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Abstract— In this paper we present a novel direct visual-
inertial odometry algorithm, for estimating motion in unknown
environments. The algorithm utilizes image patches extracted
around image features, and formulates measurement residuals
in the image intensity space directly. One key characteristic
of the proposed method is that it models the true irradiance
at each pixel as a random variable to be estimated and
marginalized out. The formulation of the photometric residual
explicitly accounts for the camera response function and lens
vignetting (which can be calibrated in advance), as well as
unknown illumination gains and biases, which are estimated
on a per-feature or per-image basis. We present a detailed
evaluation of our algorithm on 50 datasets with high-precision
ground truth, which amount to approximately 1.5 hours of
localization data. Through a direct comparison with a point-
feature based method, we demonstrate that the use of photo-
metric residuals results in increased pose estimation accuracy,
with approximately 23% lower estimation errors, on average.

I. INTRODUCTION

The ability to accurately estimate the 3D position and
orientation of a device in a GPS-denied environment is
essential in several applications such as robotics, augmented
reality, and virtual reality. Because of the complementary
information provided by an inertial measurement unit (IMU)
and a camera, the combination of these two sensors for
3D localization has attracted considerable research interest.
Among the key challenges that researchers have tried to
address is the fact that cameras naturally produce high-
dimensional measurements (e.g., in the order of 105 pixels
per image). To allow for real-time processing, we must be
able to exploit the most useful localization information in
the images, while keeping the computational cost low.

The “traditional” way of achieving this is by detecting
point features in the images (such as SIFT [1], FAST [2],
or Shi-Tomasi corners [3]). Typically, only up to a few
hundred features are used in each image – a significant
reduction in dimensionality compared to the original image
size. While the use of point features greatly decreases the
number of measurements that need to be processed in the
estimator, it also suffers from a number of drawbacks. First,
it results in discarding information from the unused areas
in the image. Second, the varying levels of “distinctiveness”
of each point feature, which may translate to varying levels
of measurement accuracy, are typically not modelled. Third,
point-feature extraction may fail altogether in fast-motion
or low-light situations, leading to a complete failure of the
estimator. Finally, it should be noted that feature extraction
and matching may itself be a time-consuming process.

Xing Zheng and Anastasios Mourikis are with the Department of Elec-
trical and Computer Engineering, University of California, Riverside. Zack
Moratto and Mingyang Li are with Google Inc.

To avoid these shortcomings of feature-based methods,
there has been renewed interest in so-called “direct methods”,
which directly employ the image-intensity measurements in
the localization algorithm (see, e.g. [4]–[6] and references
therein). While, in theory, direct approaches could allow
using the measurements of every pixel in an image, and
naturally model the local distinctiveness of each image area,
they also suffer from shortcomings. The “photometric” (i.e.,
image-intensity) measurements are sensitive to changes in
the camera exposure time and gains, lighting conditions,
camera viewing angles, surface properties, and other factors.
This can make it difficult to model the relationship between
the intensity of the projection of the same scene point in
different images. While prior work has offered evidence that
direct approaches can lead to improved performance over
feature-based ones, the comparisons in the existing literature
have generally involved very different systems. This makes
it difficult to tease out the effects of using a feature-based
vs. a direct approach under the same conditions.

In this paper, we describe a new approach for directly
using the intensity measurements in distinctive image patches
for localization. A key characteristic of the proposed ap-
proach is that it models the true irradiance at each pixel as
an unknown random variable. Since estimating this random
variable is not our primary interest, it is marginalized out
during the formulation of the measurement residual. Addi-
tionally, in our approach we employ a detailed radiometric
camera model that accounts for gamma correction and lens
vignetting. In this work, we do not employ the photo-
consistency assumption commonly used in direct approaches,
and instead model an illumination gain and bias as random
variables, to be estimated in our measurement model. Taken
together, the above characteristics allow us to accurately
model the uncertainty in the image-intensity measurements
and their correlation among frames, resulting in increased
estimation precision.

The proposed direct measurement model can be applied
with several possible estimator formulations (e.g., extended
Kalman filter (EKF), sliding window iterative minimization).
We here choose to employ this model in conjunction with a
sliding-window EKF estimator for visual-inertial odometry,
the multi-state-constraint Kalman filter (MSCKF) 2.0 [7],
[8]. A key goal of this paper is to allow for a direct compar-
ison between the “traditional” point-feature-based approach
and the photometric one. To this end, we select the image
patches to be used in the photometric formulation around
the same feature points used in the point-based MSCKF. We
perform extensive testing using 50 datasets recorded under
varying conditions, each with high-precision ground truth



provided by a Vicon system. The results demonstrate that the
photometric approach yields, on average, higher localization
accuracy, reducing the average position errors by 23%.

