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Abstract— Current U.S. electricity markets select supply bids 

by using a bid cost minimization (BCM) auction mechanism but 

then settle the payments based on locational marginal prices 

(LMPs).  The resulting payments can be significantly higher than 

the minimized bid costs.  An alternative payment cost 

minimization (PCM) mechanism aiming to minimize the total 

payments has been discussed.  Studies on single product 

problems have shown that PCM leads to reduced payments, but 

few results have been reported for the co-optimization of energy 

and other products.  In view that co-optimization leads to a more 

efficient capacity allocation than optimizing each product 

individually, it is important to investigate the PCM co-

optimization problems, and solve them in standard MIP solvers 

for a fair comparison with BCM.  In PCM, prices are decision 

variables and need to be appropriately defined.  We 

characterized marginal price-setting units by using logical 

constraints and converted them to linear forms since linearity is 

required by the standard MIP solvers.  The nonlinear cross-

product in PCM objective function, however, cannot be 

converted to linear forms.  Based on our recent results on 

surrogate optimization, a method is developed to deal with 

nonlinearity.  Prices are first fixed at their values at the previous 

iteration to obtain linear formulation, and are then updated 

using price definition if the surrogate condition is satisfied.  

Numerical testing results of small examples and a 24-bus example 

demonstrate the effectiveness and efficiency of the method.   

 
Index Terms — Branch-and-cut, co-optimization, Lagrangian 

Relaxation, MIP, payment cost minimization, price definition, 

surrogate optimization. 

I.  INTRODUCTION 

he Independent System Operators (ISOs) in current U.S. 

electricity markets use a “bid cost minimization” or BCM 

auction mechanism to select supply bids, but then clear the 

markets based on the locational marginal prices (LMPs).  This 

bid cost minimization mechanism maximizes social welfare if 

supply bids are consistent with their true production costs.  

However, it is possible for some bidders to strategically 

deviate from bidding their true costs to gain more profits, thus 
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the current auction mechanism has issues.  The bid cost 

minimization leads to inconsistency between the auction and 

settlement mechanisms, and the payments can be significantly 

higher than the minimized bid costs.  An alternative “payment 

cost minimization” or PCM mechanism which minimizes the 

total payments directly has been discussed.  Illustrative 

examples [1] have shown that PCM leads to reduced payments 

for given set of bids as compared to BCM.  Since bidders may 

bid differently under two mechanisms, a game theoretic model 

was used to demonstrate the consumer savings in PCM.  The 

“ice hockey” bidding behavior was also less likely to occur in 

PCM [2].  However, many other aspects of the mechanism, 

such as the long term impact, are still not clear and need to be 

further investigated.  

The above studies focus on the energy market, which is only 

part of the auctions conducted by ISOs.  Besides energy, 

ancillary services (e.g., regulation, spinning reserve and non-

spinning reserve) are also important products.  The ancillary 

service bids can be either optimized after the energy auction, 

or co-optimized simultaneously with energy bids.  Most ISOs 

co-optimize energy and ancillary service bids, since co-

optimization leads to a more efficient allocation of limited 

capacities than optimizing each product individually.   

Study on co-optimization is needed for a thorough 

comparison of the two mechanisms.  In view that prices are 

decision variables in the objective function of PCM, they need 

to be clearly defined for each product.  The total payment cost 

function is discontinuous, since payments can suddenly jump 

to a higher level when a more expensive unit begins to set the 

price.  As a result, the payment cost function is non-

differentiable at those break points, and the prices cannot be 

defined by taking partial derivatives of the Lagrangian of 

Economic dispatch problem as what is commonly used in the 

BCM price definition.  The price definition in payment cost 

minimization needs to be defined in a different way.  

Solving PCM problem is also more challenging than solving 

BCM problems.  The BCM problems can be solved efficiently 

in ISOs by using standard MIP solvers, which requires 

problem linearity.  The payment cost function, however, is 

nonlinear with a cross-product of prices and 

generation/spinning reserve levels, and cannot be directly 

solved by the branch-and-cut solvers.  The problem is 

complicated in co-optimization by the coupling of energy and 

ancillary services through unit capacity constraints.  Few 

results have been reported for payment cost co-optimization 

yet, which makes the comparison of the two mechanisms 

extremely difficult.   

