfort zone boundary by increasing comfort zone
temperature range from 2�C to 13�C (centered around
21.5�C). This means the building’s HVAC system will have
more flexibility when regulating the temperature. Then we
calculate power system generation cost and total building
operating cost for passive and proactive demand response
under different comfort zone scenarios.
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Fig. 11: Trade-off between Building Comfort Zone Tem-
perature Range and Cost (including both Total Building
Operating Cost and System Generation Cost)

As shown in Fig. 11, for both passive and proactive
demand response strategies, building operating cost and
power system generation cost decrease when comfort zone
temperature range increases. The results demonstrate that
relaxing building’s comfort zone requirement can help re-
duce building customers’ operating cost and power system
generation cost. The trend should not be surprising, but
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the quantitative results could help building operators to
trade off between comfort level and energy cost based on
occupant activities, operating budget and other factors (e.g.,
relaxing the comfort zone requirement for conference rooms
when no meeting is being held).

6.2.5 Security and Privacy

In our proactive DR scheme, cybersecurity attacks may
be conducted by malicious customers to achieve lower
operating costs for themselves, similarly as attacks to con-
ventional passive DR strategies [48]. In particular, attackers
may manipulate the electricity price forecast signals (Pr in
our algorithms) to mislead other customers.

In this work, we conducted preliminary experiments
to assess the potential impact of such attack on market
clearing price and building operating cost. We assume the
customer(s) on bus 16 manipulates the price forecasts on all
other buses to mislead their energy usage. Specifically, the
attackers significantly increase the price forecast for all other
buses (except for 16) at certain periods of the day (6am to
6pm in our experiments), and therefore lead the customers
on those buses to schedule their demand to avoid those
periods. The attackers on bus 16 will then schedule their
own demands on those periods to reduce cost.
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Fig. 12: Normalized Energy Demand and Clearing Price
under Price Forecast Manipulation (with respect to Normal
Operation without Manipulation)

Fig. 12 shows the normalized clearing price and energy
demand when price forecast manipulation is conducted by
bus 16, compared with normal case without manipulation.
The blue and black line represents the normalized energy
demand on bus 16 and other buses, respectively. The red
curve represents the final market clearing price. We can
see that the attackers on bus 16 take advantage of other
customers’ energy consumption pattern and schedule their
heavy load demand to the low price period. Compared with
the normal case, attackers on bus 16 are able to reduce their
operating cost by 3.85%, while the operating cost for all
other customers are increased by 2.1%.

There may also be privacy concerns for our proactive DR
scheme. Providing demand bid curves might expose more
information of the customers than a simple demand value.
However, it is unclear yet what types of user behavior can
be learned from such information. We plan to investigate
this further in our future work.

6.2.6 Manipulation of Demand Bid Curves
Malicious customers may also submit untruthful de-

mand bid curves to gain benefits for themselves. In this
section, we conduct experiments to evaluate the impact of
such manipulation of demand bid curves.

We consider the cases where a malicious customer (or
multiple colluding customers) has gained control of 50% of
the buildings in the network. For simplicity, in this experi-
ment we assume buildings all have the same characteristics
(e.g., same flexible load ratio of 50%, same battery storage
capacity, etc.), and therefore the malicious customer has
control of 50% of the energy demand in the network. In
practice it is highly unlikely that such high percentage of
demand is under control of malicious customer(s). Never-
theless, we consider it here in our study to investigate how
much impact the manipulation of demand bid curves may
have in extreme cases.

Fig. 13 shows two manipulated untruthful demand bid
curves – in one the bidding price is lowered by 50% and in
the other the bidding price is raised by 100% (i.e., 2X). There
are many other ways to manipulate the true demand bid
curve. We study these two as examples in this work.
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Fig. 13: Manipulated Untruthful Demand Bid Curves

Then, first we consider several cases in which the mali-
cious customer lowers the demand bid curves of part of the
buildings it controls by 50% at the beginning of peak-load
hours (1pm) for an hour. Intuitively, the malicious customer
tries to drive the clearing price lower to benefit the rest of the
buildings it controls. Note that for the part of the buildings
that submit untruthful lower demand bid curves at 1pm,
they will get lower amount of grid electricity dispatched to
them at that hour. Therefore their demand for grid electricity
might be higher later on, and their total operating cost might
not be lower. However, the malicious customer hopes to
achieve an overall reduction of its cost from all of the build-
ings it controls. Fig. 14 shows the clearing price in different
cases, where the malicious customer manipulates 10%, 20%,
30%, 40% and 50% of all the buildings in the market. In
the last case the malicious customer basically lowers the
demand bid curves of all its controlled buildings at 1pm
(note that we assume the malicious customer controls 50%
of the buildings in the market).