II. RELATED WORK

Prior work in the area of visual-inertial localization is
extensive, and providing a full review within the limited
space available is impossible. We here discuss the most
relevant approaches, with respect to four different criteria:
Measurement type: Most existing approaches for visual-
inertial localization are feature-based ones. The vast majority
of these approaches employ point features, but lines have
also been used [9], [10]. In contrast to such methods, we
here focus on algorithms that directly use image intensities
for forming a measurement model. Depending on the type
of image regions used in the algorithm, these can be further
divided into dense methods, where the entire image is
used [11], semi-dense methods, where only regions with
large gradient magnitude are used [12], [13], and patch-based
methods, where regions around extracted point-features are
used [5], [14], [15]. Our approach belongs to the last
category.
Camera models: In the feature-based formulation, only a
camera’s geometric model [16], [17] is generally considered.
By contrast, direct approaches also need to model the image
formation process, i.e., the mapping from light irradiance
to image intensities. A simple, commonly-used model for
direct approaches assumes that the measured image intensity
at a given pixel is proportional to the irradiance of the
incoming light. In practice, however, the camera usually
has a nonlinear response function and suffers from lens
attenuation. The calibration of these two effects has been
considered in [18], [19], and we here also employ a similarly
calibrated camera. As shown in [6] (which is a vision-only
formulation), modeling these effects can improve estimation
performance.
Feature models: For localization in an unknown environ-
ment, feature-based approaches generally model the 3D
positions of the features as random variables, either to be
estimated along with the pose states [20], or to be marginal-
ized to impose constraints on pose states [7], [21], or a
combination of both [22]. Similar considerations apply to
direct methods. In our approach, feature states are modeled
as random variables and marginalized out in the update,
thus allowing a probabilistically correct use of the features’
information.

In addition to the feature positions, direct approaches must
also deal with the appearance of the features (or of the
collection of pixels considered). Often, this is not modeled
in a probabilistic formulation, and instead it is assumed that
the appearance (image intensity) of corresponding pixels
is the same between images [4], [23]. This assumption,
often termed the photo-consistency constraint, is a strong
one, and can be violated by changes in the exposure time,
scene illumination, or camera viewing angle. A less con-
straining model is to assume that the irradiance is the
same between images (the so-called irradiance-consistency

assumption). This is done, for instance, in [6]. However, even
this approach does not properly model the fact that the actual
irradiance is a random variable, that needs to be estimated
along with the feature position and possibly other variables.
In our work, the irradiance, as well as the illumination
gain and bias, are all modeled as random variables in the
measurement model.
Estimator choice: Most feature-based visual-inertial al-
gorithms are either Kalman-filter-based methods [7], [20],
[24], or methods employing iterative minimization [25]–[27].
On the other hand, most direct approaches are formulated
as energy minimization problems, and solved by iterative
algorithms [12], [28]. Only few EKF-based direct approaches
have been proposed to date [14], [29]. Both of these algo-
rithms employ an EKF state vector that includes the feature
positions (in [29] these are represented in a robocentric map),
and use the photo-consistency constraint in order to obtain
measurement residuals. By contrast, the method we propose
here does not include the feature positions in the EKF
state vector, which has certain computational advantages, as
explained in [7]. Moreover, we formulate a more expressive
modified irradiance-consistency constraint, which is able to
better model the imaging mechanism.

III. FILTER FORMULATION

We now describe the proposed algorithm for visual-inertial
localization, which is based on the sliding-window formula-
tion of the MSCKF 2.0 algorithm [7], [8]. Specifically, the
state vector of the estimator contains the M poses where the
last M images were recorded, while observations of scene
features are employed for imposing constraints between these
poses. In the original, point-feature-based formulation, these
constraints were derived using the image coordinates of the
features’ projections in the images. By contrast, in the new
formulation presented here, the constraints are derived by
directly using the image intensity measurements in a patch
around each detected feature.

In the remainder of this section we briefly describe the
formulation of the state vector, as well as the propagation
and state management of the MSCKF algorithm, while the
photometric update is described in detail in Section IV.

