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Abstract— This paper addresses the problem of distributed
recursive estimation of the state of a dynamical system, using
measurements obtained by a network of locally-communicating
sensors. Prior work on this problem has mostly focused on
the development of methods suitable for very large networks,
where multiple iterations of communication between neigh-
boring sensors are used to obtain good asymptotic estimation
accuracy. By contrast, we here focus on the case of medium-
sized networks (consisting of up to a few tens of nodes), where
limited communication is the primary constraint. We propose
a distributed estimation method that uses knowledge of the
network topology to explicitly model the accuracy of different
nodes’ estimates, as well as the correlations between them.
As a result, the proposed method is able to optimally utilize
the measurements and state estimates communicated between
neighboring nodes. This method does not require iterations,
imposes no assumptions on the structure of the communication
graph, and can provide an accurate representation of the
accuracy of the produced estimates. We provide Monte-Carlo
simulation results that demonstrate that the proposed method
outperforms existing algorithms, when all methods use the same
amount of inter-node communication.

I. INTRODUCTION

In this paper, we address the problem of estimating the
state of a dynamical system using measurements from a
network of sensors. Our work is motivated by a large
number of application domains, where the ability to estimate
quantities of interest using multiple, spatially distributed
sensors is critical. Examples include traffic monitoring and
management [1], [2], environmental monitoring [3], [4],
health care systems [5], [6], and target tracking [7], [8],
among others.

It is well known that a centralized system is vulnerable to
a single point-of-failure, and can cause communication bot-
tlenecks (e.g., if all nodes have to “flood” their measurements
onto the network so that they reach the fusion center) [9]–
[11]. Therefore, research efforts have concentrated on the
problem of distributed estimation in sensor networks, where
no central fusion center exists, and each node can only
communicate with a small number of neighbors.

To date, the vast majority of research on distributed
estimation has focused on developing efficient estimation
methods suitable for very large networks. This is a challeng-
ing problem, due to the nodes’ constrained computational
capabilities and the availability of only local communication.
Since the amount of information that can be exchanged
among nodes is limited, it is difficult to model the inter-
dependency (e.g., correlation) of different nodes’ estimates,
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and this typically leads to suboptimal estimation results.
To obtain estimation algorithms that are realizable in very
large networks, proposed approaches (e.g., consensus-based
methods) typically do not explicitly model these interdepen-
dencies, and instead rely on a large number of data exchanges
between nodes to attain good asymptotic performance.

In our work, our objective is to perform distributed es-
timation in a different setting. We are interested in net-
works of medium size (e.g., consisting of a few tens of
sensors), where communication is the primary challenge.
Consensus-based methods are not well suited for this setting,
as their main characteristic is a low computational cost at
the expense of increased communication requirements (due
to the multiple consensus iterations). Moreover, we seek to
develop a method that can provide performance guarantees
not asymptotically, but for a single round of data transmission
at each estimation time step.

To achieve these goals, we propose a recursive distributed-
estimation method that explicitly models the accuracy and the
correlation between all the nodes’ state estimates. At each
time step, each node transmits to its neighbors an optimally-
weighted sum of its current state estimate and its latest
measurement. In turn, each node receives these quantities
from its neighbors, and fuses them optimally, in the MMSE
sense. The nodes employ prior knowledge of the network
topology in order to obtain estimation accuracy higher than
that attained by methods that do not use this information
(e.g., consensus-type methods). It is important to point out
that the proposed approach does not assume any specific
structure for the communication graph (e.g., a hierarchical
structure, a fully connected graph, or a balanced one), and is
thus applicable with any network topology. In what follows,
we present the details of our method after a discussion of
related work.

II. RELATED WORK

The existing literature on the subject of distributed estima-
tion is vast, and any attempt at presenting a comprehensive
overview will inevitably be incomplete. In what follows, we
instead discuss a small number of representative methods,
categorized into broad classes.

A. Consensus Fusion

Several methods for distributed estimation are based on
the concept of consensus. The key characteristic of these
methods is that each node shares its estimates with its
neighbors, and corrects its own estimate using neighbors’
information. These corrections are performed iteratively, and
after a large (theoretically infinite) number of iterations, all



nodes have the same estimate for the state, which can often
be proven to be identical to the estimate attainable by a
centralized estimator. An overview of several approaches in
this class can be found in [12]–[14].

