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Abstract--The Day-Ahead electricity market is modeled as a 
multi-agent system with interacting agents including supplier 
agents, Load Serving Entities, and a Market Operator. 
Simulation of the market clearing results under the scenario in 
which agents have learning capabilities is compared with the 
scenario where agents report true marginal costs. It is shown 
that, with Q-Learning, electricity suppliers are making more 
profits compared to the scenario without learning due to 
strategic gaming. As a result, the LMP at each bus is 
substantially higher. 
 
    Index Terms--Electricity Market, Supplier Modeling, 
Competitive Markov Decision Process, Q-Learning. 

I.  INTRODUCTION 
trategic bidding is an important issue in the wholesale 
electricity market. Electricity prices change as a result 

of transmission network congestion, which may be caused 
by strategic bidding or heavy load. For PJM, the total 
congestion costs were $750 million in 2004 and $2.09 
billion in 2005. Learning may also allow larger electricity 
suppliers to use their market power and bid strategically. In 
California [1], electricity expenditure in the wholesale 
market increased from $2.04 billion in the summer of 1999 
to $8.98 billion in the summer 2000. It is estimated that 
59% of this increase was due to increased market power. 
Learning to bid in the wholesale market is also crucial for 
smaller electricity suppliers who have a desire to recover 
the cost of their investment in generation by avoiding over 
or under-bidding. Research on the learning behavior of 
electricity suppliers will provide insights into gaming on the 
market and the power grid. This may allow market 
designers to develop appropriate market rules to discourage 
strategic bidding and enhance market efficiency.  
1 
Researchers have used various learning methods to model 
electricity suppliers’ behavior. The learning configuration 
for suppliers in [2] is a version of a stochastic reactive 
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reinforcement learning developed by Alvin Roth and Ido 
Erev. In this configuration, agents have finite fixed action 
domains, are backward looking, and rely entirely on 
response learning. Average reward γ-greedy reinforcement 
learning was used in [3] to model the learning and bidding 
processes of suppliers. With this scheme, each supplier uses 
greedy selection as its action choice rule with probability 
(1- γ), and random action selection with probability γ. Thus, 
γ determines the trade-off between exploitation of available 
information and exploration of untested actions. The trading 
agents modeled in [4] use GP-Automata to compute their 
bidding strategies for the current market conditions. Finally, 
in the area of multi-agent reinforcement learning, Nash Q-
Learning [5] was designed specifically as a potential 
technique to represent agents’ learning behavior in a multi-
agent context. 
 
This paper is focused on how to model electricity suppliers’ 
learning behavior by Q-Learning. In addition, load serving 
entities that have demand-side response are considered in 
this multi-agent electricity market environment.  
 

II.  DAY-AHEAD MARKET MODEL 
 
The Day-Ahead electricity market is modeled as a multi-
agent system with three types of agents interacting with one 
another. These agents are supplier agents, Load Serving 
Entities (LSEs), and a market operator (MO). On the 
morning of day D supplier agents submit supply offers and 
LSEs submit demand bids for the Day-Ahead Market to the 
MO. During the afternoon, the MO runs a market-clearing 
algorithm (similar to an optimal power flow) to match 
supply to demand and determine dispatch schedules and 
LMPs. At the end of the process, the MO sends the dispatch 
schedules and LMPs to the supplier agents and LSEs for 
day D+1. The interaction among the MO, LSEs and 
supplier agents is shown in Fig. 1. 
 
A.  Load Serving Entity Model 
LSEs purchase bulk power from the Day-Ahead market to 
serve load. Without loss of generality, it is assumed that 
LSEs do not have generation units and one LSE only serves 
load at one location in the power system. Suppose that the 
number of LSEs in the Day-Ahead market is J. On day D, 
LSE j submits a load profile for day D+1. This load profile 
specifies 24 hours of MW power demand ( )LjP H , H= 0, 1 
… 23.  

S 



 
        Fig. 1: Multi-Agent Day-Ahead Market Environment     
 

It is assumed that demand-side response is available to 
LSEs. The demand-side response works as follows. If the 
day D peak hour LMP, ( )Lj peakLMP H , at the bus where 
LSE j is serving load, is higher than a critical value, then 
LSE j reduces its peak hour demand for day D+1 by 2%. If 
this LMP does not exceed the critical value, LSE j will not 
curtail its peak hour demand. Therefore, each LSE has two 
states. If the LMP at its node is below the critical value, it is 
in state 0, i.e., 0LjS = , and it will submit a normal load 
profile for day D+1. If the LMP at its node is above the 
critical value, it is in state 1, i.e., 1LjS = , and it will submit 
a curtailed load profile for day D+1. 
  
