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Abstract

In this report we derive analytical upper bounds on the covariance of the state estimates in SLAM. The analysis
is based on a novel formulation of the SLAM problem, that enables the simultaneous estimation of the landmark
coordinates with respect to the a robot-centered frame (relative map), as well as with respect to a fixed global frame
(absolute map). A study of the properties of the covariance matrix in this formulation yieldsanalyticalupper bounds
for the uncertainty of both map representations. Moreover, by employing results from Least Squares estimation
theory, theguaranteed accuracyof the robot pose estimates is derived as a function of the accuracy of the robot’s
sensors, and of the properties of the map. Contrary to previous approaches, the method presented here makes no
assumptions about the availability of a sensor measuring the absolute orientation of the robot. The theoretical analysis
is validated by simulation results and real-world experiments.

1 Introduction

Recent interest in Simultaneous Localization and Mapping (SLAM) has resulted in significant advances in the design
of estimation algorithms [1, 2, 3, 4, 5], data association techniques [6], and sensor data processing [7, 8], that have
enabled localization with maps consisting of millions of landmarks (e.g., [1]). However, a theoretical characterization
of the attainable localization accuracy in SLAM remains an open problem to date. To the best of our knowledge, very
few approaches exist in the literature, that focus onpredictingthe accuracy of the robot’s pose and the map estimates,
given the capabilities of a robot’s sensor payload. As a result, evaluating the suitability of a robot with a given set of
sensors for a particular application, largely remains a matter of exhaustive simulations and experimentation.

We here focus on deriving upper bounds for the covariance of the state estimates in SLAM, as a function of the
accuracy of the robot’s sensors and the size of the map. The derived closed-form expressions providetheoretical
guaranteesfor the accuracy of SLAM, and can thus be employed during the design of a localization system, in
order to determine the necessary accuracy of the robot’s sensors. Contrary to previous approaches [9, 10], in the
treatment presented here we neednot assume that the robot is equipped with an absolute orientation sensor, and
thus the problem formulation is more general. In order to derive analytical expressions for the upper bounds on the
localization uncertainty, we employ a novel formulation of the SLAM problem, in which the landmark coordinates
with respect to (i) the robot, and (ii) a fixed global frame, are jointly estimated. This enables us to derive upper bounds
on the covariance ofboth map representations (cf. Section 3), as well as on the uncertainty in the robot’s pose (cf.
Section 5). Before delving into the details of our approach, in the following section we present an overview of related
work.
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2 Related Work

One of the first attempts to study the properties of the covariance matrix of the state estimates in SLAM was pre-
sented in [11]. In that work, a Linear Time Invariant (LTI) SLAM model is employed, in which both the robot and
the landmarks are constrained to lie in a one-dimensional space. For this simple model, the solution to the Riccati
differential equation, that describes the time evolution of the covariance matrix of the position estimates, is derived
in closed form. This result demonstrates some of the properties of the covariance matrix in SLAM, but its practical
importance is limited by the fact that the analysis holds only for motion in 1D, and for a LTI system model. The work
of [11] has been extended to the case of a team of multiple vehicles performing SLAM [12] under the same set of
restrictive assumptions (i.e., LTI system model, and motion in 1D).

A different set of properties of the covariance matrix in SLAM is studied in [13, 14, 15]. In particular, it is shown
that the covariance matrix of the landmarks’ position estimates is decreasing monotonically, as more observations are
processed, and after sufficient time, the map estimates become fully correlated. Additionally, the authors derive a
lower boundon the robot’s and landmarks’ covariance matrix, by considering the case in which the odometry mea-
surements areperfect. Since no additional uncertainty is introduced in the system during state propagation, this is the
“best-case scenario”, and the covariance of the state estimates in this hypothetical system defines a lower bound, that
depends only on the initial uncertainty of the robot’s pose. These results are also extended to the case ofcooperative
Concurrent Mapping and Localization in [16, 17]. A limitation of the aforementioned approaches is that the derived
lower bounds areindependentof the accuracy of the robot’s sensors, and thus cannot be employed in order tocompare
the performance of robots with sensors of different quality. Moreover, if the robot’s initial pose is perfectly known,
which is a common situation in SLAM, then these bounds are equal to zero, and are thus non-informative.

The work presented in this report is related to our previous work [9], in which upper bounds on the uncertainty of
the position estimates in SLAM, as closed-form functions of the accuracy of the robot’s sensors, are derived. In [9],
it is assumed that the robot is equipped with anabsolute orientationsensor (e.g., a compass). When such a sensor
is available, the orientation uncertainty for the robot remains bounded, and the maximum variance of the orientation
errors is known. This observation allows us to formulate a position-only Extended Kalman Filter estimator, and derive
upper bounds for the asymptotic covariance of the state. This work is extended to the case of Cooperative SLAM
in [10], under the assumption that every robot has an absolute orientation sensor. Clearly, such a requirement is
constraining, and there exist cases where it is not satisfied. In this report, no absolute orientation measurements are
assumed to be available, thus resulting in a more general formulation. As shown in Section 5, it is possible to derive
an upper bound on the variance of the robot’s orientation errors,withoutrequiring that a compass or similar sensor be
available.

3 The uncertainty of map estimation in SLAM

In this section, we derive upper bounds for the covariance of the landmarks’ position estimates in SLAM. In particular,
we derive upper bounds for the uncertainty of the landmarks’ positions when these are expressed with respect to i)
a fixed global frame (absolute map), and ii) the robot’s coordinate frame (relative map).1 Our approach is based on
formulating an Extended Kalman Filter (EKF) estimator, in which the state vector is comprised of both the relative
map coordinates,and the absolute map coordinates, but doesnot explicitly contain the robot pose. The estimate for
the robot pose, as well as its covariance, can be inferred from the transformation between the two map representations,
as shown in the following section.

Clearly, this formulation will not result in the most computationally efficient implementation of SLAM. However,
the sole purpose of employing such a formulation of SLAM is to determine analytical upper bounds for the covariance
of the state estimates. As will be made clear in the following, in the proposed EKF set-upall available measurements
are used once, and apart from linearization, no other approximations are made. Therefore, the covariance of the
absolute map computed with this filter will be identical (except for small linearization inaccuracies) to the covariance
that is computed with the “traditional” EKF SLAM algorithm [18], in which the state vector contains the absolute map
coordinates and the robot pose.

