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Abstract—Limited progress has been made in the past few years 

in increasing demand response participation rate in the United 

States. The structural rigidity of existing price-based and 

incentive-based demand response programs results in 

inadequate and inefficient utilization of demand flexibility in 

electricity market operations. In this paper, an innovative 

proactive demand participation scheme is developed. This new 

scheme enables customers to actively express and communicate 

their consumption preferences to market operators rather than 

passively receive and react to time varying electricity prices and 

demand reduction signals. A novel framework for integrated 

wholesale and retail market operations with proactive demand 

participation and customer aggregation is proposed. The 

proactive demand response scheme is implemented in a 

simulation environment. The simulation results show that the 

proactive demand participation scheme is superior to the passive 

demand response approach. The proactive demand participation 

approach not only increases overall market efficiency but also 

reduces price volatility. 

Index Terms--Building Aggregation, Demand Response, 

Integrated Market, Model Predictive Control, Proactive 

Demand Participation. 

I. INTRODUCTION 

Demand response (DR) enables electricity consumers to 
adjust their electricity usage in response to time-varying 
electricity price signals, incentive payments and/or direct 
dispatch instructions. DR resources have demonstrated their 
potential in improving electricity market efficiency and 
enhancing power system reliability. However, at 6% 
penetration level in the U.S. [1], their usefulness in electricity 
market operations is greatly limited by the structural rigidity of 
price-based demand response and incentive-based DR 
programs which are prevalent in current practice. Almost all 
DR customers still passively respond to time varying prices 
and load reduction instructions sent from utilities [2]. The low 
customer engagement and DR market integration hurdles 
could be partially explained by this passive customer 
participation scheme, which ultimately results in low market 
efficiency and high real-time price volatility. 

As estimated in the Federal Energy Regulatory 
Commission (FERC) demand response report [3], with full 
participation from customers, total peak demand in the U.S. 

can be reduced by 150 GW compared with business-as-usual 
DR scenario. To unlock the full potential of demand flexibility 
and demand-side participation, it is necessary to fundamentally 
transform the way retail customers interact with wholesale 
power markets. In this paper, an innovative customer 
interaction scheme called proactive demand participation is 
developed. Under the traditional price-based and incentive-
based DR approaches, customers passively receive and react to 
time-varying electricity rates and demand reduction signals. 
Under the proactive demand participation framework, an 
intelligent energy scheduling agent takes the initiative to 
convert control models for flexible loads and customer 
preferences into price sensitive demand bids. This new scheme 
allows customers to actively express and communicate their 
electricity consumption preferences to the distribution 
system/market operators and participate in the wholesale 
market dispatch and price formation process. 

To facilitate the proactive demand participation scheme, 
three critical research questions need to be addressed. First, 
how to convert customer objectives, preferences and physical 
control models of flexible loads into market compatible 
bidding information at the individual customer level? Second, 
how to accurately aggregate thousands of customers’ demand 
and bidding information while considering distribution 
network losses? Third, how to design an integrated 
transmission and distribution market framework from both 
engineering and economics perspectives? This paper aims at 
moving proactive demand participation from concepts to 
reality by addressing these important research questions. 

We briefly discuss literatures related to the proposed work 
and highlight what sets our approach apart from the existing 
research. In the realm of demand response, many papers in the 
literature focus on the design of price-based demand response 
models and control strategies [4] such as real-time pricing 
(RTP) [5], critical peak pricing [6], time-of-use [7] and 
transaction-based control [8]. Among the existing price-based 
DR frameworks, iterative real-time pricing mechanism [9] and 
transaction-based control are two promising distributed 
demand management approaches. However, in practice, both 
approaches are time consuming and too slow for real-time 
operations. The iterative real-time pricing approach requires a 
high number of iteration for the process to converge. In 
addition, the convergence could not be guaranteed with a lossy 



and delayed communication platform [10]. In our proposed 
proactive demand participation approach, the customers could 
directly send price sensitive demand bid curves to the 
distribution system operator. Hence, the electricity market 
optimization could be completed in one iteration. In the 
transaction-based control framework [8], each device is given 
the ability to negotiate deals with its peers. The bilateral 
negotiation process is complex and time consuming. In 
addition, parties in the bilateral negotiation process may fail to 
reach an agreement due to price forecast bias and high risk 
aversion factors [11]. In our proposed approach, distribution 
system operator aggregates demand bids and coordinates 
demand management among customers. This hierarchical 
approach makes market clearing process much more efficient. 

