
Performance Bounds for Cooperative Simultaneous
Localization and Mapping (C-SLAM)

Anastasios I. Mourikis and Stergios I. Roumeliotis
{mourikis|stergios }@cs.umn.edu

Dept. of Computer Science & Engineering
University of Minnesota
Minneapolis, MN 55455

Center for
Distributed Robotics

Technical Report
Number -2004-0004
September 2004

Dept. of Computer Science & Engineering
University of Minnesota
4-192 EE/CS Building
200 Union St. S.E.
Minneapolis, MN 55455
Tel: (612) 625-2217
Fax: (612) 625-0572
URL: http://www.cs.umn.edu/˜mourikis



Performance Bounds for Cooperative Simultaneous Localization
and Mapping (C-SLAM)

Anastasios I. Mourikis and Stergios I. Roumeliotis
{mourikis|stergios }@cs.umn.edu

Dept. of Computer Science & Engineering
University of Minnesota
Minneapolis, MN 55455

Robotics & Autonomous Systems Laboratory, TR-2004-0004

September 2004

Abstract

In this Technical Report we study the time evolution of the position estimates’ covariance in Cooperative Simul-
taneous Localization and Mapping (C-SLAM), and obtainanalytical upper boundsfor the positioning uncertainty.
The derived bounds provide descriptions of the asymptotic positioning performance of a team of robots in a mapping
task, as a function of the characteristics of the proprioceptive and exteroceptive sensors of the robots, and of the graph
of relative position measurements recorded by the robots. A study of the properties of the Riccati recursion which
describes the propagation of uncertainty through time, yields (i) theguaranteed accuracyfor a robot team in a given
C-SLAM application, as well as (ii) the maximumexpectedsteady state uncertainty of the robots and landmarks,
when the spatial distribution of features in the environment can be modeled by a known distribution.

1 Introduction

In order for a multirobot team to coordinate while navigating autonomously within an area, all robots must be able to
determine their positions with respect to a common frame of reference. In an ideal scenario, each robot would have
direct access to measurements of its absolute position, such as those provided by a GPS receiver, or those inferred by
detecting previously mapped features. However, reliance on GPS is not feasible in a number of situations, since GPS
signals are not available everywhere (e.g., indoors), or, triangulation techniques based on them may provide erroneous
results due to multiple reflections (e.g., in the vicinity of tall structures and buildings). Moreover, compiling a detailed
map of the environment is a tedious and time consuming process, while numerous applications require robots to
operate in unknown surroundings, whose structure cannot be determined in advance.

In situations where absolute position information is not available, the robots of a team can improve their local-
ization accuracy by recording robot-to-robot relative position measurements, and processing them in order to update
their position estimates [1, 2, 3]. This method results in a substantial improvement in estimation accuracy compared
to simple Dead-Reckoning localization schemes. However performing Cooperative Localization (CL) solely based on
relative position measurements has the limitation that the uncertainty of the robots’ position estimates continuously
increases, and the attained accuracy may not be sufficient for certain applications. An alternative approach is for the
robots to localize while concurrently building a map of the environment, in which case the uncertainty in their position
estimates remains bounded [4]. This introduces the problem of Cooperative Simultaneous Localization And Mapping
(C-SLAM) that has recently attracted the interest of many researchers.

In this Technical Report we study the time evolution of the position estimates’ covariance in C-SLAM and obtain
analytical upper boundsfor the positioning uncertainty. A study of the properties of the Riccati recursion which
describes the propagation of uncertainty through time, yields (i) theguaranteed accuracyfor a robot team in a given
C-SLAM application, as well as (ii) the maximumexpectedsteady state uncertainty of the robots and landmarks, when
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the spatial distribution of features in the environment can be modeled by a known distribution. In the next section the
problem formulation is presented, and in Section 3 the Riccati recursion is formulated, and the aforementioned bounds
for its steady state solution are derived.

2 Problem Formulation

Consider a group ofM mobile robots, denoted asr1, r2, ..., rM , moving on a planar surface, in an environment that
containsN landmarks, denoted asL1, L2, ...,LN . The robots use proprioceptive measurements (e.g., from odometric
or inertial sensors) to propagate their state (position) estimates, and are equipped with exteroceptive sensors (e.g., laser
range finders) that enable them to measure the relative position of other robots and landmarks. All the measurements
are fused using an Extended Kalman Filter (EKF) in order to produce estimates of the position of the robots and the
landmarks. In our formulation, it is assumed that an upper bound for the variance of the errors in the robots’ orientation
estimates can be determined a priori. This allows us to decouple the task of position estimation from that of orientation
estimation and facilitates the derivation of an analytical upper bound on the positioning uncertainty.

The robots’ orientation uncertainty is bounded when, for example, absolute orientation measurements from a
compass or sun sensor are available, or when the perpendicularity of the walls in an indoor environment is used
to infer orientation. In cases where neither approach is possible, our analysis still holds under the condition that a
conservative upper bound for the orientation uncertainty of each robot is determined by alternative means, e.g., by
estimating the maximum orientation error accumulated, over a certain period of time, due to the integration of noise in
the odometric measurements [5]. It should be noted that the requirement for bounded orientation error covariance is
not too restrictive: In the EKF framework, the nonlinear state propagation and measurement equations are linearized
around the estimates of the robots’ orientation. If the errors in these estimates are allowed to increase unbounded,
the linearization will unavoidably become erroneous and the estimates will diverge. Furthermore, large errors in the
estimates for the robots’ orientation in SLAM result in erroneous data association, that may have detrimental effects
on the filter stability. Thus, in the vast majority of practical situations, provisions are made in order to constrain the
robots’ orientation uncertainty within given limits.

In this work, C-SLAM is considered within theStochastic Mappingframework [6], [7]. We assume that the mobile
robots move randomly in a planar environment, while recording measurements of the relative positions (i.e., range and
bearing) of other robots in the team, and of static point landmarks that exist in the environment. A means of describing
the exteroceptive measurements that are recorded at each time step is the associatedRelative Position Measurement
Graph(RPMG), i.e., the graph whose vertices represent the robots and landmarks, while its directed edges correspond
to therobot-to-robotandrobot-to-landmarkmeasurements. We impose the constraint that the RPMG is aconnected
graph, i.e., that there exists a path between any two of its nodes. This constraint arises naturally and is not a restrictive
one, since if an RPMG is not connected, then it can always be decomposed into smaller, connected sub-graphs. Each
of these sub-graphs corresponds to an isolated group of robots and/or landmarks, whose position estimation problem
can be studied independently.

In our formulation, the metric employed for describing the accuracy of position estimation in C-SLAM is the
covariance matrix of the position estimates. It is well known that the time evolution of the covariance matrix in
the EKF framework is described by the propagation and update equations (cf. Eqs. (9) and (24)). Combining these
equations yields the Riccati recursion (cf. Eq. (34)), whose solution is the covariance of the error in the state estimate
at each time step, right after the propagation phase of the EKF. In the case of C-SLAM, the matrix coefficients in this
recursion are time varying and a general closed form expression for the time evolution of the covariance matrix does
not exist. We thus resort to derivingupper boundsfor the covariance, by exploiting the convexity and monotonicity
properties of the Riccati recursion (cf. Lemmas 3.1 and 3.2). These properties allow for the formulation ofconstant
coefficientRiccati recursions, whose solutions provide upper bounds for the positioning uncertainty in C-SLAM.

2.1 Position propagation

The discrete-time kinematic equations for thei-th robot are

xri (k + 1) = xri (k) + Vi(k)δt cos(φi(k)) (1)

yri (k + 1) = yri (k) + Vi(k)δt sin(φi(k)) (2)
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whereVi(k) denotes the robot’s translational velocity at timek andδt is the sampling period. In the Kalman filter
framework, the estimates of the robot’s position are propagated using the measurements of the robot’s velocity,Vmi

(k),
and the estimates of the robot’s orientation,φ̂i(k):

x̂rik+1|k
= x̂rik|k

+ Vmi
(k)δt cos(φ̂i(k))

ŷrik+1|k
= ŷrik|k

+ Vmi
(k)δt sin(φ̂i(k))

Clearly, these equations are time varying and nonlinear due to the dependence on the robot’s orientation. By linearizing
Eqs. (1) and (2), the error propagation equation for the robot’s position is readily derived:

[
x̃rik+1|k
ỹrik+1|k

]
=

[
1 0
0 1

][
x̃rik|k
ỹrik|k

]
+

[
δt cos(φ̂i(k)) −Vmi

(k)δt sin(φ̂i(k))
δt sin(φ̂i(k)) Vmi

(k)δt cos(φ̂i(k))

] [
wVi (k)

φ̃i(k)

]

⇔ X̃rik+1|k
= I2×2 X̃rik|k

+ Gri
(k) Wi(k) (3)

where1 wVi
(k) is a zero-mean white Gaussian noise sequence of varianceσ2

Vi
, affecting the velocity measurements and

φ̃i(k) is the error in the robot’s orientation estimate at timek. This is modeled as a zero-mean white Gaussian noise
sequence of varianceσ2

φi
.

From Eq. (3), we deduce that the covariance matrix of the system noise affecting thei-th robot is:

Qri (k) = E{Gri (k)Wi(k)WT
i (k)GT

ri
(k)}

= Gri
(k)E{Wi(k)WT

i (k)}GT
ri

(k)

=
[

δt cos(φ̂i(k)) −Vmi (k)δt sin(φ̂i(k))
δt sin(φ̂i(k)) Vmi (k)δt cos(φ̂i(k))

] [
σ2

Vi
0

0 σ2
φi

] [
δt cos(φ̂i(k)) −Vmi (k)δt sin(φ̂i(k))
δt sin(φ̂i(k)) Vmi (k)δt cos(φ̂i(k))

]T

=
[

cos(φ̂i(k)) − sin(φ̂i(k))
sin(φ̂i(k)) cos(φ̂i(k))

] [
δt2σ2

Vi
0

0 δt2V 2
mi

(k)σ2
φi

] [
cos(φ̂i(k)) −δt sin(φ̂i(k))
sin(φ̂i(k)) δt cos(φ̂i(k))

]T

= C(φ̂i(k))
[

δt2σ2
Vi

0
0 δt2V 2

m(k)σ2
φi

]
CT (φ̂i(k)) (4)

whereC(φ̂i) denotes the rotation matrix associated withφ̂i.
The landmarks are modeled as static points in 2D space, and therefore the state propagation equations are

XLi (k + 1) = XLi (k), for i = 1 . . . N

Hence, the estimates for the landmark positions are propagated using the relations

X̂Lik+1|k = X̂Lik|k, for i = 1 . . . N

while the errors are propagated by
X̃Lik+1|k = X̃Lik|k, for i = 1 . . . N

Using these results we can now write the error propagation equations for the entire system, comprising ofM robots
andN landmarks:

X̃k+1|k = Iξ×ξX̃k|k +




Gr1 (k) 02×2 · · · 02×2

02×2 Gr2 (k) · · · 02×2

. ..
02×2 GrM

(k)

02N×2M







wV1 (k)

φ̃1(k)

wV2 (k)

φ̃2(k)

...
wVM

(k)

φ̃M (k)




⇔ X̃k+1|k = Φ(k)X̃k|k + Gt(k) W(k) (5)

1Throughout this paper,0m×n denotes them × n matrix of zeros,1m×n denotes them × n matrix of ones, andIn×n denotes then × n
identity matrix.
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whereξ = 2M + 2N is the size of the state vector of the entire system, defined as the stacked vector comprising of
the positions of the robots and landmarks, i.e.,

X =




Xr1

...
XrM

XL1

...
XLN




The covariance matrix of the system noise is given by

Q(k) = E{Gt(k)W(k)WT
(k)GT

t (k)}

=




E{G1(k)W1(k)WT
1 (k)GT

1 (k)} · · · 02×2

...
. ..

...
02×2 · · · E{GM (k)WM (k)WT

M (k)GT
M (k)}

02M×2N

02N×2M 02N×2N




=




Qr1 (k) · · · 02×2

...
. . .

...
02×2 · · · QrM (k)

02M×2N

02N×2M 02N×2N




= GoQr(k)GT
o (6)

where

Go =
[

I2M×2M

02N×2M

]
= Go ⊗ I2×2, with Go =

[
IM×M

0N×M

]
(7)

and
Qr(k) = Diag (Qri (k)) (8)

i.e., Qr(k) is a block diagonal matrix with elementsQri (k), i = 1 . . . M . Thus the equation for propagating the
covariance matrix of the state error is written as

Pk+1|k = Pk|k + GoQr(k)GT
o (9)

wherePk+1|k = E{X̃k+1|kX̃T
k+1|k} andPk|k = E{X̃k|kX̃T

k|k} are the covariance of the error in the estimate of
X(k + 1) andX(k) respectively, after measurements up to timek have been processed.

