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Abstract

In this Technical Report we study the time evolution of the position estimates’ covariance in Cooperative Simul-
taneous Localization and Mapping (C-SLAM), and obtairalytical upper bound$or the positioning uncertainty.
The derived bounds provide descriptions of the asymptotic positioning performance of a team of robots in a mapping
task, as a function of the characteristics of the proprioceptive and exteroceptive sensors of the robots, and of the graph
of relative position measurements recorded by the robots. A study of the properties of the Riccati recursion which
describes the propagation of uncertainty through time, yields (iytiaeanteed accuracfor a robot team in a given
C-SLAM application, as well as (ii) the maximuexpectedsteady state uncertainty of the robots and landmarks,
when the spatial distribution of features in the environment can be modeled by a known distribution.

1 Introduction

In order for a multirobot team to coordinate while navigating autonomously within an area, all robots must be able to
determine their positions with respect to a common frame of reference. In an ideal scenario, each robot would have
direct access to measurements of its absolute position, such as those provided by a GPS receiver, or those inferred by
detecting previously mapped features. However, reliance on GPS is not feasible in a number of situations, since GPS
signals are not available everywhere (e.g., indoors), or, triangulation techniques based on them may provide erroneous
results due to multiple reflections (e.qg., in the vicinity of tall structures and buildings). Moreover, compiling a detailed
map of the environment is a tedious and time consuming process, while numerous applications require robots to
operate in unknown surroundings, whose structure cannot be determined in advance.

In situations where absolute position information is not available, the robots of a team can improve their local-
ization accuracy by recording robot-to-robot relative position measurements, and processing them in order to update
their position estimates [1, 2, 3]. This method results in a substantial improvement in estimation accuracy compared
to simple Dead-Reckoning localization schemes. However performing Cooperative Localization (CL) solely based on
relative position measurements has the limitation that the uncertainty of the robots’ position estimates continuously
increases, and the attained accuracy may not be sufficient for certain applications. An alternative approach is for the
robots to localize while concurrently building a map of the environment, in which case the uncertainty in their position
estimates remains bounded [4]. This introduces the problem of Cooperative Simultaneous Localization And Mapping
(C-SLAM) that has recently attracted the interest of many researchers.

In this Technical Report we study the time evolution of the position estimates’ covariance in C-SLAM and obtain
analytical upper bound$or the positioning uncertainty. A study of the properties of the Riccati recursion which
describes the propagation of uncertainty through time, yields (iyjttaeanteed accuracfor a robot team in a given
C-SLAM application, as well as (ii) the maximuexpectedteady state uncertainty of the robots and landmarks, when



the spatial distribution of features in the environment can be modeled by a known distribution. In the next section the
problem formulation is presented, and in Section 3 the Riccati recursion is formulated, and the aforementioned bounds
for its steady state solution are derived.

2 Problem Formulation

Consider a group oM mobile robots, denoted as, s, ..., a7, moving on a planar surface, in an environment that
containsN landmarks, denoted ds, Lo, ..., L 5. The robots use proprioceptive measurements (e.g., from odometric

or inertial sensors) to propagate their state (position) estimates, and are equipped with exteroceptive sensors (e.g., laser
range finders) that enable them to measure the relative position of other robots and landmarks. All the measurements
are fused using an Extended Kalman Filter (EKF) in order to produce estimates of the position of the robots and the
landmarks. In our formulation, it is assumed that an upper bound for the variance of the errors in the robots’ orientation
estimates can be determined a priori. This allows us to decouple the task of position estimation from that of orientation
estimation and facilitates the derivation of an analytical upper bound on the positioning uncertainty.

The robots’ orientation uncertainty is bounded when, for example, absolute orientation measurements from a
compass or sun sensor are available, or when the perpendicularity of the walls in an indoor environment is used
to infer orientation. In cases where neither approach is possible, our analysis still holds under the condition that a
conservative upper bound for the orientation uncertainty of each robot is determined by alternative means, e.g., by
estimating the maximum orientation error accumulated, over a certain period of time, due to the integration of noise in
the odometric measurements [5]. It should be noted that the requirement for bounded orientation error covariance is
not too restrictive: In the EKF framework, the nonlinear state propagation and measurement equations are linearized
around the estimates of the robots’ orientation. If the errors in these estimates are allowed to increase unbounded,
the linearization will unavoidably become erroneous and the estimates will diverge. Furthermore, large errors in the
estimates for the robots’ orientation in SLAM result in erroneous data association, that may have detrimental effects
on the filter stability. Thus, in the vast majority of practical situations, provisions are made in order to constrain the
robots’ orientation uncertainty within given limits.

In this work, C-SLAM is considered within tHgtochastic Mappinframework [6], [7]. We assume that the mobile
robots move randomly in a planar environment, while recording measurements of the relative positions (i.e., range and
bearing) of other robots in the team, and of static point landmarks that exist in the environment. A means of describing
the exteroceptive measurements that are recorded at each time step is the adRetasiteri Position Measurement
Graph(RPMG), i.e., the graph whose vertices represent the robots and landmarks, while its directed edges correspond
to therobot-to-robotandrobot-to-landmarkmeasurements. We impose the constraint that the RPM@adsimected
graph, i.e., that there exists a path between any two of its nodes. This constraint arises naturally and is not a restrictive
one, since if an RPMG is not connected, then it can always be decomposed into smaller, connected sub-graphs. Each
of these sub-graphs corresponds to an isolated group of robots and/or landmarks, whose position estimation problem
can be studied independently.

In our formulation, the metric employed for describing the accuracy of position estimation in C-SLAM is the
covariance matrix of the position estimates. It is well known that the time evolution of the covariance matrix in
the EKF framework is described by the propagation and update equations (cf. Egs. (9) and (24)). Combining these
equations yields the Riccati recursion (cf. Eq. (34)), whose solution is the covariance of the error in the state estimate
at each time step, right after the propagation phase of the EKF. In the case of C-SLAM, the matrix coefficients in this
recursion are time varying and a general closed form expression for the time evolution of the covariance matrix does
not exist. We thus resort to derivingoper boundgor the covariance, by exploiting the convexity and monotonicity
properties of the Riccati recursion (cf. Lemmas 3.1 and 3.2). These properties allow for the formulatmstant
coefficientRiccati recursions, whose solutions provide upper bounds for the positioning uncertainty in C-SLAM.

2.1 Position propagation

The discrete-time kinematic equations for thié robot are

Tr,(k+1) = xp, (k) + Vi(k)0t cos(o;(k)) 1)
Yri(k+1) = yr,(k) + Vi(k)dtsin(¢i(k)) 2
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whereV; (k) denotes the robot’s translational velocity at tiln@nd ot is the sampling period. In the Kalman filter
framework, the estimates of the robot’s position are propagated using the measurements of the robot's¥glogity,
and the estimates of the robot’s orientatigg):

Bryy,, + Vins (k)5 cos(pi(k))

Tigt1)k

Doy, T Vi ()5t sin (k)

y”k+1\k

Clearly, these equations are time varying and nonlinear due to the dependence on the robot'’s orientation. By linearizing
Egs. (1) and (2), the error propagation equation for the robot’s position is readily derived:

%m;ﬁrl‘k Lo %%‘k n 6t cos (s (k)) Vm1 (k)t sin(; (k) wy; (k)
~ 10 1 g’”mk ot sin(gzgi(k)) Vin, (K)ot cos(dg K)) i (k)
+ Gr, (k) Wi(k) 3)

i

y”k+1w

< X, = Ioyo

Tigi1|k Tik|k

wheré wy; (k) is a zero-mean white Gaussian noise sequence of var@gp&ffecting the velocity measurements and

:(k) is the error in the robot's orientation estimate at timeThis is modeled as a zero-mean white Gaussian noise
sequence of variance; .
From Eg. (3), we deduce that the covariance matrix of the system noise affectinthtr@bot is:

Qr, (k) = E{G,,()Wik)W] ()G}, (k)}
= G, (WE{W;)W] (k)}G}, (k)

[ 5t cos(i(k))  —Vim, (k)St sin (g (k)) ] [ oy, 0 } { 5tcos(¢§ (K)) = Vi, (k)St sin(e;(k)) :|T
(k

[ Otsin(gi(k)  Vin, (k)3t cos(di (k) 0 0g, | [ otsin(@i(k))  Vin, (k)5t cos(y(k)
[ cos(dik) —sin(di(r) ][ 202, 0 cos($i(k) 0t sin(gi(k) 4
o sin(qgi(k)) cos(éi(k)) 0 5t2VTii(k)UiL Sln((;5 (k)) 5tcos(¢1-(k))
~ (57‘;20"2/ 0 T3
= C(oi(k) 0 5t2V2(k)03)_ C* (¢i(k)) 4)

whereC(¢;) denotes the rotation matrix associated with
The landmarks are modeled as static points in 2D space, and therefore the state propagation equations are

Xp,(k+1)=Xp,(k), for i=1...N
Hence, the estimates for the landmark positions are propagated using the relations
XLik+l|k:XLik|k7 fori=1...N

while the errors are propagated by B
XL4k+1|k = XLin, fori=1...N

Using these results we can now write the error propagation equations for the entire system, compfisirapofts
andN landmarks:

i UiVl(k) ]
Gr (k) Oaxo -+ 0O2xo ¢1(k)
022 Gry(k) -+ O2x2 wy; ()
Xk+1|k = I§><§Xk,|k+ d)Z(k)

02><2 GT‘]\/[(k) :

02N><2M 'U,}\,VJ\/I (k)

L om(k)

& Xpppp = PEXppr + Gy (k) W (k) )

1Throughout this papef),, x» denotes then x n matrix of zeros1,,, x», denotes then x n matrix of ones, and., x, denotes the: x n
identity matrix.
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where¢ = 2M + 2N is the size of the state vector of the entire system, defined as the stacked vector comprising of
the positions of the robots and landmarks, i.e.,

Xy

The covariance matrix of the system noise is given by

Q) = E{Gik)WEWT®)G] (x)}

E{G1(yW1()W{ (0)GT (1)} -+ Osrs
- : ; 0207 x2N
02x2 s B{Gu )W (R)Wi (k)G (k)}
- O2n <2 O o
[ Q) o 022
= : : 0207 2N
O2x2 - Qpy, (k)
L 02N x2m 02N x2N
= G,Q. ()G, ©
where
G, - [ Lovixam ] = Gy ® Iy, with G, = [ Tnixm } -
02N x2M O xt
and
Q. (k) = Diag (Q,, (k)) @®

i.e., Q.(k) is a block diagonal matrix with elemeng,, (x), ¢ = 1...M. Thus the equation for propagating the
covariance matrix of the state error is written as

Pii1k = P + GoQ, (1) G ©)

whereP |, = E{)N(kﬂ‘kf(kﬂl o andPy, = E{)N(k‘k)N(kT‘k} are the covariance of the error in the estimate of
X (k4 1) and X (k) respectively, after measurements up to tirteave been processed.