The remainder of this paper is organized as follows. 
Section II proposes a comprehensive framework that 
empowers customers to proactively participate in wholesale 
electricity market and price formation process. Section III 
presents the intelligent building energy scheduling algorithm 
and the price sensitive demand bid construction methodology. 
The proposed algorithms and framework are implemented in a 
simulation testbed. The numerical study results are presented 
in Section IV. The conclusions are stated in Section V. 

 
Figure 2. Proactive Demand Response Flowchart 

II. INTEGRATED MARKET OPERATIONS WITH PROACTIVE 

DEMAND PARTICIPATION 

The proposed integrated electricity market operations 
framework is shown in Figure 1. The framework can be 
divided into three levels, transmission system, distribution 
system and individual customers. Three types of decision 
making entities are key to integration of flexible loads. They 
are intelligent building/customer energy scheduling agents, 
distribution system operators/customer aggregators and 
wholesale market operators. 

A. Wholesale Market Operator 

As shown in Figure 2, in real-time market operations, the 
wholesale market operator will first broadcast price forecasts 
for time interval 𝑡 to 𝑡 + 𝑤 − 1. Upon receiving aggregated 
price sensitive and fixed demand bids and supply offers from 
distribution system operators and generators, the wholesale 
market operator clears the real-time energy market to 
determine the hourly dispatch schedules and locational 
marginal prices (LMPs) of energy. The market clearing 
algorithm is formulated as following. 

max⁡[∑𝑢𝑗(𝑃𝑗
𝐷)

𝑗∈𝐽

−∑𝐶𝑖(𝑃𝑖
𝐺)

𝑖∈𝐼

]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

𝑃𝑘 − 𝑃𝑔𝑘 + 𝑃𝑑𝑘 = 0, 𝑘 = 1,… , 𝑁𝑏⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2)⁡⁡ 

|∑ 𝐺𝑆𝐹𝑏−𝑘
𝑁𝑏

𝑘=1
× 𝑃𝑘| ≤ 𝐹𝑚𝑎𝑥

𝑏 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖

𝐺 ≤ 𝑃𝑖
𝑚𝑎𝑥, 𝑖 ∈ 𝐼⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

𝑢𝑗(𝑃𝑗
𝐷) = ∑ 𝑤𝑙𝑗𝑃𝑙𝑗

𝐷𝐿
𝑙=1                                (5) 

𝐶𝑖(𝑃𝑖
𝐺) = ∑ 𝑟𝑚𝑖

𝑀
𝑚=1 𝑃𝑚𝑖

𝐺                                 (6) 

The objective function (1) maximizes the sum of surpluses 
of all proactive customers and generation power plants. The 
real-time market optimization problem is subject to real power 
balance constraints at each bus (2), thermal limit constraints 

 
 Figure 1. Integrated Market Operations Framework with Proactive Demand Participation 



for each transmission line (3), upper and lower generation 
capacity constraint (4). The customer utility function 𝑢𝑗and 

generation production cost function 𝐶𝑖are shown in equations 
(5) and (6). The real-time market clearing problem formulated 
in (1) – (6) is a linear programing problem. In the above 
equations, 𝐽 represents aggregated demand bids set. 𝐼  stands 
for the set of generators. 𝑃𝑘 denotes power injection at bus 𝑘. 
𝑃𝑔𝑘 represents the total generation at bus 𝑘. 𝑃𝑑𝑘 stands for total 

demand at bus 𝑘. 𝐺𝑆𝐹𝑏−𝑘 denotes generation shift factor from 
bus 𝑘 to line b. 𝐹𝑚𝑎𝑥

𝑏  denotes the maximum power flow for line 

𝑏 .  𝑃𝑖
𝑚𝑖𝑛  and 𝑃𝑖

𝑚𝑎𝑥  represent the lower and upper limits of 
generator 𝑖′𝑠  capacity. 𝑤𝑙𝑗  denotes aggregated customer 𝑗′𝑠 

willingness to pay for segment 𝑙 of the electricity demand 𝑃𝑙𝑗
𝐷. 

𝑟𝑚𝑖  denotes generator 𝑖′𝑠  bid cost for segment 𝑚  of the 

generator output 𝑃𝑚𝑖
𝐺 . 𝑃𝑗

𝐷represents total electricity demand of 

𝑗th aggregated customer. 𝑃𝑖
𝐺  represents total power output of 

𝑖𝑡ℎ generator. 