1Note that the term “relative map” is used in this paper to describe a robot-centred map. This is different than the notion of the relative map
employed, for example, in [13].
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3.1 Relative-map SLAM

We first study the case in which the state vector is comprised only of the landmarks’ positions with respect to the robot
(relative map). Denoting the position of thei-th landmark with respect to the robot at time step` by Rpi`

, i = 1 . . . N ,
we obtain the following state propagation equation for this landmark:

Rpik+1 = Rk+1pRk
+ C(−ωkδt)Rpik

(1)

where the rotation matrix expressing the rotation of the robot frame between time-stepsk + 1 andk is:

C(−ωkδt) =
[

cos(ωkδt) sin(ωkδt)
− sin(ωkδt) cos(ωkδt)

]
(2)

andRk+1pRk
is the position of the robot at time-stepk, expressed with respect to the robot’s frame at time-stepk + 1,

which is given by:

Rk+1pRk
= −C(−ωkδt)RkpRk+1 = −vkδtC(−ωkδt)e1 (3)

In the preceding expressions,vk and ωk are the translational and rotational velocity of the robot at time stepk,
respectively,δt is the sampling interval, ande1 is the unit vector along thex-axis in the 2-dimensional space, i.e.,

e1 =
[
1
0

]

Using the measurements of the robot’s translational and rotational velocities,vmk
andωmk

, respectively, the estimates
for the landmarks’ positions are propagated as follows:

Rp̂ik+1 = Rk+1 p̂Rk
+ C(−ωmk

δt)Rp̂ik

= C(−ωmk
δt)

(−vmk
δte1 + Rp̂ik

)
(4)

Clearly, the state propagation equation is nonlinear. By linearizing we obtain the error propagation equation for the
relative position of thei-th landmark:

Rp̃ik+1 = C(−ωmk
δt)Rp̃ik

− δtC(−ωmk
δt)e1ṽk + δtJ×Rp̂ik

ω̃k

In the last expression, the symbol˜ denotes the error in the estimate of the respective quantity, and

J× =
[

0 1
−1 0

]
(5)

If we create a state vector,RX, that comprises of the relative positions of the landmarks with respect to the robot, then
the error propagation equation for this state vector is:

RX̃k+1 = RΦk
RX̃k + RGk

[
ṽk

ω̃k

]
(6)

where2

RΦk = IN ⊗ C(−ωmk
δt) (7)

andRGk is a2N × 2 block matrix, whosei-th element is

Gik
= δt

[−C(−ωmk
δt)e1 J×Rp̂ik

]
(8)

The covariance propagation equation for the uncertainty of therelative mapis

RPk+1|k = RΦk
RPk|kRΦT

k + RGkQRGT
k

= RΦk
RPk|kRΦT

k + RQk (9)

2In the remainder of this report,In denotes then × n identity matrix,1n×m denotes then ×m matrix of ones,0n×m denotes then ×m
matrix of zeros, and⊗ denotes the Kronecker product.
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where
Q = diag(σ2

v , σ2
ω)

is the covariance matrix of the robot’s odometric measurements, we have denoted

RQk = RGkQRGT
k ,

andRPk+1|k andRPk|k are the covariance of the error in the state estimate ofRX(k + 1) andRX(k) respectively,
after measurements up to timek have been processed.

3.2 The Dual-Map Filter

In order to introduce the absolute landmark coordinates in the state vector, we employ the following observation:
without loss of generality, the global coordinate frame can be selected at the initial position of the robot, Thus, at the
first time step, before the robot moves, the absolute map and the relative mapcoincide, i.e.,GX = RX0, whereGX
is a vector that contains the coordinates of theN landmarks with respect to the fixed global frame. If at the first time
step, we augment the state vector to include two identical copies of the stateRX0, and we thereafter propagate only
one of the copies, while properly accounting for the correlations between the two, then at every time step an estimate
for both the relative, and the absolute landmark coordinates will be available. This technique of state duplication is
similar to the one employed in [19], with the difference that in our work thelandmarkstates are duplicated, rather than
the robot state.

The augmented state vector is equal to

X =
[

RX
GX

]

and the error-state propagation equation is given by

X̃k+1 =
[

RΦk 02N×2N

02N×2N I2N

]
X̃k +

[
RGk

02N×2

] [
ṽk

ω̃k

]

= ΦkX̃k +
[

I2N

02N×2N

]
RGk

[
ṽk

ω̃k

]
(10)

while the covariance propagation equation is given by

Pk+1|k = ΦkPk|kΦ
T
k + GRQkGT (11)

with

G =
[

I2N

02N×2N

]

Immediately after state duplication, and before the robot starts moving, the two copies of the state carry exactly
the same information, and are thus fully correlated. As a result, the initial covariance matrix for the augmented state
vector is given by:

P0|0 =
[

RP0|0 RP0|0
RP0|0 RP0|0

]
(12)

At every time step, the robot measures therelative positionof the landmarks, thus the measurement vector at each
time step is described by

z(k) =
[
I2N 02N×2N

]
Xk + n(k) (13)

where
H =

[
I2N 02N×2N

]

is the measurement matrix, andn(k) is a Gaussian, zero-mean, white noise vector. Assuming that the errors in the mea-
surement of each landmark are independent from the other robot-to-landmark measurement errors, then the covariance
matrix ofn(k) will be a generally time-varying, block-diagonal matrix:

Rk = Diag(Rik
) (14)
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whereRik
is the2 × 2 covariance matrix of the measurement of thei-th landmark. Using these definitions, we can

write the covariance update equation of the EKF as:

Pk+1|k+1 = Pk+1|k −Pk+1|kHT S−1
k+1HPk+1|k (15)

with
Sk+1 = HPk+1|kHT + Rk

At this point, a clarification regarding the structure of the measurement equation (cf. Eq. (13)) is due. At first,
the fact that the measurement equation does not directly involve the absolute position estimates of the landmarks
may appear somewhat peculiar. However, we remind that the correlations that exist between the relative and absolute
position estimates of the landmarks guarantee that during the EKF update step, the absolute map estimates, as well as
their covariance, are appropriately corrected. In other words, the close relation that exists between the absolute map
and the relative map is expressed via the correlations in the augmented system covariance matrix.