2.2 Measurement Model

At every time step, the robots perform robot-to-robot and robot-to-landmark relative position measurements. The
relative position measurement between robgtndr,,, is given by:

Bty = CT(¢1’) (X

Tm

~ X))+, (10)

wherer; (r,,,) is the observing (observed) robot, and , = is the noise affecting this measurement. Similarly, the
measurement of the relative position betwegand L,, is given by:

ZriLn = CT(¢%’) (X, — X))+ MLy (11)

The similarity of the preceding two measurement equations allows us to treat both types of measurements in a uniform
manner. We denote I3¥;; the target of thg-th measurement performed by rolipie.,

T;; € {ri,ra,--- ,ra, L1, Lo, -+ , Ly} \ {ri}
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Thus, the general form of the relative position measurement equation is:
Zij = CT(¢1) (XTij - Xﬂ) + Nzij (12)

Assuming that the-th robot performs\/; relative position measurements, the ingexssumes integer values in the
range|[l, M;] to describe these measurements. By linearizing the last expression, the measurement error equation is
obtained:

Zij(k+1) = 2zij(k+1) — Zij(k +1)

= CT(él(k + 1)) (XTU k+1lk X:Ti k+1\k) - CT(qgl(kJr 1))J (XTM k+1llk Xf‘z: k+1\k) dz(k+ 1)+ Tzi; (k+1)

X,
= T (s 1 1) [ 022 —Ioxo ... Ioxa ... O2xe ] f
T4 Tij ~
. X1,
L e
T2 —~ nfjj(k+1)
+ [ Inxa —C7(i(k+1)JApy; } [ Bilk+1)
= Hij(k+1))~(k+1‘k + ik + g (k+ 1) (13)
where
0 -1 —~ A A
J = [ 1 0 } ) Apijk+uk = X7 e = Xri s

and we note that the measurement matrix for this relative position measurement can be written as

. 0 R R ... 0 .
Hij(k+1) = CT(ik+1) [ e = 2 P20 = CT(ik+1)H,,  (14)
T Ti]'

At each time instant robatrecords); relative position measurements, described by the measurement Hatkix- 1),
i.e., a matrix whose block rows afé;; (k + 1), j = 1... M;, i.e.:

CT(Qgi(k""l))HOil
cT Aik—‘rl I{Ov2

Hi(k+1) = (0t : Ve =E] (k+ 1V H,, (15)
CT(&Z(’C + 1))H01M7¢

in the last expressioHl ,, is a constant matrix whose block rows dfg, ., j = 1... M;, anqu;/ (k+1) = Inrxm, ®

C(¢;(k +1)), with ® denoting the Kronecker matrix product. The covariance for the error gf-theneasurement of
roboti is given by

‘Rjjk+1) = Tk + )E{ni;(k+)nf(k+ DIk +1)
= R.,(k+D)+ Rj (k+1) (16)

This expression encapsulates all sources of noise and uncertainty that contribute to the measuremgi errpr
More specifically,2.,, (k + 1) is the covariance of the noisg; (« + 1) in the recorded relative position measurement
Zij(k+ 1) andR@ (k + 1) is the additional covariance term due to the etsgr + 1) in the orientation estimate of the

J

measuring robot. This is given by:
T, 7 —~ ~ 2 —~T T R
Rq;ij(k—i-l) = C (¢i(k+1))JApijk+ukE{¢i }Ap%”kJ C(pi(k+1))

= 0207 (4, Apyy,. . Bpy, - JTC(6;
= 05,07 (Pik +1))JApy ., Apij, ., ] C(dilk+1)) 17)
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From this expression we conclude that the uncertai‘@;yn the orientation estimatg; (k + 1) of the robot is amplified
by the distance between the robot and corresponding landmark.

Each relative position measurement is comprised of the disignead bearing;; to the target, expressed in the
measuring robot’s local coordinate frame, i.e.,

pij(k + 1) CcOS 9”- (k + l)

pij(k+1)sin6;;(k + 1) + 1z, (k+1)

zij(k+1) = [
By linearizing, the noise in this measurement can be expressed as:

coS 91‘]‘ _ﬁij sin 91‘]‘ ure (k+1)
sin Gij ﬁij COS 9”- neg,; (k+1)

nzij (k+ 1) = [

wheren,, . is the error in the range measuremen,, is the error in the bearing measurement, assumed to be inde-
pendent white zero-mean Gaussian sequences, and

LA
Jk+1k pijk+1\k

1522]' = Ap

Oij = Atan2(Ay,;, o Azg,,) — Gilk+1)

are the estimates of the range and bearing to the landmark, expressed with respect to the robot’s coordinate frame. At
this point we note that

[ cosdi(k+1) —sindy(k+1)
| sin ¢5i(k+ 1)  cos éi(k+1)

[ cos(Gilk+ 1) +0i5)  —piysin(Gsk+1) + 0y;) } { My (k+1)
L sin(@i(k+1) +0i5)  pijcos(@i(k +1) + 0i5) ng,; (k +1)

C
= [ &8, JBp, | {

Np,; (k+1)

COS éij _ﬁij sin éij
) ) ng,; (k+1)

C($ilk+D)na, (k+1) = sinf;;  pijcosby;
¥ ) ]

Npy; (k+1)
neij (k" + 1)

and therefore the quantity. . (k + 1) can be written as:

R (k+1) = E{n. (k+1)nl (+1)}
T4 e N oy 1[0 | LA ~ 1" i
= CT(@Gk+1) | EBpy; JBpy | B po || e | &B8py JBpy; | Ok )
: v = >0 =~ ~ 1T -
= CT(di(k+1)) ﬁ%APij JAp;; } [ 06” o2 ] [ [,%.Apij JAp;; } C(gi(k+1))

02.A —~T

p: 2 7as AT o ;
5~ Ap;;Ap;; + 05, JAp;; Ap;;J > C(pi(k+1))

= CT(Qgi(k +1))

T~ T

Pij
— T 0 (2 Iors — T Dy B0 ITY 4 03 TKp BT €6
= (¢i(k +1)) 52 (pz'j ax2 — JAP;;Ap;; )Jraeq-, Dij AP (¢i(k+1))
ij
T/ 2 s Oh = oTor ?
= C (gitk+1)) | 0, lax2 + Uei—ﬁg JAp;iAp;;J° | Cli(k + 1)) (18)
ij

where the variance of the noise in the distance and bearing measurements is given by
2 2 2 2
Upi = E{an} » O, = E{n&}

respectively. Due to the existence of the error component attributeg(tor 1), the exteroceptive measurements
that each robot performs at a given time instant are correlated. The matrix of correlation between the errors in the
measurements;; (k + 1) andz;¢(k + 1) is

‘Rjk+1) =

Ly (k) E{nij (k + 1)ny(k + 1)}, (k)

N — —~T ~
= 0, CT(di(k+ 1))]Apijk+1‘kApMk+”kJTC’(@(k +1)) (19)
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The covariance matrix of all the measurements performed by ficditdhe time instant + 1 can now be computed.
This is a block matrix whosewn-th 2 x 2 submatrix element i4R,,,,,, for m,n = 1...M;. Using the results of
Egs. (17), (18), and (19), this matrix can be written as

Ri(k+1) =E; (k+1)Ro,(k+ 1)E (k+1) (20)
where
2 2 2 o oA o 2 7 an AT T
U/JiIQXQ t\os, t05 — ﬁ?l ‘]ApilApil‘] s O¢; ‘]ApilApiMi‘]
Roi(k + 1) = . .
2 JA A\T T 2y 2 2 o0, AL A\T T
04, JAp;pr, APy J cor 0pdaxa + | 0y, +0g, s JAD;pr, APipg, T
2
2 2 2 . Ul)ij T
=o0p,lanxan + Di(k+1) | 09, INxN + 04, Inxn — diag 7 D; (k+1)
2
2 . Tp;; T 2 T 2 T
= 02 Ianxan — Di(k + 1) diag 5 D!'(k+1) 405, Di(k+ 1)DY (k + 1)+ 02, Di(k + 1)1nxnDi (k+1)
~~ Ro(k+1) Ry(k+1)
Ri(k+1)
(21)
where e
JApi1k+1\k N 02><1
Di(k+1) = : : : = Diag (JApijk,H‘k)
02><1 JApUWik+1|k

is a2M; x M, block diagonal matrix, depending on the estimated positions of the robots and landmarks. In Eq. (21)
the covariance tern®; (k + 1) is the covariance of the error due to the noise in the range measureilgts; 1) is

the covariance term due to the error in the bearing measurementBzand 1) is the covariance term due to the error

in the orientation estimates of the robot. The measurement nH{rix- 1) describing all the measurements that are
performed by the robots at time step+- 1 is a matrix with block rowsH ;(k +1),i =1... M, i.e.,

E; (k+1)H,, H,,
8, (k+ 1 Ho,, H,,

Hk +1) = 2 — Diag (Efg (h+ 1)) 2 =Tk )H, (22)
EZ;M k+1)H,,, H,,

whereE(k + 1) = Diag (E&i (k+1) ) is a block diagonal matrix with block eIemerE;m(k +1),fori =1... M,

andH, is a matrix with block rowsH ,,, ¢ = 1... M. Since the measurements performed by different robots are
independent, the measurement coviarance matrix for the entire system is given by

R(k+ 1) = Diag (R, (k + 1)) = Diag (EZR (k+ 1)5&) — =Tk + DRy (k + DE( +1) (23)

whereR, is a block diagonal matrix with block elemen®&,,,i = 1... M.
We now write the covariance update equation, which is

—1
Priijptt = Pryip — Prape H  + 1) (Hk + DPryr s H (k + ) + R+ 1)) Hk+ Py

= Pk:+1\k
_ T =T T =T = “hgr
PrippHo B +1) (B (v + DHPppp Ho Bk +1) + 87 (k+ DRo(k+ DEMR+1) ) B (k+ DHoPriq
-1
=Pii1p — PropHY (HoPppp HY + Rok+1)) HoPppqp, (24)

In order to derive the last expression, prop&ty(k + 1) = = ' (k + 1) was employed. This property is a consequence
of the definition of matrixZ(x + 1), and the fact that the rotation matrices sati§f{/(¢;) = C~1(¢;).
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Note that in the formulation presented up to this point, the measurement and covariance matrices have been par-
titioned based on the subsets of measurements that are performed by each robot (cf. Egs. (22) and (23)). A different
partitioning, however, turns out to be more convenient in the study of the asymptotic properties of the covariance
matrix of the position estimates. Specifically, we permute the block s + 1) of H(k + 1) (and equivalently, the
block rows H,,; of H,) so that all the robot-to-robot measurements are stacked together. The measurement matrix
H'(k +1) that arises is related H(k + 1) by the transformation

H@k+1)=PHEk+1) < HE+1) =P TH (k+1) (25)

whereP is an appropriate permutation matrix. As a result of this permutation, the covariance matrix of the measure-
ments is also transformed by a similarity transformation, yielding the new covariance matrix

R'(k+1) = PR(k+1)PT & Rk+1)=P'R(k+1)P (26)
Similarly, the transformations
H (k+1)=PHy(k+1) < Hy(k+1) =P TH, (k+1) (27)
and
R (k+1) = PRo(k+1)PT & Ryk+1)=PIR.(k+1)P (28)

are defined. The permutation of the rows of the measurement matrix is selected so as to yield a measurement matrix
in which the robot-to-robot measurements correspond to the first block roH$ef- 1). As a result, the matri¥]
can be partitioned as
Hr Oonrppxon
!/ 2 RR