This paper formulates and solves the payment cost co-
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optimization in a day-ahead market.  Literature on solving 

single-product optimization and co-optimization problems 

under two mechanisms is reviewed in Section II.  Our problem 

formulation is presented in Section III.  As mentioned earlier, 

the partial derivative or Lagrangian cannot be used in PCM 

price definition.  To define the price in PCM, we introduce the 

marginal candidate set concept, which defines a set of 

potential price setting units.  The marginal unit is the most 

expensive unit in the set and will set the price.  This is 

consistent with the marginal pricing theory.  For problems 

with transmission capacity constraints, determining the 

marginal candidate set for each bus is difficult due to the 

congestion.  However, the marginal candidate units located at 

each bus still form a subset of the marginal candidate set of 

that bus, and the LMP at that bus can be no lower than any of 

the bid prices in the subset.  The LMP difference between an 

arbitrary bus and the reference bus is then derived by using 

KKT conditions of the Lagrangian.   

The PCM problems are nonlinear, and cannot be solved 

directly by the branch-and-cut based MIP solvers.  This 

difficulty still exists when decomposed into subproblems.  To 

deal with nonlinearity, an iterative method based on our 

previous work on Lagrangian Relaxation and surrogate 

subgradient optimization is developed in this paper.  The 

overall PCM problem is decomposed into individual 

subproblems and solved iteratively such that at each step, the 

subproblem model has a linear formulation.  A two-level 

structure similar to Lagrangian Relaxation is used: Updating 

multipliers at the high level and solving subproblems at the 

low level.  To deal with the nonlinearity created by the cross-

product of price and individual generation/spinning reserve 

level, the prices are fixed when subproblems are solved.  

Based on the subproblem solutions, the prices are then 

systematically updated by using price definition constraints.  

The surrogate condition is checked every iteration to 

guarantee a proper direction for updating multipliers.  An 

estimate of L* is used when calculating the stepsize.  Further 

investigation is needed to avoid the divergence of algorithm 

caused by overestimate.  Details of the new method are 

presented in Section IV.   

Numerical results presented in Section V demonstrate the 

correctness of the new price definition on small examples, and 

the effectiveness and efficiency of our new iterative method 

based on 24-bus transmission co-optimization problems.   

II.  LITERATURE REVIEW 

Prices appear explicitly in the objective function as decision 
variables in PCM and they need to be appropriately defined 
and to be operationalized throughout the optimization.  The 
prices are defined as the highest bid price among the selected 
bids in [1][3].  This “highest price” definition is correct except 
for the case that expensive units must generate at pmin to satisfy 
the system demand.  The “partial derivative” definition uses 
the partial derivative of Lagrangian to define prices.  It does 
not work in PCM, since no partial derivative exists at those 
break points when a new unit starts to set prices.  To avoid this, 
the total payments are substituted by total bid costs in the 

Lagrangian of economic dispatch in [6] when deriving the 
partial derivatives.  This substitution, however, leads to 
inconsistency between the unit commitment and economic 
dispatch.  A consistent price definition for payment cost 
minimization is desired.   

Both PCM and BCM belong to the mixed integer 
programming (MIP) problems.  The Lagrangian Relaxation 
technique and branch-and-cut method are two typical methods 
used for solving such problems.  In the Lagrange Relaxation 
framework, the multipliers can provide clear economic 
interpretation as the shadow prices associated with the 
constraints, and the relaxed problem can be decomposed to 
individual sub-problems if the problem is separable.  
According to the separability and the roles of prices, the use of 
Lagrange Relaxation techniques can be divided into three 
categories. The first category consists of separable problems 
which can be decomposed into individual subproblems after 
relaxation.  One typical example for such problems is the 
machine scheduling problem in which the multiplier relaxing 
capacity constraints provides quick solution to the “what if” 
questions [4].  The bid cost minimization problems are also 
separable problems.  The second category consists of non-
separable problems in which prices are not decision variables, 
e.g., problems with non-linear coupling constraints.  The third 
category is non-separable problems in which prices are 
decision variables.  Payment cost minimization is a typical 
example for such problems.  An augmented Lagrangian and 
surrogate optimization framework for solving payment cost 
minimization problems was presented in [3].  It is proved that 
if surrogate condition is satisfied, a proper direction for 
updating multipliers can be obtained [14].  The conditions on 
stepsize and convergence are presented in [5].  Based on [3], 
transmission capacity constraints are incorporated [6]. 