By combining the covariance propagation and update equations (Eqs. (11) and (15)), we form the Riccati recursion
that describes the time evolution of the covariance matrix in the augmented system. This is given by:

Pk+1 = Φk

(
Pk −PkHT S−1

k+1HPk

)
ΦT

k + GRQkGT (16)

where we have introduced the substitutionsPk = Pk+1|k andPk+1 = Pk+2|k+1 to simplify the notation.
In this work, we consider the case where the landmark positions areunknownprior to the first observation, and

the robot has perfect initial knowledge of its pose, which is the most common setting for SLAM. Immediately after
the first set of robot-to-landmark measurements, the uncertainty of the relative map is equal to the covariance matrix
of these measurements, i.e.,RP0|0 = R0. The initial value of the Riccati recursion is the covariance matrix for the
dual-map filter, that arises after duplicating the initial state and performing one propagation step. Thus it is equal to:

P0 =
[
R0 + RQ0 R0

R0 R0

]
(17)

4 Upper bounds on the Asymptotic Covariance

Having determined the Riccati recursion (Eq. (16)) and its initial value (Eq. (17)), we are now able to derive an upper
bound for its solution, and thus an upper bound on the covariance of the map in SLAM, by a method similar to that
of [10]. For this purpose, we employ the following lemma:

Lemma 4.1 If Ru and Qu are constant matrices such thatRu º Rk and Qu º RQk, for all k ≥ 1, then the
solution to the Riccati recursion

Pu
k+1 = Φk

(
Pu

k −Pu
kH

T
(
HPu

kH
T + Ru

)−1
HPu

k

)
ΦT

k + GQuGT (18)

with an initial conditionPu
0 such thatPu

0 º P0, satisfiesPu
k º Pk for all k ≥ 0.

Proof: See Appendix A.

We now show how upper bounds on the matricesRQk, Rk, andP0 can be obtained. We start by rewriting the
system noise covariance matrixRQk, as (cf. Eqs. (8) and (10)):

RQk = δt2σ2
v · RΦkvvT (RΦk)T

︸ ︷︷ ︸
Qvk

+ δt2σ2
ω · (IN ⊗ J×)RXk

RXT
k (IN ⊗ J×)T

︸ ︷︷ ︸
Qωk

(19)

where

v =




1
0
1
0
...




= 1N×1 ⊗ e1
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We now consider each of the components ofRQk independently. ForQvk
we obtain:

Qvk
= δt2σ2

v · RΦkvvT (RΦk)T (20)

¹ δt2σ2
v · RΦk

(
vvT + uuT

)
(RΦk)T (21)

where

u =




0
1
0
1
...




= 1N×1 ⊗ e2

We now note that

vvT + uuT = 1N×N ⊗ I2 (22)

and thus

Qvk
¹ δt2σ2

v · RΦk (1N×N ⊗ I2) (RΦk)T (23)

= δt2σ2
v(1N×N ⊗ I2) (24)

For the termQωk
we obtain:

trace(Qωk
) = δt2σ2

ω trace
(
(IN ⊗ J×)RXk

RXT
k (IN ⊗ J×)T

)
(25)

= δt2σ2
ω trace

(
RXT

k (IN ⊗ J×)T (IN ⊗ J×)RXk

)
(26)

= δt2σ2
ω trace

(
RXT

k
RXk

)
(27)

= σ2
ωδt2

N∑

i=1

ρ2
i (28)

whereρi is the distance of thei-th landmark to the robot. Thus, ifρo is the maximum possible distance between the
robot and any landmark (determined, for example, by the robot’s maximum sensing range), we obtain

trace (Qωk
) ≤ Nρ2

oσ
2
ωδt2

and therefore

Qωk
¹ Nρ2

oσ
2
ωδt2I2N (29)

By combining this result with those of Eqs. (19) and (24), we obtain:
RQk ¹ δt2σ2

v(1N×N ⊗ I2) + Nρ2
oσ

2
ωδt2I2N = q1(1N×N ⊗ I2) + q2I2N (30)

And thus an upper bound forRQk is given by the matrix

Qu = δt2σ2
v︸ ︷︷ ︸

q1

(1N×N ⊗ I2) + Nρ2
oσ

2
ωδt2︸ ︷︷ ︸

q2

I2N (31)

= q1(1N×N ⊗ I2) + q2I2N (32)

An upper bound on the measurement covariance matrix,Rk, can be derived by considering the characteristics of
the particular sensor used for the relative position measurements. If the covariance matrix of the measurement of each
individual landmark can be bounded above byRik

¹ rI2, then we obtain

Rk ¹ rI2N = Ru

Regarding the initial value of the recursion in Eq. (18), it is easy to see that the following matrix satisfies the condition
Pu

0 º P0:

Pu
0 =

[
Qu + rI2N rI2N

rI2N rI2N

]
(33)

An additional difficulty in solving for the steady-state value of the Riccati recursion in Eq. (18) is that the state
transition matrix,Φk, is time-varying. Considering however the special structure of the matrices that appear in this
recursion, the following lemma can be proven:
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Lemma 4.2 Let the solution,Pu
k , to the recursion in Eq. (18) be partitioned in2N × 2N blocks as

Pu
k =

[
RPu

k PRGk

PT
RGk

GPu
k

]
(34)

Additionally, letP̄k be the solution to the recursion

P̄k+1 = P̄k − P̄kHT
(
HP̄kHT + Ru

)−1
HP̄k + GQuGT (35)

with initial conditionP̄0 = Pu
0 , and letP̄k be partitioned as

P̄k =
[

RP̄k P̄RGk

P̄T
RGk

GP̄k

]
(36)

Then for anyk ≥ 0, and for the transition matrixΦk defined in Eq.(10), the following relations hold:

RP̄k = RPu
k , GP̄k = GPu

k , and PRGk
= RCkP̄RGk

(37)

whereRCk = RΦk · RΦk−1 · · ·RΦ0.

Proof: See Appendix B

This lemma essentially demonstrates, that in order to derive the upper bound on the steady-state covariance of both
the absolute and the relative map in SLAM, it suffices to determine the steady-state solution of the Riccati in Eq. (35),
which is significantly simpler than that of Eq. (18), since it is aconstant coefficientRiccati recursion. In order to
determine theasymptoticsolution of Eq. (35), we employ the following lemma, which has been adapted from [20]:

Lemma 4.3 SupposēP(0)
k is the solution to the discrete time Riccati recursion in Eq. (35) with initial valueP̄u

0 =
04N×4N . Then the solution with the initial condition given in Eq. (33) is determined by the identity

P̄u
k − P̄(0)

k = Tk

(
I4N + P̄0Jk

)−1
P̄0TT

k (38)

whereTk is given by

Tk = (I4N −KpH)k (I4N + PJk) (39)

In these expressions,P is any solution to the Discrete Algebraic Riccati Equation (DARE):

P = P−PHT (HPHT + Ru)−1HP + GQuGT (40)

andKp = PHT
(
Ru + HPHT

)−1
. Jk denotes the solution to thedualRiccati recursion:

Jk+1 = Jk − JkG(Q−1
u + GT JkG)−1GT Jk + HT R−1

u H (41)

with zero initial condition,J0 = 0.