From Fig. 14, we can see that the more buildings that
submit manipulated (lower) demand bids, the lower the
clearing price at 1pm is. During the peak hours from 1pm to
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7pm, the clearing price does not change significantly as bat-
tery is used to reduce the demand for grid electricity. After
7pm, there is an increase in the clearing price. This confirms
our analysis above – the manipulated buildings have to
request more energy later to satisfy temperature comfort
requirements and battery charging/discharging constraints.

Table 8 shows the total operating cost for the malicious
customer and the total cost for the rest of the customers
(i.e., the other 50% of the buildings in the network), under
the five different cases as explained above. We can see that
when the malicious customer manipulates a minority part
of its buildings (i.e., 10% and 20% of the total buildings, out
of 50% it controls), it gains a very small reduction in its cost;
while other customers also see a small reduction. When the
malicious customer manipulates more of its buildings, its
overall cost starts increasing since the manipulated build-
ings actually have a higher cost over the whole process.

TABLE 8: Total Costs for Malicious Customer and for Other
Customers under Manipulated Demand Bid Curves

Malicious Customer Other Customers
Cost ($) Change Cost ($) Change

No manipulation 841930 - 841950 -
10% buildings manipulated 841540 # 0.05% 841630 # 0.04%
20% buildings manipulated 840410 # 0.18% 839900 # 0.24%
30% buildings manipulated 842140 " 0.03% 840950 # 0.12%
40% buildings manipulated 844160 " 0.27% 841400 # 0.07%
50% buildings manipulated 845361 " 0.41% 840721 # 0.15%

We also conducted similar experiments where the ma-
licious customer raises the demand bid curves by 100% at
1pm for various percentage of the buildings it controls (from
10% to 50% of all buildings in the market). The change
of total operating cost is very small – within 0.05% for all
cases. We also tried lowering and raising the true demand
bid curves for more than one hour during the peak hours
(e.g., for the entire peak hours of 1pm to 7pm), and the
changes are all relatively minor – within 0.5%. Overall, the
manipulations do not lead to a significant cost variation
in our experiments. This demonstrates the robustness of
our proposed scheme with respect to the manipulation of
demand bid curves.

7 CONCLUSIONS

This paper proposes an innovative demand response
scheme called proactive demand participation. The proac-

tive demand response scheme fully utilizes the flexibility
of buildings’ energy consumptions and enables individual
customers to actively participate in the wholesale electricity
market. At the smart building level, an MPC-based HVAC
control algorithm is developed for intelligently scheduling
HVAC control and battery storage usage. A physical de-
mand bid curve creation algorithm is developed to specify
customers’ energy consumption preferences under various
pricing points. At the wholesale market level, the secu-
rity constrained economic dispatch problem is formulated
to coordinate the operations of power plants and flexible
loads. The simulation results demonstrate that the proactive
demand response scheme is superior to the conventional
passive demand response scheme. The proactive demand
response scheme results in higher power system and elec-
tricity market efficiency and lower price volatility. From
building owners’ perspective, the proactive demand partic-
ipation scheme results in lower building operation cost.

REFERENCES

[1] “Building energy data book of DOE,” Available:
http://buildingsdatabook.eren.doe.gov.

[2] S. J. Olivieria, G. P. Henzea, C. D. Corbina, and M. J. Brande-
muehla, “Evaluation of commercial building demand response
potential using optimal short-term curtailment of heating, venti-
lation, and air-conditioning loads,” Journal of Building Performance
Simulation, vol. 7, no. 2, pp. 100–118, 2014.

[3] N. Yu, Q. Zhu, and T. Wei, “From passive demand response to
proactive demand participation,” The 11th annual IEEE Interna-
tional Conference on Automation Science and Engineering, 2015.

[4] DOE, “Benefits of demand response in electricity markets and
recommendations for achieving them,” 2006.