The branch-and-cut method is an alternative for solving 
MIP problems.  In branch-and-cut, integrality constraints are 
first relaxed.  Valid cuts maintaining all the feasible solutions 
are generated to tighten the bound of the continuous relaxation 
to obtain the convex hull of the original feasible solutions.  
The linear programming (LP) simplex method then efficiently 
optimizes the relaxed LP problem over the convex hull and an 
optimal solution can be obtained, which is also the optimal 
solution to the original problem in view of problem linearity.  
Since obtaining the convex hull itself is NP hard, branching 
operations may be needed to decompose the problem as in the 
branch-and-bound method.  According to problem linearity 
and constraint structures, the mixed MIP can also be divided 
into the following three categories.  The first category consists 
of linear problems with “tight” formulations.  Either the 
continuous relaxation can provide a good approximation of the 
convex hull, or the structure of constraint sets can be used to 
generate strong facet-defining cuts to approximate the convex 
hull.  The second category consists of linear problems with 
“loose” formulations.  The feasible regions of such problems 
are enlarged drastically after relaxing integrality constraints 
and their continuous relaxations provide poor lower bounds.  
Issues about tight linear formulation for mixed integer 
programming are discussed in [7].  The third category consists 
of problems with non-linear formulation, with product terms 
or logical expressions in the constraints or objective functions.  
PCM problems are typical examples in this category.  They 
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are difficult to be solved effectively unless properly converted 
to linear forms.   

The studies on multi-product bid cost optimization can be 
divided into two categories: sequential optimization and 
simultaneous optimization.  The sequential auction for 
ancillary services that is used in the California ISO (CAISO) 
is described in [8] and [9].  For simultaneous optimization, the 
co-optimization model for simultaneous auctions that is used 
in the New York ISO (NYISO) and New England ISO (ISO-
NE) are described in [10] and [11].  A detailed AC OPF-based 
formulation for procuring, pricing, and settling energy and 
ancillary service is presented in [12], with the economic 
dispatch problem solved as a LP.  The payment cost co-
optimization, however, is seldom addressed.  

III.  PROBLEM FORMULATION  

In this section, the payment cost co-optimization problem is 

formulated for a day-ahead energy market with given energy 

demand and spinning reserve requirement.  The formulation of 

the co-optimization problem presented in subsection III-A.  

The price definitions for energy and spinning reserve products 

are presented in subsection III-B.  Details of linear conversion 

are presented in subsection III-C. 

A.  Problem formulation 

Consider a transmission network with I buses connected by 

L transmission lines.  For each bus i, there are Ki supply units 

indexed by k.  Each unit submits both supply energy bid and 

spinning reserve bid.  The generation level and spinning 

reserve level of the ikth bid is denoted by pik
E(t) and pik

S(t), 

respectively.  pik
E(t) is limited by the minimum generation 

level pikmin, the maximum generation level pikmax.  pik
S
(t) can be 

allocated starting from 0 and cannot exceed the maximum 

spinning reserve level pikmax
S.  The startup cost is denoted by 

Sik and is incurred if and only if the supply bid is turned “on” 

from “off” at hour t.  The energy price for bus i at hour t is 

denoted by LMPi
E(t).  The spinning reserve price at hour t is 

denoted by MCPS(t).  The co-optimization problem is to 

minimize the total payment costs subject to system demand 

constraints, spinning reserve requirements, transmission 

capacity constraints, individual unit constraints, and the price 

definition constraints.   

System constraints: 

System demand constraints: The total power generation 

should be equal to the system demand at hour t: 
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System spinning reserve requirements: The total spinning 

reserve level should be equal to the system spinning reserve 

requirements at hour t: 
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DC power flow equations: The flow fl(t) in line l at hour t 

can be expressed as the linear combination of net nodal 

injection of energy [13] at hour t: 
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The shift factor ai
l denotes the sensitivity of the transmitted 

power in line l with respect to the net injection at bus i.  It is 

determined by the network structure and physical parameters 

of transmission lines.   

Transmission capacity constraints: The flow in line l cannot 

exceed the transmission capacity in any hour, i.e., 

.,,)( maxmax tlftff lll ∀∀≤≤−    (4) 

The transmission capacity limits for both directions are set 

to be the same for simplicity. 

Equation (3) and (4) are combined together in our problem 

formulation and equation (5) is used. 
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Individual unit constraints: 

Unit capacity constraints: The sum of generation and 

spinning reserve level of a unit must be within its minimum 

and maximum limits if it is committed.  The  generation level 

and spinning reserve level are both 0 if the unit is not selected.  