Ho - H1 H2 (29)
where Mgp is the total number of robot-to-robot measuremeiils; is a 2Mgzr x 2M matrix describing these
measurements. Due to the structure of the measurement equations, each>of ffieblock rows ofH z has a special
form. Specifically, the block row that corresponds to the relative position measurement between;rabdis is

HRi]. = O2xo ... —Isyo Ioyo ... Ogxo (30)
~—— ~—~
i—th block j—th block

In Eq. (29)H, is a2Mpry, x 2M matrix, andHs is a2Mg;, x 2N matrix, whereM g, denotes the total number of
robot-to-landmark measurements. E&ch ¢ block row of the submatriff; H,] describes one such measurement,
and thus the block rows di; andH, have special structure. If robef measures the relative position of landmark
L,,, then the following block rows exist ikl; andH- respectively:

lem = Ooyo ... —IQ><2 .. O9xo and thn = 022 ... IQXQ ... O2xo (31)
£—th block m—th block

At this point we note thaH!/ can be expressed as

H 0
H,=H QI3 = Hlf M?I';XN ® Ioxo (32)

where the matricefl!, Hr, H, and H, are easily derived froril’, Hr, H; andHs, respectively.
Substitution from Egs. (27) and (28) in Eqg. (24), and application of the proferty= P7', which holds for any
permutation matrix, an equivalent expression of the covariance update equation of the EKF:
T T -1
Pritjotr = Proaje — PrgapHy (HoPrppHy + Ro(k+1))  HoPrpp
= Piapp — Prprp HI P (PTHLP Ly HI P+ PTR(k+1)P) PTHLP
-1
=Py — P pHY (HLP o HY + ROk +1)  HLPyyqp (33)
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3 SLAM Positioning Accuracy Characterization

3.1 The Riccati Recursion

The metric we employ in order to characterize the positioning performance of C-SLAM is the covariance matrix of
the robots’ and landmarks’ position estimates. By combining Egs. (9) and (33) we derive the discrete-time Riccati
recursion, that describes the time evolution of the covariance matrix:

-1
Piiopr1 = Pryipe — PrgpHY (HUP o HY + RO+ 1) H Py + GoQr(k + DGL
This recursion provides the value of the covariance matrix at each time step, right after the propagation phase of the
EKF. To simplify the notation, we s@®;, = P;,_ ), andPy 1 = Py o141, and therefore we can write
Piy1 = Pp—P.HT (H,P,HT + R (k+1)  H,Pj+ G,Qu(k+ )G (34)

We note that the matriceQ,.(k + 1) andR. (k + 1) in this Riccati recursion are time varying, and this does not allow
the derivation of any closed form expressions for the time evolutiddgfin the general case. We therefore have to
resort to derivingooundsfor the covariance of the C-SLAM position estimates. The following two lemmas are the
basis of our analysis:

Lemma 3.1 If R/, andQ,, are matrices such thaR! » R/ (k) andQ, > Q,(k) for all k£ > 0, then the solution to
the Riccati recursion

u u u u -1 u
ko = Pp—PiH] (H,PYH) +R,) H,P} +G,Q.G] (35)
with the initial conditionPy = P, satisfiedP} > Py, for all & > 0.

Lemma 3.2 If R’ andQ, are matrices such th&’ = E{R/ (x)} andQ, = {Q..(k)} for all £ > 0, then the solution
to the Riccati recursion

P = P.—PHT (HPH! +R) H/P:+G,Q.G, (36)

with the initial conditionP, = P, satisfiesP;, = E{P;} forall k£ > 0.

Essentially, Lemma 3.1 maintains that in order to derive an upper bound evotisecasecovariance matrix of
the position estimates in C-SLAM, it suffices to deriygper bounddor the covariance matrices of the system and
measurement noise, and to solveamstant coefficierRiccati recursion. Similarly, Lemma 3.2 states that an upper
bound on theexpectedoositioning uncertainty of C-SLAM is determined as the solution of a constant coefficient
Riccati recursion, where the covariance matrices of the system and measurement noise have been replaced by their
averagevalues. The proofs for these lemmas are given in Appendices A and B respectively. In the remainder of

this section, we derive appropriate upper bounds, as well as the average values of the Qaticesnd R (k)
respectively.

o Derivation of upper bounds for Q,.(k) and R/, (k)

In order to derive an upper bound for the covariance ma&l;ixt) we note that (cf. Eqgs. (4) and (8))

Qry (k) -+ Oax2
Qr(k) = : : (37)
O2x2 -+ Qry (k)
where

§t?o, 0

— g f T2,

From the properties of rotation matrices it is known tﬁml(éi(k)) = CT(éﬁi(k)), and thusQ),., (k) is related by a
similarity transformation to the matrix
{ &20‘2/7: 0 }

0 5tV (K)o,
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which implies that the eigenvalues @f., (k) aredt*o{, anddt>V,2 (k)o;, . We assume that the velocity of each robot
is approximately constant, and equalfo and denote

¢ = max (6t%07,,6t*V,2 (k)03 ) ~ max (6t°0f, , 0t° Vo)) (38)
This definition states thaj is the largest eigenvalue ¢f,, (), and therefore
Qr; (k) =2 gil2x2 = Q. (k) = Diag(gilax2) = Qu (39)
In order to derive an upper bound fBr, (k) we first derive an upper bound f&, (k), and employ the property
R, = Ro(k) = PR,P" = PR,()P" = R,k

The upper bound o, (k) is obtained by considering each if its block diagonal elemeRis k). Referring to
Eqg. (21), we examine the ternds, (k) , Ro(k) and Rs(k) separately: the term expressing the effect of the noise in the
range measurements is

Ry(k) = 02 I xan — Di(k) diag | =5- | Df (k) = 02 Ianwon (40)

ij

The last matrix inequality follows from the fact that the term being subtracted rﬁj’)m Nx2n IS a positive semidefi-
nite matrix. The covariance term due to the noise in the bearing measurement is

Ro(h) = 03, D;(k)DY (k)
. 2/A (0 )
. ) in2(0;,) sin(6;;) cos(;,)
2 Diag (p2 | (%) 200,
0, D1ag | pj; sin(gij)cos(eij) COSQ(Qij)
ggiDiag (ﬁ?jl2><2)

o5 p2lanxon (41)

A TA

wherep, is the maximum range at which a measurement can occur, determined either by the characteristics of the
robots’ sensors or by the properties of the area in which the robots move. Finally, the covariance term due to the error
in the orientation of the measuring robothg (k) = JiiDi(k)leNDiT(k). Calculation of the eigenvalues of the

matricesl vy and Iy y Verifies thatl yxny < NIyxn, and thus we can writ@s(k) =< NaiiD,»(k)DiT(k). By
derivations analogous to those employed to yield an upper bourg,fey, we can show that

Ry(k) = No3 polanxon

By combining this result with those of Egs. (40), (41), we can wRlig(k) = Ry (k) + Rz (k) + R3(k) = R}, where

R} = (0,3,. +N0’§sipz+0(§ipi) Ianxon = rilanxan (42)
with
Ty = ‘7/2” + N aiipi + aﬁi pi (43)
Thus, we can write
R, (k) = Diag(R,, (k)) < Diag(riIn,xnm,) = Ru (44)

Therefore an upper bound f&, (k) is given by

R/ (k) < PDiag(rila,xn,)P" =R,

u
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e Derivation of the Expected Values ofQ, (k) and R/ (k)

In order to derive the average value@f (k) we note that

St2o?, 0

_ . k3 T A,

52 oy cos?(¢;) + vz (k)oii sin?(¢;) (a%,i - V,?Li(k)aii) sin(¢;) cos(¢;)
B (0‘2,1_ - Vii(k)aii) sin(¢;) cos(¢;) ot sin?(¢;) + %8 (k)a(i cos?(¢;)

and therefore, by averaging over all values of orientation, the expected valie(sf is derived:

o2 +VZie?
E{Q.,(k)} = 5752%-,%2 = Gilax2
where , )
o, +Vio
,i _ (StQ \% oY
e 2
Thus,

E{Q,(k)} = Diag(E{Q,,()}) = Diag(Gilax2) = Q, (45)
The average value @&/ (k) is derived by first considering the matik, (x), and employing the property

E{R,(n} = E{PR,®P"}
= PE{R,(1}P"
= PE{Diag(R., (k) }PT
= PDiag(E{R,,(k)})PT (46)

We therefore see that the average values of the maties:), ¢ = 1...M need to be determined, in order to
computeE{R/ (k)}. From Eq. (21) we note that evaluation of the average valuR Hfk) requires the computation
of the expected values of the following terms:

—~ ~T
Ap;jAp;; T ~ T
1= T = Ap;;Ap;j, and T5 = Ap,;;Ap;, (47)

ij
for j,¢ = 1...M;. The average value @, is easily derived by employing the polar coordinate description of the
vectorApij in terms ofp;; andé;;, which yields

—~ —~T

Ap;iAp;;
T —
Pij
_ 1 p3cos*(0:) P sin(0iy) cos(Biy)
P | P sin(0;;) cos(6;) Pz sin’(0,5)

_ [ cos?(By;) Sin(éij)cfﬁ(éij)}
sin(;;) cos(6;5) Sin2(9ij>

From the last expression we conclude that for any probability density function that guarantees a uniform distribution
for the bearing angle of the measurements (i.e., any symmetric probability density function), the average value of the
termT; is

1
E{Th} = 512><2
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In order to compute the expected value of the tefandT3, we assume that the robots and landmarks are located
in a square arena of side and that their positions are described by uniformly distributed random variables in the
interval[—«a/2, a/2]. We can thus write

—~2 —~ —~

Az, AJ:/U\Azy” }

E{ Bay

Ay, Az Ayi;
_ E{a} — 2z + 2} E{zjy; — x5y — Ty + Tiyi}
| Elyjzj — yimi — yizj + yiwi} E{y} — 2y;yi + v}

[ 2E{x?} 0
0 2B{y}} ]

—~ ~T
E{T2} = E{ApijApij}

and similarly,

~  ~T
E{T3}:E{ApijApié} = E{

Ay AL
Ayij Az Ayij Ay,

— [ Blajoe —wiwy — xjei+ a7t Blagye — x5y — viye + viyi}
| E{yjze —yiei — vize +yixit E{yye — yive — yivi +vi}
L 0 E{y}
-
- |z 9
0 %
Q
- 9
12 2%2

These results enable us to obtain the average value of the ma®ices, i = 1... M. Employing the linearity of the
expectation operator yields

R; = E{R,,(k}
(%051 + %O—ii + éo—gi> IQXZ e %O—iiIQXQ
%O—iilgx2 - (%0’31 + éO’ii + %Ugi) .[2><2
1 1 1 1
= <205i + ﬁg‘?”" + 603i> Iong o + Eaii (Laz, 501, ® Toxc2)

The average value @&, (k) is therefore

R = E{Rq(k)}

Diag(R;) (48)

while the average value &/ (k) is B B
R =PTRP
3.2 Steady State Covariance Bounds

Lemmas 3.1 and 3.2 allow the evaluation of upper bounds on the worst case uncertainty and on the average uncertainty
of the position estimates in C-SLAM, ahytime instant after the beginning of the exploration task. This can be triv-
ially achieved, for example, by numerical evaluation of the solution to the recursions in Egs. (35) and (36) respectively.
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It is well known that in C-SLAM the covariance of the landmarks’ position estimates decreases monotonically, and
asymptotically assumes a steady state value. Thus, for many applications, it is important to charactstézalyhe
stateaccuracy of the estimates. In this section, we determine an upper bound on the asymptotic value of the covariance
matrix, by deriving the limit ofP¥ andP;, after sufficient time, i.e., a8 — oc.