Lemma 4.3 simplifies the evaluation of the steady-state value ofP̄k, since the solution to the Riccati recursion with
zero initial condition is easily derived. This is because when the initial value of the covariance is zero, then the
submatrix ofP̄k that corresponds to the covariance of the absolute map willremainzero for allk ≥ 0, since no influx
of uncertainty occurs in the absolute landmark coordinates. This observation results in significant simplification of the
derivations necessary to obtain the solution.

Applying Lemmas 4.3 and 4.2, and evaluating the limit of the resulting expressions ask →∞, allows us to obtain
the following upper bound for the asymptotic covariance matrix of the augmented-state filter (cf. Appendix C):

P∞ ¹



U diag

(
λi

2 +
√

λ2
i

4 + λir

)
UT 02N×2N

02N×2N Udiag
(
−λi

2 +
√

λ2
i

4 + λir

)
UT


 (42)
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where we have denoted the eigenvalue decomposition ofQu asQu = Udiag(λi)UT . This expression provides
an upper bound for the covariance of the augmented state vector after every EKFpropagationstep. In order to
derive a bound for the covariance immediately after theupdatestep of the EKF, we note that during propagation,
the absolute map covariance remains unchanged, while the uncertainty of the relative map is increased according to
Eq. (9). Using this observation, we can show that an upper bound on the steady-state covariance matrix of the relative
map, immediately after every update step, is given by

RP̄∞ = Udiag

(
−λi

2
+

√
λ2

i

4
+ λir

)
UT (43)

while the asymptotic uncertainty of the absolute positions of the landmarks in SLAM is bounded above by the matrix

GP̄∞ = Udiag

(
−λi

2
+

√
λ2

i

4
+ λir

)
UT (44)

It is interesting to note that the special structure of the matrixQu (cf. Eq. (32)) allows us to compute its eigenvalues in
closed form. Specifically, it can be shown thatQu has 2 singular values equal toλi = Nq1 + q2, and2N − 2 singular
values equal toλi = q2. As a result, the above upper bounds will have two singular values equal to

λpi = −Nq1 + q2

2
+

√
(Nq1 + q2)2

4
+ (Nq1 + q2)r, i = 1, 2 (45)

and2N − 2 eigenvalues equal to

λpi = −q2

2
+

√
q2
2

4
+ q2r, i = 3, . . . , 2N (46)

Moreover, the upper bounds will have a structure similar to the that ofQu, i.e.,

RP̄∞ = GP̄∞ = b1(1N×N ⊗ I2) + b2I2N (47)

where

b1 = −q1

2
+

1
N

√
(Nq1 + q2)2

4
+ (Nq1 + q2)r − 1

N

√
q2
2

4
+ q2r (48)

and

b2 = −q2

2
+

√
q2
2

4
+ q2r (49)

We note that the the result of Eq. (47) provides bounds for the accuracy of the map in SLAM, that are evaluated
in closed form, and depend on the accuracy of the robot’s sensors, as well on the size of the area being mapped.
Interestingly, theboundson the both the relative and the absolute map areequal, when the covariance matrix after the
update phase of the EKF is considered. However, it should be clear that theactualcovariance matrices of the two map
representations arenot identical at steady state. In the next section, we show how these results can be employed in
order to obtain bounds on the covariance of the robot’s pose estimates in SLAM.

5 The accuracy of pose estimation in SLAM

Although the robot pose (position and orientation) is not explicitly contained in the state vector of the formulation that
we presented in the preceding section, an estimate for this pose is implicitly defined from the estimates of the relative
map,RX, and of the absolute map,GX. To see why this is the case, we note that for thei-th landmark, the relation
between its representation in the global frame,Gpi, and in the robot frame at time stepk, Rkpi, is given by:

Gpi = GpRk
+ C(φk)Rkpi (50)
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whereGpRk
andφk are the position and orientation of the robot with respect to the global frame at time stepk,

respectively. Thus, given the augmented state vector at time-stepk, Xk = [RXT GXT ]T , and its covariance,Pk, we
are able to determine the robot pose,

θk =
[
GpT

Rk
φk

]T

and its covariance,Pθθ, by solving the Least Squares minimization problem:

min
θk

eT
k W−1

k ek (51)

whereek is the vector of errors that we seek to minimize, a2N × 1 vector, whosei-th block is equal to

ei = GpRk
+ C(φk)Rkpi − Gpi (52)

andWk is the covariance matrix of the vectorek. Employing linearization of Eq. (52), we obtain

Wk = HXk
PkHT

Xk
(53)

whereHXk
is the Jacobian of the error vectorek with respect to the state vectorXk, given by

HXk
=

[
I2N ⊗ C(φk) I2N

]
(54)

It is known from the theory of Least Squares Estimation that the covariance matrix of the estimated parameter,θk, is
given by

Pθθ =
(
HT

θk
W−1

k Hθk

)−1

=
(
HT

θk

(
HXk

PkHT
Xk

)−1
Hθk

)−1

(55)

whereHθk
is the Jacobian matrix of the error vectorek with respect toθk. This is a2N × 3 block matrix, whosei-th

block element is equal to

Hi =
[
I2 p̆ik

]
(56)

where we have denoted̆pik
= − J×C(φk)Rkpi. We point out that the solution of the Least Squares problem in

Eq. (51) and the covariance of this solution, given by Eq. (55), yield thesameresults for the robot’s pose, as the
“standard” EKF formulation for SLAM, when at least 2 landmarks are available. This is because in both cases,all the
available measurements are used, and no approximations are made (apart from linearization). Thus, we can use the
expression of Eq. (55), to study the properties of the robot pose covariance in EKF-based SLAM.

In the following, we focus on deriving upper bounds on the steady-state value of the matrixPθθ. Note that since
Pk ¹ Pu

k , an upper bound for the covariance of the robot pose at time-stepk is given by (cf. Eq. (55)):

Pu
θθ =

(
HT

θk

(
HXk

Pu
kH

T
Xk

)−1
Hθk

)−1

(57)

Using the asymptotic results from Eq. (47) and the values of the JacobianHXk
from Eq. (54), we obtain:

HXk
Pu
∞HT

Xk
= 2b1(1N×N ⊗ I2) + 2b2I2N ⇒ (58)

(
HXk

Pu
∞HT

Xk

)−1
=

1
2b2︸︷︷︸
α

I2N − b1

b2(2b2 + 2b1N)︸ ︷︷ ︸
β

(1N×N ⊗ I2) (59)

= αI2N − β(1N×N ⊗ I2) (60)

where we have used the result of Appendix D. Substitution in Eq. (57) yields the following asymptotic value forPu
θθ:

Pu
θθ =


 (αN − βN2)I2 (α− βN)