Specifically for the problem of recursive estimation of the
state of a dynamical system, several methods are described
in [13], [15], [16]. Among these, the Kalman Consensus
Information Filter (KCIF) [16] offers a favorable tradeoff
between accuracy and computational cost. It is based on the
standard Kalman filter, but includes an additional “consen-
sus term” in the state-update equation, so that all nodes’
estimates asymptotically converge to a common value.

However, a limitation of all the above methods, including
the KCIF, is that they are not able to provide a reliable
measure of the accuracy of the computed estimates. As
a result, the performance of these methods may be neg-
atively impacted by the presence of “naive nodes” in the
network [17]. “Naive node” here refers to a node that has
little information about the state of the dynamical system
from its own measurements and the data it has received
from its neighbors. To address this issue, the Information-
Weighted Consensus Filter (ICF) was proposed in [17]. The
ICF performs average consensus on the information vector
and information matrix of the state estimates. In this process,
each estimate is weighted according to its corresponding
information matrix, leading to improved performance over
the KCIF, and quicker convergence.

The key advantage of all the aforementioned consensus-
based methods is that they do not require detailed knowledge
of the topology of the network (although the number of
nodes must be known in certain methods). Moreover, given
enough iterations, the estimates of all nodes can converge to
the optimal estimate. However, convergence to the optimal
requires a balanced graph [18], a requirement that may not be
satisfied in all cases. Additionally, the performance guaran-
tees (e.g., convergence to the optimal) hold when the number
of iterations is large. When the estimate is computed using
only a small number of iterations no guarantees typically
exist for its accuracy, and since the reported error-covariance
matrix does not provide a reliable description of the actual
errors, it is difficult to evaluate the quality of the result.

B. Measurement/Information fusion

A different class of methods is termed measurement
fusion or information fusion [19]. The key idea in measure-
ment/information fusion is that each node simply transmits
its raw measurements to its neighbors, and each node fuses
the raw measurements it receives from its neighborhood, to
obtain a local estimate of the dynamical system’s state [20].

Since the data transmitted between nodes are the raw
measurements only (perhaps in information-weighted form),
measurement/information fusion can obtain an optimal es-
timate (equivalent to the centralized one) only when the
network is fully connected. In the general case of a non-
fully-connected topology, these approaches only utilize mea-
surements from a small neighborhood of the network, and
therefore obtain suboptimal state estimates.

C. State-Vector Fusion

In contrast to the measurement-sharing approaches de-
scribed in the preceding section, in state-vector fusion meth-
ods state estimates are shared between nodes, and fused in a
non-iterative fashion. The case of a fully-connected graph for
state-vector fusion is explored in [21], [22], where solutions
to the maximum-likelihood estimation problem are proposed.
An LMMSE estimator for the non-Gaussian case is also
studied in [23].

The approach we describe in this paper is effectively
a combination of measurement fusion and state-vector fu-
sion. Specifically, each node transmits to its neighbors an
optimally-weighted sum of its current state estimate and
its latest measurement. The weighting is optimal, in the
sense that it allows for computing the optimal MMSE state
estimate on each node, given its neighbors’ estimates and
measurements. In contrast to prior work, we do not impose
any assumptions on the topology of the communication
graph.

III. DISTRIBUTED ESTIMATOR

A. Problem Formulation

To present our approach, we consider the case of a
dynamical system whose state, x, evolves in time as1:

xk+1 = Φkxk +wk (1)

where xk ∈ Rn is the system state vector at time-step k,
Φk ∈ Rn×n is the state-transition matrix, and wk ∈ Rn is
the process noise, modelled as zero-mean, white, Gaussian,
with covariance matrix Qk. This system could represent,
for example, the position of a target moving in an area of
interest. A network of N sensors obtains measurements of
the system state, described by the equations:

zik = Hikxk + nik , i = 1, . . . , N (2)

where Hik ∈ Rm×n is the measurement matrix for the
observation of sensor i at time step k, and nik ∈ Rm is
the corresponding measurement noise, modelled as zero-
mean, white, Gaussian, with covariance matrix Rik . The
prior estimate of the system’s initial state, x0, is described
by a Gaussian pdf:

x0 ∼ N (x̂0|0,P
xx
0|0) (3)

and we assume that the process noise wk, measurement noise
vectors nik for i = 1, . . . , N , and the prior x0 are mutually
independent. Note that, while in this section we present
the proposed estimation method using linear dynamics and
measurement models, the extension to nonlinear models is
immediate by employing linearization, as in the extended-
Kalman-filter paradigm.

