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Abstract

In this report, we perform a rigorous analysis of EKF-basisdal-inertial odometry (VIO) and present a method for
improving its performance. Specifically, we examine thepprties of EKF-based VIO, and show that the standard way
of computing Jacobians in the filter inevitably causes istsiency and loss of accuracy. This result is derived based
on an observability analysis of the EKF’s linearized systaodel, which proves that the yaw erroneously appears to
be observable. In order to address this problem, we propaskfioations to the multi-state constraint Kalman filter
(MSCKF) algorithm [1], which ensure the correct obsenispibroperties without incurring additional computatibna
cost. Extensive simulation tests and real-world experismidemonstrate that the modified MSCKF algorithm outperform
competing methods, both in terms of consisteanyglaccuracy.
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1 Introduction

In this work, we focus on the problem of tracking a vehiclgjemotion using a camera and an inertial measurement unit
(IMU). Cameras are small and lightweight sensors, thatigeovery rich information about the environment. However,
if only visual measurements are used for motion estimation, thatires algorithms often lack robustness, due to the
challenging nature of the estimation problem. EmployingMb as an additional sensor can dramatically improve both
the reliability and the accuracy of motion tracking, as dastmted in recent work on vision-aided inertial navigafit-

4.

Our focus is on the task of estimating the pose of a vehicleingow an unknown environment. Therefore, we do
not assume that a feature map is available in advance, asprbased localization methods (e.@][]3, 5]). Moreover, we
do not aim at building such a map, as in simultaneous lod@izand mapping (SLAM) methods (e.d.![6, 7]). Our goal
is to estimate the vehicle trajectory only, using the irérieasurements and the observations of static featureartha
tracked in consecutive images. This task is similar to thikvewn visual odometry (VO) probleni[8], with the added
characteristic that an IMU is available. We thus term theragghvisual-inertial odometryV10).

To date, the majority of algorithms proposed for real-tini®\ére either extended Kalman filter (EKF)-based methods
(e.g., [1[2.9]), or methods utilizing iterative minimiat over a window of states (e.d./[4,/10+-12]). The latteregatly
attain higher accuracy, as they re-linearize at each iterdb better deal with their nonlinear measurement models.
However, the need for multiple iterations also incurs a bigtomputational cost, compared to EKF-based methods.
Ideally, one would like to obtain accuracy similar to, orteethan, that of an iterative-minimization algorithm, latithe
computational cost of an EKF algorithm. In this paper, wesshow this can be achieved.

Generally, two types of EKF algorithms can be employed fai-tene VIO. On one hand, one can employ EKF-
SLAM (e.g. [4/13,14] and references therein), in which ttaéesvector contains the IMU state as well as feature positio
To maintain the computational cost bounded (a requirenmemegl-time VIO), features that leave the field of view of the
camera can be removed from the state vectdr [14]. On the bret, EKF algorithms exist that only maintain a sliding
window of camera poses in the state vector, and use the é&ahservations to apply probabilistic constraints between
these poses (e.g.l[1.]15]). Out of this second class of rdsflilee multi-state constraint Kalman filter (MSCKE) [1] sise
the feature measurements optimally|[16], and will be outfogere.

Both EKF-based SLAM and the MSCKF use the same measurenfenmiation, and are optimal, except for the
inaccuracies due to linearization. In other words, if th©\8lystem model was linear, then the estimation result prediuc
by an EKF-SLAM algorithm and by the MSCKF would be identicahd equal to the optimal MAP estimate. However,
in the presence of nonlinearity the MSCKF outperforms EKIAM, as it does not approximate the feature’s position
pdf by a Gaussian. Features in the MSCKF are never includéeistate vector, so this is not necessary. As a result, the
MSCKF employs fewer approximations and attains highemegion accuracy. Moveover, the MSCKF has computational
complexity onlylinear in the number of features, as opposed to EKF-SLAM’s cubicemity. Thus, in this paper, we
focus on improving the performance of the MSCKF, since itis@e accurate and computationally efficient approach.

By analyzing the observability properties of the lineadizystem model employed by the EKF, we prove that the
MSCKF isinconsistenti.e., that the covariance matrix of the estimation errstarger than that computed by the filter|[17,
Section 5.4]. In turn, this inconsistency leads to inacteustate updates and ultimately a loss of accuracy. We shaw th
the root cause of this inconsistency is the way in which tlteldans are computed in the EKF, which causes the linearized
system model to have incorrect observability properties.

As a key contribution of this work, we employ these theosdtiesults to propose modifications to the original MSCKF
algorithm that substantially improve its performance. &feally, we here propose three key changes: First, we mepo
a novelclosed-formexpression for computing the elements of the IMU errorestansition matrix. This expression can
be used in any case where the EKF is used for inertial navigatecond, we adopt a different parameterization of the
orientation error, and third, we propose changing the wawhich the filter Jacobians are computed. Taken together,
these three modifications ensure the appropriate obsétyaivoperties of the linearized system model. Our simolat
and experimental results in Sectibh 6 show that the regultigorithm is consistent, and that it attains substastiall
higher accuracy than the original MSCKF. More importarttig, results demonstrate that the modified MSCKF algorithm
outperforms, in terms oboth accuracy and consistency, even an iterative-minimizaiased fixed lag smoother, an
algorithm with substantially higher computational cost.



2 Observability and EKF Consistency

Our approach is motivated by recent results in the conteXbdEKF-based SLAM[18,19]. These proved that a key factor
degrading the accuracy of the EKF for 2D SLAM is a mismatciwieen the observability properties of the underlying
nonlinear system and the linearized system-model of the. HiHllustrate the main idea, consider a physical system
described by the nonlinear model:

x = f(x,u)+w 1)
z="h(x)+n (2)

wherex is the system statay is the control inputz is the measurement vector, and finallyandn are noise processes.
To track the state vector on a digital computer we must discretize the continuougtaystem model shown above.
Moreover, when an EKF is used for estimation, the filter eiguatrely on a linearized version of the discrete-time mpdel
described by the equations:

Xpt1 = PrpXp + Wa, (3
z, = HpXy, + ny, 4)

wherex, represents the estimation error at time stepnd®,, andH;, denote the error-state transition matrix and the
measurement Jacobian matrix, respectively.

Since the EKF equations (e.g., covariance propagation pddta, gain computation) are derived based on the lin-
earized system model ibl(d)}}(4), the observability prdperdf this model play a crucial role in determining the perfo
mance of the estimator. Ideally, one would like these prigeto match those of the actual, nonlinear systerin[{it)-(2
if a certain quantity is unobservable in the actual systésneliror should also be unobservable in the linearized model
However, in [18] it was shown that this iotthe case in 2D EKF SLAM: due to the way the Jacobians are cardpot
the EKF, the robot orientation appears to be observablediitliearized system, while it is not in the actual, nonlinear
one. As a result of this mismatch, the filter produces too bwadlies for the state covariance matrix (i.e., the filter be-
comesinconsistent and this in turn degrades accuracy. Our analysis in Sediproves that the same problem affects
the MSCKF for VIO.