B.  Supplier Agent Model 
Supplier agents sell bulk power to the Day-Ahead market. 
For simplicity, it is assumed that each supplier agent has 
only one generation unit. However, this model can be 
extended to permit suppliers with multiple generation units. 
Suppose the number of supplier agents in the Day-Ahead 
market is I, and the MW power output of generator i in 
some hour H is Gip .Generator i has lower and upper limits 

denoted by min ip and maxip  for its hourly MW power 
output. For generator i, the hourly total production cost 

( )i GiC p for production level Gip is represented by a 
quadratic form: 
 2( )i Gi i Gi i Gi iC p a p b p F= ⋅ + ⋅ +                     (1)  

where ia , ib and iF (pro-rated fixed cost) are given 
constants. By taking derivatives on both sides of (1), the 
marginal cost function for Generator i is obtained, i.e.,  
 ( ) 2i Gi i i GiMC p a b p= + ⋅ ⋅                             (2) 
On each day D, the supplier agents submit to the Day-
Ahead market a supply offer for day D+1 that includes two 
components. The first component is its reported marginal 
cost function given by: 
 ( ) 2B B B

i Gi i i GiMC p a b p= + ⋅ ⋅                         (3) 

The second component is its hourly MW power output 
upper limit, denoted by max

i

Bp . Suppose, on day D, 
supplier agents submit their supply offers for day D+1 to 
the MO, and the market clearing program calculates LMPs 
and dispatch schedules. Let ( )GiLMP H denote the LMP 
for hour H at the bus where suppler i’s generation unit is 
located, and let * ( )

Gi
p H  denote the MW power output for 

hour H in the dispatch schedule posted by the MO. Supplier 
agent i’s profit on day D is obtained by summing 24 hours 
of profits on that day: 

∑
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The accumulated profit of generator i on day D is given by: 
                    ( ) ( 1)i i iDAP D AP D π= − +                       (5) 
 
C.  Market Operator Model 
The MO for this Day-Ahead market is responsible for 
clearing the market based on the information submitted by 
LSEs and supplier agents. The MO uses a market clearing 
algorithm to determine the LMP at each bus and MW 
power output for each generation unit at each hour. Since 
only MW power is considered in this model, a DCOPF 
problem can be formulated as follows:  

 2
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min ( )

i i
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⋅ + ⋅∑                            (6) 

subject to 
 0k gk dkP P P− + = ,     1,... bk N=                   (7) 

              maxH Fδ ≤                                           (8) 

            min maxB B
i Gi ip p p≤ ≤ ,   1,...i I=               (9) 

where bN denotes the total number of buses in the system, 

kP represents the net power injection at bus k, gkP denotes 

the total MW power generation at bus k, dkP is the total MW 

demand at bus k, H denotes the line flow matrix,δ denotes 



the vector of voltage angle differences, and maxF is the 
vector of maximum line flows. 
 
The objective of the DCOPF is to minimize the total 
variable generation cost based on supplier offers and LSE 
bids. The constraints are MW power balance constraints for 
each bus 1,... bk N= , MW thermal limit constraints for 
each line, and MW production limits for each 
generator 1,...i I= . The DCOPF program of MATPOWER 
[6] applicable to large-scale power systems is used in this 
research. The simulation platform is programmed in 
MATLAB. 
 

III.  MODEL FOR SUPPLIERS’ LEARNING 
BEHAVIOR 

Q-Learning, developed by Watkins [7], is a form of 
anticipatory reinforcement learning that allows agents to 
learn how to act in a controlled Markovian domain. A 
controlled Markovian domain implies that the environment 
is Markovian in the sense that the state transition 
probability from any state x to another state y only depends 
on x , y and the action a  taken by the agent, and not on 
other historical information. It works by successively 
updating estimates for the Q-values of state-action pairs. 
The Q-value ( , )Q x a  is the expected discounted reward for 
taking action a  at state x and following an optimal decision 
rule thereafter. If these estimates converge to the correct Q-
values, the optimal action to take in any state is the one 
with the highest Q-value.  
 