The relationship can be expressed as: 

.,,,)()()()( maxmin tkiptxtptpptx ikik
S
ik

E
ikikik ∀∀∀≤+≤  (6) 

Energy capacity constraints: The committed generation 

level must be within the minimum and maximum limits of the 

unit, if the capacity is allocated to the energy market, i.e., the 

allocation status variable xik
E =1.  If xik

E = 0, then the capacity 

of the unit is not allocated to the energy market. 
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E
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Spinning reserve capacity constraints: The selected 

spinning reserve level must be within the 0 and maximum 

limits if the capacity is allocated to the spinning reserve 

market, i.e., xik
S = 1.  If xik

S = 0, then the capacity of the unit is 

not allocated to the spinning reserve market.  To ensure that 

xik
S = 0 for unselected reserve bids, a small positive number δ 

is used as the minimal limit.  The relationship can be 

expressed as: 

.,,,)()()( max tkiptxtptx S
ik

S
ik

S
ik

S
ik ∀∀∀≤≤⋅δ   (8) 

Startup cost constraint: The binary decision variable uik(t) 

denotes the “turn on” decision for unit ik at hour t.  The 

variable uik(t) takes 1 if and only if the supply unit is turned 

“on” from “off” at hour t, i.e., only if the binary status variable 

xik(t-1) equals 0 and xik(t) equals 1.  This relationship can be 

expressed linearly in equation (9):  

tkitxtxtu ikikik ∀∀∀−−≥ ,,),1()()( .  (9) 

 
TABLE I 

RELATIONSHIP BETWEEN STATUS VARIABLE X AND DECISION VARIABLE UIK 

xik(t) xik(t-1) uik(t) 

0 0 uik(t) ≥ 0 (redudent) 

0 1 uik(t) ≥ -1 (redudent) 

1 0 uik(t) ≥ 1 (fixed at 1)  

1 1 uik(t) ≥ 0 (redudent) 

 

Table 1 describes the above relationship.  It can be seen that 

when xik(t-1) equals 0 and xik(t) equals 1, uik(t) is fixed at 1, 
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otherwise equation (9) will be redundant. 

B.  Price definition 

LMPi
E definition: 

As mentioned earlier, if some expensive unit has to generate 

at its pmin to satisfy the system demand constraints, such 

expensive unit is not a price-setting unit although online, and 

should be excluded from the set of potential price setting units, 

or “marginal candidate set”.  Other online units are candidates 

for setting prices and they are in the marginal candidate set.  

The price-setting marginal unit is the one with the highest bid 

price in the set and will set the prices.  To characterize the 

marginal candidate set, a binary variable yik
E

 is introduced to 

denote whether a unit is in the set or not.  The logical 

relationship between the on/offline status variable xik and the 

marginal candidate status variable yik
E forms the condition for 

marginal candidate set, and can be analyzed as follows: 

If xik = 0, then yik
E = 0, i.e., offline units will not set prices; 

If xik = 1, then yik
E = 0 only if the unit must generate at its 

pmin to satisfy the system demand.  Otherwise, yik
E = 1 for 

online units. 

A unit must generate at pmin if the available online capacity 

provided by other units cannot cover the amount of power 

provided by the pmin unit, i.e., ∑jh≠ik(pjhmax⋅xjh - pjh
E) < pikmin. 

When considering transmission capacity constraints, the 

marginal candidate set for each bus cannot be easily identified 

due to the transmission congestion.  However, the units 

located at a bus i with yik
E=1 still form a subset of the marginal 

candidate set of bus i, thus the following equation holds: 
E
ik

E
ik

E
i ycLMP ⋅≥     (10) 

The above constraint is active when a local unit ik is setting 

prices for bus i.  If LMPi
E is set by a remote unit located at 

other buses, it means that any cheap capacity located at i has 

been exhausted and the LMPi
E set by a remote units must be 

higher than any bid prices in the local marginal candidate 

subset formed by units with yik
E=1, i.e., LMPi

E > cik
E⋅yik

E. To 

determine the LMPs, the KKT conditions are derived for the 

relaxed problem. 

Constraints (1), (2) and (5) are system-wide coupling 

constraints.  By using multipliers {λE} to relax the system 

demand constraints, using multipliers {λS} to relax the 

spinning reserve requirement constraints, using multipliers 

{γlmax, γlmin} to relax the transmission capacity limit for line l 

along the positive and negative direction, the relaxed problem 

can be obtained in equation (11).    
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subject to individual unit constraints (6)-(9).  