A. Formulation

We consider a platform equipped with an IMU and a
monocular grayscale global-shutter camera, moving in an
area populated with naturally-occurring features, whose co-
ordinates are not known a priori. Our goal is to estimate
the position and orientation of the platform with respect to
a gravity-aligned global coordinate frame, {G}, using the
inertial measurements and the camera images. To derive the
estimator’s equations, we affix a coordinate frame {I} to the
IMU, and a coordinate frame {C} to the camera. We here
assume that the camera is intrinsically calibrated, and the
frame transformation between {I} and {C} is known.

The IMU state at time-step k is described by the vector:

xIk =
[
Ik
G q̄T GpTk

GvTk bTgk
bTak

]T
(1)



where1 Ik
G q̄ is the unit quaternion [30] representing the

rotation from the global frame {G} to the IMU frame {I} at
time-step k, Gpk and Gvk are the IMU position and velocity
in the global frame, and bgk and bak

are the gyroscope
and accelerometer biases, respectively, which are modeled
as Gaussian random-walk processes.

The IMU error-state is defined as:

x̃Ik =
[
Gθ̃

T

k
Gp̃Tk

GṽTk b̃Tgk
b̃Tak

]T
(2)

where the standard additive error definition is used for the
position, velocity and biases (i.e., for a random variable y,
its estimate is denoted ŷ, and the estimation error is defined
as ỹ = y − ŷ), while for the orientation errors we use a
minimal 3-dimensional representation, as defined in [8].

The estimator state vector contains the current IMU state,
and M states corresponding to the latest M images:

xk =
[
xTIk πTk−M πTk−M+1 · · · πTk−1

]T
(3)

where each of the states π`, ` = k −M, . . . , k − 1 consists
of the IMU pose at the time the `-th image was recorded, as
well as the “illumination parameter” η` of the corresponding
image (see Section IV-D):

π` =
[
xp

T
` ηT`

]T
, with xp` =

[
I`
G q̄

T Gp
T
`

]T
(4)

B. Propagation and State Augmentation

Every time an IMU measurement is received, it is used
to propagate the IMU state and covariance matrix, as de-
scribed in [8]. Similarly to the original MSCKF, when an
image is recorded, a copy of the current IMU pose and the
corresponding illumination parameter are inserted into the
state vector (3). Specifically, if a new image is recorded at
time-step k + 1, we augment the state vector (3) with the
IMU-state estimates:

π̂k+1|k = [x̂Tpk+1|k
η̂Tk+1]T (5)

where the initialization of ηk+1 is described in Section IV-D.
The filter’s covariance matrix is also augmented as follows:

Pk+1|k ←

 Pk+1|k Pk+1|kJ
T
p 0

JpPk+1|k JpPk+1|kJ
T
p 0

0 0 Pη0

 (6)

where Jp is the Jacobian of the IMU pose xpk+1 with
respect to the state vector, and Pη0

is the initial covariance
of the illumination parameter ηk+1. Once the state augmen-
tation is complete, the image is processed so that an EKF
update is performed.

1Notation: The preceding superscript for vectors (e.g., X in Xa) denotes
the frame of reference with respect to which quantities are expressed. X

Y R
is the rotation matrix rotating vectors from {Y } to {X}, and X

Y q̄ is the
corresponding unit quaternion. XpY is the origin of frame {Y } with respect
to {X}. 0 and I are the zero and identity matrices respectively, while â
and ã represent the estimate, and error of the estimate, of a variable a,
respectively.

IV. EKF UPDATE

In the MSCKF approach, each feature is being tracked
through multiple images. Once the feature is lost, or its
track length reaches the length of the sliding window, M ,
all the feature’s observations are used at the same time
for an EKF update. We follow the same approach in the
proposed photometric formulation of the MSCKF as well.
The difference lies in the fact that, while in the original
MSCKF the measurement residuals are defined in the space
of image coordinates (i.e., the residuals are the feature repro-
jection errors), in the photometric formulation the residuals
are defined in the space of image intensities. Specifically,
for each feature we define a planar patch centered around the
feature 3D position, and consider the projection of this patch
in each of the images. The measurement residuals are defined
by enforcing a modified irradiance-consistency assumption
among all images.

In what follows, we describe the geometric model of the
camera used in our experiments, our radiometric model that
includes the camera response function (gamma correction)
and lens vignetting, and finally the formulation of the resid-
uals used for the EKF update.