∑N
i=1 p̆i

(α− βN)
∑N

i=1 p̆T
i α

∑N
i=1

(
p̆T

i p̆i

)− β
(∑N

i=1 p̆i

)T (∑N
i=1 p̆i

)


−1

=
[
PPP PPφ

PT
Pφ Pφφ

]
(61)
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Employing the formula for the inversion of a partitioned matrix (cf. Appendix E), we obtain the following expres-
sion forPφφ, which is an upper bound of the asymptotic orientation variance:

Pφφ =
1
α

1
∑N

i=1

(
p̆T

i p̆i

)− 1
N

(∑N
i=1 p̆T

i

)(∑N
i=1 p̆i

) (62)

For anyi, j, the property̆pT
i p̆j = RpT

i
Rpj holds, and thus we can re-write the denominator of the expression forPφφ

as

D =
1
N

(
N

N∑

i=1

(
RpT

i
Rpi

)−
(

N∑

i=1

RpT
i

)(
N∑

i=1

Rpi

))

Moreover, if we denote the distance between landmarksi andj asρij , we obtain

N∑

i=1

N∑

j=1

ρ2
ij =

N∑

i=1

N∑

j=1

(Rpi − Rpj)T (Rpi − Rpj)

=
N∑

i=1




N∑

j=1

(
RpT

i
Rpi

)
+

N∑

j=1

(
RpT

j
Rpj

)− 2
N∑

j=1

(
RpT

j
Rpi

)



=
N∑

i=1


NRpT

i
Rpi +

N∑

j=1

(
RpT

j
Rpj

)− 2RpT
i




N∑

j=1

Rpj







= N

N∑

i=1

(
RpT

i
Rpi

)
+ N

N∑

j=1

(
RpT

j
Rpj

)− 2

(
N∑

i=1

RpT
i

)


N∑

j=1

Rpj




= 2

(
N

N∑

i=1

(
RpT

i
Rpi

)−
(

N∑

i=1

RpT
i

)(
N∑

i=1

Rpi

))

= 2ND (63)

Using this result, the upper bound on the robot’s orientation uncertainty is written as:

Pφφ =
1
α

2N∑N
i=1

∑N
j=1 ρ2

ij

=
4Nb2∑N

i=1

∑N
j=1 ρ2

ij

(64)

Thus, if the pairwise distances of the landmarks are known, an upper bound on the robots’ orientation variance is
determined by the preceding expression. Furthermore, if some properties of the placement of the landmarks in space
is known, this expression can be employed in order to determine bounds that are independent of theactual landmark
positions. For example, if the minimum allowable distance between any two landmarks is equal toρ2

LLmin
, then

Pφφ ≤ 1
α

2
(N − 1)ρ2

LLmin

=
4b2

(N − 1)ρ2
LLmin

(65)

We now show how an upper bound on the covariance matrix of the robot’s position estimates can be determined.
From Eq. (61) we obtain:

PPP =


(αN − βN2)I2 − (α− βN)2

α
∑N

i=1

(
p̆T

i p̆i

)− β
(∑N

i=1 p̆i

)T (∑N
i=1 p̆i

)
(

N∑

i=1

p̆i

)(
N∑

i=1

p̆T
i

)


−1

which, by application of the matrix inversion lemma (cf. Appendix D) and simple manipulation, yields:

PPP =
1

αN − βN2
I2 +

(∑N
i=1 p̆i

) (∑N
i=1 p̆T

i

)

αN2
(∑N

i=1

(
p̆T

i p̆i

)− 1
N

(∑N
i=1 p̆T

i

)(∑N
i=1 p̆i

))
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=
2b2 + 2Nb1

N
I2 +

2b2

(∑N
i=1 p̆i

)(∑N
i=1 p̆T

i

)

N2
(∑N

i=1

(
p̆T

i p̆i

)− 1
N

(∑N
i=1 p̆T

i

)(∑N
i=1 p̆i

))

︸ ︷︷ ︸
T2

In order to derive an upper bound forPPP , we examine the trace of the second term,T2, in the last expression. This
is given by:

trace(T2) =
2b2

N
trace




1
N

(∑N
i=1 p̆i

)(∑N
i=1 p̆T

i

)

∑N
i=1

(
p̆T

i p̆i

)− 1
N

(∑N
i=1 p̆T

i

)(∑N
i=1 p̆i

)



=
2b2

N




1
N

(∑N
i=1 p̆T

i

)(∑N
i=1 p̆i

)

∑N
i=1

(
p̆T

i p̆i

)− 1
N

(∑N
i=1 p̆T

i

)(∑N
i=1 p̆i

)



=
2b2

N




1
N

(∑N
i=1

RpT
i

) (∑N
i=1

Rpi

)

∑N
i=1

(
RpT

i
Rpi

)− 1
N

(∑N
i=1

RpT
i

)(∑N
i=1

Rpi

)



=
2b2

N




∑N
i=1

(
RpT

i
Rpi

)
∑N

i=1

(
RpT

i
Rpi

)− 1
N

(∑N
i=1

RpT
i

)(∑N
i=1

Rpi

) − 1




=
4b2

N

∑N
i=1

(
RpT

i
Rpi

)
∑N

i=1

∑N
j=1 ρ2

ij

− 2b2

N
(66)

Thus

PPP ¹ 2b2 + 2Nb1

N
I2 + trace(T2)I2 (67)

= 2b1I2 +
1
N

Pφφ

N∑

i=1

ρ2
i I2 (68)

Finally, we observe that the maximum distance between the robot and any landmark is equal toρo, and thus the
covariance of the robot’s position estimate is bounded above by

PPP ¹ (
2b1 + ρ2

oPφφ

)
I2 (69)

This result, along with those of Eqs. (64)-(65), that determine upper bounds on the robot’s orientation uncertainty, and
that of Eq. (44), which yields the upper bound of the covariance matrix of the global landmark coordinates, are the most
important results of this report. They enable us to compute theguaranteed accuracyof the state estimates in SLAM,
as ananalytical functionof the accuracy of the robot’s sensors, and the properties of the landmarks’ configuration.
Hence, these expressions can be employed in order to determine whether a candidate robot system design satisfies the
accuracy requirements of a given SLAM application,withoutthe need for simulations, or experimentation.