By the procedure of Q-Learning, in the thn step the agent 
observes the current system state nx , selects an action na , 

receives an immediate payoff nr , and observes the next 

system state ny . The agent then updates its Q-value 

estimates using a learning parameter nα  and a discount 
factor γ  [7] as follows: 

If nx x= and na a= , 

1 1( , ) (1 ) ( , ) [ ( )]n n n n n n nQ x a Q x a r V yα α γ− −= − + + (10) 
Otherwise, 

1( , ) ( , )n nQ x a Q x a−=                                                   (11) 

where  1 1( ) max{ ( , )}n nb
V y Q y b− −≡                          (12) 

It is proven by Watkins in [8] that if (1) the state and 
action-values are discrete, (2) all actions are sampled 
repeatedly in all states, (3) the reward is bounded, (4) the 
environment is Markovian and (5) the learning rate decays 
appropriately, then the Q-value estimates converge to the 
correct Q-values with probability 1. 
 
In a multi-agent context such as the Day-Ahead market 
model presented in this paper, the system might not be 
Markovian because state transition probabilities might 

depend on actions taken by other agents. Therefore, there is 
no guarantee that Q-Learning will converge to the correct 
Q-values.  
 
A Generation Company (GENCO) usually has several 
generation plants located at different buses of the system. 
For simplicity, Q-Learning is used to model electricity 
suppliers that are assumed to have only one generation unit. 
Nevertheless, by a similar approach, Q-Learning could be 
implemented for supplier agents with multiple generation 
units at different locations.  
 
A novel approach to the implementation of Q-Learning for 
a supplier agent is presented here. The supplier agent views 
the Day-Ahead market as a complex system with different 
states. The system state on day D, DX , is defined as a 
vector for the states of all LSEs.  Hence the state vector on 
day D can be expressed as 1 2{ , ,..., }D

L L LJX S S S= , 
where J is the number of LSEs. The cardinality of the state 
space is 2J  since each LSE has two states, i.e., reduced 
peak load or not based on demand-side response. Electricity 
suppliers might have market power. Thus, it is assumed that 
supplier agents are capable of forecasting the LSEs’ states. 
In other words, the state vector is predictable by the 
supplier agents. 
 

The action domain of supplier agent i, iAD , is defined as a 
vector of bidding information. This vector consists of the 
marginal cost function parameters 

i

Ba  and 2
i

Bb⋅ , and the 

hourly MW output upper limit max
i

Bp . The cardinality of 

the action domain, maxa bM M M× × , is given by the 
product of the number of possible 

i

Ba , 2
i

Bb⋅  and 

max
i

Bp values.  
 
Consider the beginning of each day D. A supplier agent 
first makes a prediction of the system state, which is 
represented by x . It next chooses an action according to a 
Gibbs/Boltzmann probability distribution, i.e.,  
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where DT , which depends on D, is a temperature parameter 
that models a decay over time. 
 
Having chosen an action a , the supplier agent will submit 
its supply offer to the MO. Once the market is cleared, the 
supplier agent will receive its reward, which is the profit for 
day D+1. Then the agent will use this reward to update its 
Q-value estimates according to equations (10) to (12). The 
Q-value estimates of an agent are said to have converged if 
under all states x the agent chooses some action with 
probability 0.99 or higher. If the Q-value estimates of all 
the agents have converged, the simulation terminates. 



The parameters that are used to implement the Q-Learning 
algorithm are set in the following way: 
Discount factor 7.0=γ  
Learning parameter α for a state-action pair ( , )x a  is set to 

be
( , )

1

x aT ωα = , where ( , )x aT is the number of times that 

action a  has been taken in state x. 
77.0=ω  

 
The temperature parameter DT  is given by: 

69 )(107.11 D
TD

××= − , where D is the number of days 

that have currently been simulated. 
The cardinality of the action domain 
is 444max ××=×× MMM ba , in which B

ia and 
B
ib range from 1 to 3 times their true values, and 

max
i

Bp ranges from 97% to 100% of the true upper limit.  
 

IV.  NUMERICAL STUDY 
A.  Test Case 
The 5-bus transmission grid used here for simulation is 
taken from ISO-NE/PJM training manuals, where it is used 
to illustrate the determination of Day-Ahead market LMP 
solutions. A one-line diagram of the grid is shown in Fig. 2. 
Daily LSE load profiles are adopted from the dynamic 5-
bus example in [2]. Line capacities, reactance levels, and 
generator cost data are also adopted from [2]. 