The observability properties of the nonlinear system feugi-inertial navigation have recently been studiedlig@2,

It has been shown that when a camera/IMU system navigatesemaronment with a known gravitational acceleration
but no known features, four degrees of freedom are unobservanee torresponding to the global position, and one
corresponding to the rotation about the gravity vector,(itee yaw). In our work, we examine the observability projesr

of the MSCKF's linearized system model by analyzing the olzsaility matrix:

Hy
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For the linearized system to have the correct observalgitibyperties, the nullspace @ should be of dimension four,

in agreement with the four unobservable quantities dismiskove. In Sectidd 4 we show that this is genenadiythe
case: the yaw erroneously appears to be observable in gerilted system model, with detrimental effects to the Blter
consistency. Furthermore, in Sectidn 5 we show how smallifications to the MSCKF equations can ensure appropriate
properties of the matrix), and substantially improve the filter's performance.

3 IMU Propagation Model

As seen in[(b), to analyze the observability properties eMSCKF's linearized system model we must have an expres-
sion for the error-state transition matrik,. In previous work on inertial navigation, the discreteigrror-state transition
matrix for the IMU state has been computed in a number of wislgst existing methods stem from the integration of the
differential equatiori(,¢;) = F(t)®(t,t;), whereF(t) is the Jacobian of the continuous-time system model [See (1)
and [9)). For instance,][1] employs Runge-Kutta numerit&lgration,[[2]1] presents a closed-form, approximatetssiu

to the differential equation, while many algorithms emptlog simple approximatio® ~ I + FAt (which is equivalent
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to using one-step Euler integration) (e.0../[22] and refees therein). All these methods for computidpave the disad-
vantage that, being numerical in nature, they are not aniemaiheoretical analysis. More importantly, however, whe
® is computed numerically and/or approximately, we have rargntee about the properties of this matrix. Specifically,
we cannotguarantee that the observability matrix [id (5) will have tresirable nullspace, a prerequisite for consistent
estimation.

To address this problem, in this section we provide a cldeet-expression for the IMU error-state transition matrix,
which can be used for theoretical analysis.

3.1 IMU State Modeling

We consider an IMU, to which we affix a coordinate frafiig, moving with respect to a global fram{&+}. The IMU
(gyroscope and accelerometer) measurements are gislen by

wmzlw—i—bg—i-nr (6)
m :éR(Ga_Gg) + by +n,4 (7)

where’w and%a denote the IMU angular rate and linear acceleration res@dgtn, andn, are white Gaussian noise
processesy, andb, are measurement biases modeled as random walk proces$€g; @rthe gravity vector.
To use the IMU measurements for state propagation, we défindiU state vector as follows][1]

T T
x7 = [éq GpT GyT b, T baT} ®)

whereL q is the unit quaternion describing the rotation from the gldtame to the IMU frame (i.eR(.q) = LR), and
&p and®v denote the IMU position and velocity, respectively.
The continuous-time motion dynamics of the IMU are desdibe the following equations:

cat) = 32 w(t)Gat) “pt) = “v(t) ©)
“v(t) = Ga(b‘) bg(t) = nwy(t) ba(t) = nwa(t)

whereny,, andny,, are white Gaussian noise processes, and

—wx] Tw
Qw) = 10
tw)=| Lo (10)
Following [1/21], the IMU error-state is defined as:
T
S {IOT GHT GGT bT bT} (11)

Here, for the position, velocity, and biases, the standdditiae error definition is usefe.g.,“p = “p — “p ). On the
other hand, the orientation errbf satisfies the following equation [21]:

LR ~ (13 - Uéxj) LR (12)

3.2 Error Propagation

We now derive the state transition matdx;, that describes how the errors in the IMU state estimate evdlwing
propagation. For simplicity, we first deriv®;, ignoring the IMU biases, and the result including the biasteis shown
in Sectior 3:B.

At time step/ we use the IMU state estimafe;,, and the IMU measurements to compute the propagated state
estimatex;, , ,. Our goal is to derive an expression for the IMU error-stegedition matrix®;, such that;, ,, ~

1The preceding superscript for vectors (e@.in a) denotes the frame of reference with respect to which qiiesitare expressedg,R is the
rotation matrix rotating vectors from franr{é3} to { A}, |cx | denotes the skew symmetric matrix corresponding to vegtos andIs are the 3 by 3
zero and identity matrices respectivelyanda represent the estimate and error of the estimate of a varat#spectively, and;, ; is the estimate of

ilj
variablea at time steg given measurements up to time step



®,x1,, +We. Starting with the orientation error, we note that, regesdlof the method used to integrate the continuous-
time motion dynamics if{9), the estimates of the rotatioftrixat time-stepg and/ + 1 satisfy:

Rojie=1""R Ry (13)

where we have used the notatiér);‘ ¢ = R(éam) for brevity. Z* 'R is the estimated rotation between timestépsid
¢ + 1, computed using the IMU measurements. This estimate isipt&d by an errof 5, defined by:

PR (1= [0arx]) - 1R (14)
On the other hand, the true rotation matriceé and/ + 1 satisfy:"' R = Z”R - UR.. Substituting[(IR) [(13) and {L4)
in this equation, we obtain the following expression for lihearized error propagation:
"0,010 ~ Ry RgT\g 1040+ 00 (15)

To calculate the velocity error terms, we start with the tign

G G G
Ve = "V +/ adr (16)

te

tota R
=0 + / (?‘ Rl a,, + Gg) dr (17)

te

where we have usel](7). By definiag= f:ﬁ“l ﬁ R’ a,,dr, we can write the above equation as:
opape = Ve + At + RY 80 (18)

A key observation here is that is a vector that depends only on the measurements, and thlirselayizing [18) we
obtain: A 5 A
o1 ~ =R [80x | 00 + “ Vo0 + RE S (19)

where the error terrg, depends only on the IMU measurement noise. For the IMU positive similarly write:
G G g
Perie = Pe|e+/ v.dr
te

R . 1 o
=Py + VoAt + EGgAtQ + R3¢ (20)

tot1

wherey, = ‘

f:ﬁ f‘; R’ a,,drds. Proceeding to linearize the above equation, we obtain:
Py —RgTM [5ex | 000+ G‘N’ewAt-i‘Gf)m-i-f{gTMS’é (21)