For example, consider a scenario in which a service robot (e.g., autonomous lawn-mower, autonomous vacuum-
cleaner) is operating in an area of approximately known size, and localizes by performing SLAM. Clearly, the state
vector should contain as few landmarks as possible, in order to minimize the computational requirements of the
localization algorithm. Moreover, the robot’s sensors should be as inexpensive (and thus, as inaccurate) as possible,
in order to minimize production costs. By employing the results of this work during the design phase, the trade-offs
between cost, complexity, and localization accuracy can be studied, and informed decisions can be reached. Moreover,
during the robot’s operation, the selection of landmarks to include in the state vector can be guided by the results of
Eqs. (64)-(65), to ensuretheoretical guaranteesfor the robot’s pose accuracy. It thus becomes clear that the availability
of closed-form expressions that characterize the accuracy of the state estimates in SLAM is a powerful tool, that can
be employed in the design of robotic systems. In Section 6, we present results from real-world experiments, that
demonstrate the validity of the preceding theoretical analysis.
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Figure 1: (a) The diagonal elements of the covariance of the landmark position estimates, computed by the standard
EKF SLAM algorithm, and by the dual-map filter presented in Section 3. (b) The diagonal elements of the robot pose
covariance, computed by the standard EKF SLAM algorithm, and by the method described in Section 5. In order to
preserve the clarity of the figure, only the first 100sec are shown.

6 Experimental results

Before describing the setup of our real-world experiments, we illustrate, with numerical results, the equivalence of
the SLAM formulation employed in our analysis, to the“standard” EKF SLAM formulation, in which the state vector
comprises the robot’s pose and the landmarks’ position estimates in a global frame. For this purpose, we consider a
SLAM scenario in which a robot moves randomly in a square area of side 4m, and observes four landmarks randomly
placed in the area. Both the “standard” EKF-based SLAM algorithm, and the one described in Section 3, were run
with the same data, and the results for the covariance of the global landmark coordinates are shown in Fig. 1(a). In
this plot we observe that the numerical results obtained with both filters are almost identical, with the small difference
being due to different linearization in the two filters and numerical errors. Moreover, in Fig. 1(b) we plot the diagonal
elements of the robot’s pose covariance matrix, computed both by the standard EKF SLAM, and using Eq. (55). Once
again, we observe that the two methods yield almost identical results, thus indicating that by studying the properties
of the covariance in our formulation, we can draw conclusions for the covariance in the standard EKF-based SLAM
algorithm.3

In our real-world experiments, a Pioneer 3 robot equipped with two opposite-facing SICK LMS200 laser scanners,
that provide a 360o field of view, was employed (cf. Fig. 2). During the experiment presented in this paper, the
robot moves randomly while performing SLAM in an area of approximate dimensions 10m×4m. The laser scans
are processed for detecting four prominent corners in the area, which are used as landmarks. For detecting each
corner, line-fitting is employed to compute the equations of the adjacent wall lines, and the intersection of these lines
is determined. The maximum standard deviation of each of the robot-to-landmark measurements was experimentally
found to be equal to approximately 0.15m, which yields an upper boundR ¹ 0.0225I2m2. The robot receives
translational velocity measurements with standard deviationσv = 0.01m/sec, and rotational velocity measurements
with σω = 5 × 10−3rad/sec. The estimated trajectory of the robot, as well as the landmarks being detected by the
robot, are shown in Fig. 3. In the same figure, a sample laser scan is superimposed (after being transformed to the
global frame), in order to illustrate the geometry of the area where the robot operates.

In Fig. 4, the standard deviation of the estimation errors, as this is computed by the filter is plotted (solid lines), and
compared with the standard deviation computed by employing the theoretically derived bounds (dashed lines). For
the robot orientation, the bound in Eq. (65) is employed in this case. Although for this experiment ground truth is not

3We should note that the estimates for the robot’s pose and for the landmarks’ positions computed by the two methods are also practically
identical, and the dual-map filter is consistent. The corresponding plots are not be included, due to limited space.
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Figure 2: The Pioneer 3 robot used in the real-world experiments.

known, we expect that the estimation errors are smaller (in absolute value) than 3 standard deviations, in 99.7% of the
cases. From the plots in Fig. 4, we conclude that the analytical bounds that we have derived can be employed in order
to predictthe localization accuracy of SLAM without having to resort to extensive simulations, or experimentation.

We should point out that in this particular case, where the robot moves randomly in space, the actual standard
deviations are approximately 2-3 times smaller than the corresponding upper bounds. If the robot’s trajectory was
such that the robot-to-landmark distances were always close to their maximum values, the bounds would have been
significantly tighter. This fact has been verified in numerous simulation studies of “adverse” SLAM setups. Finally,
it is worth mentioning that due to occlusions and data association failures, the landmarks were not detected in every
laser scan. On the average, the landmarks were successfully detected 94% of the time. Despite these fluctuations in the
number of observed landmarks, the theoretical bounds still provide a quite accurate characterization of the uncertainty
in SLAM.

7 Conclusions

In this paper, we have derived upper bounds on the covariance of the state estimates in SLAM, asanalyticalfunctions
of the accuracy of the robot’s sensors, and of the properties of the map (e.g., number of landmarks, maximum distance
to landmarks). These bounds determine theguaranteed accuracythat will be attained by a robot with a given set
of sensors, performing SLAM. Therefore, they can be used during the design of a localization system, to guide the
selection of important parameters that affect the system’s performance, cost, and algorithmic complexity. The derived
analytical expressions simplify the process of verifying whether a particular design meets the accuracy requirements
of a given application, minimizing the need for tedious and time-consuming simulation studies, or exhaustive experi-
mentation. In our future work, we plan to extend these results to cases in which the robot does not operate within the
same area for its entire mission. In such cases, the number of visible landmarks dynamically changes over time, and
important issues such as loop-closure arise. In this case, the length of the loops of the environment are a crucial factor,
that determines the accuracy of the robot’s localization. We believe that the theoretical analysis presented in this paper
can serve as a basis for the study of more complex SLAM scenarios.
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Figure 4: (a) The landmarks’ position standard deviation and corresponding upper bound (b) The robot’s position
standard deviation and corresponding upper bound (c) The robot’s orientation standard deviation and corresponding
upper bound

A Upper Bound Riccati Recursion

In this appendix we prove that ifRu º Rk andQu º RQk for all k ≥ 0, then the solutions to the following two
Riccati recursions

Pk+1 = Pk −PkHT
(
HPkHT + Rk

)−1
HPk + GRQkGT (70)

and

Pu
k+1 = Pu

k −Pu
kH

T
(
HPu

kH
T + Ru

)−1
HPu

k + GQuGT (71)

with thesameinitial condition,P0, satisfyPu
k º Pk for all k ≥ 0. The proof is carried out by induction, and requires

the following two intermediate results:

• Monotonicity with respect to the measurement covariance matrix

If R1 º R2, then for anyP º 0

P−PHT
(
HPHT + R1

)−1
HP + Q º P−PHT

(
HPHT + R2

)−1
HP + Q (72)

TR-2006-0001 14



This statement is proven by taking into account the properties of linear matrix inequalities:

R1 º R2 ⇒(
HPHT + R1

)−1 ¹ (
HPHT + R2

)−1 ⇒
PHT

(
HPHT + R1

)−1
HP ¹ PHT

(
HPHT + R2

)−1
HP ⇒

Φ
(
P−PHT

(
HPHT + R1

)−1
HP

)
ΦT º Φ

(
P−PHT

(
HPHT + R2

)−1
HP

)
ΦT

Φ
(
P−PHT

(
HPHT + R1

)−1
HP

)
ΦT + Q º Φ

(
P−PHT

(
HPHT + R2

)−1
HP

)
ΦT + Q

• Monotonicity with respect to the state covariance matrix

The solution to the Riccati recursion at timek + 1 is monotonic with to the solution at timek, i.e., if P(1)
k and

P(2)
k are two different solutions to the same Riccati recursion at timek, with P(1)

k º P(2)
k thenP(1)

k+1 º P(2)
k+1. In

order to prove the result in the general case, in whichP(1)
k andP(2)

k are positive semidefinite, we use the following
expression that relates the one-step ahead solutions to two Riccati recursions with identicalH, Q andR matrices, but
different initial valuesP(1)

k andP(2)
k ([20]). It is

P(2)
k+1 −P(1)

k+1 = Fp,k

((
P(2)

k −P(1)
k

)
−

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

))
FT

p,k (73)

whereFp,k is a matrix whose exact structure is not important for the purposes of this proof. Since we have assumed

P(1)
k º P(2)

k we can writeP(2)
k −P(1)

k ¹ 0. Additionally, the matrix

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

)

is positive semidefinite, and therefore we have

−
(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

)
¹ 0 ⇒

(
P(2)

k −P(1)
k

)
−

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

)
¹ 0 ⇒

Fp,k

((
P(2)

k −P(1)
k

)
−

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

))
FT

p,k ¹ 0 ⇒
P(2)

k+1 −P(1)
k+1 ¹ 0

The last line implies thatP(1)
k+1 º P(2)

k+1, which is the desired result.

We can now employ induction to prove the main statement of this appendix. Assuming that at some time instanti,
Pu

i º Pi, we can write

Pu
i+1 = Φi

(
Pu

i −Pu
i H

T
(
HPu

i H
T + Ru

)−1
HPu

i

)
ΦT

i + GQuiG
T

º Φi

(
Pi −PiHT

(
HPiHT + Ru

)−1
HPi

)
ΦT

i + GQuiG
T

º Φi

(
Pi −PiHT

(
HPiHT + Ru

)−1
HPi

)
ΦT

i + GRQiGT

º Φi

(
Pi −PiHT

(
HPiHT + R(k + 1)

)−1
HPi

)
ΦT

i + GRQiGT = Pi+1

where the monotonicity of the Riccati recursion with respect to the covariance matrix, the propertyQui º RQi and
the monotonicity of the Riccati recursion with respect to the measurement covariance matrix have been used in the
last three lines. ThusPu

i º Pi ⇒ Pu
i+1 º Pi+1. For i = 0 the conditionPu

i º Pi holds, and therefore the proof by
induction is complete.
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B Proof of Lemma 4.2

First, we note that the properties in Eq. (37) are equivalent to the expression:

Pu
k = CkP̄kCT

k (74)

where
Ck = Φk ·Φk−1 · · ·Φ0

We will prove the above property by induction. Let’s assume that this property holds fork = `, i.e., that:

Pu
` = C`P̄`CT

` (75)

From the Riccati recursion we obtain:

Pu
`+1 = Φ`+1

(
Pu

` −Pu
` H

T
(
HPu

` H
T + Ru

)−1
HPu

`

)
ΦT

`+1 + GQuGT

= Φ`+1

(
Pu

` −Pu
` H

T
(
HPu

` H
T + Ru

)−1
HPu

` + GQuGT
)
ΦT

`+1 (76)

In the last expression, we have employed the property (cf. Eqs. (7), (10), and (32)):

GQuGT =
[
q1(1N×N ⊗ I2) + q2I2N 02N×2N

02N×2N 02N×2N

]
(77)

= Φ`+1

[
q1(1N×N ⊗ I2) + q2I2N 02N×2N

02N×2N 02N×2N

]
ΦT

`+1 (78)

= Φ`+1GQuGT Φ`+1 (79)

Substitution from Eq. (75) into (76), yields:

Pu
`+1 = Φ`+1

(
C`P̄`CT

` −C`P̄`CT
` HT

(
HC`P̄`CT

` HT + Ru

)−1
HC`P̄`CT

` + GQuGT
)
ΦT

`+1

= Φ`+1C`

(
P̄` − P̄`CT

` HT
(
HC`P̄`CT

` HT + Ru

)−1
HC`P̄` + GQuGT

)
CT

` ΦT
`+1

= C`+1

(
P̄` − P̄`CT

` HT
(
HC`P̄`CT

` HT + Ru

)−1
HC`P̄` + GQuGT

)
CT

`+1 (80)

At this point, we employ the following relations, which can be easily verified:

CT
` HT = HT CT

` (81)

Ru = C`RuCT
` (82)

Substitution in Eq. (80) yields

Pu
`+1 = C`+1

(
P̄` − P̄`HT RCT

`

(
RC`HP̄`HT RCT

` + C`RuCT
`

)−1 RC`HP̄` + GQuGT
)
CT

`+1

= C`+1

(
P̄` − P̄`HT

(
HP̄`HT + Ru

)−1
HP̄` + GQuGT

)
CT

`+1

= C`+1P̄`+1CT
`+1 (83)

We have thus shown that if the property of Eq. (75) holds for time index`, it then also holds for time index̀+ 1. For
` = 0, the property can be easily shown to hold, sinceC0 = I2N . Thus, the proof by induction is complete.