We note at this point that the Riccati recursions of Egs. (35) and (36) essentially describe the time evolution of the
covariance of the position estimates in two hypothetical C-SLAM scenarios, where the system model is a Linear Time
Invariant (LTI) one. Therefore, the problem of computing the upper bounds on the steady state positioning uncertainty
in C-SLAM reduces to the problem détermining the steady state covariance matrix for a LTI C-SLAM system model
In the following, we consider a C-SLAM scenario with the following LTI system model:

Xok+1) = X,(k)+ Gowo(k) (49)
zo(k) = H X,(k) 4 no(k) (50)

where the measurement covariance matrix is a constant matrix equal to

R, RQ] 3 [Rl Ry

Ty _ —
E{no(k)no(k) } - Rs - |: Rg“ R3 R%’ Rg

] ® laxo = Rs ® Iaxo (51)

while the system noise covariance matrix is the constant matrix
E{w,(kywo(k)} = Qs = Qs ® Iaxo (52)

For this LTI system model the time evolution of the state covariance matrix is described by the following Riccati
recursion:

P, = Pj-PiH] (H,PiH] +R,)  H,P}+G,Q.GI (53)
After deriving the steady state solution of this recursion, we employ the substitutions
R, — Ry, Qs — Qq

and _ _
R, — R/, Qs - Qr

in order to obtain the steady state solutions of the Riccati recursions of Lemmas (3.1) and (3.2) respectively.
Our analysis is based upon the following result, which is proven in [8] (Section 8.6, Lemmas 8.6.2 and 8.6.3):

Lemma 3.3 SupposeP,EO) is the solution to the discrete-time Riccati recursion
Piy1 = FP.FT + GQGT — (FP.HT + GS)(HP,H' + R)" (FP.H + GS)7, (54)

with initial value P, = 0. Then the solution to the Riccati recursion with the sgtheG, H} and{Q, R, S} matrices,
but with an arbitrary initial conditionlI, is defined by the identity

-1
Poir — P9 = Ok +1,0) [I + noo,gm] To®® (k + 1,0)”

whered!”) (k + 1,0) is given by
O (k +1,0) = (F — K,H)" ' [I + PJyi]

and .
O;(sC ) = Jrt1

In these expressions is any solution to the Discrete Algebraic Riccati Equation (DARE)
P=FPF" +GQG" — (FPHT + GS)(HPH" + R)"*(FPH" + GS)7,

K, = (FPHT +GS) (R+ HPHT)™" and J, denotes the solution to thaial Riccati recursion with zero initial
condition, which, in the casg = 0, is written as

Jyy1 = FLFT + H'R'H - FT ,G(Q ' + GT JL,G) ' F, Jy=0
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Introducing the substitutions
P, —P;, GG, Q<Q,, H<H, R<R, 500y
allows us to specialize Lemma 54 to our problem as follows:

Lemma 3.4 SupposePZ(o) is the solution to the Riccati recursion
i1 = Pi-PiH] (H/P{H] +R,) H,P}+G,Q.G] (55)
with zero initial condition. Then the solution to this recursion when the initial covariance matrix is an arbitrary

positive semidefinite matri, is defined by the relation

o1 =P = 0O (k4 1,0) [Texe + Modpsr] " T (k +1,0)” (56)

where
(0) I ' =1 g\ P

O (k +1,0) = (Iexe — PH (R + HL,PH) " H,)  [exe + PIpi] (57)

In these expressio is any solution to the Discrete Algebraic Riccati Equation (DARE)
P-P-PH/ (R, + H,PH”)  H/P + G,Q.G’
andJ; denotes the solution to thlkial Riccati recursion with zero initial condition:
TR —1gy/ T 1 AT
Jr+1 :Jk+HO RS HO_JkGo (QS+GOJkGO) GoJk, J():ngg (58)

In order to derive the steady state valueRjf, we will evaluate Eq. (56) in the limit &% — oo. To this end, we

first evaluatdimy,_, o PZ(O), i.e., the steady state covariance of the position estimates when the initial uncertainty is
zero, and then we evaluate the limit value of the right hand side member of Eq. (56). In the derivations that follow, it
will be convenient to manipulate the matrid$ andJ ), as partitioned matrices, i.e.,

Ps PsT J 37
s _ TrE Lry d J. = TTk Lry 59
k { p: P, } and Jy [ I Iin ] (59)

where the matrice®;, andJ,,, are2M x 2M matrices corresponding to robots’ position estimai®g; and
Jrr, are2N x 2N matrices corresponfing to the landmarks’ position estimates, \Hjil,% andJ,, are2N x 2M
matrices, corresponding to the cross-correlations between the robots and landmarks.

3.2.1 Solution with Zero Initial Covariance

The derivation of the steady state vaIueR;j(O) can be greatly simplified by considering the physical interpretation

of the quantities that appear in Eq. (53). This Riccati recursion describes the time evolution of the covariance of the
position estimates for a LTI C-SLAM scenario, in which the initial covariance majx,is zero. This implies that

our initial knowledge about the position of the robots and landmarks is perfect. The landmarks are static, and thus the
estimates about their position willt degrade as time progresses. The maltp,, will remainequal to zero, for

all time stepsk > 0, and sincePi(o) is a positive semidefinite matrix, we conclude that the mdajx. will also

remain equal to zero. The physical interpretation of this is that the robots actually perform map-based localization
with a perfectly known map, while simultaneously recording relative position measurements between them. The
measurements of the landmarks’ positions are equivaleatigolutemeasurements of the robots position, based on a
perfect map. We note that by application of the matrix inversion lemma, the Riccati recursion can be expressed as

b = Pi-PiH] (HP{H] +R.)  H,P}+G,Q.G]
— (Texe — PiHY (HUP{HI + R,) ™ H,) P} + G,Q.G]

— (Iexe + P{HR;'H,) ' P} + G,Q,G!

TR-2004-0004 14



Setting
ps — | P Oaen
k O2nxom Oanxan

yields

—1
Py, O2p1%2N P’ O2prx2nN L, I} P’ O2prx2N T
1 — I + TTL Lr TTL + G G
Oonxom  Oanxon ex¢ Oonxanm  Oanxeon Ip, Ipp O2nx2nv  O2nxan QsGo

- -1
Lyison + P35, Ly P2LTT P, Oauxon +G,Q.GT
02N x2Mm Ianxon Oonxaom  Oanxon os o

i 02N xom Ionxon Oonxaonv  Oanxon

+ G,Q,G!

- 1

_ | (Lemxem + P35 L) PP Oongon } +G,Q.GT (60)
O2nx2Mm Oanxon °

-1 -1 s
| (Bvsxen +P5, 1) = (Lmxen + P35 L) P2 TE H | Ozszzv}

where we have defined

H:)TRs_lH/o = (HLT & I2><2) (Rs_l ® I2><2) (H(/, & I2><2)

[ HYF\Hp + HYFTHy + HYFyHy + HTFyHy, HLFyH, + HY FyH,

HIFI Hp + HY F, H, HY FyH, @l

ITT‘ I{r
N I, Irp } ®© Izxz

_ [ L. I,
In, Ipp

with

R = R'®Dho
- -1
R R
AL
(Ry — RyR;'RY) ™ (R RQRglRQT)’liQRf
| —R4R} (Ri — ReR;'RY) (Ry— RYR'R,)

PR
= I FQ’}' Fj :| ®I2><2

® I2><2

At this point we note that the quantitiés. and/,.,. can be expressed alternatively as:

_ I _ I
L. = Luxem Oonxon |H)R;'H, MM and I, = [ Inxm Onwnr |HJ)R;'H, M (e1)
O2n x2nm On M

These expressions are simpler, and will be useful in expressing the final result in a more intuitive form.
The Riccati recursion faP7,. is derived from Eq. (60):

S S _1 S S
Pl = (Iovison + P, L) P+ Qs Pl =02nmx2um (62)

At this point we note that all the matrices that appear in this recursion can be expressed as the Kronecker product of
some matrix with the x 2 identity matrix, while the initial value of the recursion is zero. Employing the result of
Appendix C we conclude that at any time step- 0, the solution to the recursion will be of the forfy, ® I,
whereP;,. isaM x M matrix. The time evolution of}, is described by the Riccati recursion

—1
Pjrk+1 = (IMXM—i_PﬁTkIT‘T) Prsrk +QS, Pﬁro = 021 x2Mm
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and its steady state value can be found by solving the equation

Py = (Inxm+ P35 1,) ' P +Q.
— (P2 1) +Q, 63)

Pre- and post-multiplying the last expression@y'/? yields

B . 3 _ . -1 _
Qs 1/2PT7’OOQS 1/2 = Qs 1/2 (Prrool + I”’T) QS 2 + IJWX]W =
P o= (P7'4C) " 4 I (64)

where we have defined
71/2 (65)

P, =Q; 2P} Q;

TToo
and
C=QY1,,Q\?