2.2 Measurement Model

At every time step, the robots perform robot-to-robot and robot-to-landmark relative position measurements. The
relative position measurement between robotsri andrm is given by:

zrirm = CT (φi) (Xrm −Xri) + nzrirm
(10)

whereri (rm) is the observing (observed) robot, andnzrirm
is the noise affecting this measurement. Similarly, the

measurement of the relative position betweenri andLn is given by:

zriLn = CT (φi) (XLn −Xri) + nzriLn
(11)

The similarity of the preceding two measurement equations allows us to treat both types of measurements in a uniform
manner. We denote byTij the target of thej-th measurement performed by roboti, i.e.,

Tij ∈ {r1, r2, · · · , rM , L1, L2, · · · , LN} \ {ri}
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Thus, the general form of the relative position measurement equation is:

zij = CT (φi)
(
XTij

−Xri

)
+ nzij

(12)

Assuming that thei-th robot performsMi relative position measurements, the indexj assumes integer values in the
range[1,Mi] to describe these measurements. By linearizing the last expression, the measurement error equation is
obtained:

z̃ij(k + 1) = zij(k + 1)− ẑij(k + 1)

= CT (φ̂i(k + 1))
(
X̃Tij k+1|k − X̃ri k+1|k

)
− CT (φ̂i(k + 1))J

(
X̂Tij k+1|k − X̂ri k+1|k

)
φ̃i(k + 1) + nzij (k + 1)

= CT (φ̂i(k + 1))

[
02×2 . . . −I2×2︸ ︷︷ ︸

ri

. . . I2×2︸︷︷︸
Tij

. . . 02×2

]




...
X̃ri

...
X̃Tij

...




k+1|k

+
[

I2×2 −CT (φ̂i(k + 1))J∆̂pij k+1|k

] [
nzij (k + 1)

φ̃i(k + 1)

]

= Hij(k + 1)X̃k+1|k + Γij(k + 1)nij(k + 1) (13)

where

J =
[

0 −1
1 0

]
, ∆̂pijk+1|k = X̂Tij k+1|k − X̂ri k+1|k

and we note that the measurement matrix for this relative position measurement can be written as

Hij(k + 1) = CT (φ̂i(k + 1))

[
02×2 . . . −I2×2︸ ︷︷ ︸

ri

. . . I2×2︸︷︷︸
Tij

. . . 02×2

]
= CT (φ̂i(k + 1))Hoij (14)

At each time instant roboti recordsMi relative position measurements, described by the measurement matrixHi(k + 1),
i.e., a matrix whose block rows areHij(k + 1), j = 1 . . .Mi, i.e.:

Hi(k + 1) =




CT (φ̂i(k + 1))Hoi1

CT (φ̂i(k + 1))Hoi2

...
CT (φ̂i(k + 1))HoiMi


 = ΞT

φ̂i
(k + 1)Hoi (15)

in the last expressionHoi is a constant matrix whose block rows areHoij , j = 1 . . . Mi, andΞφ̂i
(k + 1) = IMi×Mi ⊗

C(φ̂i(k + 1)), with⊗ denoting the Kronecker matrix product. The covariance for the error of thej-th measurement of
roboti is given by

iRjj(k + 1) = Γij(k + 1)E{nij(k + 1)nT
ij(k + 1)}ΓT

ij(k + 1)

= Rzij (k + 1) + Rφ̃ij
(k + 1) (16)

This expression encapsulates all sources of noise and uncertainty that contribute to the measurement errorz̃ij(k + 1).
More specifically,Rzij (k + 1) is the covariance of the noisenij(k + 1) in the recorded relative position measurement
zij(k + 1) andRφ̃ij

(k + 1) is the additional covariance term due to the errorφ̃i(k + 1) in the orientation estimate of the
measuring robot. This is given by:

Rφ̃ij
(k + 1) = CT (φ̂i(k + 1))J∆̂pijk+1|kE{φ̃i

2}∆̂p
T

ijk+1|kJT C(φ̂i(k + 1))

= σ2
φi

CT (φ̂i(k + 1))J∆̂pijk+1|k∆̂p
T

ijk+1|kJT C(φ̂i(k + 1)) (17)
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From this expression we conclude that the uncertaintyσ2
φi

in the orientation estimatêφi(k + 1) of the robot is amplified
by the distance between the robot and corresponding landmark.

Each relative position measurement is comprised of the distanceρij and bearingθij to the target, expressed in the
measuring robot’s local coordinate frame, i.e.,

zij(k + 1) =
[

ρij(k + 1) cos θij(k + 1)

ρij(k + 1) sin θij(k + 1)

]
+ nzij (k + 1)

By linearizing, the noise in this measurement can be expressed as:

nzij
(k + 1) '

[
cos θ̂ij −ρ̂ij sin θ̂ij

sin θ̂ij ρ̂ij cos θ̂ij

] [
nρij

(k + 1)

nθij
(k + 1)

]

wherenρij
is the error in the range measurement,nθij

is the error in the bearing measurement, assumed to be inde-
pendent white zero-mean Gaussian sequences, and

ρ̂2
ij = ∆̂p

T

ijk+1|k∆̂pijk+1|k

θ̂ij = Atan2(∆̂yijk+1|k , ∆̂xijk+1|k)− φ̂i(k + 1)

are the estimates of the range and bearing to the landmark, expressed with respect to the robot’s coordinate frame. At
this point we note that

C(φ̂i(k + 1))nzij
(k + 1) =

[
cos φ̂i(k + 1) − sin φ̂i(k + 1)

sin φ̂i(k + 1) cos φ̂i(k + 1)

] [
cos θ̂ij −ρ̂ij sin θ̂ij

sin θ̂ij ρ̂ij cos θ̂ij

] [
nρij (k + 1)

nθij (k + 1)

]

=
[

cos(φ̂i(k + 1) + θ̂ij) −ρ̂ij sin(φ̂i(k + 1) + θ̂ij)
sin(φ̂i(k + 1) + θ̂ij) ρ̂ij cos(φ̂i(k + 1) + θ̂ij)

] [
nρij (k + 1)

nθij (k + 1)

]

=
[

1
ρ̂ij

∆̂pij J∆̂pij

] [
nρij (k + 1)

nθij (k + 1)

]

and therefore the quantityRzij (k + 1) can be written as:

Rzij (k + 1) = E{nzij (k + 1)nT
zij

(k + 1)}

= CT (φ̂i(k + 1))
[

1
ρ̂ij

∆̂pij J∆̂pij

]
E

{[
nρij

nθij

] [
nρij

nθij

]T
}[

1
ρ̂ij

∆̂pij J∆̂pij

]T

C(φ̂i(k + 1))

= CT (φ̂i(k + 1))
[

1
ρ̂ij

∆̂pij J∆̂pij

] [
σ2

ρi
0

0 σ2
θi

] [
1

ρ̂ij
∆̂pij J∆̂pij

]T

C(φ̂i(k + 1))

= CT (φ̂i(k + 1))

(
σ2

ρi

ρ̂2
ij

∆̂pij∆̂p
T

ij + σ2
θi

J∆̂pij∆̂p
T

ijJ
T

)
C(φ̂i(k + 1))

= CT (φ̂i(k + 1))

(
σ2

ρi

ρ̂2
ij

(
ρ̂2

ijI2×2 − J∆̂pij∆̂p
T

ijJ
T
)

+ σ2
θi

J∆̂pij∆̂p
T

ijJ
T

)
C(φ̂i(k + 1))

= CT (φ̂i(k + 1))

(
σ2

ρi
I2×2 +

(
σ2

θi
− σ2

ρi

ρ̂2
ij

)
J∆̂pij∆̂p

T

ijJ
T

)
C(φ̂i(k + 1)) (18)

where the variance of the noise in the distance and bearing measurements is given by

σ2
ρi

= E{n2
ρi
} , σ2

θi
= E{n2

θi
}

respectively. Due to the existence of the error component attributed toφ̃i(k + 1), the exteroceptive measurements
that each robot performs at a given time instant are correlated. The matrix of correlation between the errors in the
measurementszij(k + 1) andzi`(k + 1) is

iRj`(k + 1) = Γij(k)E{nij(k + 1)nT
i`(k + 1)}ΓT

i`(k)

= σ2
φi

CT (φ̂i(k + 1))J∆̂pijk+1|k∆̂p
T

i`k+1|kJT C(φ̂i(k + 1)) (19)
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The covariance matrix of all the measurements performed by roboti at the time instantk + 1 can now be computed.
This is a block matrix whosemn-th 2 × 2 submatrix element isiRmn, for m,n = 1 . . .Mi. Using the results of
Eqs. (17), (18), and (19), this matrix can be written as

Ri(k + 1) = ΞT
φ̂i

(k + 1)Roi
(k + 1)Ξφ̂i

(k + 1) (20)

where

Roi (k + 1) =

2666664
σ2

ρi
I2×2 +

�
σ2

φi
+ σ2

θi
− σ2

ρi

ρ̂2
i1

�
Jc∆pi1

c∆p
T

i1J
T . . . σ2

φi
Jc∆pi1

c∆p
T

iMi
JT

...
. . .

...

σ2
φi

Jc∆piMi
c∆p

T

i1J
T . . . σ2

ρi
I2×2 +

�
σ2

φi
+ σ2

θi
− σ2

ρi

ρ̂2
iMi

�
Jc∆piMi

c∆p
T

iMi
JT

3777775
= σ2

ρi
I2N×2N + Di(k + 1)

 
σ2

θi
IN×N + σ2

φi
1N×N − diag

 
σ2

ρij

ρ̂2
i

!!
DT

i (k + 1)

= σ2
ρi

I2N×2N −Di(k + 1) diag

 
σ2

ρij

ρ̂2
i

!
DT

i (k + 1)| {z }
R1(k + 1)

+ σ2
θi

Di(k + 1)DT
i (k + 1)| {z }

R2(k + 1)

+ σ2
φi

Di(k + 1)1N×NDT
i (k + 1)| {z }

R3(k + 1)

(21)

where

Di(k + 1) =




J∆̂pi1k+1|k . . . 02×1

...
.. .

...
02×1 . . . J∆̂piMik+1|k


 = Diag

(
J∆̂pijk+1|k

)

is a2M1 ×Mi block diagonal matrix, depending on the estimated positions of the robots and landmarks. In Eq. (21)
the covariance termR1(k + 1) is the covariance of the error due to the noise in the range measurements,R2(k + 1) is
the covariance term due to the error in the bearing measurements, andR3(k + 1) is the covariance term due to the error
in the orientation estimates of the robot. The measurement matrixH(k + 1) describing all the measurements that are
performed by the robots at time stepk + 1 is a matrix with block rowsHi(k + 1), i = 1 . . . M , i.e.,

H(k + 1) =




ΞT
φ̂1

(k + 1)Ho1

ΞT
φ̂2

(k + 1)Ho2

...
ΞT

φ̂M
(k + 1)HoM




= Diag
(
ΞT

φ̂i
(k + 1)

)



Ho1

Ho2

...
HoM


 = ΞT

(k + 1)Ho (22)

whereΞ(k + 1) = Diag
(
Ξφ̂i

(k + 1)

)
is a block diagonal matrix with block elementsΞφ̂i

(k + 1), for i = 1 . . . M ,

andHo is a matrix with block rowsHoi , i = 1 . . . M . Since the measurements performed by different robots are
independent, the measurement coviarance matrix for the entire system is given by

R(k + 1) = Diag (Ri(k + 1)) = Diag
(
ΞT

φ̂i
Roi (k + 1)Ξφ̂i

)
= ΞT

(k + 1)Ro(k + 1)Ξ(k + 1) (23)

whereRo is a block diagonal matrix with block elementsRoi , i = 1 . . . M .
We now write the covariance update equation, which is

Pk+1|k+1 = Pk+1|k −Pk+1|kHT
(k + 1)

(
H(k + 1)Pk+1|kHT

(k + 1) + R(k + 1)
)−1

H(k + 1)Pk+1|k
= Pk+1|k

−Pk+1|kHT
o Ξ(k + 1)

(
ΞT

(k + 1)HoPk+1|kHT
o Ξ(k + 1) + ΞT

(k + 1)Ro(k + 1)Ξ(k + 1)

)−1

ΞT
(k + 1)HoPk+1|k

= Pk+1|k −Pk+1|kHT
o

(
HoPk+1|kHT

o + Ro(k + 1)
)−1

HoPk+1|k (24)

In order to derive the last expression, propertyΞT
(k + 1) = Ξ−1

(k + 1) was employed. This property is a consequence
of the definition of matrixΞ(k + 1), and the fact that the rotation matrices satisfyCT (φ̂i) = C−1(φ̂i).
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Note that in the formulation presented up to this point, the measurement and covariance matrices have been par-
titioned based on the subsets of measurements that are performed by each robot (cf. Eqs. (22) and (23)). A different
partitioning, however, turns out to be more convenient in the study of the asymptotic properties of the covariance
matrix of the position estimates. Specifically, we permute the block rowsHij(k + 1) of H(k + 1) (and equivalently, the
block rowsHoij of Ho) so that all the robot-to-robot measurements are stacked together. The measurement matrix
H′(k + 1) that arises is related toH(k + 1) by the transformation

H′
(k + 1) = PH(k + 1) ⇔ H(k + 1) = PT H′

(k + 1) (25)

whereP is an appropriate permutation matrix. As a result of this permutation, the covariance matrix of the measure-
ments is also transformed by a similarity transformation, yielding the new covariance matrix

R′
(k + 1) = PR(k + 1)PT ⇔ R(k + 1) = PT R′

(k + 1)P (26)

Similarly, the transformations

H′
o(k + 1) = PHo(k + 1) ⇔ Ho(k + 1) = PT H′

o(k + 1) (27)

and
R′

o(k + 1) = PRo(k + 1)PT ⇔ Ro(k + 1) = PT R′
o(k + 1)P (28)

are defined. The permutation of the rows of the measurement matrix is selected so as to yield a measurement matrix
in which the robot-to-robot measurements correspond to the first block rows ofH′(k + 1). As a result, the matrixH′

o

can be partitioned as

H′
o =

[
HR 02MRR×2N

H1 H2

]
(29)

whereMRR is the total number of robot-to-robot measurements,HR is a 2MRR × 2M matrix describing these
measurements. Due to the structure of the measurement equations, each of the2×2M block rows ofHR has a special
form. Specifically, the block row that corresponds to the relative position measurement between robotsri andrj is

HRij =


02×2 . . . −I2×2︸ ︷︷ ︸

i−th block

. . . I2×2︸︷︷︸
j−th block

. . . 02×2


 (30)

