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Abstract— The vast majority of existing methods for vision-
aided inertial navigation rely on the detection and tracking
of point features in the images. However, in several man-
made environments, such as indoor office spaces, straight line
features are prevalent, while point features may be sparse.
Therefore, developing methods that will enable the use of
straight-line features for vision-aided inertial navigation can
lead to improved performance. While limited prior work on the
subject exists, it assumes the use of a global-shutter camera, i.e.,
a camera in which all image pixels are captured simultaneously.
Most low-cost cameras, however, use rolling-shutter (RS) image
capture, which renders the existing methods inapplicable. To
address these limitations, we here present an algorithm for
vision-aided inertial navigation that employs both point and line
features, and is capable of operation with RS cameras. The two
key contributions of this work are (i) a novel parameterization
for 3D lines, which is shown to exhibit better linearity properties
than existing ones, and (ii) a novel approach for the use of
line observations in images. This approach forgoes line-fitting
and does not assume that a straight line in 3D projects to a
straight line in the image, and is thus suitable for use with RS
cameras. Our results demonstrate that our proposed estimator
formulation leads to improved precision, in point-feature-poor
environments.

I. INTRODUCTION

In this paper, we focus on the problem of motion estima-
tion using inertial measurements and visual observations of
line features with a rolling-shutter (RS) camera. A significant
body of literature has focused on the problem of motion
estimation using cameras and inertial measurement units
(IMUs). However, prior work typically assumes that the
camera has a global shutter (GS), i.e., that all the pixels
in an image are captured at the same time. By contrast,
most low-cost cameras typically use CMOS sensors with
a RS, capturing each row of pixels at a slightly different
time instant. To develop high-precision localization methods,
suitable for low-cost robots and for indoor navigation using
consumer-grade cameras, the RS effect must be explicitly
addressed in the design of estimation algorithms.

The (only few) methods that have been proposed to date
for motion estimation using an IMU and a RS camera rely on
the detection and tracking of point features in the scene. Point
features are commonly used in motion-estimation methods,
as they are abundant in many real-world environments,
and well-established algorithms exist for their detection and
tracking. In several man-made environments however, such
as indoors and in urban areas, straight-line features are
equally common. In this work, we present an algorithm that
is able to use line features for motion estimation with a RS

camera, either as an alternative to or in addition to point
features.

As discussed in Section II, the subject of motion and
structure estimation from line features has been extensively
studied. However, almost all prior work assumes that a GS
camera is used. This is a significant assumption, since it
guarantees that straight lines in the scene project into straight
lines in the image. Consequently, the first step of all methods
for line-based motion estimation using GS cameras is to
perform straight-line detection and line-fitting, in order to
obtain the equations of image lines. When a RS camera is
used, straight lines do not in general project into straight
lines in the images, and therefore these methods are not
applicable. If restrictive assumptions on the camera motion
(e.g., constant velocity) are imposed, it is possible to obtain
a parametric description of the projection of a straight line
(see, e.g., [1]). However, such assumptions do not hold in
general-motion cases, and thus imposing them would lead to
loss of estimation precision.

The main contribution of this paper is a formulation
of line-based visual-inertial motion estimation with a RS
camera that addresses the above challenges. Specifically, we
develop a measurement model for straight lines that is based
on using the observations of all pixels on the projection of
a line individually. This approach makes a line-fitting step
to compute the equations of image lines unnecessary, and
can thus be employed with either a RS or a global-shutter
camera. This measurement model is used in conjunction
with a novel minimal parameterization for straight lines.
We demonstrate experimentally that this parameterization
exhibits better linearity than parameterizations proposed in
prior work, and is thus better suited for use in linearization-
based estimators.

The new formulation of the line-measurement equations
is general, and can be employed for estimation in a variety
of settings (e.g., using either known or unknown lines),
with either an extended Kalman filter (EKF) or an iterative-
minimization method. We here assume that the positions and
directions of the lines in the scene are not known a priori,
and present a visual-inertial odometry algorithm based on
the hybrid-EKF algorithm of [2]. In order to enable the
use of a RS camera, we employ the formulation of [3],
which makes it possible to use the RS-camera measurements
without imposing any assumptions on the camera motion.
Our simulation and experimental results demonstrate that
the proposed method for using the line measurements yields



high-precision state estimates.

II. RELATED WORK

We begin by discussing related work, divided into three
areas:
a) Motion Estimation with a Rolling-Shutter Camera: The
use of a RS camera, as opposed to a GS one, for motion
estimation requires special treatment: with a RS camera each
image row is captured at a slightly different time instant,
and therefore from a different camera pose. Since including
one state for each image row (the “exact” approach) is
computationally intractable, existing methods employ some
assumption about the nature of the camera trajectory [4]–[7].
By contrast, we here employ the formulation of [3], which
imposes no assumptions on the form of the camera trajectory
itself, and is thus able to model arbitrarily complex motions.
Instead, it uses an approximate representation for the time-
evolution of the estimation errors during the image readout
time. Since these errors are typically small, this leads to only
small modeling inaccuracies.
b) Structure from Motion and SLAM using Line Features:
In both the computer vision and robotics communities,
several approaches have been proposed for estimating the
motion of camera and scene structure based on line features
(see, e.g., [8]–[12] and references therein). However these
approaches all employ GS cameras, and thus suffer from the
limitations discussed in Section I. Similarly, the work of [13],
which employs line-feature observations in conjunction with
inertial measurements, also utilizes a GS camera. By con-
trast, motion estimation using straight-line features and RS
camera is a less-explored topic. In [1] a bundle-adjustment
method that employs constant-velocity motion assumptions
is employed, while in [12] prior information about the lines’
directions in space is assumed. By contrast, in our work none
of these assumptions are necessary.
c) Line Measurement Model and Line Parameterizations:
When a GS camera is used, the projection of a 3D line onto
the image plane is a straight line. This property, which is
employed in all prior work on motion estimation with lines
and a GS camera, is no longer valid when a RS camera
is used. To address this issue, we here propose a new way
of using the “raw” pixel measurements belonging to line
features, which is applicable with both types of cameras.