1Notation: Ip denotes the p × p identity matrix, while 1p×q the p × q
matrix of ones. x̂k|j is the estimate of xk given measurements up to and
including time step j. The error in this estimate is defined as x̃k|j =
xk − x̂k|j .



To facilitate the presentation, it will be useful to define an
“augmented” state vector yk, which consists of N copies of
the original system’s state vector:

yk ,

xk

...
xk

 (4)

The dynamics of yk can be written as:

yk+1 = Φyk
yk +wyk

(5)

where the state-transition matrix for the augmented system
is given by Φyk

= kron(IN ,Φk), with kron denoting the
Kronecker matrix product, and the process noise vector is
given by wyk

= kron(1N×1,wk) ∼ N (0,Qyk
), with

Qyk
= kron(1N×N ,Qk). The prior estimate for the initial

state y0 is described by

y0 ∼ N (kron(1N×1, x̂0|0),P0|0) (6)

where P0|0 = kron(1N×N ,Pxx
0|0).

We stress that the system models described by (1) and (5)
describe the same physical system. If a centralized Kalman-
filter estimator were used to estimate the states xk and yk

using the measurements in (2), then at any time the estimates
will satisfy ŷk|k = kron(1N×1, x̂k|k), and in this sense the
two system formulations are equivalent. However, the use of
the “augmented” state, yk, will facilitate the representation
of the state estimates of all N nodes during distributed
estimation, where they are generally different from each
other (see (7)). Using this representation, we are now ready
to present our estimator formulation.

B. Distributed estimator formulation

The N sensors of the network estimate the state of the
system by using their own measurements, as well as the state
estimates and most recent measurements of their neighbors.
To present our formulation, let us initially assume that each
node transmits its state estimate and current measurement to
all its neighbors at each time instant (we later show that, in
fact, only a weighted sum of these will suffice). In general,
each sensor will only be able to communicate with a small
subset of the N sensors, and this induces a communication
graph, whose nodes represent the sensors of the network,
while its directed edges represent the information flow be-
tween them. Specifically, an edge from node i to node j is
present in the graph if node i sends data to node j.

We here define by Ni the one-hop neighborhood of node i,
i.e., the set of nodes from which node i receives information,
and Ji = Ni∪{i}. Furthermore, for each node, we define the
“structure matrix” Πi ∈ R|Ji|n×Nn, as Πi = kron(πi, In),
with πi ∈ R|Ji|×N being the “selector matrix”, which
consists of the rows of the identity corresponding to the
indices in Ji. For example, in Figure 1, J1 = {1, 2, 3},
J3 = {3, 4}, and the matrices Π1 and Π3 are given by:

Π1 =

In 0 0 0
0 In 0 0
0 0 In 0

 , Π3 =

[
0 0 In 0
0 0 0 In

]

Fig. 1. An example network with four nodes.

The proposed estimator is a recursive one, similar in nature
to a Kalman filter. At time step k − 1, after processing all
information available to it up to and including this time
step, node i has an estimate, x̂ik−1|k−1

, of the state of the
dynamical system. Therefore the estimates of all nodes in
the network form an estimate for yk−1, written as:

ŷk−1|k−1 =

 x̂1k−1|k−1

...
x̂Nk−1|k−1

 (7)

In addition, each node in the network computes the joint
covariance matrix of the errors in the estimates of all the
N nodes (i.e., the covariance matrix of the error ỹk−1|k−1),
given by Pk−1|k−1.