After the real-time market is cleared, the market clearing 
results including LMPs and dispatch operating points for 
aggregated loads will be sent to the distribution system 
operators. At the end of process, the wholesale market operator 
updates price forecasts and move the optimization window one 
step forward. 

B. Distribution System Operator 

The distribution system operator is mainly responsible for 
coordinating the energy operation of millions of 
buildings/customers. As shown in Figure 2, after receiving the 
system level price forecasts, the distribution system operator 
will broadcast these price forecasts to individual buildings 
based on their network locations. For simplification purposes, 
it is assumed that the distribution network is perfectly balanced 
and lossless. Therefore, the building level price forecast is the 
same as the LMP forecast for the closest pricing node in the 
transmission system. After receiving individual 
buildings/customers’ physical demand bid curves, the 
distribution system operator adds them up to an aggregated 
demand bid curve and submits it to the wholesale market 
operator. Upon receiving the dispatch operating points from 
wholesale market operator, the distribution system operator 
disaggregates the distribution system dispatch operating point 
into individual customers’ dispatch points based on their 
demand bid curves. 

C. Intelligent Building Energy Scheduling Agent 

The intelligent building energy scheduling agents are 
designed to enable proactive demand participation. Resided in 
building/home energy management system, the intelligent 
energy scheduling agents try to minimize electricity costs and 
maximize occupants’ comfort on behalf of residential 
customers and commercial buildings. The intelligent building 
energy scheduling agent keeps a record of the building 
equipment control models. The details of the control models 
for heating ventilation and air conditioning (HVAC) systems 
and energy storage systems used in this paper will be described 
in section III. As shown in Figure 2, the intelligent agents will 
first collect forecasts for key external variables such as 
temperature, humidity, customer usage preference and 
electricity prices based on information provided by distribution 

system operator and historical data gathered from local 
sensors. Next, the intelligent agents derive demand bid curves 
based on the customers’ preference, price and temperature 
forecasts, and control model for flexible loads. The iterative 
demand bid curve generation algorithm will be discussed in 
section III. At last, the bidding information is sent through 
wide-area network to the distribution system operators. After 
the wholesale market operator clears day-ahead and real-time 
markets, the intelligent agents will receive the dispatch 
operating points like a regular power plant. The intelligent 
agents then decide how to coordinate the set points for all 
flexible loads within the building to follow the dispatch 
instructions. 

III. INTELLIGENT BUILDING ENERGY SCHEDULING 

ALGORITHM AND DEMAND BID CURVE CREATION 

At individual customer level, the peak demand and total 
energy cost of buildings can be greatly reduced by optimally 
scheduling the operations of HVAC systems. Furthermore, on 
the energy supply side, utilizing heterogeneous energy sources 
such as grid electricity, battery storage, and renewable sources 
provides more opportunities for reducing the peak demand and 
total energy cost. The demand side control (e.g., HVAC 
control) depends on the availability of various energy sources. 
The supply side energy sources scheduling (i.e., deciding 
which source to use and for how much at different times) 
requires the knowledge of demand. Therefore, it is important 
to co-schedule energy demands with supply sources to 
maximize building energy efficiency. 

In our previous work [12], we developed a proof-of-concept 
formulation for co-scheduling HVAC control, EV charging 
and battery usage. The formulation is based on simplified 
assumptions of HVAC characteristics, building thermal model, 
EV charging and battery characteristics. The simulation results 
have shown significant energy saving potentials through co-
scheduling flexible loads and energy sources.  

In this work, we develop energy management algorithms 
based on model predictive control (MPC) to co-schedule 
HVAC and energy storage system operations. The co-
scheduling algorithm is based on integrated formulations that 
accurately model the characteristics of HVAC system, its 
impact on the physical environment, and the characteristics of 
battery storage systems. The goal of the control is to reduce 
total energy cost of individual buildings. The formulation of 
MPC-based control is provided below. As stated in equation 
(7), the objective of the MPC-based control is to minimize 
building energy consumption cost and battery operating cost. 
𝑝𝑔(𝑡) represents the real-time price forecasts for electricity. 