By combining [I5),[(IP) and(21), we can now write:

~ - /\T - ~
"6,110 Rf“'g Ry 03 03 0., N
“Posiye|= —f};ﬂgLS’éXJ I, Atlz| |Cpye|+ I};ﬂgw (22)
GV@+1|£ —RZ\AQXJ 0; I GVM R;ﬂgée
Koy @ Iy We

14

To write the state transition matrix as a function of theestdtimates only, we solvie (18) ahd](20) §erandy,, respec-
tively, to obtain:

§g = ng (G\Afg_i_l‘g—G\Afgw—GgAt) (23)
. - . . R 1
Ye =Ry (GPzHz—GPM—GVe|eAt—§GgAf2> (24)
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Therefore the IMU error-state transition matrix can be t@ritas:

Ré-i—llé : Rag 03 O3
(I’I[(XI[HM,XI“@): q)pq(fclprlwilwg) Is At ,
q)VQ(XIHlWXImz) 03 I3

N . . . . 1 -
Ppg(X1p 00 X1y) =— L(Gpeﬂ\e—GPe\e—Gve\eAt——GgAtQ) x| R,
‘I)VCI(XIHU@ ) Xfe\e) = L(G{’E+1|5_G{’EIE_GgAt) JREM (25)
Note that this matrix is a closed-form function of the stattneates, and thus can be computed independently of the way

in which the IMU state is integrated.

3.3 Full State Transition Matrix

If the biases are included in the derivations, the erraiegtansition matrix is computed following similar deriiats as:

i’qq 03 03 q’qbg 03
Bpq Iy Atly @y, Ppa
B, = [Byqg 05 Iy Byp, ®a (26)
03 03 O3 I3 03
03 03 O3 03 I3

where

. B AT
(:qu :_Rl+1‘l Rélé/ ZRdT

togn T R
Ppp, = / / JRM/ YR ds dr dw
te
tota
pa:_RM/ / YRdsdr

te4a R
D1, = / |(Cv, —F g)x JRM/ IRdsdr

ty ty

. berr
®a=-Rj, /t ‘Rdr (27)
14

The derivation of this result is shown in Appenflik A.

4 Observability Analysis

In this section, we examine the observability propertietheflinearized system model used in the MSCKF. For clarity,
we here carry out the analysis for a state vector that doeaclatle the IMU biases. Note however that, as showhin [20],
these biases are observable for general motion. Therdfeieinclusion in the state vector would not change the main
result of this section, which is the artificialcreasein the number of observable states. This result holds alsnihe
biases are considered, as validated by the results in 8tizvere the biases are included in the estimated IMU state
vector.

4.1 Camera measurement model

Assuming a calibrated perspective camera, the measureftt;-th feature at time stepis given by

Ziy = h(clpfi) +1n; g, with (28)
pr, = {RR(°pys, —ps)+ pr (29)



In this expressiodY R, “p;} are the known rotation and translation between the camertnariMU, (-) is the pinhole
camera modeh(f) = [f./f., f,/f.]*, andn;, is the measurement noise vector. In the MSCKF featuresaucked for
a number of frames, and then used for EKF updates. If featisrprocessed for an MSCKF update at time-sigp- 1,
the Jacobians of the measurement model with respect to tblestite and the feature position are

H;,, =3 ¢R]| Lﬁl\ai (GIA)fi — “Pla;) X _f{l\ai 0|

Hy,, =Jis YR Ryjq, (30)
10—t
Oh(f 1 T Tz 1

Jio= % = a5 cogt (31)
fzcef)fi fi O 1 _Cfif:

Thus, the linearized measurement residual equation begsome

Tie = HIi,éiIl\lfl + waz,sz)fi + 15 (32)

4.2 Structure of the observability matrix

To derive the observability matrix for MSCKF-based VIO, wesffinote that the MSCKF and EKF-SLAM rely on the
same underlying linearized discrete-time models. Spadiifidoth approaches are derived based on the IMU errte-sta
propagation mode[(22) and the linearized measuremeuiuaisnodel[(3R), but use different estimates for computigg t
IMU error-state transition matrices and the measuremerhians. Therefore, if the MSCKF and EKF-SLAM use the
same linearization points, their implementations are daseexactly the same underlying linearized equations, kinic
turn indicates that their ways of information acquisitiorddheir observability properties are the same. Thus, ttyaea
the observability properties of the MSCKF, we can analyeesttuivalent EKF-SLAM system model, as long as we adjust
the linearization points. In this paper, we define the foltaywstate vector, which contains the IMU state as well as the
positions of N features observed by the camera in the time intgiudl + m):

I 5T G

xr = [La pl GyT G

T
P “pi] (33)

If at time-stepl the camera observes features, the Jacobidd, containsn, block rows of the form
H" = [H;,, 03 -~ Hj;, --- 03],i=1,.,n

whereH;, , andHy, , are shown in[(30). Thus, the block row of the observabilitynmaorresponding to the measure-
ment of feature at time step has the following structure:

0P =M [AP®,, @y 0 o T o 0] (34)
M =J;s (R Ry, (33)
A = {chm — Cpya <RI, Iy 03} (36)

4.3 Using “ideal” Jacobians

It is interesting to first examine the properties of the obakility matrix in the “ideal” case when the Jacobians are
evaluated using the true state values. If we compute the sstatsition matrix a®, (xy,, , . xz,) (seel(2b)), and evaluate
the Jacobian matrices i (30) using the true states, sutbstitin (34) yields:

OP=MP [F) 1, AnTy 05 o Ty o 0. (37)

- (i 1
I‘i ):L(pri, — ka — GVkAtg — iGgAtg) X JR? (38)

In the above equationg\t, denotes the time interval between time stépnd/, and we have used the symbol to
denote a matrix computed using the true state values.



If we now define the matriXN as:

[ 03 R.Cg ]
I —|“prx[g
03 —\_GV;C XJGg
N=| L —|%pnx]% (39)
I3 _Lpr2XJGg
L I3 _LprNXJ g |

it is easy to verify tha@éz) - N = 02x4. Since this holds for anyand any/ (i.e., for all block rows of the observability
matrix), we conclude that) - N = 0, which in turn means that all four columns Bf belong to the nullspace @.

In addition, in AppendiXC, we prove that the dimension of thwispace of® is equal to four, which indicates that the
columns ofN exactly consist of the basis of the nullspac&bfMoreover, in AppendikD, we show that the first block
column of N corresponds to a global translation of the state vectordgwhe last column corresponds to rotations about
gravity. In other words, the nullspace of the matflxwhich is the unobservable subspace of the linearizedmsystedel,

has properties that agree with those of the actual, nonlgyesdiem. Thus, if we were able to estimate all the Jacobians
using the true state estimates, the linearized system maameétl have the desired observability properties.