         
         Fig. 2: 5-Bus Transmission Grid 
 

Detailed solution values for the scenario in which suppliers 
submit their true production data to the MO (“the no-
learning scenario”) are given in [2].  
 
This study simulates two Q-Learning scenarios for this 5-
bus test case. In the first scenario the LSEs have relatively 
low critical values for curtailing demand, whereas in the 
second scenario they have relatively high critical values. 
Simulation results for these learning scenarios are 
compared with the no-learning scenario.  
 
B.  Review of Results from the No-Learning Scenario 
In the no-learning scenario analyzed in [2], each generator 
submits a supply offer that includes its true marginal cost 

function and its true generation upper limit. The MW 
production level of each generator and the LMP at each bus 
that are cleared by the MO based on true cost data from 
generators are depicted in Fig. 3(a) and Fig. 4(a). 
 

24-Hour MW Production: No Learning
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Fig 3.a: 5-Bus Transmission Grid Simulation Results for 24-Hour MW 
Production (No-Learning Scenario) 
 

24-Hour MW Production in Learning Scenario 1
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Fig. 3.b: 5-Bus Transmission Grid Simulation Results for 24-Hour MW 
Production (Learning Scenario 1) 
 

24-Hour MW Production: Learning Scenario 2
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Fig 3.c: 5-Bus Transmission Grid Simulation Results for 24-Hour MW 
Production (Learning Scenario 2) 
 
Generators 3 and 5 are the two largest units in the system 
with a combined capacity 1120MWs. The combined 
capacity of the three other small units is 410MW. The large 
units together with the high peak hour demand 
(1153.59MW) gives generators 3 and 5 potential market 
power. Note that the congestion between bus 1 and bus 2 
exists for all 24 hours. This causes LMP separation between 
bus 1 and bus 2.  During hour 17, the power flow on the 



line between buses 1 and 2 hits its upper thermal limit, and 
Generator 3 is dispatched at its upper production limit. 
Therefore, generator 4 that has the highest variable 
generation cost has to be dispatched to meet the demand. 
This results in a huge price spike at buses 2 and 3 at hour 17 
that is about double of their LMP values at hour 16. 

24-Hour LMPs: No Learning
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Fig. 4.a: 5-Bus Transmission Grid Simulation Results for 24-Hour LMPs 
(No-Learning Scenario) 
 

2 4 - Hour LM Ps: Learning  Scenario 1
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Fig. 4.b: 5-Bus Transmission Grid Simulation Results for 24-Hour LMPs 
(Learning Scenario 1) 
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Fig. 4.c: 5-Bus Transmission Grid Simulation Results for 24-Hour LMPs 
(Learning Scenario 2) 
 
C.  Results from the Two Learning Scenarios 
Assume that the generators do not have to report their true 
marginal costs to the MO. Instead, the profit-seeking 
generators use Q-Learning to learn how to bid strategically 
to make more profits. 

 
Since the system can be in several states, it does not have to 
stay in one single state in the long term. Rather, it may visit 
some states periodically or it may not even converge to a 
periodic pattern. Therefore, one has to define convergence 
in a different way. The Day-Ahead market is said to be 
convergent if, at any state, each generator chooses one 
action in that state with probability 0.99 or higher.  
 
Due to the probabilistic nature of the learning algorithm, the 
simulation does not converge to the same values for each 
run. In order to average out the random effects across 
different runs, 10 simulation runs are performed for each 
scenario and the mean values from the runs are reported. 
 
In scenario one, LSEs have little tolerance for high LMPs.  
Their critical values for curtailing demand are only slightly 
higher than the LMPs that they will pay in the no-learning 
scenario. The critical values for LSEs are 115.5($/MWh), 
98.0($/MWh), and 47.5($/MWh). Simulation results show 
that most of the time the system stays in state 8, in which 
every LSE is curtailing demand every day. This implies that 
generators are using very aggressive bidding strategies, and 
making full use of their market power. In this case, 
generators actually are making more profits by moving the 
system to state 8 because, even in the situation of less 
demand in peak hour, the generators are still able to raise 
prices higher than the critical values of the LSEs. In all 10 
simulation runs, all five generators converge by day 230. 
The average number of days before convergence is 117.1. 
In some cases the system moves back and forth between 
two states in a cyclical pattern of convergence. 
 