In Eq. (29)H1 is a2MRL × 2M matrix, andH2 is a2MRL × 2N matrix, whereMRL denotes the total number of
robot-to-landmark measurements. Each2× ξ block row of the submatrix[H1 H2] describes one such measurement,
and thus the block rows ofH1 andH2 have special structure. If robotr` measures the relative position of landmark
Lm, then the following block rows exist inH1 andH2 respectively:

H1`m
=


02×2 . . . −I2×2︸ ︷︷ ︸

`−th block

. . . 02×2


 and H2`m

=


02×2 . . . I2×2︸︷︷︸

m−th block

. . . 02×2


 (31)

At this point we note thatH′
o can be expressed as

H′
o = H ′

o ⊗ I2×2 =
[

HR 0MRR×N

H1 H2

]
⊗ I2×2 (32)

where the matricesH ′
o, HR, H1 andH2 are easily derived fromH′

o, HR, H1 andH2, respectively.
Substitution from Eqs. (27) and (28) in Eq. (24), and application of the propertyP−1 = PT , which holds for any

permutation matrix, an equivalent expression of the covariance update equation of the EKF:

Pk+1|k+1 = Pk+1|k −Pk+1|kHT
o

(
HoPk+1|kHT

o + Ro(k + 1)
)−1

HoPk+1|k

= Pk+1|k −Pk+1|kH′T
o P

(PT H′
oPk+1|kH′T

o P + PT R′
o(k + 1)P)−1 PT H′

oPk+1|k

= Pk+1|k −Pk+1|kH′T
o

(
H′

oPk+1|kH′T
o + R′

o(k + 1)
)−1

H′
oPk+1|k (33)
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3 SLAM Positioning Accuracy Characterization

3.1 The Riccati Recursion

The metric we employ in order to characterize the positioning performance of C-SLAM is the covariance matrix of
the robots’ and landmarks’ position estimates. By combining Eqs. (9) and (33) we derive the discrete-time Riccati
recursion, that describes the time evolution of the covariance matrix:

Pk+2|k+1 = Pk+1|k −Pk+1|kH′T
o

(
H′

oPk+1|kH′T
o + R′

o(k + 1)
)−1

H′
oPk+1|k + GoQr(k + 1)GT

o

This recursion provides the value of the covariance matrix at each time step, right after the propagation phase of the
EKF. To simplify the notation, we setPk = Pk+1|k andPk+1 = Pk+2|k+1, and therefore we can write

Pk+1 = Pk −PkH′T
o

(
H′

oPkH′T
o + R′

o(k + 1)
)−1

H′
oPk + GoQr(k + 1)GT

o (34)

We note that the matricesQr(k + 1) andR′
o(k + 1) in this Riccati recursion are time varying, and this does not allow

the derivation of any closed form expressions for the time evolution ofPk, in the general case. We therefore have to
resort to derivingboundsfor the covariance of the C-SLAM position estimates. The following two lemmas are the
basis of our analysis:

Lemma 3.1 If R′
u andQu are matrices such thatR′

u º R′
o(k) andQu º Qr(k) for all k ≥ 0, then the solution to

the Riccati recursion

Pu
k+1 = Pu

k −Pu
kH

′T
o

(
H′

oP
u
kH

′T
o + R′

u

)−1
H′

oP
u
k + GoQuGT

o (35)

with the initial conditionPu
0 = P0, satisfiesPu

k º Pk for all k ≥ 0.

Lemma 3.2 If R̄′ andQ̄r are matrices such that̄R′ = E{R′
o(k)} andQ̄r = {Qr(k)} for all k ≥ 0, then the solution

to the Riccati recursion

P̄k+1 = P̄k − P̄kH′T
o

(
H′

oP̄kH′T
o + R̄′)−1

H′
oP̄k + GoQ̄rGo (36)

with the initial conditionP̄0 = P0, satisfies̄Pk º E{Pk} for all k ≥ 0.

Essentially, Lemma 3.1 maintains that in order to derive an upper bound on theworst-casecovariance matrix of
the position estimates in C-SLAM, it suffices to deriveupper boundsfor the covariance matrices of the system and
measurement noise, and to solve aconstant coefficientRiccati recursion. Similarly, Lemma 3.2 states that an upper
bound on theexpectedpositioning uncertainty of C-SLAM is determined as the solution of a constant coefficient
Riccati recursion, where the covariance matrices of the system and measurement noise have been replaced by their
averagevalues. The proofs for these lemmas are given in Appendices A and B respectively. In the remainder of
this section, we derive appropriate upper bounds, as well as the average values of the matricesQr(k) andR′

o(k)

respectively.

• Derivation of upper bounds for Qr(k) and R′
o(k)

In order to derive an upper bound for the covariance matrixQr(k) we note that (cf. Eqs. (4) and (8))

Qr(k) =




Qr1 (k) · · · 02×2

...
. . .

...
02×2 · · · QrM

(k)


 (37)

where

Qri (k) = C(φ̂i(k))
[

δt2σ2
Vi

0
0 δt2V 2

mi
(k)σ2

φi

]
CT (φ̂i(k))

From the properties of rotation matrices it is known thatC−1(φ̂i(k)) = CT (φ̂i(k)), and thusQri (k) is related by a
similarity transformation to the matrix [

δt2σ2
Vi

0
0 δt2V 2

mi
(k)σ2

φi

]
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which implies that the eigenvalues ofQri
(k) areδt2σ2

Vi
andδt2V 2

mi
(k)σ2

φi
. We assume that the velocity of each robot

is approximately constant, and equal toVi, and denote

qi = max
(
δt2σ2

Vi
, δt2V 2

mi
(k)σ2

φi

) ' max
(
δt2σ2

Vi
, δt2V 2

i σ2
φi

)
(38)

This definition states thatqi is the largest eigenvalue ofQri (k), and therefore

Qri (k) ¹ qiI2×2 ⇒ Qr(k) ¹ Diag(qiI2×2) = Qu (39)

In order to derive an upper bound forR′
o(k) we first derive an upper bound forRo(k), and employ the property

Ru º Ro(k) ⇒ PRuPT º PRo(k)PT = R′
o(k)

The upper bound onRo(k) is obtained by considering each if its block diagonal elements,Roi (k). Referring to
Eq. (21), we examine the termsR1(k) , R2(k) andR3(k) separately: the term expressing the effect of the noise in the
range measurements is

R1(k) = σ2
ρi

I2N×2N −Di(k) diag

(
σ2

ρi

ρ̂2
ij

)
DT

i (k) ¹ σ2
ρi

I2N×2N (40)

The last matrix inequality follows from the fact that the term being subtracted fromσ2
ρi

I2N×2N is a positive semidefi-
nite matrix. The covariance term due to the noise in the bearing measurement is

R2(k) = σ2
θi

Di(k)DT
i (k)

= σ2
θi
Diag

(
ρ̂2

ij

[
sin2(θ̂ij) sin(θ̂ij) cos(θ̂ij)

sin(θ̂ij) cos(θ̂ij) cos2(θ̂ij)

])

¹ σ2
θi
Diag

(
ρ̂2

ijI2×2

)

¹ σ2
θi

ρ2
oI2N×2N (41)

whereρo is the maximum range at which a measurement can occur, determined either by the characteristics of the
robots’ sensors or by the properties of the area in which the robots move. Finally, the covariance term due to the error
in the orientation of the measuring robot isR3(k) = σ2

φi
Di(k)1N×NDT

i (k). Calculation of the eigenvalues of the
matrices1N×N andIN×N verifies that1N×N ¹ NIN×N , and thus we can writeR3(k) ¹ Nσ2

φi
Di(k)DT

i (k). By
derivations analogous to those employed to yield an upper bound forR2(k), we can show that

R3(k) ¹ Nσ2
φi

ρ2
oI2N×2N

By combining this result with those of Eqs. (40), (41), we can writeRoi (k) = R1(k) + R2(k) + R3(k) ¹ Ru
i , where

Ru
i =

(
σ2

ρi
+ Nσ2

φi
ρ2

o + σ2
θi

ρ2
o

)
I2N×2N = riI2N×2N (42)

with
ri = σ2

ρi
+ Nσ2

φi
ρ2

o + σ2
θi

ρ2
o (43)

Thus, we can write

Ro(k) = Diag(Roi (k)) ¹ Diag(riIMi×Mi) = Ru (44)

Therefore an upper bound forR′
o(k) is given by

R′
o(k) ¹ PDiag(riIMi×Mi)PT = R′

u

TR-2004-0004 10



• Derivation of the Expected Values ofQr(k) and R′
o(k)

In order to derive the average value ofQr(k) we note that

Qri (k) = C(φ̂i(k))
[

δt2σ2
Vi

0
0 δt2V 2

mi
(k)σ2

φi

]
CT (φ̂i(k))

= δt2


 σ2

Vi
cos2(φ̂i) + V 2

mi
(k)σ2

φi
sin2(φ̂i)

(
σ2

Vi
− V 2

mi
(k)σ2

φi

)
sin(φ̂i) cos(φ̂i)(

σ2
Vi
− V 2

mi
(k)σ2

φi

)
sin(φ̂i) cos(φ̂i) σ2

Vi
sin2(φ̂i) + V 2

mi
(k)σ2

φi
cos2(φ̂i)




and therefore, by averaging over all values of orientation, the expected value ofQri
(k) is derived:

E{Qri
(k)} = δt2

σ2
V + V 2

i σ2
φi

2
I2×2 = q̄iI2×2

where

q̄i = δt2
σ2

V + V 2
i σ2

φi

2
Thus,

E{Qr(k)} = Diag (E{Qri
(k)}) = Diag(q̄iI2×2) = Q̄r (45)

The average value ofR′
o(k) is derived by first considering the matrixRo(k), and employing the property

E{R′
o(k)} = E{PRo(k)PT }

= PE{Ro(k)}PT

= PE{Diag(Roi (k))}PT

= PDiag(E{Roi (k)})PT (46)

We therefore see that the average values of the matricesRoi (k), i = 1 . . .M need to be determined, in order to
computeE{R′

o(k)}. From Eq. (21) we note that evaluation of the average value ofRoi (k) requires the computation
of the expected values of the following terms:

T1 =
∆̂pij∆̂p

T

ij

ρ̂2
ij

, T2 = ∆̂pij∆̂p
T

ij , and T3 = ∆̂pij∆̂p
T

i` (47)

for j, ` = 1 . . .Mi. The average value ofT1 is easily derived by employing the polar coordinate description of the
vector∆̂pij in terms ofρ̂ij andθ̂ij , which yields

T1 =
∆̂pij∆̂p

T

ij

ρ̂2
ij

=
1

ρ̂2
ij

[
ρ̂2

ij cos2(θ̂ij) ρ̂2
ij sin(θ̂ij) cos(θ̂ij)

ρ̂2
ij sin(θ̂ij) cos(θ̂ij) ρ̂2

ij sin2(θ̂ij)

]

=
[

cos2(θ̂ij) sin(θ̂ij) cos(θ̂ij)
sin(θ̂ij) cos(θ̂ij) sin2(θ̂ij)

]

From the last expression we conclude that for any probability density function that guarantees a uniform distribution
for the bearing angle of the measurements (i.e., any symmetric probability density function), the average value of the
termT1 is

E{T1} =
1
2
I2×2
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In order to compute the expected value of the termsT2 andT3, we assume that the robots and landmarks are located
in a square arena of sideα, and that their positions are described by uniformly distributed random variables in the
interval[−α/2, α/2]. We can thus write

E{T2} = E{∆̂pij∆̂p
T

ij} = E

{[
∆̂x

2

ij ∆̂xij∆̂yij

∆̂yij∆̂xij ∆̂y
2

ij

]}

=
[

E{x2
j − 2xixj + x2

i } E{xjyj − xjyi − xiyj + xiyi}
E{yjxj − yjxi − yixj + yixi} E{y2

j − 2yjyi + y2
i }

]

=
[

2E{x2
i } 0

0 2E{y2
i }

]

=

[
α2

6 0
0 α2

6

]

=
α

12
I2×2

and similarly,

E{T3} = E{∆̂pij∆̂p
T

i`} = E

{ [
∆̂xij∆̂xi` ∆̂xij∆̂yi`

∆̂yij∆̂xi` ∆̂yij∆̂yi`

]}

=
[

E{xjx` − xix` − xjxi + x2
i } E{xjy` − xjyi − xiy` + xiyi}

E{yjx` − yjxi − yix` + yixi} E{yjy` − yiy` − yjyi + y2
i }

]

=
[

E{x2
i } 0

0 E{y2
i }

]

=

[
α2

12 0
0 α2

12

]

=
α

12
I2×2

These results enable us to obtain the average value of the matricesRoi (k), i = 1 . . .M . Employing the linearity of the
expectation operator yields

R̄i = E{Roi (k)}

=




(
1
2σ2

ρi
+ 1

6σ2
φi

+ 1
6σ2

θi

)
I2×2 . . . 1

12σ2
φi

I2×2

...
. ..

...
1
12σ2

φi
I2×2 . . .