4.4 Using the actual Jacobians

We now examine the observability properties of the lineatigystem when the state transition matrix and all Jacobians
are computed using the latest available state estimatésg the Jacobians i (80), the block row®fcorresponding to
the observation of featurieat time-stef becomes

off =M’ [0 + AT I, —AtT; 05 - Iy - 0y (40)
where
i . A A 1 »
and
_ ) ) -1 J .
a9 (g By By $ (3 mear sy
j=k+1 s=k+1
Jj—1
Z (I)vq(f(lsﬂwsvils\s)RSISEZAt + (I)PQ(XIJ‘H\J‘ ) )A{fj\j )RJJEZJ)>R£79 (42)
s=k-+1
with
— A~ A~ é_l A~ A~
Eq=1; - (RaaiRﬂffl) H (Raan\n*l)
n=k+1

J
Ei=L- [[ ®RI.Run-1)

n=k+1
E} = 1“Djli—1 — “Pjiix), Ep=“Pre—1 — “Drja, ¥

By comparing[(4D) and (31) t& (B7) arld{38) we see that theire of the observability matrix in both cases is similar.
The key difference is that when the Jacobians are evaluated the statestimatesthe “disturbance” term&l“g) appears.
While AI‘,(f) is quite complex, we can observe that it contains terms yagad on the corrections (e.9p,);, — “P;j_1.
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©¥;; — ©¥;;-1) that the filter applies at different time steps. Since theseections are random, the terztﬂ‘gi) isa

random one, and this “destroys” the special structure obtiservability matrix. As a result, the prope(f&é” -N=0
does not hold, and it can be shown that the nullspac® @ now of dimension only three (see Appenflix E). This
nullspace is spanned by the first three column vectors (tbtebliock column) ofN in (39), which means that the global
yaw erroneously appear® be observable. As a result the MSCKF underestimates tbertainty of the yaw estimates,
which, in turn, leads to loss of accuracy.

4.5 Observability of EKF-SLAM

In this section, we show that the inconsistency problem edssts in EKF-SLAM. In EKF-SLAM, the Jacobian matrices
are computed as:

H,,=Ji, {R {Lf{ewq(Gf)fi,m_l —SPee—1)x] —Rye 03}
Hy,=Ji¢ R Ry (44)

Since the only difference of the observability matricestfee MSCKF and EKF-SLAM is the linearization points, the
block row of the observability matrix of EKF-SLAM, which a@sponds to the observation of featued time-steg, has

the same structure witA (40) but with different terii§”, "), Specifically, block matriced1!” andT!"’ are computed
as:

i A 5 o L s r,
Fé) = |_pri7k\k71 - ka\k o GvklkAtZ B §GgAt§ . JRgIk - AI‘@)

M= 3,5 - YRRy (45)
where o _
AT = ATY) 4+ ASp, (46)
and )
Apri = \_pri,e\eq - GIA)fmc\kq XJRg\k (47)

Moveover, the block matri£, andE,, in AT{” become:

—1

Eq = \_GIA)fiaéMfl - GIA)EIEfIXJ( H (RZ\anM*l) - 13) (48)
n=k+1

Ep = 0343 (49)

We thus see that, the observability matrix of EKF-SLAM camsawo disturbance termsﬁI‘EZ) andA%py,. The first
term is generated due to the different estimates of the shfiestates used in the filter Jacobians, and the second term
due to the different estimates of the same features. Siptlathe proof of the rank of the MSCKF observability matrix

in AppendixE, we can easily prove that the dimension of thiéspace of the EKF-SLAM observability matrix is also
three, where the yaw appears to be observable. Thus, EKRSkAlso inconsistent.

5 Improving the performance of the MSCKF

In this section, we propose modifications to the original M&Glgorithm that ensure that the linearized system model
has appropriate observability properties. As shown in tieegding section, the root cause of the problem is the fatt th
different estimates of the same stag@pear in the Jacobians. These estimates result in noraies\for the termg,,

Eg, E{,, E,, EZ, and lead to incorrect properties for the observabilityriral he modifications proposed in this section
aim at removing these terms, to restore the appropriatergiioe of the unobservable subspace.
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5.1 Global orientation error parametrization

We first address the orientation-dependent tedisand Egl Specifically, we propose a simple re-parameterization of
the IMU orientation error: instead of using the error defamtin (I2), we employ the following one:

IR~LR (13 - LGéxJ) (50)

Note that here the matrik; — LGéxJ is a rotation matrix (to first-order approximation) that ciéises the rotation from
the estimated global frame to the true one. Thus3tkd vector® 8 is the orientation error expressed in tilebalframe,
while the original error parameterization [n.{12) expraste error in thdocal frame. With this parameterization, the
IMU error state at time stefpcan be written as:

G, RT -6, RY 05 03] [0,
“pe| =1 “pe |=|0s I3 03| |“P¢ (51)
Gy, G 0; 03 I3 7
—_——
5(2 Cg’ Xy
Using [51), we can write:
< AT < AT 5 - < AT 5 5 N
X2+1|e = ClJrlM “Xpp1e = CE+1|Eq>Iz (X11+1\evxle\e) "Xy = CE+1|Eq>Iz (XIZ+1\evxle\e)C€|é 'sz (52)

‘I);[ (’A‘IHW *’A‘Ie\e)

Substituting[(Zb) into the above equation, we can obtairi¥He error-state transition matrix for the global orientati
parametrization:

I3 03 03
QZ (Xluuevfclm) = @éq(%fulw%fm) I; Al
@Vq(xle+l\l7 Xle\e) 03 I3
1
. 5 G G Gy G
q);q(xhﬂmaxlm) = _L Pot11e — "Peje — VZMAt - 5 gAt2 ><J
q):q(xhﬂwihm) = _\_(G‘A’lJrl\l - G‘A’EIE - GgAt)XJ

Moreover, the measurement Jacobian matrices become:
My) H(pri - Gﬁl\ai) ><J I, 03X3] _ Mgi)Agi)
= MY (53)

*
Hli,l

*
fie

The key advantage of this parameterization is that Egthand the terntAgi)* are independent of the orientation estimates.
Substituting the above values [n{34) we obtain the follayfior each block row of the observability matrix:

0" = MY [I\§i)*+AF§i)* I, —Atdy 05 oo Ty - 03] (54)
where

i A - 0 L
)" = [(“Py — “Dupp — “oanAte — §GgAt§) <]
= ) -1 ‘ J
AI‘EZ) =Ep + Z (B, + Z EJAt) (55)
e s=k+1

We thus see that now the “disturbance” te&rﬁy)* is simplified, and does not contain any elements due to tleatation
estimates. Next, we show how the remaining terms due to thiéigoand velocity can also be removed.
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Figure 1: IMU yaw errors and-3c bounds in one representative trial. The yaw error for the MBCsolid line —
green), the m-MSCKF (dashed line — red), and the FLS (dadim#ot cyan). Thet3os bounds for the MSCKF (circles
— magenta), the m-MSCKF (squares — blue), and the FLS (leargblack).