The “propagation” step of the estimator is implemented
locally in each node. Specifically, each node computes an
estimate of the state xk by “propagating” its estimate from
time step k − 1:

x̂ik|k−1
= Φk−1x̂ik−1|k−1

, i = 1, . . . , N (8)

while the joint covariance matrix of the estimates is propa-
gated as:

Pk|k−1 = Φyk−1
Pk−1|k−1Φ

T
yk−1

+Qyk−1
(9)

Note that for the propagation step, no communication is
required.

During the “update” at time step k, each node records
a measurement of the system state, described by (2), and
receives the state estimates and measurements from its neigh-
bors. These are all fused with the state estimate maintained
locally at the node. We now derive the equations for this
update. To this end, we start by observing that node i has
access to two qualitatively different sources of information:
the measurements recorded by itself and its immediate neigh-
bors:

zjk = Hjkxk + njk j ∈ Ji (10)

as well as the state estimates of itself and its immediate
neighbors, which can be represented as:

vik = Πiŷk|k−1 (11)
= Πiyk +Πiỹk|k−1 (12)
= Lixk +Πiỹk|k−1 (13)

where Li = kron(1|Ji|×1, In).



Clearly, the errors in vik and the measurements in (10)
are mutually independent. Therefore the optimal (MMSE)
estimate at node i for the state xk, can be computed as:

x̂ik|k= Λ−1
i

∑
j∈Ji

HT
jk
R−1

jk
zjk+LT

i S
−1
ii vik

 (14)

where we have defined

Λi ,
∑
j∈Ji

HT
jk
R−1

jk
Hjk + LT

i S
−1
ii Li (15)

and

Sij = ΠiPk|k−1Πj
T

We now note that if we partition the |Ji|n × |Ji|n matrix
S−1
ii into |Ji| block columns as follows:

S−1
ii =

[
Aij1 Aij2 · · · Aij|Ji|

]
(16)

then we can write LT
i S

−1
ii vik =

∑
j∈Ji

LT
i Aijx̂jk|k−1

, and

thus (14) can be written as:

x̂ik|k = Λ−1
i

∑
j∈Ji

uij (17)

with

uij = HT
jk
R−1

jk
zjk+LT

i Aijx̂jk|k−1
(18)

The above equation shows that each node j ∈ Ni can
compute the weighted sum uij locally and transmit it to
node i, instead of separately transmitting its state estimate
and measurement. In this way, communication is reduced,
while node i can still compute the optimal MMSE estimate.

In addition to computing the state estimate via (17), each
node also updates the covariance matrix for the state estimate
ŷk|k. This can be performed in a block-by-block fashion.
Specifically, the (i, j)-th n × n block of this matrix, with
i ̸= j, is updated as:

Pijk|k = Λ−1
i

(
LT
i S

−1
ii SijS

−1
jj Lj +

∑
ℓ∈Ji∩Jj

HT
ℓk
R−1

ℓk
Hℓk

)
Λ−1

j

(19)

while for the i-th diagonal n× n block we obtain:

Piik|k = Λ−1
i (20)

For clarity, the steps of the estimator are summarized in
Algorithm 1.

C. Discussion

The proposed approach involves no iteration (in contrast
to consensus-type methods), and is applicable with arbitrary
graph topologies, e.g., unbalanced graphs. Since the state
estimates are included in the weighted sum that is commu-
nicated between nodes, the information of the measurements
collected by all nodes is gradually propagated through the
entire network. This is in contrast to measurement-fusion
methods, which only exploit measurements from a node’s

Algorithm 1 Estimator steps for node i at time-step k

Input: x̂ik−1|k−1
,Pk−1|k−1

I. Propagation
1: Propagate state estimate using (8) and covariance matrix

using (9)
II. Communication
2: Compute uli via (18), for all indices l corresponding to

the out-edge neighbors of node i, and transmit these to
them.

3: Receive uij from all neighgbors j ∈ Ni

III. Update
4: Update the state estiumate using (17), and the covariance

matrix using (19)-(20).
Output: x̂ik|k , Pk|k

neighbors. We also point out that the covariance matrix main-
tained by the nodes is an accurate description of estimation
error, which is not the case in consensus-based methods.
On the other hand, the proposed approach achieves these
advantages by exploiting a known graph topology, which is
not a requirement in consensus-based methods (as long as
certain requirements, such as connectedness and balance, are
met).