A. Geometric Model

Consider a point with global 3D position Gp. The image
coordinates of the point’s projection in the camera at time
step ` will be a function of the position vector Gp, the IMU
pose xp`, and the camera projection geometry. While our
approach is applicable with any camera geometry, we here
describe the model of [16] that we employ for the fisheye
camera used in our experimental setup. With this model, the
image projection coordinates are given by:

h
(
Gp,xp`

)
=

1

ruω
arctan

(
2rutan

(ω
2

))[auu
avv

]
+ pc

(7)

where pc is the pixel location of the principal point, (au, av)
are the camera focal length measured in horizontal and
vertical pixel units, ω is the distortion parameter, and

ru =
√
u2 + v2 (8)[

u
v

]
=

1
C`z

[
C`x
C`y

]
(9)C`x

C`y
C`z

 = C
I R

I`
GR(Gp− Gp`) + CpI (10)

In the last equation, CI R is the rotation matrix from the IMU
to the camera frame, and CpI is the position of the origin of
{I} in the camera frame. We here assume that the camera is
both intrinsically and extrinsically calibrated, and therefore
the parameters pc, au, av, ω, CI R and CpI are known.

B. Radiometric Model

In an “ideal” camera, the measured image intensity at a
given pixel p would be proportional to the irradiance of the



incoming light at the given pixel:

Iideal(p) = aξ(p) (11)

where ξ(p) is the light irradiance, and a is a scaling
parameter that accounts for the physical size of the pixel on
the sensor, as well as the image exposure time. However,
in practice, cameras generally have a nonlinear response
function to the incoming light energy (the so-called gamma
correction), and lenses cause attenuation of the incoming
light, which is typically more pronounced towards the edges
of the image (so-called vignetting). Therefore, the measured
intensity in a real camera can be modeled as:

Io(p) = F (V (p)aξ(p)) + np (12)

where the function F (·) represents the camera response
function, V (p) is the lens attenuation at pixel p, and np
is additive observation noise (e.g., electronic noise).

The camera response function, F , can be estimated via
calibration, by taking pictures of a constant scene with
several known exposure settings, and creating a lookup table
(see, e.g., [19]), or fitting the data with the standard gamma-
correction model:

F (x) = cxγ (13)

where c and γ are constants to be estimated via fitting.
Similarly, the lens attenuation function can be estimated via
calibration, e.g., by obtaining images of a uniformly diffused
plane. Once these parameters are known, we can obtain the
“rectified” image intensity for each pixel in an image:

I(p) =
F−1(Io(p))

V (p)
(14)

where F−1 is the inverse function of F . This rectified
intensity value is related to the light irradiance by:

I(p) = aξ(p) + n (15)

where n is additive image-intensity noise. In the remainder
of the paper, the intensity measurements will always refer to
the rectified intensity, unless otherwise stated.

In the system used in our experiments, the value of γ is
known by design, which removes the need for a calibration of
the camera response function. Moreover, we have performed
a calibration of the lens attenuation function using the
radially-symmetric vignetting model in [18]. The resulting
function V is shown in Fig. 1.

C. Modified irradiance-consistency constraint

We now discuss the formulation of the modified
irradiance-consistency constraint, which forms the basis for
computing the EKF residuals. Our goal is to derive an
equation that relates the observed image intensities at corre-
sponding pixel locations across multiple images. Specifically,
let us consider a point feature, fi, observed in the M images
of the sliding window. Our formulation uses the assumption
that the scene structure around this feature is locally well-
modeled by a planar patch Pi. For simplicity, and similarly
to [5], in this work we define the normal vector of Pi to be
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Fig. 1. Vignetting calibration results. Left: the radially-symmetric vi-
gnetting function computed for our camera. The x axis represents the
distance from the image center. Right: visualization of the vignetting effect
on the image.

parallel to the optical ray from the feature to the camera, at
the time one of the images was recorded (we term this image
the “anchor” image, and select it to be the first image where
fi was seen). The direction of the normal vector is treated as
a known constant in our work, but it could also be estimated
(and marginalized out later on), if desired.

In our formulation, photometric residuals are computed by
considering the image projections of a set of points on Pi.
Specifically, we begin by defining N2 image locations on
an N ×N pixel grid centered at the projection of fi in the
anchor image. By “back-projecting” these image coordinates
to Pi, we obtain N2 3D points, with positions Gpi,j , j =
1, . . . , N2. It is important to point out that the selection of the
N2 points in the anchor image is done in a deterministic way,
in an N ×N grid around the observed feature coordinates.
Therefore, the only random variables that are involved in
determining the 3D positions Gpi,j are (i) the IMU pose at
the time the anchor image was recorded, xpA, and (ii) the
distance of Pi to the camera at the time the anchor image
was recorded. In our work we parameterize this distance by
its inverse, ρi. In what follows we use the notation Gpi,j =
Gp(ρi,xpA, j) to express the fact that Gpi,j is a function of
ρi, xpA, and known quantities.