5.2 Use of first-estimate Jacobians

The disturbance tem‘.\I‘g)* is a function of the differences between the estimates ofiMtiéposition and velocity that
are available at different time instances (4eé (43) Bnld.(35)e ensure that all Jacobians are computed usingainee
estimate for each of these states, the disturbance termganish. Specifically, we here propose to useftret estimate

of each IMU position and velocity when computing the filtecdlian matrices [18]. This requires two changes. First,
the state transition matrix at time-stés computed a®7j, (x;,,, ,, X1,,,_, ), instead o7, (xr,., ,,%1,,). Second, the
measurement Jacobians are computed as follows:

ZYZZME,L) [ L(Gﬁj'i_cl/\)l‘lfl) XJ _I3 03 } ) }TYZZME,L)

As a result of these two changes, only the estin?a}gg_l (the first that becomes available) is used in all the Jacgbian

that involve“p,, and the same holds for the velocity vectons, for all £. In turn, it is easy to show that the temﬂ‘gl)*

in (58) becomes identically zero, and the observabilityrinaegains the correct rank. As shown in the next sectiog, th
modified MSCKF algorithm attains substantially improvedfpemance, both in terms of consisteranydaccuracy. This
occurs despite the fact that it uses older, and thus lessatecestimates in computing Jacobians.

6 Results

6.1 Simulation tests

We first present the results of Monte-Carlo simulation testsich allow us to examine the statistical properties of the
modified MSCKEF algorithm. To build a realistic simulatiorttégy, we generate our simulation environment based on a
real-world dataset, collected at the Cheddar Gorge ardwitUK [23]. This dataset involves a 29.6-km long trajectory,
travelled over 57 minutes. For our simulations, we geneaageound truth trajectory (position, velocity, orientatjo
that matches the vehicle’s actual trajectory, as compuged high-precision INS system. Using this trajectory, we
subsequently generate IMU measurements corrupted wigerand bias characteristics similar to those of the Xsens
MTi-G sensor used in the dataset. Moreover, we generate cotardeature tracks with statistical characteristicaf(fiee
number and distance, average track length, noise variaim#dr to those of the actual dataset. Specifically, 225ies
are observed in each image on average, and each featuoidength is sampled from an exponential distribution with
a mean of 4.1 frames. The IMU measurements are availableOat2pwhile the camera frame rate is 20 Hz, as in the
actual dataset.

In each Monte-Carlo trial, the IMU measurements and featasks are randomly generated, and this data is processed
by the following three algorithms: (i) The original MSCKFRgalrithm [1], (ii) The modified MSCKF algorithm described

12
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Figure 2: Average NEES and RMSE over 50 Monte Carlo triale 3dlid green line corresponds to the MSCKF, the red
dashed line to the m-MSCKEF, and the black dashdotted linegd¢-L.S.

in the previous section (denoted as m-MSCKF), and (iii) Aditag smoother (FLS) in information form [11]. The FLS
employs the same feature-marginalization approach agiMBCKF, but uses iterative minimization, which enables it t
re-linearize the measurement models at each iterationn3ore a fair comparison all three algorithms process the@sam
data, and use a sliding window of the same length.

Before presenting the cumulative results for all the Mo@#o trials, it is useful to examine the results of the three
competing methods onsngletrial. Specifically, the most interesting results are thfugehe estimates of the rotation
about gravity (the yaw). Fifl] 1 shows the yaw errors for thegralgorithms, as well as the3o envelopes computed using
the reported covariance of each method (these are the egf@917% confidence regions). The mostimportant observatio
here is that the reported standard deviation for both the KfS@nd the FLS fluctuates about a constant vahiseif the
yaw was observable. In contrast, the reported standardtilmvifor the m-MSCKF continuously increases, which is what
we expect given that the yaw is not actually observable. g this plot shows that the yaw errors of the MSCKF and
FLS lie outside thetk30 bounds, which indicates inconsistency. Fif. 1 clearly destrates the effects of the incorrect
observability properties of the MSCKF'’s linearized systmwdel. These cause the yaw uncertainty to be underestimated
and lead to errors larger than those the filter expects. hmrtant to point out that the FLS also suffers from the same
problem, even though it employs iterative re-linearizafit0].

Fig.[2 plots the average NEES and RMS error for the IMU possifjon and orientation), averaged over 50 Monte-
Carlo trials. Regarding the NEES, it becomes immediatedgrcthat the m-MSCKF exhibits substantially higher consis-
tency than the two competing methods. Specifically, theaayeeNEES is 58.7 for the MSCKEF, 52.7 for the FLS, and 6.8
for the m-MSCKF. We therefore see that the m-MSCKF obtainBlBES value close to the theoretically expected one
for a consistent estimator, which is 6 (equal to the size efttior state). These results validate the theoreticaysisadf
Sectiorl b, and demonstrate that the proposed modificatiathe tMSCKF significantly improve its consistency.

In addition to the consistency improvement, the resultsign[& show that the m-MSCKF outperforms the two other
methods in terms adiccuracy Specifically, the RMS error for the position (averaged @létrials and through time) is
148.9 m for the MSCKF, 129.1 m for the FLS, and 94.2 m for the IB@KF. For the orientation errors we obt&ir35°
for the MSCKF,2.79° for the FLS, and.06° for the m-MSCKF. In both cases, the m-MSCKF attains smalerall
errors. We attribute this to the fact that, by ensuring theem observability properties for the linearized systeodsd,
the m-MSCKF is capable of more accurately representing tleentiainty of the different states. In turn, this makes it
possible to compute more suitable values for the Kalmanaadthe state corrections, leading to overall better acgura
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Figure 4: Trajectory estimates plotted on a map of Riverside initial vehicle position is shown by a green circle, and
the end position by a red square. The green solid line casregspto the MSCKEF, the red dashed line to the m-MSCKEF,
and the black dashdotted line to the FLS.

6.2 Real-world experiment

We also present results from a real-world experiment, duwhich an IMU/camera platform was mounted on top of a
car and driven on the streets of Riverside, CA. The sensarsisted of an Inertial Science ISIS IMU and a PointGrey
Bumblebee2 stereo pair (only a single camera’s images &d).u3he IMU provides measurements at 100 Hz, while
the camera images were stored at 10 Hz. Harris feature pmiatextracted, and matching is carried out by normalized
cross-correlation. The vehicle trajectory is approxirtya®e5 km long, and a total of 7922 images are processed. Some
sample images from the experiment are shown in[Big. 3.