KKT conditions of the relaxed problem: pik
E and pik

S are the 

decision variables in the relaxed problem.  For energy product, 

if unit ik is setting the energy price, its optimal generation 

level pik
E* must be inside the region formed by equations (6)-

(9), i.e., constraints (6)-(9) are not active constraints.  The 

KKT conditions can thus be derived by taking partial 

derivative of (11) with respect to pik
E: 

 0)(
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For the reference bus, al
i =0, thus we have 

EE
refLMP λ=      (15) 

The relationship between an arbitrary LMPi
E and LMPref

E 

can thus be obtained. 
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Equation (10), (13),(14) and (16) are used in our model to 

define the energy price. 

MCPS definition:  

As mentioned in Section II, the spinning reserve product can 

be allocated from 0, thus there is no “pmin issues” for spinning 

reserve and the highest price definition can be used.  By using 

binary variable xik
S to denote the allocation status, the spinning 

reserve price can be defined as follows 
S
ik

S
ik

S xcMCP ⋅≥     (17) 

C.  Linear conversion 

The logical constraints on marginal candidate status variable 

yik
E can be summarized in the following two cases: 

Case 1: Online units with xik = 1 

yik
E = 0, if pik

E = pikmin and ∑jh≠ik(pjhmax⋅xjh - pjh
E) < pikmin   

yik
E = 1, if pik

E > pikmin, or pik
E = pikmin but ∑jh≠ik(pjhmax⋅xjh - 

pjh
E) ≥ pikmin 

In the first sub-case, unit ik must generate at pmin since the 

remaining online capacity by other units cannot satisfy the 

system demand.  Such pmin unit is not considered as a marginal 

unit candidate, i.e., online but will not set prices.  Other online 

units are included in the second sub-case and they will be 

considered as a candidate for setting prices. 

Case 2: Offline units with xik = 0 

yik
E = 0, i.e., offline units will not set the price. 

In view of minimization, binary variable yik
E will be 

minimized to 0 unless it is fixed at 1.  It can be seen that only 

in the second sub-case in case 1 is yik
E fixed at 1.  The 

following two linear constraints fix yik
E at 1 only when the 

conditions in the second sub-case are satisfied, and are 

redundant in other cases, so that yik
E will be minimized to 0.   

minmax
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where ε is a small positive number and M is a big positive 

number. 

To see this, the second sub-case in case 1 is checked first.   

If unit ik is online and pik
E > pikmin, then yik

E is fixed at 1 by 

equation (18).  If pik
E = pikmin but ∑jh≠ik(pjhmax⋅xjh - pjh

E) ≥ pikmin, 

then equation (18) is redundant.  ∑jh≠ik(pjhmax⋅xjh - pjh
E) ≥ pikmin 

can be expressed as ∑jh≠ik(pjhmax⋅xjh - pjh
E) + ε > pikmin, so the 

right hand side of equation (19) is positive, fixing yik
E to be 1.  

In all the other cases, both (18) and (19) are redundant and yik
E 

will be minimized to 0.   

Objective function:  

With startup costs fully compensated, the total payment cost 

is the sum of MW payments and startup compensations across 

the system over the 24 hour period, i.e., 
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IV.  SOLUTION METHODOLOGY  

As mentioned earlier, the payment cost minimization 
problem is nonlinear, with a cross-product of prices and 
generation/spinning reserve levels.  Such problem cannot be 
directly solved by the branch-and-cut based solvers.  We 
recently presented a method to decompose the overall problem 
into subproblems based on Lagrangian Relaxation and 
surrogate optimization technique [5], but the subproblems 
considered in that paper are all linear.  In our problem, the 
nonlinear cross-product still exists in the subproblem 
formulations.  To deal with nonlinear subproblems, a method 
is developed based on our previous work to iteratively solve 
the subproblems such that at each step the model is still linear.  
The decomposition and subproblem formulation are presented 
in subsection IV-A.  The method for solving nonlinear 
subproblems is presented in IV-B.  The multipliers are 
updated at the high level and details are presented in IV-C.  

A.  Decomposition and subproblem formulation 

As mentioned earlier in Section III, the relaxed problem is 
(11), subject to constraints on individual units.  The relaxed 
problem can be decomposed into individual unit subproblem.  
For each unit ik, the subproblem is  
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s.t.     