We now proceed to obtain relationships for the image
intensity at the projections of the N2 patch points on all
the M images. From (15), we obtain:

I`(h(Gp(ρi,xpA, j),xp`)) = a`ξi,j,` + ni,j,` (16)

where I`(h(Gp(ρi,xpA, j),xp`)) is the (rectified) image
intensity at the projection of the point Gpi,j in the `-th image,
and ξi,j,` is the light irradiance produced by this point in the
`-th camera frame. If the surface being imaged was perfectly
Lambertian, and the global lighting conditions remained the
same, then the irradiance values across all images (i.e., for
all ` ∈ {k−M, . . . , k−1}), would be the same. In practice,
however, this is not the case, and the irradiance may change
slightly among images. We model this as:

ξi,j,` = αi`ξi,j + βi` j = 1, . . . , N2 (17)

In other words, we assume that the irradiance of a patch in
different images is related by an (unknown) linear function.

From (16) and (17), and by combining the measurements
from all the N2 points belonging to the patch, we obtain:

I`(ρi,xpA,xp`) = ai`ξi + bi`1 + ni` (18)



where we have defined ai` = a`αi` and bi` = a`βi`, 1 is
an N2 × 1 vector of ones, I`(ρi,xpA,xp`) is the vector
containing the intensity values at the projections of all N2

patch points in image `, i.e., a vector with elements:

[I`(ρi,xpA,xp`)]j=I`(h(Gp(ρi,xpA, j),xp`)), j=1, ...,N2,

the vector ξi is defined as:

ξi =
[
ξi,1 ξi,2 ·· ξi,N2

]T
(19)

and finally ni` is the noise vector, modeled as zero-mean,
white, Gaussian, with covariance matrix σ2IN2 .

The equation in (18) is the modified irradiance-consistency
constraint we employ in this work. It relates the image in-
tensities at the projection coordinates of the N2 patch points
to the irradiance of the patch, as well as the illumination
parameters ai` and bi`. Since the projection coordinates are
functions of the IMU poses and the patch’s inverse depth,
this constraint provides the necessary connection between the
geometric and photometric quantities. Note that the patch
irradiance and the illumination parameters are unknown
random variables, which have to be either marginalized out,
or included in the state vector of the filter and estimated. The
exact process we follow for this is detailed in the following
section, which describes the way the constraint in (18) is
used for formulating EKF residuals.

D. Photometric MSCKF Update

As explained earlier, at the time when a feature is lost
from tracking, or its feature track length reaches the size of
the sliding window, all its measurements are used for an
EKF update. The process for feature fi begins by using
the feature’s projections in the images to obtain an esti-
mate of the feature’s inverse depth, ρi, via least-squares
minimization, as in the original MSCKF algorithm. Using
this estimate, as well as the estimate for the IMU poses
(available from the MSCKF state vector), we can compute
the projection coordinates of the N2 patch points in all M
images, and the image intensities observed at these locations,
I`(ρ̂i, x̂pA

, x̂p`
), ` = k−M, . . . , k−1. Moreover, an estimate

for the “illumination gain” parameter, ai`, can be obtained as
âi` = t`/to, where t` is the exposure time of image `, and to
is a nominal minimum exposure time. An initial estimate for
the “illumination bias” parameter can be chosen simply as
b̂i` = 0. Finally, the irradiance vector ξi can be estimated as
ξ̂i = (IA(ρ̂i, x̂pA

, x̂pA
) − b̂iA)/âiA. Using these estimates,

we can compute the following measurement residuals:

ri`
.
= I`(ρ̂i, x̂pA

, x̂p`
)− âi`ξ̂i − b̂i`1, (20)

for ` = k−M, . . . , k− 1. All these residuals can be stacked
in a block vector ri, whose block elements are ri`:

ri = [rTi k−M · · · rTi k−2 rTi k−1]T (21)