Fig.[4 shows the trajectory estimates computed by the tHgegitoms (MSCKF, FLS, and m-MSCKF) on a map
of the area where the vehicle drove. While a precise GPS grtuth is not available for this experiment, by closely
examining the trajectory, we can observe that the m-MSCHKifese closely follows the streets in the map. By contrast,
the trajectories computed by the two other methods dewviate the street layout (this is most prominent in the soutt-ea
corner of the map). Moreover, Figl 5 plots the reported stathdleviation of the yaw for the three algorithms (since
orientation ground truth is not available, the errors careoplotted). Similarly to what was observed in Fiyj. 1, we see
that only the standard deviation for the m-MSCKF continlpircreases, as predicted by the observability propedties
the system. In contrast, the MSCKF and the FLS underestithatgaw uncertainty, and obtain less accurate trajectory
estimates. Thus, we see that the experimental results agffethe findings of the simulations, as well as the theoattic
analysis.
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Figure 5: Comparison of the yaw standard deviation repdniethe MSCKF (green solid line), the m-MSCKF (red
dashed line), and the FLS (black dashdotted line).

7 Conclusion

In this paper we have presented a detailed theoretical sinaly the properties of the linearized system model used in
EKF-based visual-inertial odometry. This analysis protret this model has incorrect observability propertiesicivh
cause the global orientation &ppear to beobservable. In turn, this causes the filter to underestirthgteincertainty

of the orientation estimates, i.e., to becoimeonsistent Our results showed that this inconsistency also degrdues t
accuracy of the estimates. Based on the theoretical aralysiproposed three modifications of the MSCKF algorithm
for visual-inertial odometry[1]. These modifications, whincur no additional computational cost, include (i) Asgd-
form computation of the EKF error-state transition mat(iy,A new parameterization of the orientation error, an (i

A new method of selecting the linearization points in theefilt Taken together, these modifications ensure that the
resulting algorithm remains consistent. Our simulatiod arperimental results demonstrate that the modified MSCKF
substantially outperforms the original algorithm, as vealliterative-minimization based fixed-lag smoothing. @iter
the theoretical and experimental results of the paper shawthe modified MSCKF algorithm is capable of long-term,
high-precision, consistent visual-inertial odometry.
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A IMU State transition matrix

We here show the detailed derivation of the IMU error-statagition matrix, when the biases are included. Startirtg wi
the orientation error, we note that the derivation preskim&ectior B still holds. The difference is that now the eteom
6. in (I5) depends on the error in the bias estimates. To dérivewe start by introducing the following differential
equation for the orientation matriR,:

R, = ["wx|Ry (56)
Similarly, we can write:
Ry = ["@x Ry (57)
Therefore, computing derivatives on both sideq of (12)daad
|"“wx |Ry ~ LI'Z@XJRW - Lléewa Lll&fo{z\z - LlémXJf{m (58)
Substituting[(IR) foR ¢ leads to
LIZWXJng — LIZWXJ |_195|g><J]I_A{ZM ~ \_IEL:JXJI:{ZM — \_IéguXJ LIZL:JXJ].:A{gw — Llégw)(Jf{gw = (59)
[@x ) — |"@x | |"pex) ~ = "0gex ] ["@x ] — ["0g0x] (60)
where we have used the notatiow = “¢w — *&. Therefore, we can write
["Bgpex ] ~ — (LI%XJ ["0¢0x | — ["00%] LI%XJ) —[Max | =—|["@x] 0yex| - |"@x] (61)
Thus, the differential equation of the IMU orientation erb@comes:
Iégw ~ —\_IZL:JXJIéZM — Ie(:) (62)
Solving the above equation, we obtain:
Ip Iy e I
Or 110 = Poq(Xey1)e, Xeje) Oope +/ D q(Xet1)0, Xrpe) T @0dT (63)
te

where® is the IMU orientation error-state transition matrix, whis shown in[(I5). In addition, by comparirfg{15)
and [63) we can write:

- . . tegr
00~ Rpp R, / IR Gdr (64)
te
Using the definition of w,,, in (@), we obtain:
"G = ("wy — bg, —1y,) = (wn — bg,) (65)
=bg, —ny, (66)
Thus, [6%) becomes:
- . . bevr
Onr >Ry Ry, / I R(~bg, —n, )dr (67)
te
whereb, . can be computed as:
bg, =bg,, + / Ny ds (68)
te
Combining [6Y) and(@8) leads to:
~ R AT tota I - N R AT tota T
0A€ ~ _RZ“”HZR’EM/ If_RdT . bgé\é + R[+1MRE|E/ (—an — / nwgs dS) dr (69)
te te te

Noyy
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Therefore,[(1b) becomes

- . . - . . tegr -
"0, =~ R R;ﬂg 1O, — Rz+1\zR;7F|g/ ﬁ Rdr - bg,, +ne,,, (70)

ty
and as a result we obtain: .
. . e+
Tav, = R RE, [ fRar (71)

te

Turning our attention to the velocity-related term, we tstgrincluding the IMU biases i, in (16):

= [T ER(a, b
)= LR(%ay, — ba,)dr (72)
t

tost togr R
S = / “R("ay, —ba, —n, )dr — / “R("a, — by, )dr (73)
t t
etz+1 R ’ teta R R
~ /t (Is — [0a-x)) [ R("am — ba, —na )dr — /t ‘R("a, —ba, )dr (74)
4 4
toy1 R ~ toy1 . R .
- / LR(~ba, —n, )dr — / [0a-x | R(""a+ba, —ba, —nga, )dr (75)
ty te
toy1 R ~ toy1 R
~ / ER(~ba, —ma,)dr + / | R ax|0a-dr (76)
ty te
toy1 - ~ tegr PR R
- / ' R(~ba, — 1y, )dr + Ry R, R ax | R 0a,dT (77)
17) ty
toy1 - ~ topr G o R
:/ R(=ba, —ng )dr+ Ry v, — “gx|R{ Oa-dr (78)
17] ty

where in line[(Z6) we have omitted terms involving the pradwd errors. At this point we substitute:

N / "Rds - bg,, +ng, (79)
te
ba, =ba,, — / n, ds (80)
te
Thus, [Z8) becomes:
8= — tm“f{d b R g, o RZ, [ " Rdsdr b 81
S¢ = \ I, T ae\e+ 4y . |_VT gXJ 0|0 \ I, sar - g£\£+nvé+1 (81)
4 4 £

wheren,, , represents all the noise terms that do not depend on the statar. By substituting the above equation
into (19), we obtain:

teya . R T .
®p, = / (¥ =% g)x|R{, / FRdsdr (82)
17 te
R berr
®va=-R], / ‘Rdr (83)
te