C Steady-state solution of the Riccati recursion

In this appendix we derive the steady-state solution to the Riccati recursion in Eq. (35), by employing Lemma 4.3.
The derivations comprise three intermediate results:
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C.1 Intermediate Result 1

We first derive the solution to Eq. (35) with zero initial condition. As explained, in this case the submatrix ofP̄k

corresponding to the global map is equal to zero for allk. Therefore, the only submatrix of̄Pk with nonzero value is
the submatrixRP̄k, which corresponds to the relative map. To simplify the derivations, we introduce the eigenvalue
decomposition of the matrixQu, which we denote as

Qu = UΛUT = Udiag(λi)UT

Substitution of the values of the matricesH, G, Ru andQu in Eq. (35), leads to the following recursion forRP̄k:

RP̄k+1 = RP̄k − RP̄k

(
RP̄k + rI2N

)−1 RP̄k + UΛUT ⇒ (84)

UT RP̄kU = UT RP̄kU−UT RP̄kU
(
UT RP̄kU + rI2N

)−1
UT RP̄kU + Λ ⇒ (85)

P̄nk+1 = P̄nk
− P̄nk

U
(
P̄nk

+ rI2N

)−1
P̄nk

+ Λ (86)

where we have denoted

P̄nk
= UT RP̄kU (87)

We note that sincēPnk
is initially zero, and the matrix coefficients in the above recursion are diagonal,P̄nk

will retain
a diagonal structure for all time. The steady-state value ofP̄nk

, which we denote as̄Pn∞ = diag(p∞i
), is found by

solving the equations:

p∞i = p∞i −
p2
∞i

p∞i + r
+ λi, i = 1, ..., 2N (88)

Solving these equations and substituting in Eq. (87), we obtain the following steady-state solution forRP̄k:

RP̄∞ = Udiag

(
λi

2
+

√
λ2

i

4
+ λir

)
UT (89)

and therefore the steady state solution to the Riccati in Eq. (35) with zero initial condition is given by

P̄(0)
∞ =


Udiag

(
λi

2 +
√

λ2
i

4 + λir

)
UT 02N×2N

02N×2N 02N×2N


 (90)

C.2 Intermediate Result 2

We next derive the steady-state solution to the dual Riccati in Eq. (41). Substituting the values of the matricesH, G,
Ru andQu in this recursion, and studying the block structure of the matrices that appear in it, leads to the observation
that all block submatrices ofJk, except for the one corresponding to the relative map, remain zero. The time evolution
of this submatrix is described by the recursion:

RJk+1 = RJk +
1
r
I2N − RJk

(
RJk + Udiag

(
1
λi

)
U

)−1
RJk ⇒ (91)

UT RJk+1U = UT RJkU +
1
r
I2N −UT RJkU

(
UT RJkU + diag

(
1
λi

))−1

UT RJkU ⇒ (92)

Jnk+1 = Jnk
+

1
r
I2N − Jnk

(
Jnk

+ diag
(

1
λi

))−1

Jnk
(93)

where we have defined

Jnk
= UT RJkU (94)
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Similarly to the case of̄Pnk
, we observe thatJnk

remains diagonal for all time. Its asymptotic value is found by
settingJnk

= Jnk+1 = Jn∞ , and is equal to

Jn∞ = diag
(

1
2r

+
√

1
4r2

+
1

λir

)

Therefore, the steady-state value ofRJk is

RJ∞ = Udiag
(

1
2r

+
√

1
4r2

+
1

λir

)
UT = Udiag(Jn∞)UT (95)

and the asymptotic solution of the dual Riccati with zero initial condition is given by

J∞ =
[

RJ∞ 02N×2N

02N×2N 02N×2N

]
=

[
Udiag

(
1
2r +

√
1

4r2 + 1
λir

)
UT 02N×2N

02N×2N 02N×2N

]
(96)

C.3 Intermediate Result 3

The solution requires computation of the asymptotic value of the right-hand side of Eq. (38). For this purpose, we now
compute the asymptotic value of the matrixTk (cf. Eq. (39)). We first note that̄P(0)

∞ is a solution to the DARE in
Eq. (40) (this can be verified by substitution), and thus

Tk = (I4N −KpH)k (I4N + PJk)

=
(

I4N − P̄(0)
∞ HT

(
Ru + HP̄(0)

∞ HT
)−1

H
)k (

I4N + P̄(0)
∞ Jk

)

=




(
I2N − RP̄(0)

∞
(
rI2N + RP̄(0)

∞
)−1

)k

02N×2N

02N×2N I2N




(
I4N + P̄(0)

∞ Jk

)

=

[
Udiag

(
1− p∞

r+p∞

)k

UT 02N×2N

02N×2N I2N

] (
I4N + P̄(0)

∞ Jk

)

At this point we note that

1− p∞
r + p∞

< 1

and thus

lim
k→∞

(
1− p∞

r + p∞

)k

= 0

Therefore, we obtain

lim
k→∞

Tk =
[
02N×2N 02N×2N

02N×2N I2N

]
(97)

C.4 Derivation of Eq. (42)

To compute the steady-state solution to Eq. (35), we evaluate the right-hand side of Eq. (38) ask → ∞. Substitution
from Eqs. (33), (96) and (97) yields:

P̄∞ − P̄(0)
∞ = T∞

(
I4N + P̄0J∞

)−1
P̄0TT

∞

=
[
02N×2N 02N×2N

02N×2N I2N

] [
I2N + (Qu + rI2N )RJ∞ 02N×2N

rRJ∞I2N I2N

]−1

(98)

×
[
(Qu + rI2N ) rI2N

rI2N rI2N

] [
02N×2N 02N×2N

02N×2N I2N

]
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=
[
02N×2N 02N×2N

02N×2N I2N

] [
U diag (1 + (λi + r)J∞i

)UT 02N×2N

−Udiag (rJ∞i)U
T I2N

]−1 [
02N×2N rI2N

02N×2N rI2N

]

=
[
02N×2N 02N×2N

02N×2N I2N

] 
 Udiag

(
1

1+(λi+r)J∞i

)
UT 02N×2N

−U diag
(

rJ∞i

1+(λi+r)J∞i

)
UT I2N




[
02N×2N rI2N

02N×2N rI2N

]

=

[
02N×2N 02N×2N

02N×2N Udiag
(
r − r2J∞i

1+(λi+r)J∞i

)
UT

]
(99)

Substitution for the values ofJ∞i
from Eq. (95) in the last expression, and simple algebraic manipulation, yields

P̄∞ − P̄(0)
∞ =



02N×2N 02N×2N

02N×2N Udiag
(
−λi

2 +
√

λ2
i

4 + λir

)
UT


 (100)

Combining the last result with that of Eq. (90), we obtain

P̄∞ =



U diag

(
λi

2 +
√

λ2
i

4 + λir

)
UT 02N×2N

02N×2N Udiag
(
−λi

2 +
√

λ2
i

4 + λir

)
UT


 (101)

D Matrix Inversion Lemma

If A is n× n, B is n×m, C is m×m andD is m× n then:

(A−1 + BC−1D)−1 = A−AB(DAB + C)−1DA (102)

E Inversion of a Partitioned Matrix

Let a(m + n)× (m + n) matrixK be partitioned as

K =
[

A B
C D

]

Where them×m matrixA and then× n matrixD are invertible. Then the inverse matrix ofK can be written as
[

X Y
Z U

]
=

[
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

]
(103)
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