This residual vector uses all intensity measurements corre-
sponding to the patch of feature i, across all images. To use
it in an EKF update, we must also compute the Jacobian

matrices that relate the residual to the estimation errors. To
this end, we begin by linearizing (20), which yields:

ri` ≈ âi`ξ̃i + ξ̂iãi` + b̃i`1−Hρi` ρ̃i

−Hpi`
x̃p`
−HpiA

x̃pA
+ ni`

(22)

where Hρi` , Hpi`
, and HpiA

are the Jacobians of the
observed image intensities with respect to the feature inverse
depth, the IMU pose at time step ` and the anchor pose,
respectively. Specifically, Hρi` , Hpi`

, and HpiA
are block

matrices with N2 rows, with the j-th row given by:

Hρi`,j = ∇I`(h(Gp(ρ̂i, x̂pA
, j), x̂p`

))T
∂h

∂Gpi,j

∂Gpi,j
∂ρi

Hpi`,j
= ∇I`(h(Gp(ρ̂i, x̂pA

, j), x̂p`
))T

∂h

∂xp`

HpiA,j
= ∇I`(h(Gp(ρ̂i, x̂pA

, j), x̂p`
))T

∂h

∂Gpi,j

∂Gpi,j
∂xpA

where ∇I` is the image gradient function for image `. We
note that the above Jacobians are computed using the first-
available estimates of each IMU position, to ensure filter
consistency [8]. For the same reason, we do not directly
use the image gradient computed from differencing the `-th
image in the above calculations. Instead, ∇I` is computed
by transforming ∇IA to the `-th image.

The residual defined in (20) and its linearized approxi-
mation in (22) involve not only the IMU poses that we are
interested in estimating, but also the feature inverse depth,
feature-patch irradiance, and the illumination parameters.
These are effectively “nuisance parameters,” which we can
proceed to marginalize, similarly to what is done in the
original MSCKF with the feature position. With respect to
the illumination gain and bias however, we can explore an
additional option: instead of estimating and then marginal-
izing these parameters “locally,” on a per-feature, per-image
basis, we can treat one or both of these parameters as being
constant for all features within an image. This approach
allows us to model “global” effects, such as changes in the
entire scene’s illumination. To employ this global approach,
the parameters can be included in the state vector of the
MSCKF, and estimated on a per-image basis (see (4)).

In Section V-C all four options for modeling the illumina-
tion gain and bias as either local or global are explored. We
here present the case where the illumination bias is modeled
as a global parameter, and thus η` = bi` is included in the
state vector (3) (and the same value is used for all features in
image `), while the illumination gain is modeled as a local
parameter. Thus, we can rewrite (22) as:

ri` ≈ Hxi`
x̃k + Hyi`

ỹi + ni` (23)

where x̃k is the filter error-state vector at time-step k, ỹi
contains the error-states to be marginalized for feature i:

ỹi = [ξ̃
T

i ãi k−M · · · ãi k−1 ρ̃i]
T

and the Jacobians Hxi`
and Hyi`

are given by:

Hxi`
=
[
0 · · · [−HpiA

0] · · · [−Hpi`
1] · · · 0

]
Hyi`

=
[
âi`IN2 ξ̂ie

T
` −Hρi`

]



where e` is the (` − k + M + 1)-th canonical basis vector
of dimension M . Using (23), and stacking these expressions
for all the residuals ri`, ` = k −M, . . . , k − 1, we obtain

ri ≈ Hxi
x̃k + Hyi

ỹi + ni (24)

where Hxi and Hyi are matrices with block rows Hxi`
, and

Hyi`
, respectively, and ni a block vector with elements ni`.

The expression in (24) is the linearized approximation
of (21) that we sought to obtain. However, since this ex-
pression contains both the error of the EKF state vector, x̃k,
as well as the error vector ỹi, which does not involve states
in the EKF state, we proceed to compute a new residual that
does not include the latter. This is done by a process similar
to that used in the original MSCKF. Specifically, we define a
matrix Vi whose columns form a basis for the left nullspace
of Hyi

, and define a new residual roi as:

roi = VT
i ri ' Ho

i x̃k + noi (25)

where Ho
i = VT

i Hxi
and noi = VT

i ni. For computational
efficiency, we can compute roi and Ho

i without explicitly
computing Vi [7]. Once roi and Ho

i are computed, we
proceed by performing a Mahalanobis gating test to reject
outliers, and patches whose residuals pass the test are em-
ployed in an EKF update, analogously to [7]. Once the update
to the state estimate and the covariance matrix are computed,
the oldest camera state is removed from the state vector, to
maintain a sliding window of bounded length.