(
1
2σ2

ρi
+ 1

6σ2
φi

+ 1
6σ2

θi

)
I2×2




=
(

1
2
σ2

ρi
+

1
12

σ2
φi

+
1
6
σ2

θi

)
I2Mi×2Mi +

1
12

σ2
φi

(1Mi×Mi ⊗ I2×2)

The average value ofRo(k) is therefore

R̄ = E{Ro(k)}
= Diag(R̄i) (48)

while the average value ofR′
o(k) is

R̄′ = PT R̄P

3.2 Steady State Covariance Bounds

Lemmas 3.1 and 3.2 allow the evaluation of upper bounds on the worst case uncertainty and on the average uncertainty
of the position estimates in C-SLAM, atany time instant after the beginning of the exploration task. This can be triv-
ially achieved, for example, by numerical evaluation of the solution to the recursions in Eqs. (35) and (36) respectively.
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It is well known that in C-SLAM the covariance of the landmarks’ position estimates decreases monotonically, and
asymptotically assumes a steady state value. Thus, for many applications, it is important to characterize thesteady
stateaccuracy of the estimates. In this section, we determine an upper bound on the asymptotic value of the covariance
matrix, by deriving the limit ofPu

k andP̄k after sufficient time, i.e., ask →∞.
We note at this point that the Riccati recursions of Eqs. (35) and (36) essentially describe the time evolution of the

covariance of the position estimates in two hypothetical C-SLAM scenarios, where the system model is a Linear Time
Invariant (LTI) one. Therefore, the problem of computing the upper bounds on the steady state positioning uncertainty
in C-SLAM reduces to the problem ofdetermining the steady state covariance matrix for a LTI C-SLAM system model.
In the following, we consider a C-SLAM scenario with the following LTI system model:

Xo(k + 1) = Xo(k) + Gowo(k) (49)

zo(k) = H′
oXo(k) + no(k) (50)

where the measurement covariance matrix is a constant matrix equal to

E{no(k)no(k)
T } = Rs =

[
R1 R2

RT
2 R3

]
=

[
R1 R2

RT
2 R3

]
⊗ I2×2 = Rs ⊗ I2×2 (51)

while the system noise covariance matrix is the constant matrix

E{wo(k)wo(k)
T } = Qs = Qs ⊗ I2×2 (52)

For this LTI system model the time evolution of the state covariance matrix is described by the following Riccati
recursion:

Ps
k+1 = Ps

k −Ps
kH

′T
o

(
H′

oP
s
kH

′T
o + Rs

)−1
H′

oP
s
k + GoQsGT

o (53)

After deriving the steady state solution of this recursion, we employ the substitutions

Rs → Ru, Qs → Qu

and
Rs → R̄′, Qs → Q̄r

in order to obtain the steady state solutions of the Riccati recursions of Lemmas (3.1) and (3.2) respectively.
Our analysis is based upon the following result, which is proven in [8] (Section 8.6, Lemmas 8.6.2 and 8.6.3):

Lemma 3.3 SupposeP (0)
k is the solution to the discrete-time Riccati recursion

Pk+1 = FPkFT + GQGT − (FPkHT + GS)(HPkHT + R)−1(FPkHT + GS)T , (54)

with initial valueP0 = 0. Then the solution to the Riccati recursion with the same{F, G,H} and{Q,R, S}matrices,
but with an arbitrary initial conditionΠ0 is defined by the identity

Pk+1 − P
(0)
k+1 = Φ(0)

p (k + 1, 0)
[
I + Π0O(0)

k

]−1

Π0Φ(0)
p (k + 1, 0)T

whereΦ(0)
p (k + 1, 0) is given by

Φ(0)
p (k + 1, 0) = (F −KpH)k+1 [I + PJk+1]

and
O(0)

k = Jk+1

In these expressionsP is any solution to the Discrete Algebraic Riccati Equation (DARE)

P = FPFT + GQGT − (FPHT + GS)(HPHT + R)−1(FPHT + GS)T ,

Kp =
(
FPHT + GS

) (
R + HPHT

)−1
andJk denotes the solution to thedualRiccati recursion with zero initial

condition, which, in the caseS = 0, is written as

Jk+1 = FJkFT + HT R−1H − FT JkG(Q−1 + GT JkG)−1JkF, J0 = 0
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Introducing the substitutions

Pk ↔ Ps
k, G ↔ Go, Q ↔ Qs, H ↔ H′

o, R ↔ Rs, S ↔ 02×(2N+2)

allows us to specialize Lemma 54 to our problem as follows:

Lemma 3.4 SupposePs(0)
k is the solution to the Riccati recursion

Ps
k+1 = Ps

k −Ps
kH

′T
o

(
H′

oP
s
kH

′T
o + Rs

)−1
H′

oP
s
k + GoQsGT

o (55)

with zero initial condition. Then the solution to this recursion when the initial covariance matrix is an arbitrary
positive semidefinite matrixΠ0 is defined by the relation

Ps
k+1 −Ps(0)

k+1 = Φ(0)
p (k + 1, 0) [Iξ×ξ + Π0Jk+1]

−1 Π0Φ(0)
p (k + 1, 0)T (56)

where

Φ(0)
p (k + 1, 0) =

(
Iξ×ξ −PH′T

o

(
Rs + H′

oPH′T
o

)−1
H′

o

)k+1

[Iξ×ξ + PJk+1] (57)

In these expressionsP is any solution to the Discrete Algebraic Riccati Equation (DARE)

P = P−PH′T
o

(
Rs + H′

oPH′T
o

)−1
H′

oP + GoQsGT
o

andJk denotes the solution to thedualRiccati recursion with zero initial condition:

Jk+1 = Jk + H′T
o R−1

s H′
o − JkGo

(
Qs + GT

o JkGo

)−1
GT

o Jk, J0 = 0ξ×ξ (58)

In order to derive the steady state value ofPs
k, we will evaluate Eq. (56) in the limit ask → ∞. To this end, we

first evaluatelimk→∞Ps(0)
k , i.e., the steady state covariance of the position estimates when the initial uncertainty is

zero, and then we evaluate the limit value of the right hand side member of Eq. (56). In the derivations that follow, it
will be convenient to manipulate the matricesPs

k andJk as partitioned matrices, i.e.,

Ps
k =

[
Ps

rrk
Ps T

Lrk

Ps
Lrk

Ps
LLk

]
and Jk =

[
Jrrk

JT
Lrk

JLrk
JLLk

]
(59)

where the matricesPs
rrk

andJrrk
are2M × 2M matrices corresponding to robots’ position estimates,Ps

LLk
and

JLLk
are2N × 2N matrices corresponfing to the landmarks’ position estimates, whilePs

Lrk
andJLrk

are2N × 2M
matrices, corresponding to the cross-correlations between the robots and landmarks.

3.2.1 Solution with Zero Initial Covariance

The derivation of the steady state value ofPs(0)
k can be greatly simplified by considering the physical interpretation

of the quantities that appear in Eq. (53). This Riccati recursion describes the time evolution of the covariance of the
position estimates for a LTI C-SLAM scenario, in which the initial covariance matrix,Ps

0, is zero. This implies that
our initial knowledge about the position of the robots and landmarks is perfect. The landmarks are static, and thus the
estimates about their position willnot degrade as time progresses. The matrixPs

LLk
will remainequal to zero, for

all time stepsk > 0, and sincePs(0)
k is a positive semidefinite matrix, we conclude that the matrixPs

Lrk
will also

remain equal to zero. The physical interpretation of this is that the robots actually perform map-based localization
with a perfectly known map, while simultaneously recording relative position measurements between them. The
measurements of the landmarks’ positions are equivalent toabsolutemeasurements of the robots position, based on a
perfect map. We note that by application of the matrix inversion lemma, the Riccati recursion can be expressed as

Ps
k+1 = Ps

k −Ps
kH

′T
o

(
H′

oP
s
kH

′T
o + Rs

)−1
H′

oP
s
k + GoQsGT

o

=
(
Iξ×ξ −Ps

kH
′T
o

(
H′

oP
s
kH

′T
o + Rs

)−1
H′

o

)
Ps

k + GoQsGT
o

=
(
Iξ×ξ + Ps

kH
′T
o R−1

s H′
o

)−1
Ps

k + GoQsGT
o

TR-2004-0004 14



Setting

Ps
k =

[
Ps

rrk
02M×2N

02N×2M 02N×2N

]

yields

[
Ps

rrk+1
02M×2N

02N×2M 02N×2N

]
=

(
Iξ×ξ +

[
Ps

rrk
02M×2N

02N×2M 02N×2N

] [
Irr IT

Lr

ILr ILL

])−1 [
Ps

rrk
02M×2N

02N×2M 02N×2N

]
+ GoQsGT

o

=
[

I2M×2M + Ps
rrk

Irr Ps
rrk

IT
Lr

02N×2M I2N×2N

]−1 [
Ps

rrk
02M×2N

02N×2M 02N×2N

]
+ GoQsGT

o

=
[ (

I2M×2M + Ps
rrk

Irr

)−1 − (
I2M×2M + Ps

rrk
Irr

)−1
Ps

rrk
IT
Lr

02N×2M I2N×2N

] [
Ps

rrk
02M×2N

02N×2M 02N×2N

]

+ GoQsGT
o

=
[ (

I2M×2M + Ps
rrk

Irr

)−1
Ps

rrk
02M×2N

02N×2M 02N×2N

]
+ GoQsGT

o (60)

where we have defined

H′T
o R−1

s H′
o =

(
H ′T

o ⊗ I2×2

) (
R−1

s ⊗ I2×2

)
(H ′

o ⊗ I2×2)

=
[

HT
RF1HR + HT

1 FT
2 HR + HT

RF2H1 + HT
1 F4H1 HT

RF2H2 + HT
1 F4H2

HT
2 FT

2 HR + HT
2 F4H1 HT

2 F4H2

]
⊗ I2×2

=
[

Irr IT
Lr

ILr ILL

]
⊗ I2×2

=
[

Irr IT
Lr

ILr ILL

]

with

R−1
s = R−1

s ⊗ I2×2

=
[

R1 R2

RT
2 R4

]−1

⊗ I2×2

=

[ (
R1 −R2R

−1
4 RT

2

)−1 − (
R1 −R2R

−1
4 RT

2

)−1
R2R

−1
4

−R4R
T
2

(
R1 −R2R

−1
4 RT

2

)−1 (
R4 −RT

2 R−1
1 R2

)−1

]
⊗ I2×2

=
[

F1 F2

FT
2 F4

]
⊗ I2×2

At this point we note that the quantitiesIrr andIrr can be expressed alternatively as:

Irr =
[

I2M×2M 02N×2M

]
H′T

o R−1
s H′

o

[
I2M×2M

02N×2M

]
and Irr =

[
IM×M 0N×M

]
H′T

o R−1
s H′

o

[
IM×M

0N×M

]
(61)

These expressions are simpler, and will be useful in expressing the final result in a more intuitive form.
The Riccati recursion forPs

rrk
is derived from Eq. (60):

Ps
rrk+1

=
(
I2M×2M + Ps

rrk
Irr

)−1
Ps

rrk
+ Qs, Ps

rr0
= 02M×2M (62)

At this point we note that all the matrices that appear in this recursion can be expressed as the Kronecker product of
some matrix with the2 × 2 identity matrix, while the initial value of the recursion is zero. Employing the result of
Appendix C we conclude that at any time stepk > 0, the solution to the recursion will be of the formP s

rrk
⊗ I2×2,

whereP s
rrk

is aM ×M matrix. The time evolution ofP s
rrk

is described by the Riccati recursion

P s
rrk+1

=
(
IM×M + P s

rrk
Irr

)−1
P s

rrk
+ Qs, P s

rr0
= 02M×2M
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and its steady state value can be found by solving the equation

P s
rr∞ =

(
IM×M + P s

rrk
Irr

)−1
P s

rr∞ + Qs

=
(
P s −1

rr∞ + Irr

)−1
+ Qs (63)

Pre- and post-multiplying the last expression byQ
−1/2
s yields

Q−1/2
s P s

rr∞Q−1/2
s = Q−1/2

s

(
P s −1

rr∞ + Irr

)−1
Q−1/2

s + IM×M ⇒
Pn =

(
P−1

n + C
)−1

+ IM×M (64)

where we have defined
Pn = Q−1/2

s P s
rr∞Q−1/2

s (65)

and
C = Q1/2

s IrrQ
1/2
s

At this point we employ the singular value decomposition ofC, which we denote as

C = UΛUT = U diag(λi)UT

and Eq. (64) is written as

Pn =
(
P−1

n + UΛUT
)−1

+ IM×M ⇒
UT PnU = UT

(
P−1

n + UΛUT
)−1

U + UT U ⇒
UT PnU =

(
UT P−1

n U + UT UΛUT U
)−1

U + UT U

butUT U = IM×M and by defining

Pnn = UT PnU (66)

we can write

Pnn =
(
P−1

nn + Λ
)−1

+ IM×M

In order to find a solution forPnn in the last equation, we assume thatPnn is diagonal, i.e.,

Pnn = diag(Pnni) (67)

In that case we can find the diagonal elementsPnni ,i = 1 . . . 2M by solving theM equations

Pnni =
(

1
Pnni

+ λi

)−1

+ 1, i = 1 . . . 2M (68)

This is a set ofM equations with scalar unknowns, that can be trivially solved, yielding

Pnni =
1
2
±

√
1
4

+
1
λi

SinceP s
rr∞ represents a covariance matrix, all thePnni ’s are positive, and thus we only keep the positive solutions.