Unitcapacity: .,)()()()( maxmin tptxtptpptx ikik
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E
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Startup cost:  ttxtxtu ikikik ∀−−≥ ),1()()(  

The price definition constraints are used for updating prices 
iteratively after the subproblems are solved.  They are not 
considered as constraints for subproblems.   

The overall problem can be solved by using a 2-level 
structure similar to the standard Lagrangian Relaxation:  At 
the high level, multipliers are updated based on the 
subproblem solutions.  At the low level, the subproblems are 
solved with given multipliers.  To get rid of nonlinearity of the 
subproblems, we develop a method to solve it iteratively.  
Details of the two levels will be elaborated in the following.    

B.  Updating multipliers at the high level 

At the high level, the multipliers are updated based on the 

newly obtained subproblem solutions.  To update multipliers, 

several methods have been presented.  We use the standard 

subgradient method.  The convergence of the method has been 

proved in [14] [5].   

In our method, the multiplier λE relaxing system demand 

constraints can be updated according to the following 

equation.   

)()1( EkkEkkE gc λλλ +=+
   (21) 

where k is the index for iterations, 
2

*

)( k

k
k

g

LL
c

λ
α

−
=  is the 

stepsize for updating multipliers at iteration k, and g(•) is the 

subgradient of the dual function with respect to certain dual 

variables.  According to the relaxed problem, we have 

  ∑ ∑−∑=
= ==

I

i

Ki

k

E
ik

I

i

DE
i

E pPg
1 11

)(λ    (22) 

Similarly, the equations for updating other multipliers are 

given as follows: 

)()1( SkkSkkS gc λλλ +=+    (23) 

where ∑ ∑−=
= =

I

i

Ki

k

S
ik

DSS pPg
1 1

)(λ  

)( maxmax
1

max
k
l

kk
l

k
l gc γγγ +=+    (24) 

where max
1 1

max )( l

I

i

Ki

k

D
iikl

i
l fPpag −∑ ⎟⎠

⎞⎜⎝
⎛ ∑ −⋅=

= =
γ  

)( minmin
1

min
k
l

kk
l

k
l gc γγγ +=+     (25) 

where  max
1 1

min )( l

I

i

Ki

k

D
iikl

i
l fPpag −∑ ⎟⎠

⎞⎜⎝
⎛ ∑ −⋅−=

= =
γ  

Generally, the optimal value L* is unknown and an 

estimated value of L* is currently used in our method.   

C.  Solving subproblems iteratively at the low level 

As mentioned earlier, the subproblem objective function is 
still nonlinear.  Although the multipliers are fixed when 
solving subproblems, the cross-product of prices and 
generation/spinning reserve levels still exists.  To get rid of the 
nonlinear term, we develop a method to solve subproblems 
iteratively by using the standard branch-and-cut based solvers.   

At iteration k, the prices are first fixed at their values at the 
k-1 iteration such that the subproblem formulation is linear.   

The modified subproblem is: 
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Ek
ik

i
l
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l
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l
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l

EkkE
ii

xp
paLMPL ⎥⎦
⎤⎢⎣

⎡
⋅∑ −+−=

=

−

1
minmax

)1(

,
)(min γγλ  

( ) Sk
ik

SkkS pMCP λ−+ − )1(     (26) 

The subproblem is then solved for generation/spinning 
reserve levels pik

E/pik
S, allocation status xik

E/xik
S, and 

commitment status xik.   
After solving each subproblem, the prices are pre-updated 

based on the price definition constraints.  The energy price 
LMPi

E are updated according to (10) and (16) 
Note that equation (16) is derived at the optimal point, but 

may not hold at any iteration k along the process.  In practice, 
we calculate the flows based on subproblem solutions using 

DC flow equations, and then determine the sign of γlmax and 

γlmin.  The LMPs are then selected to be the minimal values 

that satisfy all the constraints on LMP, γlmax and γlmin.   
The spinning reserve price is defined to be the highest price 

among the selected spinning reserve bids.  Given subproblem 
solutions, the spinning reserve price can be determined by 

(17), or can be written as { } kixcMCP S
ik

S
ik

S ∀∀⋅= ,,max . 