[5] FERC, “Assessment of demand response and advanced metering
staff report,” October 2013.

[6] FERC, “A national assessment of demand response potential,”
2009.

[7] M. H. Albadi and E. F. El-Saadany, “Demand response in electric-
ity markets: An overview,” IEEE Power Engineering Society General
Meeting, 2007.

[8] N. Z. John S. Vardakas and C. V. Verikoukis, “A survey on
demand response programs in smart grids: Pricing methods and
optimization algorithms,” Communications Surveys and Tutorials,
IEEE, vol. 17, no. 1, pp. 152–178, 2015.

[9] A. J. Conejo, J. M. Morales, and L. Baringo, “Real-time demand
response model,” IEEE Transactions on Smart Grid, pp. 236–242,
2010.

[10] N. Li, L. Chen, and S. H. Low, “Optimal demand response based
on utility maximization in power networks,” IEEE Power and
Energy Society General Meeting, 2011.

[11] P. Faria and Z. Vale, “Demand response in electrical energy supply:
An optimal real time pricing approach,” Energy, vol. 36, no. 8,
pp. 5374–5384, 2011.

[12] P. Yi, X. Dong, A. Iwayemi, C. Zhou, and S. Li, “Real-time
opportunistic scheduling for residential demand response,” IEEE
Transactions on Smart Grid, vol. 4, no. 1, pp. 227–234, 2013.

[13] K. Herter, P. McAuliffe, and A. Rosenfeld, “An exploratory anal-
ysis of california residential customer response to critical peak
pricing of electriicty,” Energy, vol. 32, no. 1, pp. 25–34, 2007.

[14] G. R. Newsham and B. G. Bowker, “The effect of utility time-
varying pricing and load control strategies on residential sum-
mer peak electricity use: a review,” Energy Policy, vol. 38, no. 7,
pp. 3289–3296, 2010.

[15] X. C. Yong Liang, Long He and Z.-J. Shen, “Stochastic control for
smart grid users with flexible demand,” IEEE Transactions on Smart
Grid, vol. 4, no. 4, pp. 2296–2308, 2013.

[16] R. S. Pedram Samadi, Hamed Mohsenian-Rad and V. W. S. Wong,
“Advanced demand side management for the future smart grid
using mechanism design,” IEEE Transactions on Smart Grid, vol. 3,
no. 3, pp. 1170–1180, 2012.

[17] M. A. B. Jonathan Wang and W. M. Wang, “Lessons learned from
smart grid enabled pricing programs,” Power and Energy Conference
at Illinois (PECI), 2011 IEEE, 2011.



14

[18] A. Faruqui and J. R. Malko, “The residential demand for electricity
by time-of-use: a survey of twelve experiments with peak load
pricing,” Energy, vol. 8, no. 10, pp. 781–795, 1983.

[19] J. Aghaei and M.-I. Alizadeh, “Demand response in smart elec-
tricity grids equipped with renewable energy sources: A review,”
Renewable and Sustainable Energy Reviews, vol. 18, pp. 64–72, 2013.

[20] R. H. Ahmad Faruqui and J. Tsoukalis, “The power of dynamic
pricing,” The Electricity Journal, vol. 22, no. 3, pp. 42–56, 2009.

[21] G. Webber, J. Warrington, S. Mariethoz, and M. Morari, “Commu-
nication limitations in iterative real time pricing for power sys-
tems,” IEEE International Conference on Smart Grid Communications,
2011.

[22] L. Murphy, R. J. Kaye, and F. F. Wu, “Distributed spot pricing in
radial distribution systems,” IEEE Transactions on Power Systems,
vol. 9, no. 1, pp. 311–317, 1994.

[23] J. M. Vignolo and P. M. Sotkiewicz, “Distribution network loss
allocation with distributed generation using nodal prices,” Pro-
ceedings of the Seventh IASTED International Conference on Power
Energy Systems, 2004.

[24] K. Shaloudegi, N. Madinehi, S. H. Hosseinian, and H. A. Abyaneh,
“A novel policy for locational marginal price calculation for dis-
tribution systems based on loss reduction allocation using game
theory,” IEEE Transactions on Power Systems, vol. 27, no. 2, pp. 811–
820, 2012.