At this point we employ the singular value decompositiorCofvhich we denote as
C =UAUT = U diag(\)UT

and Eq. (64) is written as

P, = (P7'+UAUT) ' 4 Iyr =
UTPU = UT(P'+UANT) T U+ UTU >
UTP,U = (UTP7'U+UTUAUTU) T U+ UTU

butUTU = I and by defining
P,,=UTP,U (66)
we can write
P, = (P,i+ A)_1 + I
In order to find a solution foP,,,, in the last equation, we assume tliat, is diagonal, i.e.,
P, = diag(Pyn,) (67)

In that case we can find the diagonal elemdnis,,i = 1...2M by solving theM equations

1 —1
Pun, = <P+)‘i> +1, i=1...2M (68)

This is a set of\/ equations with scalar unknowns, that can be trivially solved, yielding

111
po—ty L
o EVa Tt

Since P}, _ represents a covariance matrix, all tRg,,’s are positive, and thus we only keep the positive solutions.
Finally, substitution in Egs. (66) and (65) yields

1T 1
PS_ = QYU ding (2 N E) Uy
1 T 1
PO = P @Iy = (Q;/sziag <2 N \/;) UTQ;/2> ol )
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Note that the above is one solution to Eqg. (63), that was derived based on the assumption of Eq. (67). However, the
system of thelM robots performing cooperative localization with absolute position measurements is an observable
one [9]. Additionally, this is a controllable system, as we can easily verify. Therefore the algebraic Riccati equation in
Eg. (63) has ainglesolution [8], the one given by the last expression. For future reference, we note that by application

of the properties of the Kronecker product, the maﬁ&ﬂl can be alternatively written as
5(0) 1277 a0 1 o1 T1/2
P2 =1Q/Usdiag | =+ /- +— | U Q; (70)
o0 2 4 A,
where the quantitieBJ; and A, are defined as the modal matrix and the eigenvalues respectively of the matrix
C=Q)*1,Q)?

and satisfy
Us =U ® oy, diag(boldsymbolls,) = diag(\;) @ Iaxo

Finally, the steady state solution of the Riccati recursion in Eq. (35) with zero initial condition is given by

Ps(o) _ Pfg(iz 02M><2N ] _ [ ( i/QUdlag (% + \/ i + )\LL) UTQi/z) 0M><N

®I2><2 (71)
Oonxonm Oanxon ONx M Onxn

3.2.2 Solution with Nonzero Initial Covariance

In this section we determine the steady state solution to Eq. (35), when the initial covariance is a nonzero matrix.
Although it is possible to derive a closed-form solution in the general case, in which the initial covariance matrix is an
arbitrary positive semidefinite matrix, the resulting expressions are cumbersome, and do not provide intuition about
the structure of the problem. Therefore, we here present the analysis for the case in which the estimates about the
robots’ and landmarks’ positions are initially uncorrelated, i.e., the initial covariance matrix is of the form

_ _ P, 0211 %2N
Mo = P(0) = Oanxon Prr, (72)

whereP,.., andP ., are arbitrary positive semidefinite matrices. We first derive two necessary intermediate results.

e Steady State Solution of the Dual Riccati Recursion

The derivation of the steady state solution to the dual Riccati recursion in Eq. (58) is simplified by exploiting
the special structure of the measurement and information matrices. Specifically, we observe that all the matrices that
appear in the dual Riccati recursion (Eqg. (58)) can be written as the Kronecker product of some matFix yyignd
the initial value of this recursion is zero. Employing the result of Appendix C, we conclude that at any time instant the

solution to this recursion will be of the form
T T
Jk _ |: Jrrk Jer :| — ']k ® IQxQ _ |: Jrrk ‘]er

® I
Jirme  JLr, ] 2x2

Jore JroL,
The dual Riccati recursion in Eq. (58) leads to the following Riccatifar

T T 1 Z [T TE ][ e TE
JLreer JLLiss Jore  Jri, I, Ipp

_ |: JTTk Jgrk :| |: (Q;1+J7"T‘k)_1 OMXN :| |: JTTk Jgrk :|
Jor,  JrLr, Onx M OnxN Jire  Jrr

which can be decomposed in the following recursions:

_ —1
Jrrk+1 = Jrrk + Irr - Jrrk (Qs ! + Jrrk) Jrrk (73)
_ —1
JLT]C+1 = JLTk + ILT - Jrrk (QS ! + Jrrk) Jer (74)
Jiree, = Jope + 1o —Joe (@5 + Jrrk)_l . (75)
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Now we can determine the steady state solution to each of the submatrix elemefténdependently. Setting

Jrrwsr = Jrr, = Jrr, (i.€., sOlUtion at steady state) in Eq. (73) yields
Ly = Jop (Q7'+ Jor) ™ v (76)
or
QYVL,QY? = QY21 QYQI VA (Q7 + Je) QIVPQY2 0 QY =
UNUT = J (Ingxs + o) o =
A = UTTLUUT (Ingsns + Jn) ' UUT J,U =
A = Jon Tnisas 4 Jon) " Ton
where we have defined
Tn = QT QY 77
and
Jon = U T, U (78)

At this point we assume that,,, is diagonal, i.e.,J,,,, = diag (J,.»,), and by solving the set &M scalar equations

J2
)\i:¢

1+ Jon,

and back-substituting in Egs. (77) and (78), we derive the final expression:

A A2
Jrroy = Q;1/2U diag (2 + \/F> UTQ;1/2 (79)

Itis easy to show that the Riccati recursion in Eq. (73) corresponds to a system that is both controllable and observable,
and therefore the derived solution is unique. The makyix_ can be written as

Ai DY
Jrrm - (Qs_l/QU dlag <2 + Zz + )\Z> UTQS_I/2> & .[2><2

2

A A
= Q?U.diag [ * +1/ 7 + A, | UTQSY? (80)

In order to derive the steady state value/gf.
yields

we set/r,, ., = Jrr, = Jrr. iN EQ. (74) and solving fody,.

k417

Tire = Ird il (Q7H + Jirl) (81)
Finally, we note that Eq. (75) can be written as

JLLk+1 - JLLk = ILL - JLTk (Qs_l + Jrrk)_l J{Tk

In this expression, the right-hand side is independedi.@f , and, after sufficient time, it approaches a constant value
given by

. ) _ —1
kliﬂgo Jirey, —Jin, = khj{)lo I, = Jir Q7+ Jony)  JL,,
_ —1
= Inp—Jor, Q7'+ Jer) JL,

We thus conclude that at steady state the téfm, increases at a constant rate, i.e.,

Jrr,, = (ILL —Jr (@5 + Jrroc)il Jgrw) k+Je
= Juk+ . (82)
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whereJ. is a constant term. In the derivations that follow, the exact value of this term is not required. We only require
knowledge of the sum of the elements.ff i.e., the quantityl ; « v J.1nx1. This is computed by noting that the sum
of all the elements of the matrix, is equal to

LivousnyJklixonen)y = Lixmdrr Ivxt + 211N Jor Iux: + LixvJon, Inxg =
LixnJon Inxg = Lixousn)Jelixovsn) — 2VixnJorm st — LixarJrr, Larxa
Evaluating this expression at steady state yields
Lixn (Jak+Je) Inxt = lixuen)Joolix Ny = 2Vix NI rr Lrxt — Lixar Jrro Larxa (83)

In Appendix E it is shown thatank(J,) = N — 1, i.e., J, is rank deficient, having one eigenvalue equal to zero.
The eigenvector associated with the zero eigenvalue is shown{% bg 1, which implies thatl; x v J,1nyx1 = 0.
Moreover, in Appendix D it is shown that the sum of all the elements of mdjris equal to zero, foall £ > 0. Thus

Eq. (83) yields

LixnJednx: = —2Lixndrro st — Lixar e, Larxa (84)

At this point we show that « x Jr,, = —11xnm Jrr., - Substitution from Eq. (81) yields

LixnJore, = linIpeJot (Q7+ Jel)
But in Appendix E (cf Eq. (133)) it is shown that « x 1. = —11x a1 and thus
11><NJL7"oc - _11><J\/[I7"7"Jq;=ic (Qs_l + Jrrx) (85)

Substitution forlrr from Eq. (76) yields

11><NJL7"<,c - _llxkfjrroc (Q;l +Jrroc)_1 J’I”T‘OOJ;"; (Q;l +Jrrm)
== _llxMJrroc (86)

which is the desired result. Using this property in Eq. (84) we obtain

LixnJednxr = 2licmdrr Inxts — LixarJrro 1arxa
= LixmJdrro 1arxa (87)

e Evaluation of the Term ®{”) (k + 1, 0) at Steady State
Recall thatb”) (k + 1,0) is defined as
(0) T ' =1 g\ P

0 (k+1,0) = (Iexe — PHI (R + HUPH) T H,) [Lexe + PJpu]

whereP is any solution to the DARE
P =P -PH” (R, + H,PH/) ' H/P + G,Q.G”
It is easy to show, by substitution, trﬁﬁéo) (cf. EqQ. (71)) satisfies this DARE and therefore
1 k+1
O (k+1,0) = (LExg _psOygT (Rs + H;ngO>H;T) H;) {ngg + P;()O)JkH] (88)
Application of the matrix inversion lemma (cf. Appendix G) yields
1 —1
Iexe — PAOH (R + HUPXOHT ) H, = (Iexe + PAYH R, 'H,)

= ARz
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where

1
e Inxm + PS5, L, P35I

Onxar Inxn
We note that
C=UNUT = QYV%I,QY%=
I, = Qs—l/QUAUTQS—l/Z

and thus the\/ x M principal diagonal submatrix of equals

v+ Pi Ly = Inn + P Q7Y PUAUT QY2
1 1 1
= Iuxum+ (Q;”U diag (2 +y1t A_) UTQ;/Q) Q;VPuaUT QY2

N /a2
= Iyyeum + QY2U diag (2 + j + /\i> urQ Y2

, 2
= QY?U diag (1 + % + AZ + )\i> urQ;Y/?

= QY?Udiag(f(\))UTQ;'?

where
i A2
) =14+ i )
Fw) + 5 + 1 + N

At this point we employ the eigendecomposition of matrix A. It is easy to verify, by carrying out the matrix multipli-
cations and applying the formula for the inversion of a partitioned matrix (cf. Appendix H), that

A=vLv—!
where 12 12
I [ diag (f(A:)) Onxar ] and V = [ SU —IGMT ] [ QTU @,
Onsxnr Inxn Onxm  Inxn Onxnr Inxn
with

P A

We can now write

1 k+1 )
(Fexe - PRI (R HPORT) B = (47 )
— A*(k+1) s IQ><2
— VY-t -1
and
-1 k+1
Jim (ngg —P:OHT (RS + H;ngmH;T) Hﬁ,) = Jlim 170 oA Ve

=V ( lim L(k“)) vl

k—oo
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But

lm L-G+D [ T diag (FO0) 7Y O ]
koo L Onxm ]}V’XJV
. . 1\ kD
_ limy_, oo diag (m) ONx M ]
Onx Inx N

o Opmxn Onxs
| Onxnr Inxn

sincef();) > 1. Using the last result we obtain

1 k+1
lim <I£x£ —-POnT (Rs + HZPZEO)HLT) HL) v ( lim L—<k+1>> vl

k—oo k—o0

_ Omxm o
Onxnr Inxn

Moreover,

|: INXN+P7§TOCJTTOC PTSTOQJETOC :| ®I2 9
X

; 5(0)
klggo {ngg +P Jkﬂ} On s Inxn

and thus Eq. (88) yields

S s T
lim (I)(O)(k + 170) _ O]WXM ‘bo ® 12><2 IN><N + P’I'TOQJTTOO PTT‘ooJLToo ® IQ><2
koo P Onxn Inxn On s Inxn

Ovxm Do
{ Onxnm  Inxn 22
O2arx2m Do @ I2x2
Oonxom Tonxon
n

We can now evaluate the steady state valuB pby computing the limit of the left hand side member of Eq. (56) after
sufficient time. We denote

[ P By ] = lim (74 ToJpa] ™ Tho (89)

and we obtain
5(0)

lim (PZH - Pk+1)

k—oo

Jim. O (ke +1,0) [I + Mo jg1] " M@l (k +1,0)T

T (0) P, B
= kh—>noloq)p (k+1,0) |:Pc Pd:|

_ Oonrsomr @o ® Ioyo P, B Oonrxont P ® Ioyo
Oonxonm  Tonxon P Py Oonxom  Tonxon

lim @ (k+1,0)"

k—o0

_ (o ® Iax2) Pa ((I)Z®IQ><2) (®o ® Iox2) Pa
Py (T @ Irx») Py

From the last expression we conclude that only Byesubmatrix is required in order to determine the steady state
value of Pj. Substituting from Egs. (72) and (59) yields