To guarantee the convergence of the algorithm, both the 
updating direction and the stepsize need to satisfy certain 
conditions.  It has been proved that if the surrogate condition 

),(),( 111 kkkk xLxL +++ < λλ     (27) 

is satisfied, the direction for updating the multiplier forms an 
acute angle with the direction towards the optimal value of the 
multiplier, and multipliers move closer to their optimal values 
iteration by iteration.  The conditions on stepsize are presented 
in [14] and [5].  Since L* is generally unknown, an estimated 
value is used in our algorithm.  If the L* is overestimated too 
much, then the conditions on stepsize may not be satisfied, 
and the algorithm may diverge.  In our algorithm, the 
surrogate condition is checked after each subproblem is solved 
to guarantee a proper direction for updating multipliers, and L* 
is estimated by using heuristics presented in [6].  If the 
surrogate condition is not satisfied, the subproblem solutions 
remain their values at previous iteration.   

After all the subproblems are solved, the LMPi
E and MCPS 

will be updated according to the price definition constraints.  
A new set of subproblem solution consisting of pik

E, pik
S, xik

E, 
xik

S, xik, LMPi
E and MCPS is then obtained and will be used for 

updating multipliers in the next iteration.   

V.  NUMERICAL RESULTS 

Our iterative method has been run on an Intel Xeon dual 

1.6-GHz server with 8G memory. Three different size co-

optimization examples are tested.  Example 1 uses a 1-hour 

example to examine the marginal candidate set conditions, and 

compares the results obtained in CPLEX MIP with our 

analysis to verify the correctness of the price definition.  

Example 2 uses a 2-bus example modified based on the 2nd 

example in [1] to examine the solution quality of our new 

method in terms of multipliers and subproblem solutions.  

Example 3 then tests the algorithm on a 24-h co-optimization 

problem in a 24-bus network to demonstrate the efficiency and 

effectiveness of our method. 

Example 1: Consider a 3-bid 1-hour co-optimization problem.  
Each supplier submits energy bid and spinning reserve bid.  
The parameters of the bids are given in table II.  The energy 
demand is 100MW.  The spinning reserve requirement is set to 
be 5% of the energy demand and is 5MW.  The startup costs 
are set to be 0.   
 

TABLE II 
PARAMETERS OF THE THREE UNITS 

 Energy Price 

($/MW) 

SR Price 

($/MW)  

pmin 

(MW) 

pmax 

(MW) 

Startup 

cost ($) 

Unit 1 10 5 0 30 0 

Unit 2 70 25 40 60 0 

Unit 3 80 30 40 50 0 

 
The testing results are listed in table III.  Since the energy 

demand is much higher than the spinning reserve requirements, 

cheap capacity will be allocated to the energy market first.  

Unit 1 and unit 2 are cheaper than unit 3 and will be first 

selected.  In view of the high p2min and p3min, both unit 1 and 

unit 2 need to reduce their generation levels to meet the energy 

demand.  As a result, unit 1 will generate at 20MW and will 

set MCPE to be 10$/MW.  Both unit 2 and unit 3 will generate 

at their minimal generation limits to satisfy the energy demand.  

5MW of the remaining cheap capacity from unit 1 will be 

allocated to the spinning reserve market to set MCPS to be 

5$/MW.   

The conditions for marginal candidate set can be examined.  
Unit 2 should be excluded from the marginal candidate set 
since the available online capacity from unit 1 and unit 3 (10 + 
10 = 20MW) is smaller than p2min (40MW).  Similarly, unit 3 
should also be excluded from the marginal candidate set.  In 
our price definition, y2

E = y3
E = 0, i.e., they are online but will 

not set the prices.  As a result, unit 1 will be the only one in 
the marginal candidate set and set MCPE to be 10$/MW.  Unit 
1 is the only one allocated to spinning reserve market and sets 
MCPS to be 5$/MW.  The total payment is $1025. 
 

TABLE III 
TESTING RESULTS FOR THE THREE-UNIT 2-PMIN PROBLEM 

 pik
E pik

S 

Unit 1 20 5 

Unit 2 40 0 

Unit 3 40 0 

MCPE($) 10 

MCPS($) 5 

Payment ($) 1025 

 

Example 2: Consider a 2-bid 2-bus co-optimization problem 

based on the second example in [1].  The transmission 

network is shown in Fig. 1.  The two units are located at bus 1 

and bus 2, respectively.  The parameters of the two units are 

given in table IV.  The 1-h energy demands are 60MW at bus 

1, and 40MW at bus 2.  The spinning reserve requirement for 

the whole system is set to be 5% of the total energy demands 

and is 5MW.  Bus 2 is the reference bus. 