Finally, substitution in Eqs. (66) and (65) yields

P s
rr∞ = Q1/2

s U diag
(

1
2

+
√

1
4

+
1
λi

)
UT Q1/2

s

and thus

Ps(0)
rr∞ = P s

rr∞ ⊗ I2×2 =
(

Q1/2
s U diag

(
1
2

+
√

1
4

+
1
λi

)
UT Q1/2

s

)
⊗ I2×2 (69)
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Note that the above is one solution to Eq. (63), that was derived based on the assumption of Eq. (67). However, the
system of theM robots performing cooperative localization with absolute position measurements is an observable
one [9]. Additionally, this is a controllable system, as we can easily verify. Therefore the algebraic Riccati equation in
Eq. (63) has asinglesolution [8], the one given by the last expression. For future reference, we note that by application
of the properties of the Kronecker product, the matrixPs(0)

rr∞ can be alternatively written as

Ps(0)
rr∞ =

(
Q1/2

s Us diag

(
1
2

+

√
1
4

+
1

λsi

)
UT

s Q1/2
s

)
(70)

where the quantitiesUs andλsi are defined as the modal matrix and the eigenvalues respectively of the matrix

C = Q1/2
s IrrQ1/2

s

and satisfy
Us = U ⊗ I2×2, diag(boldsymbolλsi) = diag(λi)⊗ I2×2

Finally, the steady state solution of the Riccati recursion in Eq. (35) with zero initial condition is given by

Ps(0)
∞ =

[
Ps(0)

rr∞ 02M×2N

02N×2M 02N×2N

]
=

[ (
Q

1/2
s U diag

(
1
2 +

√
1
4 + 1

λi

)
UT Q

1/2
s

)
0M×N

0N×M 0N×N

]
⊗ I2×2 (71)

3.2.2 Solution with Nonzero Initial Covariance

In this section we determine the steady state solution to Eq. (35), when the initial covariance is a nonzero matrix.
Although it is possible to derive a closed-form solution in the general case, in which the initial covariance matrix is an
arbitrary positive semidefinite matrix, the resulting expressions are cumbersome, and do not provide intuition about
the structure of the problem. Therefore, we here present the analysis for the case in which the estimates about the
robots’ and landmarks’ positions are initially uncorrelated, i.e., the initial covariance matrix is of the form

Π0 = P(0) =
[

Prr0 02M×2N

02N×2M PLL0

]
(72)

wherePrr0 andPLL0 are arbitrary positive semidefinite matrices. We first derive two necessary intermediate results.

• Steady State Solution of the Dual Riccati Recursion

The derivation of the steady state solution to the dual Riccati recursion in Eq. (58) is simplified by exploiting
the special structure of the measurement and information matrices. Specifically, we observe that all the matrices that
appear in the dual Riccati recursion (Eq. (58)) can be written as the Kronecker product of some matrix withI2×2, and
the initial value of this recursion is zero. Employing the result of Appendix C, we conclude that at any time instant the
solution to this recursion will be of the form

Jk =
[

Jrrk
JT

Lrk

JLrk
JLLk

]
= Jk ⊗ I2×2 =

[
Jrrk

JT
Lrk

JLrk
JLLk

]
⊗ I2×2

The dual Riccati recursion in Eq. (58) leads to the following Riccati forJk:
[

Jrrk+1 JT
Lrk+1

JLrk+1 JLLk+1

]
=

[
Jrrk

JT
Lrk

JLrk
JLLk

]
+

[
Irr IT

Lr

ILr ILL

]

−
[

Jrrk
JT

Lrk

JLrk
JLLk

] [ (
Q−1

s + Jrrk

)−1
0M×N

0N×M 0N×N

] [
Jrrk

JT
Lrk

JLrk
JLLk

]

which can be decomposed in the following recursions:

Jrrk+1 = Jrrk
+ Irr − Jrrk

(
Q−1

s + Jrrk

)−1
Jrrk

(73)

JLrk+1 = JLrk
+ ILr − Jrrk

(
Q−1

s + Jrrk

)−1
JLrk

(74)

JLLk+1 = JLLk
+ ILL − JLrk

(
Q−1

s + Jrrk

)−1
JT

Lrk
(75)
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Now we can determine the steady state solution to each of the submatrix elements ofJk independently. Setting
Jrrk+1 = Jrrk

= Jrr∞ (i.e., solution at steady state) in Eq. (73) yields

Irr = Jrr∞
(
Q−1

s + Jrr∞
)−1

Jrr∞ (76)

or

Q1/2
s IrrQ

1/2
s = Q1/2

s Jrr∞Q1/2
s Q−1/2

s

(
Q−1

s + Jrr∞
)−1

Q−1/2
s Q1/2

s Jrr∞Q1/2
s ⇒

UΛUT = Jn (IM×M + Jn)−1
Jn ⇒

Λ = UT JnUUT (IM×M + Jn)−1
UUT JnU ⇒

Λ = Jnn (IM×M + Jnn)−1
Jnn

where we have defined

Jn = Q1/2
s Jrr∞Q1/2

s (77)

and

Jnn = UT JnU (78)

At this point we assume thatJnn is diagonal, i.e.,Jnn = diag (Jnni), and by solving the set of2M scalar equations

λi =
J2

nni

1 + Jnni

and back-substituting in Eqs. (77) and (78), we derive the final expression:

Jrr∞ = Q−1/2
s U diag

(
λi

2
+

√
λ2

i

4
+ λi

)
UT Q−1/2

s (79)

It is easy to show that the Riccati recursion in Eq. (73) corresponds to a system that is both controllable and observable,
and therefore the derived solution is unique. The matrixJrr∞ can be written as

Jrr∞ =

(
Q−1/2

s U diag

(
λi

2
+

√
λ2

i

4
+ λi

)
UT Q−1/2

s

)
⊗ I2×2

= Q−1/2
s Us diag


λsi

2
+

√
λ2

si

4
+ λsi


UT

s Q−1/2
s (80)

In order to derive the steady state value ofJLrk+1 , we setJLrk+1 = JLrk
= JLr∞ in Eq. (74) and solving forJLr∞

yields
JLr∞ = ILrJ

−1
rr∞

(
Q−1

s + Jrr∞
)

(81)

Finally, we note that Eq. (75) can be written as

JLLk+1 − JLLk
= ILL − JLrk

(
Q−1

s + Jrrk

)−1
JT

Lrk

In this expression, the right-hand side is independent ofJLLk
, and, after sufficient time, it approaches a constant value

given by

lim
k→∞

JLLk+1 − JLLk
= lim

k→∞
ILL − JLrk

(
Q−1

s + Jrrk

)−1
JT

Lrk

= ILL − JLr∞
(
Q−1

s + Jrr∞
)−1

JT
Lr∞

We thus conclude that at steady state the termJLLk
increases at a constant rate, i.e.,

JLLss =
(
ILL − JLr∞

(
Q−1

s + Jrr∞
)−1

JT
Lr∞

)
k + Jc

= Jak + Jc (82)
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whereJc is a constant term. In the derivations that follow, the exact value of this term is not required. We only require
knowledge of the sum of the elements ofJc, i.e., the quantity11×NJc1N×1. This is computed by noting that the sum
of all the elements of the matrixJk is equal to

11×(M+N)Jk11×(M+N) = 11×MJrrk
1M×1 + 211×NJLrk

1M×1 + 11×NJLLk
1N×1 ⇒

11×NJLLk
1N×1 = 11×(M+N)Jk11×(M+N) − 211×NJLrk

1M×1 − 11×MJrrk
1M×1

Evaluating this expression at steady state yields

11×N (Jak + Jc)1N×1 = 11×(M+N)J∞11×(M+N) − 211×NJLr∞1M×1 − 11×MJrr∞1M×1 (83)

In Appendix E it is shown thatrank(Ja) = N − 1, i.e., Ja is rank deficient, having one eigenvalue equal to zero.
The eigenvector associated with the zero eigenvalue is shown to be1√

1
1N×1, which implies that11×NJa1N×1 = 0.

Moreover, in Appendix D it is shown that the sum of all the elements of matrixJk is equal to zero, forall k ≥ 0. Thus
Eq. (83) yields

11×NJc1N×1 = −211×NJLr∞1M×1 − 11×MJrr∞1M×1 (84)

At this point we show that11×NJLr∞ = −11×MJrr∞ . Substitution from Eq. (81) yields

11×NJLr∞ = 11×NILrJ
−1
rr∞

(
Q−1

s + Jrr∞
)

But in Appendix E (cf Eq. (133)) it is shown that11×NILr = −11×MIrr and thus

11×NJLr∞ = −11×MIrrJ
−1
rr∞

(
Q−1

s + Jrr∞
)

(85)

Substitution forIrr from Eq. (76) yields

11×NJLr∞ = −11×MJrr∞
(
Q−1

s + Jrr∞
)−1

Jrr∞J−1
rr∞

(
Q−1

s + Jrr∞
)

= −11×MJrr∞ (86)

which is the desired result. Using this property in Eq. (84) we obtain

11×NJc1N×1 = 211×MJrr∞1M×1 − 11×MJrr∞1M×1

= 11×MJrr∞1M×1 (87)

• Evaluation of the Term Φ(0)
p (k + 1, 0) at Steady State

Recall thatΦ(0)
p (k + 1, 0) is defined as

Φ(0)
p (k + 1, 0) =

(
Iξ×ξ −PH′T

o

(
Rs + H′

oPH′T
o

)−1
H′

o

)k+1

[Iξ×ξ + PJk+1]

whereP is any solution to the DARE

P = P−PH′T
o

(
Rs + H′

oPH′T
o

)−1
H′

oP + GoQsGT
o

It is easy to show, by substitution, thatPs(0)
∞ (cf. Eq. (71)) satisfies this DARE and therefore

Φ(0)
p (k + 1, 0) =

(
Iξ×ξ −Ps(0)

∞ H′T
o

(
Rs + H′

oP
s(0)
∞ H′T

o

)−1

H′
o

)k+1 [
Iξ×ξ + Ps(0)

∞ Jk+1

]
(88)

Application of the matrix inversion lemma (cf. Appendix G) yields

Iξ×ξ −Ps(0)
∞ H′T

o

(
Rs + H′

oP
s(0)
∞ H′T

o

)−1

H′
o =

(
Iξ×ξ + Ps(0)

∞ H′T
o R−1

s H′
o

)−1

= A⊗ I2×2
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where

A =
[

IM×M + P s
rr∞Irr P s

rr∞IT
Lr

0N×M IN×N

]−1

We note that

C = UΛUT = Q1/2
s IrrQ

1/2
s ⇒

Irr = Q−1/2
s UΛUT Q−1/2

s

and thus theM ×M principal diagonal submatrix ofA equals

IM×M + P s
rr∞Irr = IM×M + P s

rr∞Q−1/2
s UΛUT Q−1/2

s

= IM×M +
(

Q1/2
s U diag

(
1
2

+
√

1
4

+
1
λi

)
UT Q1/2

s

)
Q−1/2

s UΛUT Q−1/2
s

= IM×M + Q1/2
s U diag

(
λi

2
+

√
λ2

i

4
+ λi

)
UT Q−1/2

s

= Q1/2
s U diag

(
1 +

λi

2
+

√
λ2

i

4
+ λi

)
UT Q−1/2

s

= Q1/2
s U diag (f(λi))UT Q−1/2

s

where

f(λi) = 1 +
λi

2
+

√
λ2

i

4
+ λi

At this point we employ the eigendecomposition of matrix A. It is easy to verify, by carrying out the matrix multipli-
cations and applying the formula for the inversion of a partitioned matrix (cf. Appendix H), that

A = V LV −1

where

L =
[

diag (f(λi)) 0N×M

0N×M IN×N

]
and V =

[
Q

1/2
s U −I−1

rr IT
Lr

0N×M IN×N

]
=

[
Q

1/2
s U Φo

0N×M IN×N

]

with
Φo = −I−1

rr IT
Lr

We can now write
(

Iξ×ξ −Ps(0)
∞ H′T

o

(
Rs + H′

oP
s(0)
∞ H′T

o

)−1

H′
o

)k+1

=
(
A−1 ⊗ I2×2

)k+1

= A−(k+1) ⊗ I2×2

= V L−(k+1)V −1

and

lim
k→∞

(
Iξ×ξ −Ps(0)

∞ H′T
o

(
Rs + H′

oP
s(0)
∞ H′T

o

)−1

H′
o

)k+1

= lim
k→∞

V L−(k+1)V −1

= V

(
lim

k→∞
L−(k+1)

)
V −1
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But

lim
k→∞

L−(k+1) =
[

limk→∞ diag (f(λi))
−(k+1) 0N×M

0N×M IN×N

]

=

[
limk→∞ diag

(
1

f(λi)

)(k+1)

0N×M

0N×M IN×N

]

=
[

0M×M 0N×M

0N×M IN×N

]

sincef(λi) > 1. Using the last result we obtain

lim
k→∞

(
Iξ×ξ −Ps(0)

∞ H′T
o

(
Rs + H′

oP
s(0)
∞ H′T

o

)−1

H′
o

)k+1

= V

(
lim

k→∞
L−(k+1)

)
V −1

=
[

0M×M Φo

0N×M IN×N

]

Moreover,

lim
k→∞

[
Iξ×ξ + Ps(0)

∞ Jk+1

]
=

[
IN×N + P s

rr∞Jrr∞ P s
rr∞JT

Lr∞
0N×M IN×N

]
⊗ I2×2

and thus Eq. (88) yields

lim
k→∞

Φ(0)
p (k + 1, 0) =

([
0M×M Φo

0N×M IN×N

]
⊗ I2×2

)([
IN×N + P s

rr∞Jrr∞ P s
rr∞JT

Lr∞
0N×M IN×N

]
⊗ I2×2

)

=
[

0M×M Φo

0N×M IN×N

]
⊗ I2×2

=
[

02M×2M Φo ⊗ I2×2

02N×2M I2N×2N

]

We can now evaluate the steady state value ofPs
k by computing the limit of the left hand side member of Eq. (56) after

sufficient time. We denote
[

Pa Pb

Pc Pd

]
= lim

k→∞
[I + Π0Jk+1]

−1 Π0 (89)

and we obtain

lim
k→∞

(
Ps

k+1 −Ps(0)
k+1

)
= lim

k→∞
Φ(0)

p (k + 1, 0) [I + Π0Jk+1]
−1 Π0Φ(0)

p (k + 1, 0)T

= lim
k→∞

Φ(0)
p (k + 1, 0)

[
Pa Pb

Pc Pd

]
lim

k→∞
Φ(0)

p (k + 1, 0)T

=
[

02M×2M Φo ⊗ I2×2

02N×2M I2N×2N

] [
Pa Pb

Pc Pd

] [
02M×2M ΦT

o ⊗ I2×2

02N×2M I2N×2N

]

=
[

(Φo ⊗ I2×2)Pd

(
ΦT

o ⊗ I2×2

)
(Φo ⊗ I2×2)Pd

Pd

(
ΦT

o ⊗ I2×2

)
Pd

]
(90)