-1
PT‘T’Q 02M><2N :| |: JTTk J%:rk :|> |: P"'?"O 02M><2N

(90)

lim [I+Tpdpe] Ty = lim | Tewe +
k—m[ 0J 1] 0 lc—><>o(§x5 |:02N><22M Prr, Jore JroL, Oanxom Prr,
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_ —1
_ lim I2M><2M + 1:.7'7'0*]7'7';C P7‘7'0J€rk PTTU 02M><2N
koo | Prr,Jir, Ionxon +PrroJror, Oonxom  Prr,
— lim [ A A P,y  Oanxon
k—oo | Az As Oonxom  Pri,

[ APy, AsPprp,
klggo | AP, A4Prp,

ThusP; = lim,_, A4P 11, where the matrixd, can be computed by application of the formula for the inversion of
a partitioned matrix, given in Appendix H. This computation yields

Pd = khm A4PLL0

= klglgo (]2N><2N +Prrodrr, — Proodim (Toarsans + Prgdin,) ™! Pm)J{r,c) Prr,

But ask — oo,
Jor, = Jr,, =Jak+J¢

At this point, in order to simplify the following derivations, we assume g}, is invertible, although a (considerably
more involved) solution can also be derived in the caseBhat, is singular. Thus we can write

Py, = lim (I2N><2N +PrrJir, —PrroJdor, Lomrxonms +Prrgdrr,) PrroJer> Prr,

(P¢¢+Lk+L—JMAbMMM+PMJMQ 'P,., 7, )

= lim (Juk+ D) (1)

—1
= hm LLO +Jrr, — Jor, Toprxans + Prrgder,) ™ PT?”OJer)

where we have denoted
Dk - P + J JLTk (IQZWXQM + Pr'rg']rrk) PTTOJer

In Appendix E it is shown thal,, = J, ® I>«2 is singular, and thus computation of the limit in Eq. (91) is not trivial.
However, we can now employ the following lemma, whose proof can be found in Appendix F, to determine the limit
in Eq. (91).

Lemma 3.5 If Y is a symmetric square matrix, whose singular value decomposition is denoléd-a8 AU”', and
By, is a matrix of compatible dimensions whose limitias> oo exists, then

Jim (Y& + By) ™' = Un(UR BoUn) U (92)

if the matrixUZ% B, Uy is inveritble. In the last expressidiiy is a matrix whose column vectors form a basis of the
nullspace ofy".

The column vectors of the matr%lel ® I>«o form a basis to the nullspace &f, and thus, by settinfy — J,
andB; — D, we can now write

Py = lim (J.k+Dy) "

k—oo

-1
1 1 1 1
—1 ® I —1 ® I — ® I —1 ® I
(\/N Nx1 2><2) ((\/N 1xN 2><2) (\/N Nx1 2><2)> (\/N IXN 2><2>

(Inx1 ® Iax2) (Lixn ® Iox2) Doo (Inx1 ® Iax2)) ™ ! (Lixn ® I2x2)
Inxn @ (Lixn @ Taxa) Doo (Iyx1 @ Taxa)) "
= 1yxn®0O;!

TR-2004-0004 22



where®, is a2 x 2 matrix defined as
©; = (Lixn ®I2x2)Doo (Inx1 @ I2x2)
(Lixw @ Boxz) (PLE, + 3o = I (arsons + Pondpr )" Prg 3L, ) (It @ Ioc2)
(Lixn ® I2x2) PZiO (Inx1 ® Iax2) + (Lixn ® Iax2) (Je @ Iax2) (Inx1 @ I2x2)
— (11w @ Taxa) Ir, (Tonsxons + Prpgdrr ) Pl (Inx1 ® Ioyo)
= (Lixn® 12><2)PZ£0 (Inx1 ® Iax2) + (LixnJelnxi) @ Ioxo
— (Lixw @ Iox2) I oo, (Iznaxons + Prngdrr ) Pl (Inx1 ® Ioyo)
Using the result of Eq. (87) the last expression yields
O, = (Lixv® szz)PZh) (Inx1 ® Iax2) + (Lixndrr Inx1) @ Toxo
— (L1 @ Taxea) I oo, (Tonsxons + Prpgdrr ) Prro']zroo (Inx1 ® I2x2)
= (Lixn® Isz)Pzio (Inx1 ® Iax2) + (Lixn @ Tax2) Irr, (st ® Tox2)
— (Lixn ® Iox2) I, (Tonrxam + PrroJrroc)_l Pm)Jfrw (Inx1 ® Iax2)
Employing the propertyt « nJrr.. = 11xmJrr,, (Cf. EQ. (86)) we obtain
O, = (Lixnv®@ D) Prp (Inx1 © Ioxa) + (Lixn @ oxz) Jrry, (Inxa @ Ioxz)
— (Liscar @ Toea) Jor (Ioagscant + Prrgdrr) PrroJpr, (Larsa @ Toxo)
= (Lixn® Isz)Pzio (Inx1 ® Iax2)
+ (11><M ®IQ><2) (JT’I‘OQ _J’I‘Toc (IQXQ +PTT0JTTOQ)_1PTT0JTTOQ> (1Z\4><1 ®IQ><2)
_ _ 1
= (Lixn ® Iox2) PL};O (Inx1 ®Ioxo) + (Lixm @ Toxa) (Jmtc + P7"r0) (Iarx1 ® I2x2)

where the Matrix Inversion Lemma (cf. Appendix G) has been employed in the last line. Finally, substitution in
Eg. (90), yields

. s s _ (o ® Inx2) (Insxn @ O;Y) (2L ® Inya)  (®o ® Ioxa) (Inxn ® ©1)
lim (Pii —Pry) = -1 T -1
k—oo (1N><N®®s ) ((I)O ®I2><2) Inxn @ O

Applying the property of the Kronecker product in Eqg. (126) we can write
(AInxn ®O;Y) (2T ® Lhxa) = (Inxn®l)®@O;"
= (Iyxilixn®!) @ 0"
and similarly
(Po ® Ioxz) (Ivxn @ O71) (87 ® Iaxz) = (Polyxn®;) @ O
= (Polnx1lixn®) ® ©!
But
Lixn® = —1ynIp I
= 11><MITTIT_T1
= lixum
and thus
ti (P, - PLY) - (Polnsalin®y) ® O (olnxalicn) ® O
koo \ R i (Inxalixn®?) @ O] Iyxn ® O]

_ [(1Mx111xM)®95_1 (1M><111><N)®®s_1}
(Anxilixy) @O ! Inxy ® 971

= larrmxen) © 07
We synopsize the preceding analysis in the following lemma:
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Lemma 3.6 The steady state value of the covariance matrix in LTI C-SLAM Eq. (53), when the initial value of the
covariance matrix is

P, 0217 x2N
Py = 0 93
0 [ Oanswom Prr, ] (©3)
is given by
1/2 : 1 1 1 TL/2
V2u,d (f Jr )U 2 B
Pgo _ l Q sdlag | 5 + 4 + As; s Q 2M x2N + 1(]L1+N)><(M+N) ® @S 1 (94)
02N x2Mm O2nxanN
with
_ _ -1
O, = (Lixn® szz)PLiO (Inx1 ® Iox2) + (Lixar ® ox2) (I +Prpy) (Larxs ® Ioxa)  (95)
and
-1/2 . )\s,- )‘i TN—1/2
Jrr. = Q. /°U,diag 2L + 41 +2As, | U, Q; (96)
Where we have employed the definition
C=Q;'’1,,Q;/? = U, diag(A,,) UL
with
L, = Luxem  Ozmxon }HQTRfH/O { Loarxon ] 97)
: Oanx2m

3.3 Steady State Covariance Bounds

In this section we present the main results of this work. It was shown that an upper bound on the uncertainty of C-
SLAM is determined from the solution of the Riccati recursion in Eq. (35). At steady state, i.e., after sufficient time,
the upper bound on the covariance of C-SLAM is evaluated by employing Lemma 3.6. We note that replacing the
matrix R with R/, in the definition ofL,.. (cf. Eq. (97)) yields

_ I _ Loy, ,
[ Larxan Oonrson |HORGTH, | 2A0M = [ Luson Oonixon |HIPTPRIPTPH, | MM
O2n x2Mm Oanxonm

— I
= [ Laxem Oavxen | =HIR,'H, [ OQMXZM }
2Nx2M

The following lemma holds:

Lemma 3.7 When a team ao#/ robots moving in 2D performs C-SLAM wii¥i landmarks and the initial covariance
matrix of the position estimates is

P, O2nrx2N
P, = To 98
0 [ Oonxen  Prr, ] (%8)

the upper bound on the steady state uncertainty of the position estimates is determined by

1207 di (l \/i) TOl/2
P = [ Q. Udiag (3 +4/7+x ) U Qu" Ozmxan F LN (M) © o;! (99)
O2n x2Mm 02N x2N
with
_ _ -1
O, = (1ixy ®I2x2) PLJILO (Inx1 ®Inxo) + (Lixm @ Ioxa) (,]Mtc +P) (Larxs © fays) (100)
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and

+X | UTQ, 2 (101)

by 2
T = Q' *Udiag | T+

Where we have employed the definition
C=Q;'’1,Q,"? = Udiag(\,)U"

with

" - I ,
I, = [ Ioprxone O2nrx2N ]HOTRulHO { 0221\]?2]15 ]
<M

The quantitie®,, and R, depend on the accuracy of the robots’ sensors, and are defined in Eqgs. (39) and (44) re-
spectively.

Similarly, the upper bound on tlexpectedteady state covariance of the position estimates in C-SLAM is derived
application of Lemma 3.6, for the Riccati recursion in Eq. (36):

Lemma 3.8 When a team al/ robots moving in 2D performs C-SLAM witth landmarks and the initial covariance
matrix of the position estimates is

P, O2p1x2N
Py = 0 102
0 [ O2nsom Pri, ] (102)
the upper bound on thexpectedsteady state uncertainty of the position estimates is determined by
AL/27T A 1 1 1\ 7T Hl/2
= F°Ud s+4/7++ ) U'Qr 0 =
P, = [ lag(2 T 4+)\i) Q ZM 2N +1(M+N)><(M+N)®® ! (103)
O2n %20 Oanxan
with
= _ = -1
O = 1ixw® sz2)PLi0 (Inx1 ® Iox2) + (L @ Iowa) (I, 4 Prry) (Larxa ® Ioxz)  (104)
and
I V—1/277 3; Ai Xig . | TTTO—1/2
Jrroc = Qr Udlag 3 + 4 + >‘z U Qr (105)

Where we have employed the definition

C = Q Y1,,.Q;'/? = Udiag(X;,) U7
with
= — _ I
L, = [ Luxen Oanxeny |HIRT'H, { P ]
2N xX2M
The quantitie€),. andR depend on the accuracy of the robots’ sensors, and are defined in Egs. (45) and (48) respec-
tively.