Without congestion, the example reduces to the 2nd example 

in [1] and p11
E = 100, p11

S = 0, p21
E = 0, p21

S = 5.  The flow in 

the non-congestion case can thus be calculated to be (100-60) 

= 40MW.  The transmission capacity of the line is thus set to 

be 30MW to create the congestion.  The congestion example is 
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solved by our algorithm, and the optimal solution is p11
E = 90, 

p11
S = 5, p21

E = 10, p21
S = 0, LMP1

E = 20, LMP2
E = 25, MCPS = 

2.   
 

TABLE V 
PARAMETERS OF UNITS IN EXAMPLE 2 

 Energy 

bid price 

($/MW) 

Spinning 

reserve bid 

price ($/MW) 

pmin 

(MW) 

pmax 

(MW) 

pmax
S 

(MW) 

Startup 

cost ($) 

Unit 11 20 2 0 100 6 0 

Unit 21 25 8 0 10 6 0 

 

 

 
 

Fig. 1.  The network structure of example 2 

 

The convergence of multipliers is shown in Fig. 2.  It can be 

seen that λE converges to 20.  This can be explained as follows.  

Suppose 1 additional MW is needed from this 2-bus system, 

unit 11 will be responsible for that, since it is cheaper and unit 

21 is at its pmax.  As a result, the λE converges to 20, which is 

the bid price of unit 11.  λS converges to 2, which is the MCPS 

set by unit 11.  The γlmin reduces to 0 gradually and γlmax 

converges to certain positive value, indicating the congestion 

along the positive direction. 

The subproblem solution oscillates before convergence.  

The λE, λS and Lk are selected to plot a 3-D figure in Fig. 3, 

showing the convergence track from three different views.  It 

can be seen that multipliers jump on the facets in the dual 

space and converge to L* = 2060. 
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(a) The convergence of λE and λS 
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(b) The convergence of γlmax and γlmin 

 

Fig. 2.  The convergence of multipliers: (a) λE and λS. (b) γlmax and γlmin. 
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Fig. 3.  The convergence track 

 

Example 3: Consider a 24-hour co-optimization problem in a 

24-bus system.  The example is build based on the IEEE 

Reliability Testing System – 1996 (IEEE RTS-96).  The unit 

parameters are set to be the same as the example presented in 

IEEE RTS-96.  As presented in [15], the whole system is 

divided into two zones.  There is 46.74% of system load in 

zone I, but the total generation capacity located in zone I is 

only 20.09% of the whole system.  The power is thus 

delivered from zone II to zone I.  The line limit of the five 

lines connecting zone I and zone II are reduced to create 

congestion, while the capacities for other lines are set to be big 

enough.  The supply bid parameters are set to be the same as 

[15].  The system demand is randomly generated with 

Gaussian distribution based on load-data.  The spinning 

reserve requirement is set to be equal to 5% of the total system 

demand at any hour.   

The problem is solved by our algorithm.  The default setting 

is used for all the CPLEX MIP parameters.  The algorithm 

converges after 736s, obtaining a set of multipliers.  Given 

these multipliers, a feasible solution is obtained by heuristics, 

with total payment costs $1.612×106.  Further investigation is 

needed to tune up the performance and to guarantee the 

convergence. 

VI.  CONCLUSION 

The co-optimization of energy and spinning reserve under 
payment cost minimization is discussed in this paper.  The 
price for each product is defined to be the marginal bid price 
among the units providing that product.  Co-optimization 
problems under the PCM set up is nonlinear, and cannot be 
solved directly by the branch-and-cut based solvers, which 
requires problem linearity.  Based on our previous work on 
Lagrangian Relaxation and surrogate subgradient 
optimization, we develop a new method to deal with 
nonlinearity.  The prices are first fixed at their values at the 
previous iteration to obtain a linear formulation and are then 
updated based on subproblem solutions by using price 

1 2 Unit 11 Unit 21 

P2
DE 

f1
 

P1
DE 

p11
E p21

E
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definition constraints if surrogate condition is satisfied.  This 
method provided one way to solve nonlinear problems which 
cannot be converted to linear by using the branch-and-cut 
based MIP solvers.  It can be used not only for payment cost 
co-optimization, but also for solving other mixed integer 
programming problems with similar structures.  
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