𝑒𝐻(𝑡) represents HVAC energy demand which is modeled as 
a function of air flow volume input 𝑢(𝑡), and 𝑒𝐵(𝑡) denotes 
battery charging/discharging energy. The sum of 𝑒𝐻(𝑡)  and 

⁡𝑒𝐵(𝑡) denotes the energy withdraw from the power grid at time 
step t. 𝑝𝑏  is the battery depreciation cost and 𝑏𝑑(𝑡) denotes the 
battery discharge energy. Equation (8) describes the change in 
room temperature T(t) under air flow input u(t) from the 
HVAC system, which is linearized from a non-linear room 
thermal dynamics model as shown in [13], 𝑑𝑖𝑠𝑡(𝑡) denotes the 
outside environment disturbance (e.g., sun radiation and 
ambient air temperature). Note that the linear model is only 



used for MPC control, while the original non-linear model is 
used for simulating the actual temperature revolution. The 
optimization problem is subject to HVAC system air flow 
volume constraint (9), lower and upper limits for room comfort 
temperature setting (10), building energy supply/demand 
constraint (11), battery charging and discharging constraint 
(13), temporal constraint associated with battery state-of-
charge (14), lower and upper limits for state-of-charge (15) and 
end-of-the-day state-of-charge constraint (16). 

min ∑ [𝑝𝑔(𝑡) ∙ (𝑒𝐻(𝑡) + 𝑒𝐵(𝑡)) + 𝑝𝑏𝑏𝑑(𝑡)]

𝑡0+𝑤−1

𝑡=𝑡0

⁡⁡⁡⁡⁡⁡(7) 

𝑇(𝑡 + 1) = 𝐴𝑛 ∙ 𝑇(𝑡) + 𝐵𝑛 ∙ 𝑢(𝑡) + 𝐸𝑛 ∙ 𝑑𝑖𝑠𝑡(𝑡)⁡⁡⁡⁡⁡(8) 

𝑈𝑙𝑜𝑤𝑒𝑟(𝑡) ≤ 𝑢(𝑡) ≤ 𝑈𝑢𝑝𝑝𝑒𝑟(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

𝑇𝑙𝑜𝑤𝑒𝑟(𝑡 + 1) ≤ 𝐶𝑛 ∙ 𝑇(𝑡 + 1) ≤ 𝑇𝑢𝑝𝑝𝑒𝑟(𝑡 + 1)⁡⁡⁡⁡⁡⁡(10) 

𝑒𝐻(𝑡) + 𝑒𝐵(𝑡) ≥ 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(11) 

𝑒𝐻(𝑡) = 𝑐1𝑢(𝑡)
3 + 𝑐2𝑢(𝑡)

2 + 𝑐3𝑢(𝑡) + 𝑐4⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(12) 

−𝑑𝑟 × 𝜏 ≤ 𝑒𝐵(𝑡) ≤ 𝑐𝑟 × 𝜏⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13) 

𝑆(𝑡 + 1) = 𝑆(𝑡) + 𝑒𝐵(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(14) 

𝐸𝑚𝑖𝑛 ≤ 𝑆(𝑡) ≤ 𝐸𝑚𝑎𝑥 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(15) 

𝑆(𝑡 + 1) = 𝐸0, 𝑖𝑓⁡𝑡⁡𝑚𝑜𝑑⁡𝑁 = 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(16) 

In the above equations, 𝑤  denotes predicting window 
length. 𝑁  represents number of time intervals in a day. 𝜏 
denotes the length of each operating interval. 𝑐𝑟  and 𝑑𝑟 
represent maximum charging and discharging rate. 𝑆(𝑡) stands 
for battery’s state of charge at operating interval 𝑡. 𝐸𝑚𝑎𝑥 and 
𝐸𝑚𝑖𝑛 denote the maximum and minimum energy limit for the 
battery storage system. 𝐸0 denotes initial state of charge for the 
battery storage system. 

The MPC-based intelligent building energy scheduling 
algorithm is a non-linear optimization problem. The 
optimization problem is solved by using Yalmip [14] and 
IPOPT solver. The intelligent building energy scheduling 
algorithm provides the optimal energy schedule for each time 
interval given the real-time price forecasts. As we increase the 
price forecast for the current operating interval while keeping 
price forecasts for the rest of the time intervals fixed, the 
corresponding optimal energy schedule for the current 
operating interval decreases. The locus of points traced out in 
the price-quantity space when we gradually increase price 
forecast, is the building’s price sensitive demand bid curve. 