V. EXPERIMENTAL VALIDATION

In this section we present the results of experimental
testing that was carried out to compare the photometric
formulation to the original, point-based formulation of the
MSCKF, and to examine the effect of a number of param-
eters on algorithm performance. For this testing, we used
a collection of 50 datasets with high-quality ground truth,
thus allowing for a thorough performance evaluation. In these
experiments, a Project Tango developer tablet was held by a
person moving in a room monitored by a Vicon motion-
capture system. The duration of each recorded dataset is
between 1 and 2 minutes, and sample images from the
datasets are shown in Fig. 2. A variety of motions were
generated, including walking, sudden stopping, running, and
fast rotations, to enable evaluation in a wide range of
conditions.

During the experiments, an exterior rigid frame with re-
flective markers was attached to the tablet. The Vicon system
provides 500-Hz sub-millimeter accuracy motion-tracking
estimates of four markers on the exterior frame. To obtain
the transformation between the exterior and the IMU frame,
“hand-eye calibration” has been performed offline [31], using
the Vicon estimates for the exterior frame and the IMU-
trajectory estimates computed via full visual-inertial bundle
adjustment. With the calibrated transformation, the position
estimates of the markers can then be used to provide the
ground-truth estimates for the IMU frame.

In order to isolate the effects of using photometric residu-
als (as opposed to residuals defined as re-projection errors),

Fig. 2. Sample images recorded during the experiments.

in our implementation both the patch-based photometric
approach and the original, point-feature MSCKF, employ
the same feature tracking and matching processes. The same
feature tracks are used by all algorithms in the experiments.
Moreover, the same point-feature-based triangulation is used
to provide the initial guess of the point-feature or patch
positions in all cases (note that, if desired, the triangulation
could also be formulated based on the photometric residuals).

Since RANSAC is used for outlier rejection in our feature-
matching process, different feature tracks will, in general, be
generated from the same dataset with different random seeds,
and slightly different results will be generated by the filter.
Therefore, the result from a single run of an estimator on
a given dataset may not be sufficiently representative of the
algorithm’s performance. To address this issue, we process
each dataset with each algorithm 10 times, with a different
random seed each time (all the compared algorithms use the
same set of random seeds, for a fair comparison). From these
results we compute the following performance metrics:
• Typical Error: After processing a dataset with one algo-

rithm, we compute the root-mean-square error (RMSE)
of the position estimates over the entire trajectory.
Subsequently, we compute the median of these RMSEs
over the 10 times the algorithm is run on the same
dataset with a different random seed. After repeating
this process for all 50 datasets, we compute the average
of the 50 results. This metric represents the “expected
performance” of the algorithm.

• 90th-percentile error: After processing a dataset with
one algorithm, we compute the 90-th percentile of the
position error norm throughout the entire dataset. Subse-
quently, we compute the 90-th percentile of these values
over the 10 times the algorithm is run on the same
dataset with a different random seed. After repeating
this process for all 50 datasets, we compute the average
of the 50 results. This metric represents what we expect
the (close to) worst-case performance to be.

A. Patch-based vs. Point-feature-based

We first compare the performance of the proposed patch-
based formulation against that of the original, point-feature-
based MSCKF formulation. For this test, the illumination
bias is treated as a “global” parameter in each image, while
the illumination gain is treated as a “local” parameter for
each feature in each image (as presented in Section IV-D).
Table I lists the two performance metrics we are interested



TABLE I
PATCH-BASED VS. POINT-FEATURE-BASED FORMULATION

Typical
Error (m)

90-th
Percentile Error (m)

Point-based 0.176 0.270
Patch-based 0.135 0.208

in for the two approaches. We can observe that the patch-
based approach achieves lower errors than the original point-
feature-based approach. Specifically, both the typical error
and the 90-th percentile error decrease by approximately
23%. In 66% of the 50 datasets, the patch-based approach
achieves errors smaller than the original point-feature-based
one. While these reductions may not appear dramatic, they
are significant, since the starting point of the comparison (the
point-based MSCKF) is already heavily tuned and optimized
for accuracy.

These results demonstrate the potential of the direct ap-
proach to improve estimation performance. To our knowl-
edge, this is the first time this result has been observed in
a setting where the compared algorithms only differ in the
way in which the residuals are formulated. In previous com-
parisons that have appeared in the literature, the compared
systems typically have significant differences beyond the use
of a photometric vs. geometric residual, which makes it
difficult to attribute the observed differences in performance
to a specific factor.