From the last expression we conclude that only thePd submatrix is required in order to determine the steady state
value ofPs

k. Substituting from Eqs. (72) and (59) yields

lim
k→∞

[I + Π0Jk+1]
−1 Π0 = lim

k→∞

(
Iξ×ξ +

[
Prr0 02M×2N

02N×2M PLL0

] [
Jrrk

JT
Lrk

JLrk
JLLk

])−1 [
Prr0 02M×2N

02N×2M PLL0

]

TR-2004-0004 21



= lim
k→∞

[
I2M×2M + Prr0Jrrk

Prr0J
T
Lrk

PLL0JLrk
I2N×2N + PLL0JLLk

]−1 [
Prr0 02M×2N

02N×2M PLL0

]

= lim
k→∞

[
A1 A2

A3 A4

] [
Prr0 02M×2N

02N×2M PLL0

]

= lim
k→∞

[
A1Prr0 A2PLL0

A3Prr0 A4PLL0

]

ThusPd = limk→∞A4PLL0 where the matrixA4 can be computed by application of the formula for the inversion of
a partitioned matrix, given in Appendix H. This computation yields

Pd = lim
k→∞

A4PLL0

= lim
k→∞

(
I2N×2N + PLL0JLLk

−PLL0JLrk
(I2M×2M + Prr0Jrrk

)−1 Prr0J
T
Lrk

)−1

PLL0

But ask →∞,
JLLk

→ JLLss = Jak + Jc

At this point, in order to simplify the following derivations, we assume thatPLL0 is invertible, although a (considerably
more involved) solution can also be derived in the case thatPLL0 is singular. Thus we can write

Pd = lim
k→∞

(
I2N×2N + PLL0JLLk

−PLL0JLrk
(I2M×2M + Prr0Jrrk

)−1 Prr0J
T
Lrk

)−1

PLL0

= lim
k→∞

(
P−1

LL0
+ JLLk

− JLrk
(I2M×2M + Prr0Jrrk

)−1 Prr0J
T
Lrk

)−1

= lim
k→∞

(
P−1

LL0
+ Jak + Jc − JLrk

(I2M×2M + Prr0Jrrk
)−1 Prr0J

T
Lrk

)−1

= lim
k→∞

(Jak + Dk)−1 (91)

where we have denoted

Dk = P−1
LL0

+ Jc − JLrk
(I2M×2M + Prr0Jrrk

)−1 Prr0J
T
Lrk

In Appendix E it is shown thatJa = Ja ⊗ I2×2 is singular, and thus computation of the limit in Eq. (91) is not trivial.
However, we can now employ the following lemma, whose proof can be found in Appendix F, to determine the limit
in Eq. (91).

Lemma 3.5 If Y is a symmetric square matrix, whose singular value decomposition is denoted asY = UΛUT , and
Bk is a matrix of compatible dimensions whose limit ask →∞ exists, then

lim
k→∞

(Y k + Bk)−1 = UN (UT
NB∞UN )−1UT

N (92)

if the matrixUT
NB∞UN is inveritble. In the last expressionUN is a matrix whose column vectors form a basis of the

nullspace ofY .

The column vectors of the matrix1√
N

1N×1 ⊗ I2×2 form a basis to the nullspace ofJa, and thus, by settingY → Ja

andBk → Dk, we can now write

Pd = lim
k→∞

(Jak + Dk)−1

=
(

1√
N

1N×1 ⊗ I2×2

) ((
1√
N

11×N ⊗ I2×2

)
D∞

(
1√
N

1N×1 ⊗ I2×2

))−1 (
1√
N

11×N ⊗ I2×2

)

= (1N×1 ⊗ I2×2) ((11×N ⊗ I2×2)D∞ (1N×1 ⊗ I2×2))
−1 (11×N ⊗ I2×2)

= 1N×N ⊗ ((11×N ⊗ I2×2)D∞ (1N×1 ⊗ I2×2))
−1

= 1N×N ⊗Θ−1
s

TR-2004-0004 22



whereΘs is a2× 2 matrix defined as

Θs = (11×N ⊗ I2×2)D∞ (1N×1 ⊗ I2×2)

= (11×N ⊗ I2×2)
(
P−1

LL0
+ Jc − JLr∞ (I2M×2M + Prr0Jrr∞)−1 Prr0J

T
Lr∞

)
(1N×1 ⊗ I2×2)

= (11×N ⊗ I2×2)P−1
LL0

(1N×1 ⊗ I2×2) + (11×N ⊗ I2×2) (Jc ⊗ I2×2) (1N×1 ⊗ I2×2)

− (11×N ⊗ I2×2)JLr∞ (I2M×2M + Prr0Jrr∞)−1 Prr0J
T
Lr∞ (1N×1 ⊗ I2×2)

= (11×N ⊗ I2×2)P−1
LL0

(1N×1 ⊗ I2×2) + (11×NJc1N×1)⊗ I2×2

− (11×N ⊗ I2×2)JLr∞ (I2M×2M + Prr0Jrr∞)−1 Prr0J
T
Lr∞ (1N×1 ⊗ I2×2)

Using the result of Eq. (87) the last expression yields

Θs = (11×N ⊗ I2×2)P−1
LL0

(1N×1 ⊗ I2×2) + (11×NJrr∞1N×1)⊗ I2×2

− (11×N ⊗ I2×2)JLr∞ (I2M×2M + Prr0Jrr∞)−1 Prr0J
T
Lr∞ (1N×1 ⊗ I2×2)

= (11×N ⊗ I2×2)P−1
LL0

(1N×1 ⊗ I2×2) + (11×N ⊗ I2×2)Jrr∞ (1N×1 ⊗ I2×2)

− (11×N ⊗ I2×2)JLr∞ (I2M×2M + Prr0Jrr∞)−1 Prr0J
T
Lr∞ (1N×1 ⊗ I2×2)

Employing the property11×NJLr∞ = 11×MJrr∞ (cf. Eq. (86)) we obtain

Θs = (11×N ⊗ I2×2)P−1
LL0

(1N×1 ⊗ I2×2) + (11×N ⊗ I2×2)Jrr∞ (1N×1 ⊗ I2×2)

− (11×M ⊗ I2×2)Jrr∞ (I2M×2M + Prr0Jrr∞)−1 Prr0Jrr∞ (1M×1 ⊗ I2×2)
= (11×N ⊗ I2×2)P−1

LL0
(1N×1 ⊗ I2×2)

+ (11×M ⊗ I2×2)
(
Jrr∞ − Jrr∞ (I2×2 + Prr0Jrr∞)−1 Prr0Jrr∞

)
(1M×1 ⊗ I2×2)

= (11×N ⊗ I2×2)P−1
LL0

(1N×1 ⊗ I2×2) + (11×M ⊗ I2×2)
(
J−1

rr∞ + Prr0

)−1
(1M×1 ⊗ I2×2)

where the Matrix Inversion Lemma (cf. Appendix G) has been employed in the last line. Finally, substitution in
Eq. (90), yields

lim
k→∞

(
Ps

k+1 −Ps(0)
k+1

)
=

[
(Φo ⊗ I2×2)

(
1N×N ⊗Θ−1

s

) (
ΦT

o ⊗ I2×2

)
(Φo ⊗ I2×2)

(
1N×N ⊗Θ−1

s

)
(
1N×N ⊗Θ−1

s

) (
ΦT

o ⊗ I2×2

)
1N×N ⊗Θ−1

s

]

Applying the property of the Kronecker product in Eq. (126) we can write
(
1N×N ⊗Θ−1

s

) (
ΦT

o ⊗ I2×2

)
=

(
1N×NΦT

o

)⊗Θ−1
s

=
(
1N×111×NΦT

o

)⊗Θ−1
s

and similarly

(Φo ⊗ I2×2)
(
1N×N ⊗Θ−1

s

) (
ΦT

o ⊗ I2×2

)
=

(
Φo1N×NΦT

o

)⊗Θ−1
s

=
(
Φo1N×111×NΦT

o

)⊗Θ−1
s

But

11×NΦT
o = −11×NILrI

−1
rr

= 11×MIrrI
−1
rr

= 11×M

and thus

lim
k→∞

(
Ps

k+1 −Ps(0)
k+1

)
=

[ (
Φo1N×111×NΦT

o

)⊗Θ−1
s (Φo1N×111×N )⊗Θ−1

s(
1N×111×NΦT

o

)⊗Θ−1
s 1N×N ⊗Θ−1

s

]

=
[

(1M×111×M )⊗Θ−1
s (1M×111×N )⊗Θ−1

s

(1N×111×M )⊗Θ−1
s 1N×N ⊗Θ−1

s

]

= 1(M+N)×(M+N) ⊗Θ−1
s

We synopsize the preceding analysis in the following lemma:
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Lemma 3.6 The steady state value of the covariance matrix in LTI C-SLAM Eq. (53), when the initial value of the
covariance matrix is

P0 =
[

Prr0 02M×2N

02N×2M PLL0

]
(93)

is given by

Ps
∞ =

[
Q1/2

s Us diag
(

1
2 +

√
1
4 + 1

λsi

)
UT

s Q1/2
s 02M×2N

02N×2M 02N×2N

]
+ 1(M+N)×(M+N) ⊗Θ−1

s (94)

with

Θs = (11×N ⊗ I2×2)P−1
LL0

(1N×1 ⊗ I2×2) + (11×M ⊗ I2×2)
(
J−1

rr∞ + Prr0

)−1
(1M×1 ⊗ I2×2) (95)

and

Jrr∞ = Q−1/2
s Us diag


λsi

2
+

√
λ2

si

4
+ λsi


UT

s Q−1/2
s (96)

Where we have employed the definition

C = Q−1/2
s IrrQ−1/2

s = Us diag(λsi
)UT

s

with

Irr =
[

I2M×2M 02M×2N

]
H′T

o R−1
s H′

o

[
I2M×2M

02N×2M

]
(97)

3.3 Steady State Covariance Bounds

In this section we present the main results of this work. It was shown that an upper bound on the uncertainty of C-
SLAM is determined from the solution of the Riccati recursion in Eq. (35). At steady state, i.e., after sufficient time,
the upper bound on the covariance of C-SLAM is evaluated by employing Lemma 3.6. We note that replacing the
matrixRs with R′

u in the definition ofIrr (cf. Eq. (97)) yields

[
I2M×2M 02M×2N

]
H′T

o R′−1
u H′

o

[
I2M×2M

02N×2M

]
=

[
I2M×2M 02M×2N

]
HT

o PTPR−1
u PTPHo

[
I2M×2M

02N×2M

]

=
[

I2M×2M 02M×2N

]
= HT

o R−1
u Ho

[
I2M×2M

02N×2M

]

The following lemma holds:

Lemma 3.7 When a team ofM robots moving in 2D performs C-SLAM withN landmarks and the initial covariance
matrix of the position estimates is

P0 =
[

Prr0 02M×2N

02N×2M PLL0

]
(98)

the upper bound on the steady state uncertainty of the position estimates is determined by

Pu
∞ =

[
Q1/2

u Udiag
(

1
2 +

√
1
4 + 1

λi

)
UT Q1/2

u 02M×2N

02N×2M 02N×2N

]
+ 1(M+N)×(M+N) ⊗Θ−1

u (99)

with

Θu = (11×N ⊗ I2×2)P−1
LL0

(1N×1 ⊗ I2×2) + (11×M ⊗ I2×2)
(
J−1

rr∞ + Prr0

)−1
(1M×1 ⊗ I2×2) (100)
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and

Ju
rr∞ = Q−1/2

u Udiag


λi

2
+

√
λ2

i

4
+ λi


UT Q−1/2

u (101)

Where we have employed the definition

C = Q−1/2
u IrrQ−1/2

u = Udiag(λi)UT

with

Iu
rr =

[
I2M×2M 02M×2N

]
HT

o R−1
u Ho

[
I2M×2M

02N×2M

]

The quantitiesQu andRu depend on the accuracy of the robots’ sensors, and are defined in Eqs. (39) and (44) re-
spectively.

Similarly, the upper bound on theexpectedsteady state covariance of the position estimates in C-SLAM is derived
application of Lemma 3.6, for the Riccati recursion in Eq. (36):

Lemma 3.8 When a team ofM robots moving in 2D performs C-SLAM withN landmarks and the initial covariance
matrix of the position estimates is

P0 =
[

Prr0 02M×2N

02N×2M PLL0

]
(102)

the upper bound on theexpectedsteady state uncertainty of the position estimates is determined by

P̄∞ =

[
Q̄1/2

r Ūdiag
(

1
2 +

√
1
4 + 1

λ̄i

)
ŪT Q̄1/2

r 02M×2N

02N×2M 02N×2N

]
+ 1(M+N)×(M+N) ⊗ Θ̄−1

(103)

with

Θ̄ = (11×N ⊗ I2×2)P−1
LL0

(1N×1 ⊗ I2×2) + (11×M ⊗ I2×2)
(
J̄−1

rr∞ + Prr0

)−1
(1M×1 ⊗ I2×2) (104)

and

J̄rr∞ = Q̄−1/2
r Ūdiag


 λ̄i

2
+

√
λ̄i

2

4
+ λ̄i


 ŪT Q̄−1/2

r (105)

Where we have employed the definition

C̄ = Q̄−1/2
r ĪrrQ̄−1/2

r = Ūdiag(λ̄i)ŪT

with

Īrr =
[

I2M×2M 02M×2N

]
HT

o R̄−1Ho

[
I2M×2M

02N×2M

]

The quantities̄Qr andR̄ depend on the accuracy of the robots’ sensors, and are defined in Eqs. (45) and (48) respec-
tively.