In scenario two, the LSEs have high tolerance for high 
electricity prices. Their critical values for curtailing demand 
are higher than the critical values in scenario one. The 
critical values for LSEs in this case are 135.5($/MWh), 
115.5($/MWh), and 55.5($/MWh). In all 10 runs, all five 
generators converge by day 325. The average number of 
days before convergence is 238.7. Simulation results show 
that most of the time, the system ends up visiting state 1 
and state 8 in turn. The day of convergence comes later if 
the system keeps visiting more than one state. It can be 
shown from the simulation results that, in fact, Q-Learning 
allows the generators to take advantage of the LSEs, whose 
demand-side response only has one-day memory. First, by 
submitting low supply offers, the generators make sure that 
the LSEs do not curtail their demand tomorrow. Afterward 
they submit high supply offers and profit significantly from 
the LSEs that decrease their peak hour demand tomorrow. 
Then the generators submit a low supply offer again and so 
on. The simulation results show that Q-Learning helps 
generators make more profits by sacrificing today’s benefit 
for more profits in the future. This scenario is a good 
illustration of anticipatory reinforcement learning. 
Differences between the learning scenarios and the no 
learning scenario are discussed below. Furthermore, it is 
desirable to know to what extent Q-Learning is capable of 



helping generators exercise market power. Fig. 3(b) and (c) 
depict the mean values of MW production in learning 
scenarios 1 and 2, along with the corresponding simulation 
results obtained in the no-learning scenario. In the no-
learning scenario, generator 4 is only dispatched at the peak 
hour. In both learning scenarios, in some simulation runs 
generator 4 is not dispatched. This is true when each 
generator is submitting an aggressive supply offer so that 
generator 4 is still the most expensive. However, in some 
simulation runs generator 4 chooses to submit less 
aggressive supply offers so that it becomes a relatively 
cheaper unit.  
 
The 24-hour mean LMP values for the learning scenarios 1 
and 2 are shown in Fig. 4(b) and (c) along with the 24-hour 
LMP values for the no-learning scenario. In the no-learning 
scenario, the price spike at hour 17 is obvious. Although the 
LMPs in the learning scenarios 1 or 2 are substantially 
higher than for no-learning, the price fluctuation around the 
peak hour is much less. This finding is similar to the finding 
of Sun and Tesfatsion [2], who used reactive reinforcement 
learning to model the learning process of generators. 
However, since the sets of actions are different, one cannot 
draw a definitive conclusion about the learning techniques 
used in the two studies.  
 
Figure 5 shows that the mean of the total profit gained by 
the generators in each learning scenario is much higher than 
what they made in the no-learning scenario. In fact, in the 
no-learning scenario the generators are not able to recover 
their fixed cost because they only covered their variable 
costs in their supply offers. This fact demonstrates that Q-
Learning helps the generators to learn to exercise their 
potential market power to maximize their profits. It can be 
observed in Fig 5 that, during peak hour 17, the generators 
are making more profits in learning scenario 2 than they are 
in learning scenario 1. The high level of tolerance for price 
spikes of the LSEs in learning scenario 2 gives the 
generators more opportunities to manipulate the market.  
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 Fig. 5: 5-Bus Transmission Grid Simulation Results for 24-Hour Total 
Profits (No-Learning Compared with Learning Scenarios 1 and 2) 
 
 
 

V.  CONCLUSION 
 
This paper presents a novel application of Q-Learning to 
model electricity suppliers’ learning behavior in a multi-
agent electricity market environment. Simulation results 
show that Q-Learning helps electricity suppliers learn how 
to bid strategically under the condition of a simple demand-
side response model. With Q-Learning capabilities, 
electricity suppliers find a way to make more profits in the 
long term by sacrificing their immediate profits.  
 
Q-learning has some limitations. It assumes a finite domain 
of actions. Also, the Q-learning model developed in this 
research assumes that electricity suppliers do not explicitly 
take into account the presence of other electricity suppliers 
in their choice environments. These limitations will be 
relaxed in future extensions of this research by adopting 
more advanced learning algorithms that enable agents to 
learn about other agents’ strategies. If the bidding data of 
electricity suppliers are publicly released by the MO, this 
should help each electricity supplier to form conjectures 
regarding other electricity suppliers’ bidding behaviors. 
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