B. Effect of Camera Model Fidelity

We now turn our attention to examining the effects of
different parameters and design choices on the performance
of the direct photometric formulation. In the following ex-
periments, we only employ the patch-based algorithm, but in
each experiment we change one aspect of the model while
keeping the others fixed, to evaluate the effects of the change.

We start by comparing the effects of using camera models
with different levels of detail. In Table II, we present the
results of the proposed, “full model,” compared to the cases
where (i) lens vignetting is not modelled, or (ii) the per-
pixel irradiance of the patch is not treated as a random
variable, and is instead assumed to be equal to the observed
irradiance in the first image. We can see that in both cases,
the estimation accuracy is reduced. The loss of performance
when vignetting is not modeled is expected, as the camera
used exhibits significant vignetting. Prior work has also
pointed to the importance of using a detailed model for lens
vignetting [18]. However, we note that the need to model
the irradiance as an unknown quantity to be estimated is
usually ignored in prior photometric approaches. Typically,
the irradiance is computed from the intensity measurements
at the reference frame, and then treated as a true value (as
done for the test in case (ii) here). However, this causes
unmodeled errors, because the measurement at the refer-
ence frame contains noise that is not accounted for. More
importantly, the photometric residuals computed with this
irradiance estimate are correlated with each other, but this
correlation is not modeled. In our approach, the irradiance is

TABLE II
EFFECT OF CAMERA MODEL FIDELITY

Typical
Error (m)

90-th
Percentile Error (m)

Full Model 0.135 0.208
No Vignetting 0.139 0.214
No Irradiance 0.148 0.230

TABLE III
ILLUMINATION PARAMETERS: LOCAL VS. GLOBAL

Illumination
Gain

Illumination
Bias

Typical
Error (m)

90-th
Percentile Error (m)

Global Global 0.151 0.239
Global Local 0.137 0.212
Local Global 0.135 0.208
Local Local 0.149 0.235

treated as a random variable and thus its estimation error as
well as the correlations between the photometric residuals are
properly accounted for. This leads to improved performance,
as seen in Table II.

C. Illumination Parameters: Local vs. Global

As discussed in Section IV-D, we can either model the
illumination parameters (gain and bias) as global ones to
be included in the state vector for each image, or as local
ones, to be marginalized when processing each feature’s
measurements. In Table III, we present results showing the
performance of all four possible combinations. As we can
see, while all cases outperform the point-based formulation,
the use of a “global” illumination bias and “local” illumina-
tion gain outperforms all other options. This indicates that the
unmodeled changes in illumination (e.g., due to a flickering
light source or exposure-time changes) are better modeled
as global parameters for all features in an image, while the
effects of non-Lambertian surfaces, which cause changes in
irradiance by camera viewpoint, are better modeled as a per-
feature, per-image gain.

D. Performance with different patch sizes

We evaluated the performance of the algorithm when
varying the size of the patches defined around each feature,
and the results are shown in Table IV. We can observe that
the filter’s estimation accuracy increases at first, and then
decreases as the size of the patch grows. We attribute this to
the fact that using a larger patch leads to more information
being used (more accurate localization of the features), and
this initially leads to improved accuracy. However, when
the size of the patch is large, the assumption of the scene
being locally planar does not hold anymore, and thus the
patch measurements are more likely to be rejected in the
Mahalanobis test, resulting in worse performance.

VI. CONCLUSION

In this paper, we have presented a direct formulation
of the MSCKF algorithm for visual-inertial odometry. The
algorithm utilizes image patches extracted around image
feature positions, and formulates measurement residuals in



TABLE IV
PERFORMANCE WITH DIFFERENT PATCH SIZES

Patch
Size

Typical
Error (m)

90-th
Percentile Error (m)

4× 4 0.137 0.212
5× 5 0.135 0.208
6× 6 0.139 0.213
7× 7 0.150 0.230

the image intensity space directly. The proposed method
models the true irradiance at each pixel of the patch in the
reference image as a random variable, leading to a significant
improvement of the estimation accuracy. The formulation of
the photometric residual explicitly accounts for the camera
response function and lens vignetting (which can be cali-
brated in advance), as well as unknown illumination gains
and biases, which are estimated on a per-feature or per-image
basis. Through a detailed experimental evaluation of our
algorithm on 50 datasets with high-precision ground truth,
we demonstrated that the use of photometric residuals results
in increased pose estimation accuracy, with approximately
23% lower estimation errors, on average, in our testing.
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