4 RPMG Reconfigurations

Up to this point, we have assumed that the topology of the RPMG remains constant. However, it is interesting to study
the behavior of the covariance matrix of the position estimates in the case of RPMG reconfigurations. In this section,
we derive upper bounds for the steady-state covariance matrix of C-SLAM, after the RPMG changes. The following
results are only presented for the LTI C-SLAM system model, since their extension for the bounds on the worst-case
and average covariance is straightforward.
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4.1 Reconfiguration before convergence

We first address the case where the topology of the RPMG changesbeforesteady state has been reached. At the time
instant when the change in the graph’s topology occurs,ko, the covariance matrix of the position estimates of the
robots and landmarks will be a positive definite matrixPko

. This matrix can be viewed as the initial covariance matrix
of C-SLAM, with the new RPMG topology. Thus an analysis similar to that presented in the previous section can
be employed, to evaluate the asymptotic uncertainty. Compared to the preceding section, the difference in this case
lies in that the initial covariance matrix is not block-diagonal, and thus the value of the matrixPd, determined by the
expression in Eq. (89), should be re-computed. We now obtain

[
Pa
′ Pb

′

Pc
′ Pd

′

]
= lim

k→∞
[
I + Pko

J′k+1

]−1
Pko

= lim
k→∞

[
P−1

ko
+ J′k+1

]−1
(106)

where the primed quantities refer to the RPMG topology after its reconfiguration. By defining the partitioning

P−1
ko

=
[
Wrr WrL

WLr WLL

]

the previous expression can be written as

lim
k→∞

[
P−1

ko
+ J′k+1

]−1
= lim

k→∞

([
Wrr WrL

WLr WLL

]
+

[
J′rrk

J′TLrk

J′Lrk
J′LLk

])−1

(107)

Employing the formula for the inversion of a partitioned matrix, we obtain:

P ′d = lim
k→∞

(
WLL + J′LLk

− (
WLr + J′Lrk

) (
Wrr + J′rrk

)−1 (
WrL + J′TLrk

))−1

As k →∞,
J′LLk

→ J′LLss
= J′ak + J′c

Thus we can write

P ′d = lim
k→∞

(J′ak + D′
k)−1 (108)

where we have denoted

Dk = WLL + J′c −
(
WLr + J′Lrk

) (
Wrr + J′rrk

)−1 (
WrL + J′TLrk

)

By application of Lemma 3.5 yields, similarly to the previous section:

P ′d = 1N×N ⊗Θ′−1
s (109)

whereΘ′
s is defined as

Θ′
s = (11×N ⊗ I2×2)D′

∞ (1N×1 ⊗ I2×2)

= (11×N ⊗ I2×2)
(
WLL + J′c −

(
WLr + J′Lr∞

) (
Wrr + J′rr∞

)−1 (
WrL + J′TLr∞

))
(1N×1 ⊗ I2×2)

= (11×N ⊗ I2×2)WLL (1N×1 ⊗ I2×2) + (11×M ⊗ I2×2)J′rr∞ (1M×1 ⊗ I2×2)

+
(
(11×N ⊗ I2×2)WLr − (11×M ⊗ I2×2)J′rr∞

) (
J′rr∞ + Wrr

)−1 (
(11×N ⊗ I2×2)WLr − (11×M ⊗ I2×2)J′rr∞

)T

(110)

In the last expression, we have once again used the result of Eq. (87), and the property11×NJLr∞ = 11×MJrr∞
(cf. Eq. (86)).

Clearly, all the remaining derivations for the steady-state covariance with thenewRPMG topology remain un-
changed. This is given by:

Ps′
∞ =


 Q1/2

s U′
s diag

(
1
2 +

√
1
4 + 1

λ′si

)
U′T

s Q1/2
s 02M×2N

02N×2M 02N×2N


 + 1(M+N)×(M+N) ⊗Θ′−1

s (111)

whereΘ′−1
s is defined in Eq. (110), and all the primed quantities correspond to the new RPMG topology.
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4.2 Reconfigurations after convergence

A special case of interest arises when the RPMG reconfiguration occursafter steady state has been reached. In order
to compute the asymptotic covariance after the topology change, we can once again view the covariance matrixPko as
the initial covariance matrix of C-SLAM with the new RPMG. Since the covariance has converged to its steady-state
value prior to the reconfiguration, we have

Pko =

[
Q1/2

s Us diag
(

1
2 +

√
1
4 + 1

λsi

)
UT

s Q1/2
s 02M×2N

02N×2M 02N×2N

]
+ 1(M+N)×(M+N) ⊗Θ−1

s

= Ps(0)
∞ + 1(M+N)×(M+N) ⊗Θ−1

s (112)

Thus the new value of the matrixPd is determined by the equation
[

Pa
′ Pb

′

Pc
′ Pd

′

]
= lim

k→∞
(
I + Pko

J′k+1

)−1
Pko

= lim
k→∞

(
I +

(
Ps(0)
∞ + 1(M+N)×(M+N) ⊗Θ−1

s

)
J′k+1

)−1

Pko

where the primed quantities refer to the RPMG topology after its reconfiguration. At this point we note that
(
1(M+N)×(M+N) ⊗Θ−1

s

)
J′k+1 =

(
1(M+N)×(M+N)J

′
k+1

)⊗Θ−1
s

= 0ξ×ξ

Using this result, the preceding expression simplifies to
[

Pa
′ Pb

′

Pc
′ Pd

′

]
= lim

k→∞

(
I + Ps(0)

∞ J′k+1

)−1

Pko

From this expression, we obtain

Pd
′ = 1M×M ⊗Θ−1

s (113)

and thus the asymptotic covariance with the new RPMG topology is given by In this case, the upper bound of the
asymptotic covariance after the reconfiguration, is given by [10]:

Ps′
∞ = Ps(0)′

∞ + 1(M+N)×(M+N) ⊗Θ−1 (114)

wherePs(0))′
∞ is defined as in Eq. (71), but with all quantities corresponding to the new RPMG, andΘ is defined in

Eq. (95).
It should be stressed at this point that, while the upper bound on the robots’ uncertainty depends on the structure

of the new RPMG, the upper bound on the landmarks’ covariance isidentical to the value of the bound prior to the
RPMG topology change. This result implies that once steady state has been reached and in the absence of any new
external positioning information (e.g., from GPS),no measurement strategy can reduce the uncertainty of the map
features’ positions. This is a consequence of the fact that, at steady state, the uncertainty of the map lies entirely in the
unobservable subspace of the system, whose basis comprises the column vectors of the matrix1N×1 ⊗ I2×2. Since
the unobservable subspace of the system does not change when the topology of the RPMG changes, unless absolute
positioning information becomes available (e.g., in the form of GPS measurements), it is impossible to improve the
accuracy of the landmarks’ position estimates.
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A Upper Bound Riccati Recursion

In this appendix we prove that ifR′
u º R′

o(k) andQu º Qr(k) for all k ≥ 0, then the solutions to the following two
Riccati recursions

Pk+1 = Pk −PkH′T
o

(
H′

oPkH′T
o + R′

o(k + 1)
)−1

H′
oPk + GoQr(k + 1)GT

o (115)

and

Pu
k+1 = Pu

k −Pu
kH

′T
o

(
H′

oP
u
kH

′T
o + R′

u

)−1
H′

oP
u
k + GoQuGT

o (116)

with thesameinitial condition,P0, satisfyPu
k º Pk for all k ≥ 0. The proof is carried out by induction, and requires

the following two intermediate results:

• Monotonicity with respect to the measurement covariance matrix

If R1 º R2, then for anyP º 0

P−PHT
(
HPHT + R1

)−1
HP + Qo º P−PHT

(
HPHT + R2

)−1
HP + Qo (117)

This statement is proven by taking into account the properties of linear matrix inequalities:

R1 º R2 ⇒
HPHT + R1 º HPHT + R2 ⇒(

HPHT + R1

)−1 ¹ (
HPHT + R2

)−1 ⇒
PHT

(
HPHT + R1

)−1
HP ¹ PHT

(
HPHT + R2

)−1
HP ⇒

−PHT
(
HPHT + R1

)−1
HP º −PHT

(
HPHT + R2

)−1
HP ⇒

P−PHT
(
HPHT + R1

)−1
HP + Qo º P−PHT

(
HPHT + R2

)−1
HP + Qo

• Monotonicity with respect to the state covariance matrix

The solution to the Riccati recursion at timek + 1 is monotonic with to the solution at timek, i.e., if P(1)
k and

P(2)
k are two different solutions to the same Riccati recursion at timek, with P(1)

k º P(2)
k thenP(1)

k+1 º P(2)
k+1. In

order to prove the result in the general case, in whichP(1)
k andP(2)

k are positive semidefinite, we use the following
expression that relates the one-step ahead solutions to two Riccati recursions with identicalH, Q andR matrices, but
different initial valuesP(1)

k andP(2)
k ([8]). It is

P(2)
k+1 −P(1)

k+1 = Fp,k

((
P(2)

k −P(1)
k

)
−

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

))
FT

p,k (118)

whereFp,k is a matrix whose exact structure is not important for the purposes of this proof. Since we have assumed

P(1)
k º P(2)

k we can writeP(2)
k −P(1)

k ¹ 0. Additionally, the matrix
(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

)

is positive semidefinite, and therefore we have

−
(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

)
¹ 0 ⇒

(
P(2)

k −P(1)
k

)
−

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

)
¹ 0 ⇒

Fp,k

((
P(2)

k −P(1)
k

)
−

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

))
FT

p,k ¹ 0 ⇒
P(2)

k+1 −P(1)
k+1 ¹ 0
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The last line implies thatP(1)
k+1 º P(2)

k+1, which is the desired result.

We can now employ induction to prove the main statement of this appendix. Assuming that at some time instanti,
Pu

i º Pi, we can write

Pu
i+1 = Pu

i −Pu
i H

′T
o

(
H′

oP
u
i H

′T
o + R′

u

)−1
H′

oP
u
i + GoQuGT

o

º Pi −PiH′T
o

(
H′

oPiH′T
o + R′

u

)−1
H′

oPi + GoQuGT
o

º Pi −PiH′T
o

(
H′

oPiH′T
o + R′

u

)−1
H′

oPi + GoQr(k + 1)GT
o

º Pi −PiH′T
o

(
H′

oPiH′T
o + R′

o(k + 1)
)−1

H′
oPi + GoQr(k + 1)GT

o = Pi+1

where the monotonicity of the Riccati recursion with respect to the covariance matrix, the propertyQu º Qr(k + 1)

and the monotonicity of the Riccati recursion with respect to the measurement covariance matrix have been used in the
last three lines. ThusPu

i º Pi ⇒ Pu
i+1 º Pi+1. For i = 0 the conditionPu

i º Pi holds with equality, and therefore
for any i > 0, the solution to the Riccati recursion in Eq. (115) is an upper bound to the solution of the recursion in
Eq. (116).

B Riccati Recursion for the Upper Bound on the Average Covariance

In this appendix we prove that if̄R′ andQ̄r are matrices such that̄R′ = E{R′
o(k)} andQ̄r = {Qr(k)} for all k ≥ 0,

then the solutions to the following two Riccati recursions

Pk+1 = Pk −PkH′T
o

(
H′

oPkH′T
o + R′

o(k + 1)
)−1

H′
oPk + GoQr(k + 1)Go (119)

and

P̄k+1 = P̄k − P̄kH′T
o

(
H′

oP̄kH′T
o + R̄′)−1

H′
oP̄k + GoQ̄rGT

o (120)

with thesameinitial condition,P0, satisfyP̄k º E{Pk} for all k ≥ 0. We first prove a useful intermediate result:

• Concavity of the Riccati recursion

We note that the Riccati recursion

Pk+1 = Pk − PkHT
(
HPkHT + Rk+1

)−1
HPk + GQk+1G (121)

can equivalently be written as

Pk+1 =
[

I 0
] [

Pk 0
0 Rk+1

] [
I
0

]

− [
I 0

] [
Pk 0
0 Rk+1

] [
HT

0

]([
H I

] [
Pk 0
0 Rk+1

] [
HT

I

])−1 [
H 0

] [
Pk 0
0 Rk+1

] [
I
0

]

+ GQk+1G

our goal is to show that the above expression is concave with respect to the matrix
[

Pk 0
0 Rk+1

]

A sufficient condition for this is that the function

f(X) = AXB
(
CXCT

)−1
BT XAT (122)
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is convex with respect to the positive semidefinite matrixX, whenA,B,C are arbitrary matrices of compatible dimen-
sions. This is equivalent to proving the convexity of the function of the scalar variablet

ft(t) = A(Xo + tZo)B
(
C(Xo + tZo)CT

)−1
BT (Xo + tZo)AT (123)

with domain those values oft for whichXo + tZo º 0, Xo º 0 is convex [11].ft(t) is convex if and only if the scalar
function

f ′t(t) = zT A(Xo + tZo)B
(
C(Xo + tZo)CT

)−1
BT (Xo + tZo)AT z (124)

is convex for any vectorz of appropriate dimensions [11]. Moreover, it is well known that a function is convex if and
only if its epigraph is a convex set, and therefore we obtain the following convexity condition forf(X):

f(X) convex ⇔ {s, t|zT A(Xo + tZo)B
(
C(Xo + tZo)CT

)−1
BT (Xo + tZo)AT z ≤ s} is convex

However, from the properties of Schur complements it is well known that ifAo Â 0 then
[

Ao Bo

BT
o Co

]
º 0 ⇔ Co −BT

o C−1
o B º 0

In our problem, the matrixC(Xo + tZo)CT is clearly positive definite, and thus we can write

zT A(Xo+tZo)B
(
C(Xo + tZo)CT

)−1
BT (Xo+tZo)AT z ≤ s ⇔

[
C(Xo + tZo)CT BT (Xo + tZo)AT z
zT A(Xo + tZo)B s

]
º 0

However, the defining matrix inequality of the epigraph is equivalent to
[

CXoC
T BT XoA

T z
zT AXoB 0

]
+ t

[
CZoC

T BT ZoA
T z

zT AZoB 0

]
+ s

[
0 0
0 1

]
º 0

which defines a convex set in(s, t) [11].
Thus, by the preceding analysisf(X) is a convex function, and consequentlyPk+1 is a concave function of the

matrix [
Pk 0
0 Rk+1

]