In practice, we could follow the steps shown in Figure 3 to 
construct the price sensitive demand bid curve. 𝑙 denotes the 
𝑙-th segment electricity price forecast in current time interval 
𝑖. First, 𝑙 is set to the lower bound of price forecast 𝑃𝑙𝑜𝑤𝑒𝑟 . 
Then the current interval’s electricity price in real-time price 
profile is updated with price forecast 𝑙 . Next, based on the 
updated real-time electricity price profile, the MPC algorithm 
computes individual customers’ demand bid quantity 𝑄𝑙  
corresponding to electricity price 𝑙 . In each iteration, 𝑙 
increases by 𝑃𝑖𝑛𝑐𝑟  until 𝑙  exceeds the upper bound of price 
forecast 𝑃𝑢𝑝𝑝𝑒𝑟 . During each iteration, the pair of electricity 

price forecast 𝑙 and the corresponding building demand bid 

quantity 𝑄𝑙  is saved to construct the final demand bid curve. 
There are in total 𝐿 Price-Quantity pairs in the price sensitive 
demand bid curve. The price sensitive demand bid curve is a 
graphical representation of the relationship between quantity 
of electricity demanded and customer’s willingness-to-pay. 
These individual demand bid curves will be aggregated by the 
distribution system operator and submitted to the wholesale 
market operator. A sample price sensitive demand bid curve of 
an individual customer is shown in Figure 4. 

 

Figure 3. Demand Bid Curve Creation Diagram 

 

Figure 4. Sample Price Sensitive Demand Bid Curve 

IV. NUMERICAL STUDY 

A. Simulation Setup 

Numerical studies are conducted on a 5-bus system [15] as 
shown in Figure 5 to demonstrate the effectiveness of proactive 
demand participation scheme. 

 

Figure 5. 5-bus Test System 

 

 



HVAC control system and battery storage system are 
assumed to be the major flexible loads of a typical building 
model in the simulation. In this simulation, each building has 
a HVAC system with a maximum power consumption of 100 
kW. In addition, a battery storage system with an energy rating 
of 200 kWh and a power rating of 50 kW is installed in each 
building. Each building also has certain amount of fixed loads. 
The fixed loads have the same daily profile as the test case in 
[11]. In the 5-bus test system, it is assumed that 2000 buildings 
are connected to each bus in the transmission system. Five 
different types of buildings, each with a distinct flexible-to-
fixed load ratio, are modeled at each bus. By varying the 
composition of five different types of buildings on each bus, 
the total flexible load level in the power network can be set to 
any designated ratio. 

B. Passive DR Versus Proactive Demand Participation  

We start from an initial electricity price profile which has 
been calibrated based on the test system. In the passive demand 
response scheme, customers are assumed to be under the real-
time pricing program. As illustrated in Figure 6, the customers 
schedule their HVAC system and battery system energy usage 
based on the initial real-time electricity price forecasts using 
the MPC approach [12]. The individual customer’s energy 
consumption schedules are sent to the system operator. The 
system operator then solves the security constrained economic 
dispatch (SCED) problem [16] with fixed loads from 
customers. In contrast, in the proactive demand participation 
scheme, the customers construct their price sensitive demand 
bid curves at each decision step (every hour in the simulation) 
as described in section III. For simplification purposes, the 
individual demand bid curves are aggregated at the 
transmission level without considering distribution network 
losses. The market operator then solves the SCED problem 
based on the aggregated demand bid curve to derive the LMPs 
and dispatch instructions. 

 

Figure 6. Passive Demand Response Flowchart 

C. Effectivenss of Proactive DR Scheme 

The building energy consumptions and LMPs under the 
proactive demand participation scenario and the passive price-
based demand response scenario are shown in Figures 7 and 8. 
In this experiment, the total flexible load ratio in the power 
network is set to 50%. The flexible load ratio in our 
experiments is calculated by dividing energy consumption 
from flexible loads by energy consumption from all types of 

loads. We assume all customers either use proactive demand 
response scheme or use passive demand response strategy in 
each scenario. 

 

Figure 7. Building Energy Consumption 

It can be seen from Figure 7 that the total energy 
consumption profile under the proactive demand participation 
scenario is much smoother than that of passive scenario. This 
is due to the direct representation of price sensitive demand 
bids, which enables better scheduling coordination between 
flexible loads and generators. The coordinated scheduling 
result also leads to lower total system generation cost in the 
proactive demand participation scenario. As demonstrated in 
Figure 8, real-time LMPs volatility is much lower in the 
proactive demand participation scenario. 