It is important to examine the computational and com-
munication cost of the proposed method, as compared to the
alternatives. To simplify this presentation, let us consider the
case of a balanced graph with degree d. Moreover, we assume
that the measurement matrices and noise covariance matrices
for all nodes are known in advance, thus removing the need
for communicating them. Computing the number of floating
point operations (flops) that take place in each of the nodes of
the network per update step [24], we find that this is given by
approximately

(
(2N2 −N)(d+ 1)3 + 19

6 N2 + N
6

)
n3. We

thus see that the computational cost per node scales quadrat-
ically with the number of nodes in the network. This may
make the method unsuitable for very large networks, but
as shown in the results of the next section, this is the
penalty we pay for improved estimation accuracy. By con-
trast, consensus-based methods, such as the ICF or KCIF,
have a per-node computational cost approximately equal to
13
3 n3+Kdn2, where K is the number of iterations (K = 1 in

the KCIF). Note that this cost is independent of the number
of nodes in the network.

To quantify the communication cost, we count the total
number of elements (scalars) that must be communicated per
node. The per-node communication cost for the proposed
method at each time step is dn, while for the KCIF it is
d(n+m) [16], and for the ICF it is Kdn. We thus see that, in
order to attain the same communication cost as the proposed
method, the ICF would have to perform only one iteration.
As shown in the results of the next section, however, in this
case the proposed method achieves higher performance than
the ICF – as well as the KCIF. This makes our proposed
approach better suited in environments where communication
is severely limited (e.g., in underwater applications).



IV. SIMULATION RESULTS

In this section, we present Monte-Carlo simulation results
that demonstrate the performance of the proposed method
against alternative approaches, in terms of estimation accu-
racy. Moreover, we present results from the application of
the method to a nonlinear estimation problem.

A. Reported standard deviation – Single trial

Before presenting the results of the Monte-Carlo simula-
tions, we begin by presenting the results of a single simulated
estimation experiment, using a randomly-generated network
with N = 4 nodes, and a dynamical system model with
x ∈ R4 and zi ∈ R2. The state-transition matrix is a
randomly-generated invertible matrix, while the measure-
ment matrices are also random, and different for each node.
The matrices Qk and Rik are all randomly chosen positive
definite matrices. A randomly generated adjacency matrix is
used for the network, given by:

A =


1 0 0 1
0 1 0 0
0 1 1 0
1 1 1 1


In Figure 2 we plot the estimation error as well as the
reported ±3σ envelope2 for the first element of the state
vector, in node 1, for the following methods: (i) a centralized
KF estimator, (ii) an estimator where node 1 only uses its
own measurements in a KF, (iii) the KCIF, (iv) the ICF with
one iteration to ensure equal communication cost with the
proposed method, and (v) the proposed method.

We can see that the reported standard deviation of the
single-node approach is the worst – as expected. On the
other hand, the optimal method is the centralized one, and
no estimator should report a smaller standard deviation.
However, we observe that the ICF reports an accuracy better
than the centralized KF. Clearly, this is incorrect, and results
from the fact that the covariance reported from the ICF with
a finite number of iterations does not represent the covariance
of the actual estimation errors, as discussed earlier. By
contrast, the proposed method reports a standard deviation
that actually represents the true statistics of the estimation
errors.

B. Monte-Carlo Accuracy Analysis

We now present the results of Monte-Carlo simulations
conducted to compare the performance of our proposed
method to consensus-based estimation. Our goal is to exam-
ine the relative performance of the methods for graphs with
different topology characteristics. Therefore, we conduct two
sets of simulations: in one case we maintain the number of
nodes in the network, N , constant and vary the node in-
degree, d, while in the second we fix the node in-degree and
vary the number of nodes.

Since the reported covariance matrix of consensus-type
methods is not a reliable measure of estimation accuracy, to

2The standard deviation σ is computed as the square root of the first
diagonal element of the reported covariance matrix, for each method.
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Fig. 2. Comparison of the proposed method to alternatives, on a randomly-
generated simulation example.

evaluate precision for each selection of N and d we perform
100 Monte-Carlo simulations, and compute the average root
mean square error (RMSE) for each method. In each Monte-
Carlo trial a different randomly generated graph is used,
as well as different randomly generated state-transition,
measurement, and noise-covariance matrices. Estimation is
performed with each of the algorithms processing the same
measurements, and then the RMSE at each time step is
computed by averaging over all Monte-Carlo trials. Finally,
the mean RMSE over the entire duration of the estimation
experiment for each algorithm is computed, and used as the
measure of performance.