4 RPMG Reconfigurations

Up to this point, we have assumed that the topology of the RPMG remains constant. However, it is interesting to study
the behavior of the covariance matrix of the position estimates in the case of RPMG reconfigurations. In this section,
we derive upper bounds for the steady-state covariance matrix of C-SLAM, after the RPMG changes. The following
results are only presented for the LTI C-SLAM system model, since their extension for the bounds on the worst-case
and average covariance is straightforward.
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4.1 Reconfiguration before convergence

We first address the case where the topology of the RPMG chbefeesteady state has been reached. At the time
instant when the change in the graph’s topology occkysthe covariance matrix of the position estimates of the
robots and landmarks will be a positive definite mafix . This matrix can be viewed as the initial covariance matrix

of C-SLAM, with the new RPMG topology. Thus an analysis similar to that presented in the previous section can
be employed, to evaluate the asymptotic uncertainty. Compared to the preceding section, the difference in this case
lies in that the initial covariance matrix is not block-diagonal, and thus the value of the nFafriletermined by the
expression in Eqg. (89), should be re-computed. We now obtain

P B : ’ -1 : -1 ’ -1
e Py | =AU PeTin] Pr = i [P T (109
where the primed quantities refer to the RPMG topology after its reconfiguration. By defining the partitioning
P—l _ Wrr W’I‘L
ko ™ |Wir, Wip
the previous expression can be written as
- W, W, B (<A AN
i 1 ’ 1 - 5 T rL TR Lry,
el [Pi, + ] Hoo <[WLT W) " I Jor, (107)

Employing the formula for the inversion of a partitioned matrix, we obtain:

Py = lim (WLL + 350, = (Wee +35,) (Wep +3,,) 7 (W + J/LTT;C))il

AS k — oo,

Loy = I, =Jok + I,
Thus we can write

Pp = lim (3 k+Dj)" (108)
where we have denoted
Dy =Wrp+J3.— (Wr, +J3%,.,.) (We + Jlmr,ﬁ)il (W, +J37,)

By application of Lemma 3.5 yields, similarly to the previous section:

Py = 1yxn®0,! (109)
where®’, is defined as
O, = (11xn @ Iax2) DL (Inx1 ® Iox2)

= (Lixy ® Iax2) (WLL I (Wo 35, ) (W +30, ) (W, + J’g;x)) (Inx1 ® Toxo)

= (1ixn ® Iox2) Wi (Inx1 @ Ioxa) + (11 @ Taxa) I7 . (Larx1 ® Tox2)
(

+ ((Lixy @ Iox2) Wi — (Lixnr ® Iox2) I0 ) (I + Wrrrl (Lixn @ Iox2) Wiy — (Lixar @ Tox2) J)., )
(110)

In the last expression, we have once again used the result of Eq. (87), and the pteperty, . = lixarJrro,
(cf. Eq. (86)).

Clearly, all the remaining derivations for the steady-state covariance withewd&RkPMG topology remain un-
changed. This is given by:

T

1/2y77 1 1 1 1 1T y1/2
s S U diag | 5+ ,/7 + > U Qs 0 -
P = 8 <2 10 Q PMEN L 1 e x (i) © O (111)
O2nx2m O2nxon

where@’s‘1 is defined in Eqg. (110), and all the primed quantities correspond to the new RPMG topology.
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4.2 Reconfigurations after convergence

A special case of interest arises when the RPMG reconfiguration oaftersteady state has been reached. In order

to compute the asymptotic covariance after the topology change, we can once again view the covarianB, veerix

the initial covariance matrix of C-SLAM with the new RPMG. Since the covariance has converged to its steady-state
value prior to the reconfiguration, we have

Qi/QUS diag (% +,/+ )\15_ ) UzQi/Q O2n7 % 2N
02N x2M O2nx2nN
= P9+ 1oinycmuin) ® O (112)

Py + Ly x (v @ O3

o

Thus the new value of the matrig; is determined by the equation

P/ P/
Pcl Pd/

= lim (I+P, ;) Py

o
k—oo

1
klin;o (I + (PZ&O) + 1 Nyx(M+N) @ @;1) ,llc+l) Py,

where the primed quantities refer to the RPMG topology after its reconfiguration. At this point we note that

(Lasnyxa+m) @O ) T = (Lo xusny i) © 057

= Ogxe
Using this result, the preceding expression simplifies to

P/ P : s -1
(o] = (e e

From this expression, we obtain
P/ = 1yxu®O;! (113)

and thus the asymptotic covariance with the new RPMG topology is given by In this case, the upper bound of the
asymptotic covariance after the reconfiguration, is given by [10]:

Pi; = Piéo)' F L Nyx Ny © o' (114)

WherePigo))/ is defined as in Eq. (71), but with all quantities corresponding to the new RPM@ asdlefined in
Eq. (95).

It should be stressed at this point that, while the upper bound on the robots’ uncertainty depends on the structure
of the new RPMG, the upper bound on the landmarks’ covarianickeigical to the value of the bound prior to the
RPMG topology change. This result implies that once steady state has been reached and in the absence of any new
external positioning information (e.g., from GP&)) measurement strategy can reduce the uncertainty of the map
features’ positionsThis is a consequence of the fact that, at steady state, the uncertainty of the map lies entirely in the
unobservable subspace of the system, whose basis comprises the column vectors of theynatixl, «o. Since
the unobservable subspace of the system does not change when the topology of the RPMG changes, unless absolute
positioning information becomes available (e.g., in the form of GPS measurements), it is impossible to improve the
accuracy of the landmarks’ position estimates.
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A Upper Bound Riccati Recursion

In this appendix we prove thatR,, = R] (k) andQ,, = Q. (k) for all £ > 0, then the solutions to the following two
Riccati recursions

Py = P, —PH) (H,PH + R,k + D) HL Py + GoQ, (k+ 1)GT (115)
and
fa = Pp—PiHT (HPYH] +R)) H,P} +G,Q,G] (116)

with thesameinitial condition, P, satisfyP}' = Py, for all £ > 0. The proof is carried out by induction, and requires
the following two intermediate results:

e Monotonicity with respect to the measurement covariance matrix
If R; > Ry, then for anyP = 0
P - PH” (HPH” + R,)  HP + Q, - P — PH” (HPH” + R,)  HP +Q, (117)

This statement is proven by taking into account the properties of linear matrix inequalities:

Ri = Re=
HPH” +R; = HPH" +R, =
(HPH +R,) < (HPH' +R,) =
PH” (HPH” +R,) HP =< PH’ (HPH' +R,)  HP =
~-PH” (HPH” +R,)  HP » —PH’ (HPH' +R,) HP =
P-PH" (HPH" + Rl)’1 HP+Q, = P-PH" (HPH" + Rg)’1 HP + Q,

e Monotonicity with respect to the state covariance matrix

The solution to the Riccati recursion at tirke+ 1 is monotonic with to the solution at tim, i.e., if Pg) and

Pf) are two different solutions to the same Riccati recursion at fiqneith P,(:) = P,(f) thenPEiZ1 > P,(fll.

order to prove the result in the general case, in WITPéH andP,(f) are positive semidefinite, we use the following
expression that relates the one-step ahead solutions to two Riccati recursions with id&@n@cahdR matrices, but
different initial valuesP\" andP'* ([8]). Itis

In

P2, —P —F,, ((P,(f) - Pﬁj)) - (Pf) - P,S)) HT (HP}f)HT + R) H (P}f) - P,g1>)) FT, (118)

whereF, j is a matrix whose exact structure is not important for the purposes of this proof. Since we have assumed
Pg) = P,(f) we can WriteP,(f) - P,(Cl) = 0. Additionally, the matrix

(P - (") HT (HPPHT + R)H (P - P{)

is positive semidefinite, and therefore we have

- (P -P)H" (HPPHT + R)H (P -P[)) < 0=

(P -P) - (P -P)H" (BPPHT + R)H (PP -P)) = 0=

B (PP -P) = (PP - P)HT (HPPHT + R)H (P - P[V)) FT, < 0=
Pl(fll - chlle =0
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The last line implies thal)gj1 = P,(jzl, which is the desired result.

We can now employ induction to prove the main statement of this appendix. Assuming that at some timé instant
P} > P,, we can write

PY, = P!-PUHJ (HPYH] +R,) H,P! 4 G,Q.G!
- P,—-PH] (H,P,H’ +R,)  H,P, +G,Q,G’
= P, P;HT (H,P;HT +R.,) H,P; + G,Q,(k+ )G
= P, - P;HT (H,PHT + R(k+1)  HLP; +GoQ,(k+1)GT =Py

where the monotonicity of the Riccati recursion with respect to the covariance matrix, the pr@peryQ, (k + 1)

and the monotonicity of the Riccati recursion with respect to the measurement covariance matrix have been used in the
last three lines. ThuB; = P; = P, = P;, . Fori = 0 the conditionP} = P; holds with equality, and therefore

for anyi > 0, the solution to the Riccati recursion in Eq. (115) is an upper bound to the solution of the recursion in
Eq. (116).

B Riccati Recursion for the Upper Bound on the Average Covariance

In this appendix we prove thatR’ andQ,. are matrices such th&' = F{R/ (x)} andQ, = {Q..(k)} for all k > 0,
then the solutions to the following two Riccati recursions

Pii = Pp—PHT (HPHT + R (k+1) H Py + GoQ(k+ )G, (119)
and
P = P,—PHT (HPH! +R) HP;+G,Q,.GT (120)
with the sameinitial condition, Py, satisfyP; = E{P,} for all £ > 0. We first prove a useful intermediate result:
e Concavity of the Riccati recursion

We note that the Riccati recursion
Pey1 = Py—PH" (HP.H" + R,M)‘1 HP, + GQps1G (121)

can equivalently be written as
_ P. 0 I
nostro[5 4 [3]
H

SR | N R S R R KNI
+GQr41G

our goal is to show that the above expression is concave with respect to the matrix

o a]
0 R

A sufficient condition for this is that the function

f(X) = AXB(CXC") ' BTX AT (122)
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is convex with respect to the positive semidefinite makixwhenA,B,C are arbitrary matrices of compatible dimen-
sions. This is equivalent to proving the convexity of the function of the scalar vatiable

fult) = A(X, +t20) B (C(X, 4+ t2,)CT) "' BT (X, +2,) AT (123)

with domain those values offor which X, +¢Z, = 0, X, = 0is convex [11].f;(t) is convex if and only if the scalar
function

FL(#) = 2T A(X,y + tZo) B (C(Xo + tZ,)CT) ™ BT(X, + t2,)AT 2 (124)
is convex for any vectot of appropriate dimensions [11]. Moreover, it is well known that a function is convex if and
only if its epigraph is a convex set, and therefore we obtain the following convexity conditigii Xor.
f(X) convex < {s,t|zTA(X, +tZ,)B (C(X, + L‘ZO)C'T)_1 BT (X, +17,)ATz < s} is convex
However, from the properties of Schur complements it is well known théyg i+ 0 then

{AO B,

B C. ] ~0&C,—BIC;'B>-0

In our problem, the matrix’'(X, + tZ,)C7 is clearly positive definite, and thus we can write

C(X,+tz,)CT BT(X,+tZ,)ATz

T T\~ 1 T T
2 A(Xo+tZo)B (C(Xo +tZ,)CT) " BT (Xo+tZ,) ATz < 5 & { STACX, +12,)B 5 =