[25] N. G. Singhal and K. W. Hedman, “An integrated transmission
and distribution systems model with distribution-based lmp pric-
ing,” North American Power Symposium, 2013.

[26] L. Xu and R. Baldick, “Transmission-constrained residual demand
derivative in electricity markets,” IEEE Transactions on Power Sys-
tems, vol. 22, no. 4, pp. 1563–1573, 2007.

[27] Y. Ma, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, and P. Haves,
“Model predictive control for the operation of building cooling
systems,” IEEE Transactions on Control Systems Technology, vol. 20,
no. 3, pp. 796–803, 2012.

[28] F. Oldewurtel, A. Parisio, C. N. Jones, M. M. D. Gyalistras, M. Gw-
erder, V. Stauch, B. Lehmann, and K. Wirth, “Energy efficient
building climate control using stochastic model predictive control
and weather predictions,” American Control Conference (ACC), 2010.

[29] P. Xu, P. Haves, M. A. Piette, and J. Braun, “Peak demand re-
duction from pre-cooling with zone temperature reset in an office
building,” Lawrence Berkeley National Laboratory, 2004.

[30] M. Maasoumy, A. Pinto, and A. Sangiovanni-Vincentelli, “Model-
based hierarchical optimal control design for HVAC systems,” 4th
ASME Dynamic System Control Conference (DSCC), 2011.

[31] M. Maasoumy and A. Sangiovanni-Vincentelli, “Total and peak
energy consumption minimization of building HVAC systems
using model predictive control,” IEEE Design and Test of Computers,
vol. 29, no. 4, 2012.

[32] M. Maasoumy, Q. Zhu, C. Li, F. Meggers, and A. Sangiovanni-
Vincentelli, “Co-design of control algorithm and embedded plat-
form for HVAC systems,” 4th IEEE/ACM International Conference
on Cyber-Physical Systems (ICCPS), 2013.

[33] Y. Yang, Q. Zhu, M. Maasoumy, and A. Sangiovanni-Vincentelli,
“Development of building automation and control systems,” IEEE
Design and Test of Computers, vol. 29, no. 4, 2012.

[34] C. J. Baldwin, K. M. Dale, and R. F. Dittrich, “A study of
the economic shutdown of generating units in daily dispatch,”
IEEE Transactions on Power Apparatus and Systems, vol. 78, no. 4,
pp. 1272–1282, 1959.

[35] J. A. Muckstadt and R. C. Wilson, “An application of mixed-
integer programming duality to scheduling thermal generating
systems,” IEEE Transactions on Power Apparatus and Systems, 1968.

[36] N. P. Padhy, “Unit commitment - a bibliographical survey,” IEEE
Transactions on Power Systems, vol. 19, no. 2, pp. 1196–1205, 2004.

[37] T. Shiina and J. R. Birge, “Stochastic unit commitment problem,”
International Transactions on Operational Research, vol. 11, no. 1,
pp. 19–32, 2004.

[38] J. Tu, L. Lu, M. Chen, and R. K. Sitaraman, “Dynamic provisioning
in next-generation data centers with on-site power production,”
the 4-th International Conference on Future Energy Systems (ACM e-
Energy), 2013.

[39] T. Wei, T. Kim, S. Park, Q. Zhu, S. X.-D. Tan, N. Chang, S. Ula,
and M. Maasoumy, “Battery management and application for
energy-efficient buildings,” Proceedings of the 51st Annual Design
Automation Conference on Design Automation Conference. ACM, 2014.

[40] T. Wei, Q. Zhu, and M. Maasoumy, “Co-scheduling of HVAC con-
trol, EV charging and battery usage for building energy efficiency,”

33rd IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2014.

[41] M. Maasoumy, Q. Zhu, C. Li, F. Meggers, and A. Sangiovanni-
Vincentelli, “Co-design of control algorithm and embedded plat-
form for HVAC systems,” the 4th IEEE/ACM International Confer-
ence on Cyber-Physical Systems (ICCPS), 2013.

[42] M. Maasoumy and A. Sangiovanni-Vincentelli, “Mod-
eling and optimal control algorithm design for HVAC
systems in energy efficient buildings,” Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-12.html,
2011.

[43] C. L. J. Frédéric Bonnans, J. Charles Gilbert and C. A. Sagastizábal,
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