We now employ this result to prove the main result of this appendix. The proof is carried out by induction. Assuming
that at time stepk the inequalityP̄k º E{Pk} holds, we will show that it also holds for the time stepk + 1. We have

Pk+1 = Pk −PkH′T
o

(
H′

oPkH′T
o + R′

o(k + 1)
)−1

H′
oPk + GoQ(k + 1)GT

o ⇒
E{Pk+1} = E{Pk −PkH′T

o

(
H′

oPkH′T
o + R′

o(k + 1)
)−1

H′
oPk + GoQ(k + 1)GT

o }
= E{Pk −PkH′T

o

(
H′

oPkH′T
o + R′

o(k + 1)
)−1

H′
oPk}+ GoE{Q(k + 1)}GT

o

¹ E{Pk} − E{Pk}H′T
o

(
H′

oE{Pk}H′T
o + E{R′

o(k + 1)})−1
H′

oE{Pk}+ GoE{Q(k + 1)}GT
o

where in the last line the concavity of Jensen’s inequality was applied [11], in order to exploit tht concavity of the
Riccati. By assumption,̄Pk º E{Pk} and employing the property of the monotonicity of the Riccati with respect to
the covariance matrix (cf. Appendix A), we can write

E{Pk+1} ¹ P̄k − P̄kH′T
o

(
H′

oP̄kH′T
o + E{R′

o(k + 1)})−1
H′

oP̄k + GoE{Q(k + 1)}GT
o

= P̄k − P̄kH′T
o

(
H′

oP̄kH′T
o + R̄′})−1

H′
oP̄k + GoQ̄rGT

o

= P̄k+1

Thus,P̄k º E{Pk} ⇒ P̄k+1 º E{Pk+1}. Fork = 0 the conditionP̄k º E{Pk} holds with equality, and the proof
is complete.
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C A Special Case of the Riccati Recursion

In this appendix we prove the following lemma:

Lemma C.1 Consider the following general form of the Riccati recursion

Xk+1 = Xk + A−XkBT
(
BXkBT + C

)−1
BXk

with Xk,A ∈ R2n×2n, B ∈ R2m×2n, andC ∈ R2m×2m. If the initial value of this recursion is of the form

X0 = X0 ⊗ I2×2

and additionally
A = A⊗ I2×2, B = B ⊗ I2×2, C = C ⊗ I2×2,

with X0, A ∈ Rn×n, B ∈ Rm×n, andC ∈ Rm×m then the solution for allk > 0 can be expressed as

Xk = Xk ⊗ I2×2

with Xk ∈ Rn×n.

Proof We prove this statement by induction. Assuming that for somei ≥ 0, Xi = Xi ⊗ I2×2, then we can write

Xi+1 = Xi + A−XiBT
(
BXiBT + C

)−1
BXi

= Xi ⊗ I2×2 + A⊗ I2×2

− (
Xi ⊗ I2×2

)(
BT ⊗ I2×2

)((
B ⊗ I2×2

)(
Xi ⊗ I2×2

)(
BT ⊗ I2×2

)
+

(
C ⊗ I2×2

))−1(
B ⊗ I2×2

)(
Xi ⊗ I2×2

)

At this point we use the following properties of the Kronecker Product:

W ⊗D + Y ⊗D = (W + Y )⊗D (125)

(W ⊗D)(Y ⊗ E) = (WY )⊗ (DE) (126)

(W ⊗D)−1 = W−1 ⊗D−1 (127)

Applying Eqs. (125) and (126) withD = E = I2×2, yields

(
B ⊗ I2×2

)(
Xi ⊗ I2×2

)(
BT ⊗ I2×2

)
+

(
C ⊗ I2×2

)
=

(
BXiB

T + C
)⊗ I2×2

Applying the property of Eq. (127), we obtain
(
(BXiB

T + C)⊗ I2×2

)−1 =
(
BXiB

T + C
)−1 ⊗ I2×2. Hence,

Xi+1 = Xi ⊗ I2×2 + A⊗ I2×2 −
(
Xi ⊗ I2×2

)(
BT ⊗ I2×2

)(
(BXiB

T + C)−1 ⊗ I2×2

)(
B ⊗ I2×2

)(
Xi ⊗ I2×2

)

= Xi ⊗ I2×2 + A⊗ I2×2 −
(
XiB

T (BXiB
T + C)−1BXi

)⊗ I2×2

=
(
Xi + A−XiB

T (BXiB
T + C)−1BXi

)⊗ I2×2

Thus, wheneverXi can be written as the Kronecker product of some matrix withI2×2, Xi+1 retains the same special
structure. Fori = 0, X0 is by assumption of the formX0 ⊗ I2×2, and therefore, the proof is complete.

D Sum of the Elements ofJk

In this appendix we prove that the sum of all elements ofJk is equal to zero for allk ≥ 0, whenJ0 = 0(M+N)×(M+N).
For this purpose we employ the method of induction. Assume that at time stepi, 11×(M+N)Ji1(M+N)×1 = 0. Then
from Eq. (58) we obtain

11×(M+N)Ji+11(M+N)×1 = 11×(M+N)

(
Ji + HT

o R−1
s Ho − JiG

(
Q−1

s + GT JiG
)−1

GT Ji

)
1(M+N)×1
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where

G =
[

IM×M

0N×N

]

But the sum of the elements ofJi is zero, and additionally11×(M+N)H
T
o R−1

s Ho1(M+N)×1 = 0 since the vector
1(M+N)×1 belongs in the nullspace of the matrixHo. Therefore, we can write

11×(M+N)Ji+11(M+N)×1 = −11×(M+N)JiG
(
Q−1

s + GT JiG
)−1

GT Ji1(M+N)×1

But Ji+1 is a positive semidefinite matrix, therefore the sum of its elements,11×(M+N)Ji+11(M+N)×1 cannot be neg-

ative. The right hand side of the above equation is a non-positive number, since the matrix
(
Q−1

s + GT JiG
)−1

is posi-
tive definite, and we conclude that11×(M+N)Ji+11(M+N)×1 = 0. We have thus shown that11×(M+N)Ji1(M+N)×1 =
0 ⇒ 11×(M+N)Ji+11(M+N)×1 = 0. For i = 0 the statement we seek to prove is trivially true, and thus the proof is
complete.

E Rank of the matrix Ja

In this appendix we prove that theN ×N matrix

Ja = ILL − JLr∞
(
Q−1

s + Jrr∞
)−1

JT
Lr∞

is of rankN − 1, and that 1√
1
1N×1 is its nullvector. Substitution for the value ofJLr∞ from Eq. (81) yields

Ja = ILL − JLr∞
(
Q−1

s + Jrr∞
)−1

JT
Lr∞

= ILL − ILrJ
−1
rr∞

(
Q−1

s + Jrr∞
)
J−1

rr∞IT
Lr (128)

and using the result of Eq. (76) we obtain the simple expression

Ja = ILL − ILrI
−1
rr IT

Lr (129)

In order to compute the rank of this matrix, we note thatJa is the Schur complement ofIrr in the matrix

H ′T
o R−1

s H ′
o =

[
Irr IT

Lr

ILr ILL

]
(130)

But the matrixH ′
o is identical to the incidence matrix of the RPMG describing the relative position measurements.

Since the RPMG is assumed to be a connected graph,H ′
o is of rankM +N−1 [12]. As a resultH ′T

o R−1
s H ′

o is of rank
M +N−1 [13]. Moreover, the invertibility ofIrr enables us to apply to following property of the Schur complement:

rank
(
H ′T

o R−1
s H ′

o

)
= rank(Irr) + rank(ILL − ILrI

−1
rr IT

Lr) ⇒
M + N − 1 = M + rank(ILL − ILrI

−1
rr IT

Lr) ⇒
rank(ILL − ILrI

−1
rr IT

Lr) = N − 1 ⇒
rank(Ja) = N − 1 (131)

We next show that1√
1
1N×1 is the nullvector ofJa. For this purpose it suffices to show that

11×N

(
ILL − ILrI

−1
rr IT

Lr

)
1N×1 = 0 ⇒

11×NILL1N×1 − 11×NILrI
−1
rr IT

Lr1N×1 = 0 (132)

But from the structure of the measurement equations, it is easy to see that11×NHT
2 = −11×MHT

1 , and also
11×MHT

R = 01×MRR . Therefore

11×NILr = 11×N

(
HT

2 FT
2 HR + HT

2 F4H1

)

= −11×M

(
HT

1 FT
2 HR + HT

1 F4H1

)

= −11×M

(
HT

1 FT
2 HR + HT

1 F4H1

)− 11×M

(
HT

RF1HR + HT
RF2H1

)

= −11×M

(
HT

RF1HR + HT
1 FT

2 HR + HT
RF2H1 + HT

1 F4H1

)

= −11×MIrr (133)
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In a similar way we can show that11×NILL1N×1 = 11×MIrr1M×1, and thus Eq. (132) can be rewritten as

11×MIrr1M×1 − 11×MIrrI
−1
rr Irr1M×1 = 0 ⇒

11×MIrr1M×1 − 11×MIrr1M×1 = 0

which holds trivially.
Finally, the rank of the matrixJa = Ja ⊗ I2×2 can be computed by application of the properties of the Kronecker

product. Specifically,

rank(Ja) = rank(Ja ⊗ I2×2) = rank(Ja) rank(I2×2) = 2N − 2

Thus theJa has two eigenvalues equal to zero. The eigenvectors corresponding to these eigenvalues can be easily
determined by noting that

Ja (1N×1 ⊗ I2×2) = (Ja1N×1)⊗ I2×2 = 02N×2

Therefore we conclude that two basis vectors for the nullspace ofJa are given by the column vectors of the matrix
1√
N

1N×1.

F Proof of Lemma 3.5

We denoteU = [V UN ], whereV is a matrix whose column vectors form a basis of the range ofY , while the columns
of UN form a basis of the nullspace ofY . Assuming thatY ∈ Rn×n, and that the nullspace ofY is of dimensionm,
thenV ∈ Rn×p , with p = n−m andUN ∈ Rn×m. We can thus write

(Y k + Bk)−1 = (UΛUT k + BK)−1

= U(Λk + UT BKU)−1UT

=
[

V UN

] ([
Λok 0p×m

0m×p 0m×m

]
+

[
V T

UT
N

]
Bk

[
V UN

])−1 [
V T

UT
N

]

whereΛo denotes ap × p diagonal matrix, whose diagonal elements are the nonzero singular values ofY . Carrying
out the matrix operations yields

(Y k + Bk)−1 =
[

V UN

] [
Λok + V T BkV V T BkUN

UT
NBkV UT

NBkUN

]−1 [
V T

UT
N

]

Employing the formula for the inversion of a partitioned matrix (cf. Appendix H) yields

(Y k + Bk)−1 =
[

V UN

] [
A1 A2

A3 A4

] [
V T

UT
N

]
(134)

with

A1 =
(
Λok + V T BkV − V T BkUN

(
UT

NBkUN

)−1
UT

NBkV
)−1

A2 = −
(
Λok + V T BkV − V T BkUN

(
UT

NBkUN

)−1
UT

NBkV
)−1

V T BkUN

(
UT

NBkUN

)−1

= A1V
T BkUN

(
UT

NBkUN

)−1

A3 = − (
UT

NBkUN

)−1
UT

NBkV
(
Λok + V T BkV − V T BkUN

(
UT

NBkUN

)−1
UT

NBkV
)−1

= − (
UT

NBkUN

)−1
UT

NBkV

A4 =
(
UT

NBkUN − UT
NBkV

(
Λok + V T BkV

)−1
V T BkUN

)−1

Computation of the limits of these matrices ask →∞ is now possible. We have

lim
k→∞

A1 = lim
k→∞

(
Λok + V T BkV − V T BkUN

(
UT

NBkUN

)−1
UT

NBkV
)−1

= lim
k→∞

1
k

(
Λo +

1
k

V T BkV − 1
k

V T BkUN

(
UT

NBkUN

)−1
UT

NBkV

)−1
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But assuming thatlimk→∞Bk = B∞ exists (i.e, it is finite), we have

lim
k→∞

1
k

V T BkV − 1
k

V T BkUN

(
UT

NBkUN

)−1
UT

NBkV = 0p×p

and thus

lim
k→∞

A1 = lim
k→∞

1
k

Λ−1
o = 0p×p

As a consequencelimk→∞A2 = 0p×m andlimk→∞A3 = 0m×p. Finally, we have that

lim
k→∞

(
Λok + V T BkV

)−1
= lim

k→∞
1
k

(
Λo +

1
k

V T BkV

)−1

= 0p×p

and therefore

lim
k→∞

A4 = (UT
NB∞UN )−1

Substitution in Eq. (134) yields

(Y k + Bk)−1 =
[

V UN

] [
0p×p 0p×m

0m×p (UT
NB∞UN )−1

] [
V T

UT
N

]

= UN (UT
NB∞UN )−1UT

N (135)

which is the desired result.

G Matrix Inversion Lemma

If A is n× n, B is n×m, C is m×m andD is m× n then:

(A−1 + BC−1D)−1 = A−AB(DAB + C)−1DA (136)

H Inversion of a Partitioned Matrix

Let a(m + n)× (m + n) matrixK be partitioned as

K =
[

A B
C D

]

Where them×m matrixA and then× n matrixD are invertible. Then the inverse matrix ofK can be written as
[

X Y
Z U

]
=

[
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

]
(137)
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