Figure 3 shows the performance of the estimators for
networks with a fixed number of nodes, N = 30, and varying
node in-degree d. We can clearly observe that the proposed
approach outperforms both the single-iteration ICF and the
KCIF. Specifically, as compared to the ICF, our proposed
method leads to at least a 30% reduction in mean RMSE.
On the other hand, the improvement in performance against
the KCIF is smaller (up to approximately 18% reduction in
mean RMSE), and is most pronounced for sparser graphs.
Intuitively, this observation makes sense, since in sparser
graphs the proposed approach is able to benefit from having
an accurate description of the relative accuracy of differ-
ent nodes’ estimates. As the graph becomes denser, the
performance gap between the proposed approach and the
KCIF becomes smaller, and both algorithms approach the
performance of the centralized KF.

Figure 4 shows the performance of the methods for
networks with a fixed node in-degree, d = 4, but varying
total number of nodes, N . The results in this case are
similar to those of Figure 3. Specifically, the KCIF and
ICF have approximately 20% and 30% larger mean RMSE,
respectively, for a large range of in-degree values. Moreover,
we can see that the performance advantage of the proposed
method is most pronounced in sparser graphs.
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When the ICF algorithm only performs one iteration per
update step, it has the same communication requirements as
the method proposed here. However, it is also interesting to
examine how our approach compares against the ICF when
the latter is allowed to perform multiple iterations per update
step. These results are shown in Figures 5 and 6, which show
the mean RMSE of the proposed method against that of the
ICF with the iteration number varying from one to five (the
simulation setup is identical to those in Figures 3 and 4,
respectively). These results show that, in most cases in this
test, the ICF would require between three and five iterations
(i.e., between three and five times more communication) to
yield estimation accuracy similar to the proposed method.

C. Nonlinear example

As discussed in Section III-A, the proposed estimation
method can be employed for estimating the state of nonlin-
ear dynamical models, via linearization. In this case, each
node linearizes the process and/or measurement models by
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Fig. 6. Comparison of the accuracy (mean RMSE) of the proposed method
vs. the ICF in a graph of fixed node in-degree, d = 4, with varying size.
The number of ICF iterations ranges between one and five.

evaluating Jacobians using its own state estimates. As a result
different nodes will, in general, employ different linearization
points. Despite this, in our tests we have verified that the
proposed approach can produce consistent state estimates (in
the sense defined in [25, Section 5.4]).

We here present a representative simulation result, in
which the proposed estimator is used to track the position
of target moving in 2D. The target is tracked using relative-
distance measurements from eight sensor nodes. The sensors
are placed at known, constant locations in the 2D plane.
The position of the target is modelled by a constant-velocity
model (with the addition of Gaussian process noise). Figure 7
shows the time-evolution of the estimation errors, as well as
the reported ±3σ envelope for the position of the target. We
can clearly observe that the estimation errors are commensu-
rate with the reported estimation covariance, which was one
of the key motivations for the development of the proposed
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method.

V. CONCLUSION

In this paper, we presented a method for distributed esti-
mation of the state of a dynamical system. The key character-
istic of the proposed approach is that it utilizes knowledge of
the communication topology to explicitly model the accuracy
of individual nodes’ estimates, as well as their correlations.
As a result, it is able to optimally fuse the measurements and
state estimates of a node’s neighbors, and to produce accurate
state estimates with a single round of communication. Our
results demonstrate that when compared against popular
consensus-based algorithms, such as the KCIF and the ICF,
the proposed approach attains higher estimation precision for
the same amount of inter-node communication. Maintaining
an accurate description of the correlations between nodes’
estimates incurs a per-node computational cost that scales
quadratically with the size of the network. Therefore, this
method would be ideally suited for medium-sized networks
(e.g., consisting of up to a few tens of nodes).
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