However, the defining matrix inequality of the epigraph is equivalent to

T RTy AT T RT 7 AT
cX,C BXOAZ}+t|:CZOC BZOAZ]+S[

0
2TAX,B 0 2TAZ,B 0 1

0
HE
which defines a convex set {n, ¢) [11].

Thus, by the preceding analysf$.X) is a convex function, and consequenfly, ; is a concave function of the

matrix
P 0
0 Rpy

We now employ this result to prove the main result of this appendix. The proof is carried out by induction. Assuming
that at time ste the inequalityP;, = E{P} holds, we will show that it also holds for the time step- 1. We have

Piyy = P,—PHT (HPLHT + R (k+1)  H,P,+G,Qk+1)G! =
E{Py1} = E{Py—PH] (H,P,HT +Ri(k+1)  HPi+G,Q(k+ 1G]}
= FE{P,-PH] (H,P,H + R, (k+ 1>)‘1 H P.} + G,E{Q(k+1)}GT
< E{Pi} — B{PJH] (H,E{PJH] + E{R,(:+1)}) H,E{P} + G,E{Q(k+ 1}G!

where in the last line the concavity of Jensen’s inequality was applied [11], in order to exploit tht concavity of the
Riccati. By assumptior®; = E{P;} and employing the property of the monotonicity of the Riccati with respect to
the covariance matrix (cf. Appendix A), we can write

E{Pry} = Pp—PyHT (HPHT + E{R)(k+1)}) H,Py + G E{Q(k + 1)}G
= P,-PHT (HP,H” +R'})” H,P\ + G,Q,G”
= Pk+1

Thus,P, = E{P;} = Py1 = E{Py,1}. Fork = 0 the conditionP, = E{P;} holds with equality, and the proof
is complete.
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C A Special Case of the Riccati Recursion
In this appendix we prove the following lemma:
Lemma C.1 Consider the following general form of the Riccati recursion
X1 = Xi + A — X;B” (BX,B” + C) ' BX,
with Xj;, A € R2"*2n B € R?™*2" andC € R?*™*?™ _ |f the initial value of this recursion is of the form
Xo = Xo ® Iax2

and additionally
A:A®I2><2, B:B®IQ><2, C:C®I2><27

with Xy, A € R"*", B € R™*™, andC € R™*™ then the solution for alk > 0 can be expressed as
Xip =X ® Iaxo
with X, € R»*™,

Proof We prove this statement by induction. Assuming that for some, X, = X; ® I>x2, then we can write

X1 = X;+A-X;B"(BX,B" +C) ' BX,
= X;i®laxos + AR Izxo

-1
— (Xi ® Iox2) (BT @ Inx2) ((B ® Iny2) (X; ® Iox2) (BT ® o) + (C® I2><2)) (B® Ix2)(Xi ® Izx2)

At this point we use the following properties of the Kronecker Product:

WoD+Y®D=(W+Y)®D (125)
(W@ D)(Y ® E) = (WY) ® (DE) (126)
WeD)'=Ww'lteD! (127)

Applying Egs. (125) and (126) with = E = I54, Yields
(B ® Izx2) (Xi ® Iax2) (BT @ Inx2) 4+ (C ® Iaxa) = (BX;B" + C) ® Iax2
Applying the property of Eq. (127), we obtdiBX; BT + C) ngg)fl = (BX,;BT + 0)71 ® I»xo. Hence,

Xit1 =X ®Ioxo + AR Iaxo — (Xi & sz2) (BT & sz2) ((BXiBT +C0) '@ I2><2) (B ® Isz) (Xi & szz)
=X; @ Ixz + A® Iz — (X;B"(BX;B" + C)"'BX;) ® I
= (X; +A- X,;B"(BX;B" + C)"'BX;) ® Irx»

Thus, wheneveX,; can be written as the Kronecker product of some matrix Wgthy, X, retains the same special
structure. Fori = 0, X is by assumption of the fortkiy @ I2.2, and therefore, the proof is complete.

D Sum of the Elements of],,

In this appendix we prove that the sum of all element$,a6 equal to zero for alt > 0, whenJy = 04 n)x (114 N)-
For this purpose we employ the method of induction. Assume that at time, step /4 n)Ji1(a4+n)x1 = 0. Then
from Eqg. (58) we obtain

_ _ ~1
LicouemJitiliusnyxt = Lixauren (Ji +HI'R;'H, — J;G (Q; ' + G J,G) GTJi) Lovsnyx1
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where

Tnesom
G =
[ Onxn }

But the sum of the elements of is zero, and additionallylx(A,4+N)H()TR;1H01(M+N)X1 = 0 since the vector
1(m+n)x1 belongs in the nullspace of the matiik,. Therefore, we can write
-1 T -1 47
Licouendis1lomanyxt = —lixuenJiG (Q; +GTJG)  GMJilmsnyxa
But J; 1 is a positive semidefinite matrix, therefore the sum of its elemenig, /4 ) Ji+11 (a4 n)x1 CANNOt be neg-

ative. The right hand side of the above equation is a non-positive number, since the(l@gtlrixr GTJiG) “is posi-

tive definite, and we conclude thibt, (a4 n)Ji+11(ar4+n)x1 = 0. We have thus shown thaf, (ar vy Jil a3y x1 =
0= 1w+ Jiv1lrsnyx1 = 0. Fori = 0 the statement we seek to prove is trivially true, and thus the proof is
complete.

E Rank of the matrix J,
In this appendix we prove that thé x N matrix

Ja = ILL - JLTOQ (Qs_l + J’/‘Too)il JIT;TOO
is of rank N — 1, and that%lel is its nullvector. Substitution for the value gf,,. from Eq. (81) yields

Jo = Ipp—Joe, (Q51+ Jrrocyl T,
= Ipp— I dl Q7+ Jer) Il I (128)
and using the result of Eqg. (76) we obtain the simple expression
Jo = Ipp—Ip 1ML (129)
In order to compute the rank of this matrix, we note tiiats the Schur complement @f.. in the matrix
H'RSVH, = { Ly 11, } (130)
coE e I Ipp

But the matrixH, is identical to the incidence matrix of the RPMG describing the relative position measurements.
Since the RPMG is assumed to be a connected gdpis of rankM + N —1[12]. As aresultd!” R;* H is of rank
M + N —1[13]. Moreover, the invertibility off,.. enables us to apply to following property of the Schur complement:

rank (H,'R;'H]) = rank([,,) +rank(Ip; — I, 1" I},) =
M+N—-1 = M +rank(Ip, — I, I L) =
vank(Ipy, — I, 1M E) = N—-1=
rank(J,) = N -1 (131)

We next show tha% 1«1 is the nullvector of/,. For this purpose it suffices to show that

Lixy (Inr —In M ) I =0 =

LisnInrlnsg — LisnIp I I vy =0 (132)
But from the structure of the measurement equations, it is easy to se@thatil = —1,.,/H{, and also
11><]\/[H£ = OlXMRR- Therefore
LiunIye = Llicn (HYFY Hg+ Hy FyH))

= —lixum (HlTFgTHR +H1TF4H1)
—liwm (H{ Ff Hr + H FyHy) — 11y (HR FiHg + H F>H)y)
= —liwn (HRF\Hgp+ H{ F{ Hp + H, FoHy + H FyH, )
= —Llixmlr (133)
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In a similar way we can show that .« v I 1nx1 = 1ixam L 1arx1, and thus Eq. (132) can be rewritten as
VisarLelarxs — Lisu L I Lol = 0=
11><MI7’7"1M><1711><MITT'1M><1 = 0
which holds trivially.

Finally, the rank of the matrid, = J, ® I>«> can be computed by application of the properties of the Kronecker
product. Specifically,

rank(J,) = rank(J, ® Iax2) = rank(J,) rank(Izx2) = 2N — 2

Thus theJ, has two eigenvalues equal to zero. The eigenvectors corresponding to these eigenvalues can be easily
determined by noting that

Jo (Inx1 ® Ioxa) = (Jalnx1) ® Ioxa = 0anx2
Therefore we conclude that two basis vectors for the nullspade affe given by the column vectors of the matrix

ﬁlel-

F Proof of Lemma 3.5

We denotd/ = [V Uy, whereV is a matrix whose column vectors form a basis of the rangé, efhile the columns
of Uy form a basis of the nullspace &f. Assuming that” € R™*", and that the nullspace &f is of dimensionm,
thenV € R™*P ,withp =n —m andUy € R™*™. We can thus write
(Yk+ Bp)™' = (UANUTk+ Bg)™*
= UWMk+U'BgU)TUT
_ Aok Opxm VT v
= [V UN]([OmXp Ome]—i_[U% B[V Uy | Ul

whereA, denotes @ x p diagonal matrix, whose diagonal elements are the nonzero singular valliesG#Hrrying
out the matrix operations yields

Ak +VTBV VTBUy }1 { VT ]

—1 _
Yk+By)™ = [V UN][ UL B,V ULBLUN Uy

Employing the formula for the inversion of a partitioned matrix (cf. Appendix H) yields

(Yk+By)™ = [V Un | {j; ﬁz } [ ng (134)
with
A, = (Aok + VT BV = VT B Uy (USBUN) ™ UﬁBkV) o
Ay = = (Ak+VTBY — VT BUN (UFBUN) UJEB;CVY1 VT ByUy (UL BRUN) ™
= AVTBUN (UEBUN) ™
A = —(UEBWUN) " URBY (Aok + VI BV = VI By (UFBWUN) Uﬁfzkv)_1
= — (ULBUN)  ULBLV
Ar = (UEBUN - UGBV (A + VT BYV) ™ VTBk.UN)il
Computation of the limits of these matricesktas- oo is now possible. We have
lm Ay = lim (Ak+ VT BY VI By (UFBWUN) UJEB,J/)_1

1 1 1 - -t
= Jlim = (AO + %VTBkV - EVTBkUN (UXBkUw) ! UﬁBkv)
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But assuming thdimy_.., By = B, exists (i.e, it is finite), we have

1 1 _
Jlim VB — VT BUN (USBUN) UGBV = 0y

and thus

1
lim A, = lim %Agl =0pxp

k—o0 k—o0

As a consequendémy_.o, As = Opxrm andlimy .o, As = 0, % . Finally, we have that

—1
lim (Ak+VTBV)™" = lim - <A0+ 1VTBk.V)
= Opxp
and therefore
Jim Ay = (ULEBUN)!
Substitution in Eq. (134) yields
0 0 VT
Yk B —1 — VvV U pPXp pXm
( + k) [ N } Om,><p (UEBOOUN)il :| |: U]’Z\; :|
= Un(UxBoUn)™'UR (135)
which is the desired result.
G Matrix Inversion Lemma
If Aisn xn,Bisn xm,Cism x mandD ism x n then:
(A"' + BC™'D)™' = A—- AB(DAB + C)"'DA (136)
H Inversion of a Partitioned Matrix
Leta(m + n) x (m + n) matrix K be partitioned as
A B
“=|o b

Where then x m matrix A and then x n matrix D are invertible. Then the inverse matrix &f can be written as

{X Y} _ [ (A—BD-'C)! _A'B(D - CA-1B)!

Z U _D'C(A-BD'C)"'  (D-CA'B)! (137)
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