For the IMU position error, we start by including the biagethe termy,:

togn s R R
Vo= / / “R("a,, — by, )drds (84)
ty ty
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and thus the error tery, is given by:

toy1 s . toy1 s R R
5, — / / " R(Ta,, — ba, — ng.)drds — / / “R(""a,, — by, )drds (85)
17] 17] te te
tos1 s ~ s N ~
= / (/ 5‘; R("a,, —ba, —n, )drds — / ﬁ R(a,, — baf)) drds (86)
17] te te
te4a
- / 8, ds (87)
te

At this point we use the result df(B7) to write:
tegrpm B R tog1 pw o )
_ _/t /t ﬁRdeT-bam +Rg‘g/t /t L ngRélé/t ZRdewa'bgm +1np,,, (88)
‘ ¢ ¢ ¢ 0

wheren,,, ., is a noise term independent of the error state. Thus, by aunmpthis result with[(21), we obtain

toy1
Py, —/ / JRW/ ‘Rds dr dw (89)

toga T
®pa——RJ, / "R ds dr (90)

17 17)

B Analysis of EKF SLAM and the MSCKF algorithm

We here prove that, in a linear-Gaussian system, the stteads and covariance matrix computed by the MSCKF is
identical to the MAP estimate for the IMU pose. Since EKF-3SILA also a MAP estimator, this means that the MSCKF
and EKF-SLAM would be identical in a linear-Gaussian system

Let us consider the following linear system:

x; =®;x;_1 +wWi_1 oy
zij =Hx,; i + Hy,;pg; + nij 2

wherex;, i = 0... N are the IMU statesp;,, j = 1... M are the feature positions;; andn;; are zero-mean white
Gaussian noise processes with covariance mat@gesdo>1,, respectively, anéd;, H,,,, andHy,, are known matrices.

By denoting the vector containing all the IMU statesas [x]  x{ x3 --- x]TV}T, (@7) can be written as:
X0 I 0
X1 i’l Wy
x= | X2 | = P,P, xo + Powp + W (93)
XN Py Py Py Powo+ W
| ———
B
In addition, we denote the vector containing all the feapositions asf = [ff £ - f]@}T, and the vector
containing all measurements as
z =Hyx+H¢f +n (94)

whereH, andHy, are matrices with block ronH,,, andHy, ,, respectively.
To formulate the MAP estimator, we assume an initial estinfiat the first robot posesy ~ N (%o, Pp). Thus the
MAP estimate forx andf can be obtained by:

xmap; fmap = arg T?XP (x, f, z) (95)
= arg m?ndog(P (x, f, z)) (96)
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= arg Q?Xog(P (x) P (z]x, f)) 97)

whereP(-) denotes the probability function. Usirlg{93), the priottidimition of the statex could be easily obtained as
x ~ N (X5, Ps), with:

Py Po®] Py®| &)
R X ®, Py ®,Po®] + Qo $,Py®1 &5 + Qu®; e
% =BXo, Pu= |$,8,P;, $,8,Po® + #,Q) @8, Py®] @] + 3,Qudl +Q; - (%8)

Thus, the MAP estimate for andf can be formulated as:
XMAP,fMAP = —arg E{n}n(H X — X, ”%3\ + H z—H,x — Hff H?UQI)) (99)

where we have used the notatipre ||2= e’ P~'e. By solving the above optimization problem, we obtain théropl
MAP estimate:

XMAP| 4 -1 [Poi%s + 5 HIZ)
EH R R @00
whereA is the information matrix:
_ [P+ %Hsz %Hsz

andA ™! is the covariance matrix of the MAP estimate. Using the stathgbroperties of the inversion of a partitioned
matrix, we can show froni(100) that the estim&fesp and its covariance matrix equal:

1 -

xmap =Puap (Pslfcs-i-ﬁﬂz (I — He (Hf Hy) leT) Z) (102)
-1

Puiap = <P;1+ %Hf (I —H; (H”{Hf)’lﬂfT) Hx) (103)

On the other hand, in the MSCKF algorithm, if we use the IMU mugaments to propagate the state estimates, and
then employ the camera measurements for an update, thestupgerformed based on the residual:

r, = VT'(z—HLx,) = (V' Hy) %, + 1, (104)

whereV is a matrix whose columns form an orthonormal basis for tfteldispace ofHs, andn, is a noise vector with
covariance matrix->I. Using the EKF equations, the state and covariance updateseritten as:

XMSC - )A(s + Kro (105)
1 —1
Pusc = (Psl +—5 (VTH,)" (VTHx)> (106)
g
whereK is the Kalman gain, which can be written &sl[24]:
1 T T
K = —Puysc (V' Hy) (107)
a
Our goal is to show thatyisc = Xumap, andPysc = Puap. To this end, we note that the matilix- Hf(H{Hf)_lH"{
is the orthogonal projector onto the left nullspac&hf and thud — Hy (HfTHf)lefT = VVT [25]. Using this result,
the equalityPyisc = Pumap follows immediately, and we can also wrife (102) as:

1
xmap = Pusc (Ps_lfis + ;HEVVTZ> (108)
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Substitution of[(T0K¥) and (107) ib (105) yields:
. . 1 T .
XMsC =Xs + EPMSC (VTHX) VT(Z - Hzxs)
1 1
=Pusc <(P;4gc ——QHIVVTHQ X +—2H§vaz>
ag g

Showing that the last equation is equalfo (108) follows irdiately by use of[(106).

C Rank of the observability matrix in the “ideal” MSCKF

We here prove that the observability matrix shown[inl (37) damillspace of dimension 4. For this reason, we apply a
sequence of elementary column operations on this matriratsform it to a different one with the same rank, but which
facilitates analysis. In the following, we use the symbalo denote matrices related by elementary column operations
From [3T) we obtain:

O =M [ |(9py, — Opi — OviAty — L9gA2) x |RT —I3 Atds |03 --- Iy --- 03] (109)

where the partitioning denotes the separation betweendluenos corresponding to the IMU states and the those cor-
responding to the features. We now apply a sequence of etargerolumn operations, starting by multiplying the first
block column byRy:

@?) ~ MEZ) [ L(pri — %pi — OV Aty — %GgAt?) X J —Is Atds | 03 --- Iy --- O3 ]
Multiply second block column by|“p;. x | and add to first block colunin
~ My) [ \‘(GpjI — GVkAtg - %GgAt%) X J —Ig Athg | 03 ce 13 ce 03 }
Multiply third block column by| “v;, x | and add to first block column
~ My) [ |~(GpjI — %GgAtg) X J —Ig Atg]:g | 03 ce Ig ce 03 }
Multiply column corresponding té-th feature byL—pri x | and add to first block columiv;
~ MEZ) [ L— %GgAtg X J —13 Atg13 | 03 LR I3 LR 03 ]
Multiply first block column by—2
~ My) [ At% LGg X J —Ig Athg | 03 s 13 s 03 }
Add all block columns corresponding to the features to tlvesd block column
~ My) [ At% LGg X J 03 Atg]:g | 03 s Ig s 03 ]

We now define the unitary matrix
G

F:[gm Ep2 IIG:HJ

where the two unit vectorg,, andg,, are on the plane perpendicular g, and are chosen to form an orthogonal
coordinate system. Sind@ is non-singular, we can multiply the first block column of thisove expression by to
obtain:

0 MY [ MGG 00 01 A0 o 0] o

where
G = ||Gg||2 [gpl gm}

At this point, we note that through a sequence of elementalgnn operations, all block rows of the matdkhave been
transformed to a form where the third to sixth columns areeib. Thus, the matri®) is rank deficient byt least four
and the zero columns can be omitted without changing the rank

O ~ MY [ AZG At |05 - Iy -~ 03 | =T (111)
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To show that the matri®) is rank deficient byexactlyfour, we need to show that the matrix with block roii?g) has full
column rank. To this end, we define a vector

Aq
Ay

aj
a= |ga, (112)

an

and it suffices to show that the conditiﬁlﬁi)a = 0,Vi, ¢, is satisfied only ifa = 0. Substituting from[(111) an@(1112) we
obtain:

T{'a=0, vi,t = MY (A}Ga, — Atia, +a;) =0, Vi, !

Ceyy 0 —Cegp .
= Ojl Coyp —C’fy;%} “RR; (At?Gaq — Atya, +2a;) =0, Vil
The above equation indicates that:
Cy _Cy
CRR, (A2Ga, — Atia, +a;) € N ({ L ngf _Ce;”-:fD . (113)

Thus, we can write

YRR, (At]Ga, — Atga, +a;) = ci“'pi, Vi, L (114)
for some scalars;,. Using [28), we obtain

At?Ga, — Atea, +a; = ¢;;(“pi — “pe,), Vi, l (115)

Note that the above condition can be interpreted as a conditi the motion of the camera. For example, if the camera
is moving with a constant accelerati@ra,, initial velocity a,, and initial position“p,, and we choose;; = —1, and

a; = “py — “p;, then the above conditions will be satisfied. However, faragal camera motion, and when multiple
features are observed, the above condition cannot be mebfarero values o/, a,, a,,a; [26]. Thus, for general

camera motionT\"a = 0, Vi, ¢, requiresa = 0, which shows that the matrix with block rovi&” has full column rank.
This completes the proof.

D Nullspace physical interpretation

We have shown that the nullspace of the observability matrike “ideal” MSCKEF is of dimension 4, and is spanned by
the column vectors of the matrix ih (39). If we wrife {39)I8s= [n; ns n3 ny], then:

N (O) =span[n; ny; n3 ny (116)

To gain a better understanding of the physical interpratanif the basis of\” ((’)) let us examine what changes in the
state each of the four vectots corresponds to. First, note that if, starting from an ihistate x, we modify it as
x' = x + ¢1ny + congy + c3ng, then the statg’ will have the same values for the IMU orientation and velgdiut the
position of the IMU and the positions of all features will beanged by the vectdr; c» c3]”. Thus, the first three
columns inN correspond to shifts of the entire state vector. On the dihad, if we rotate the state vectolby a small
angle,c, about gravity, we can write the resulting state as

(0] [ ca®éa ]
P’ “p
/ GV/ GV
— G/ = 3 ’ G N
x Py, Diag (g R) Pr (117)
—Gp/fN— L prN i




where the rotation matrig'R expresses the applied rotation, @idg(-) denotes a block diagonal matrix. To show that
ny corresponds to rotations about gravity, we will show thetdiference betweex andx’ can be written, to a first-order
approximation, as a multiple af;. We start by noting that, since the rotation angle is sn§aR can be approximated
as:

SR~I3—c¢[%gx] (118)

where%g is the unit vector along gravity. Using this result, we caitevr

[ _|Gpx |G
Gp Gp! Gp ¢p _LGPXJGg
GV GVI GV GV LG v JGg
Gy, Gy G G- Gy, c —U'PpX1"8
I.)fl - I?fl o~ I.)fl — (Is — c[“gx]) I.)h = Calls —|Cpy, x|%g (119)
G a Gy G 5
Py Py Psn Psn — LprNXJGg_
Moreover, if we denote by0 the orientation difference betweerandx’ in (I17), we obtain
LR ~ (I3 |00x))LR (120)
= (Is - [60x ))& R(I; — c[“gx]) (121)
~ LR-LR|LR"66x]| - cL,R|%gx] (122)
From the last expression we obtain RT66x | = ¢|“gx |, and thus
60 =c-LRCg
=c ¢RGRg
=c- éRGg
€ I npG
= —cR"g (123)
1%8ll2

where we have used the fact tfaR“g = ©g, since the rotatiof§; R occurs about the direction of gravity. The results
of (I23) and[(1119) show that if we apply a small rotation algnawvity to obtainx’ from x, the difference between the
two states is given b \G;Hz ny.

E Rank of the MSCKF observability matrix

In this section, we prove that the dimension of the nullspEfdlie MSCKF observability matrix is 3. Similarly to the
analysis in Appendix1C, we apply the same sequence of el@mertlumn operations to transform each block row of the
observability matrix in[(4D) into:

Oéz‘) NMEi) [ At2 ch XJ —|—AI‘$) 05 Atds ‘ 03 --- I3 -+ 0 } (124)

At this point, we see that the fourth to sixth columns of therim(?éi) are all zero, which indicates that the dimension of
the nullspace of the MSCKF observability matrix is at leAsée. By omitting zero columng, {1124) becomes:

0 ~ MY [ A2[Cgx |+ AT Aty |05 o I o 0y } =T (125)

To prove that) is rank deficient by three, we need to show that the matrix flitlick rowsTEi) has full column rank. We
start by defining: ‘ ‘
Yy) _ My) [ At,I; | 03 --- Is --- 04 ] (126)

The matrix with block rowsYéi) has full column rank, as shown in Appenflik C. Next, we obsémaéthe termsﬁI‘gi),
which appear in the first block column in the matfix (I.25), mmedom terms. This implies that, the three columns of this

matrix are linearly independent of the columnsﬁbf). This completes the proof.
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