 

Figure 8. Real-time Locational Marginal Price 

D. Impact of Flexible Load Level and Proactive DR Ratio 

Experiments are conducted to study how changes in 
flexible load penetration level and proactive demand response 
participation ratio impact the overall system generation cost. 
The flexible load penetration level 𝑅𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 and proactive 
demand response participation ratio 𝑅𝑝𝑟𝑜𝑎𝑐𝑡𝑖𝑣𝑒  are defined in 
equations (17) and (18). 

𝑅𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 =
𝐹𝑙𝑒𝑥𝑖𝑏𝑙𝑒⁡𝐿𝑜𝑎𝑑⁡𝐸𝑛𝑒𝑟𝑔𝑦⁡𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛⁡

𝑇𝑜𝑡𝑎𝑙⁡𝐸𝑛𝑒𝑟𝑔𝑦⁡𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(17) 

𝑅𝑝𝑟𝑜𝑎𝑐𝑡𝑖𝑣𝑒 =
𝑁𝑢𝑚𝑒𝑟⁡𝑜𝑓⁡𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟⁡𝑖𝑛⁡𝑃𝑟𝑜𝑎𝑐𝑡𝑖𝑣𝑒⁡𝐷𝑅⁡𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝑇𝑜𝑡𝑎𝑙⁡𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠
⁡(18) 

In this experiment, we first vary flexible load ratio in the 
power network from 0% to 100% while maintaining the level 
of total system peak demand. All customers are assumed to be 
adopting the proactive demand response strategy. The 

 

 



percentage of total generation cost reduction is calculated by 
comparing the generation costs in the passive demand response 
scheme and proactive demand participation scheme. The 
passive demand response scheme is treated as the benchmark 
case. 

As shown in Figure 9, the total generation cost reduction 
percentage increases as we increase the penetration level of 
flexible loads in the power system. The proactive demand 
participation scheme is much more effective in reducing total 
system cost when the flexible load penetration level is higher. 
The proactive demand participation scheme can achieve up to 
18% generation cost reduction compared with the conventional 
passive demand response strategy. 

 

Figure 9. Generator Cost Reduction vs. Flexible Load Level 

      Next, we conduct experiments to quantify the impact of 
proactive demand response participation level on the system 
generation cost. Figure 10 shows the trend of system 
generation cost reduction when the proactive demand response 
participation level increases. The flexible load ratio in the 
power network is fixed at 100% in this experiment. We 
gradually increase the participation rate of proactive demand 
response customers, and calculate the system cost reduction in 
the proactive DR participation scheme compared to the passive 
DR scheme. In Figure 10, we can see that the system 
generation cost reduces significantly with increasing 
participation level of proactive demand response customers. 

 

Figure 10. Generator Cost Reduction vs. Proactive Response Level 

      Figure 11 shows the capacity factors which represent the 

utilization ratio of the 5 generators in the test system. In our 

experiment, generators 3 and 4 have higher heat rate than 

generators 1, 2 and 5. As shown in Figure 11, in proactive 

demand participation scheme, the capacity factors of 

expensive generators 3 and 4 are lower than that of passive 

demand response scheme. The capacity factors of efficient 

generators 1, 2 and 5 in proactive demand participation scheme 

are higher than that of passive demand response regime. This 

result demonstrates that direct representation of price sensitive 

demand bids in the real-time market clearing process results 

in more efficient scheduling coordination between flexible 

loads and generators, and higher market efficiency. 

 

V. CONCLUSIONS AND FUTURE WORK 

This paper proposes an innovative proactive demand 
participation scheme which fundamentally transforms the way 
retail customers interact with wholesale power markets. To 
implement proactive demand participation, a framework for 
integrated market operations in transmission and distribution 
system is developed. This paper also develops a demand bid 
curve construction methodology based on intelligent building 
energy scheduling algorithm. The simulation results show that 
the proactive demand participation scheme leads to higher 
market efficiency and lower price volatility compared with the 
passive demand response approach. 

In order to move the proactive DR regime and integrated 
wholesale and retail market operations framework from vision 
to implementation, the following questions need to be further 
explored and addressed. First, how to prevent market 
manipulation by end-use customers from misrepresenting their 
demand bid curves? Second, will implementation cost of the 
proposed integrated market operations and proactive DR 
framework outweigh its benefits? Third, how to design privacy 
protection mechanisms to protect the end-use customers’ 
sensitive information such as their demand bid curves? 
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