In addition to the way in which line measurements are
processed, the parameterization of a line will also have
great impact on the performance of any linearization-based
estimator. Previous work has used Plücker coordinates [9]
or a pair of vectors [14], [15] to represent 3D lines in
space. However, these parameterizations are not minimal,
and this overparameterization can lead to numerical issues
in EKF-based estimators. We here propose a novel, minimal
error parameterization for 3D lines, which has favorable
characteristics. Specifically, it has inverse-depth properties,
and is anchored in one of the camera poses from which
the line was observed. These properties are desirable in
EKF-SLAM, as discussed in [16]. Moreover, we demonstrate

Fig. 1. Illustration of the line-projection geometry. The origin of the anchor
frame {A} and the line define a plane with normal vector nπA , while the
origin of the camera frame {C} and the line define a plane with normal
vector nπC .

that the proposed parameterization has favorable linearity
characteristics, through an analysis similar to that in [16].

III. LINE PARAMETERIZATION

We begin by discussing the line parameterization we
employ in our work, which we term the two-point inverse
depth parameterization (TPIDP). For each line we employ
an “anchor frame,” {A}, which is a known, constant coor-
dinate frame (e.g., the first frame from which the line was
observed), based on which the parameterization is derived.
Let the position and orientation of the anchor frame with
respect to the global reference frame, {G}, be denoted as
GpA and G

AR, respectively1. To present our proposed line
parameterization, we note that when a line is observed from
a camera frame {C}, the normal vector of the plane defined
by the line and the camera optical center, nπC , is the only
quantity needed in order to derive the measurement equations
(see Section IV-A). To describe the line parameters that we
define, we proceed to obtain an expression for nπC

.
We start by considering two distinct points, p1 and p2

on the line. The unit vector normal to the plane defined by
the origin of the camera frame and the line, expressed with
respect to the camera frame, can be computed as:

CnπC ∼ Cp1 × Cp2

where ∼ denotes equality up to a normalizing scale factor.
Using the equations relating the points’ coordinates in {C}
with the points’ coordinates in {A}, Cpi =

C
AR

Api +
CpA,

i = 1, 2, we obtain:
CnπC

∼ C
AR

(
Ap1 × Ap2

)
+ CpA ×

(
C
AR

(
Ap2 − Ap1

))
(1)

1Notation: The preceding superscript for vectors (e.g., G in Gp) denotes
the frame of reference with respect to which quantities are expressed. X

Y R
is the rotation matrix rotating vectors from frame {Y } to {X}. XpY

represents the origin of frame Y with respect to frame X . I represents
the identity matrix, and 0 the zero matrix. Finally, â is the estimate of a
variable a, and ã

.
= a− â is the error of the estimate.



We now note that the term Ap1 × Ap2 can be written as:

Ap1 × Ap2 = ||Ap1|| ||Ap2||sin⟨Ap1,
Ap2⟩AnπA

where nπA
is the unit vector normal to the plane defined

by the line and the origin of {A} (see Fig. 1). Using this
result, and expressing the quantities in the above equation
with respect to the global reference frame, {G}, we obtain:

CnπC
∼ C

GR

(
||Ap1|| ||Ap2||sin⟨Ap1,

Ap2⟩GnπA
+

(
GpC − GpA

)
×
(
G
AR

Ap1 − G
AR

Ap2

))
∼ C

GR
(
GnπA

+
(
GpC − GpA

)
× Gvℓ

)
(2)

where

Gvℓ =
1

||Ap1|| ||Ap2||sin⟨Ap1,Ap2⟩
(
G
AR

Ap1 − G
AR

Ap2

)
Let us now examine the terms appearing in (2). First, we
have the camera position and rotation with respect to the
global frame, GpC and C

GR. Second, we have the position
of the origin of the anchor frame, GpA, which is a known
constant. Third, we have the vector GnπA , which is the unit
vector formed by the origin of {A} and the line, expressed
with respect to the global frame. This vector depends on
the line’s position and orientation in space, and therefore it
will constitute part of the line parameters. Finally, turning
our attention to the vector Gvℓ, we note that this vector is
a linear combination of Ap1 and Ap2 (expressed in {G}).
Since both vectors lie in the plane normal to GnπA

, Gvℓ

must also lie in this plane, and thus can be written as a
linear combination of two basis vectors within this plane.
We can therefore write Gvℓ as:

Gvℓ = a1
GnπA

×w1 + a2
GnπA

×w2 (3)

where w1 and w2 are two known constant vectors. Note that,
for any choice of these two vectors, both GnπA

× w1 and
GnπA

× w2 lie in the plane normal to nπA
, and therefore

these are two valid basis vectors, assuming they are linearly
independent. In our work, to ensure linear independence, we
select wi =

G
AR

(
Api × AnπA

)
, i = 1, 2.

To summarize, a 3D line in our work is parameterized by
the unit vector GnπA and the parameters a1, a2. Since the
unit vector has two degrees of freedom, this parameterization
corresponds to a total of four degrees of freedom, as required
for a 3D line. We note that since the norms of the vectors
Ap1 and Ap2 (i.e., the “depth” of these points with respect
to the anchor frame {A}) appear in the denominator of
the expression for Gvℓ, the parameters a1 and a2 have
units of “inverse depth”, hence the name of our proposed
parameterization.

Given this line parameterization, the vector normal to the
plane defined by the camera optical center and the line is
given by equations (2) and (3). How this normal vector
is used in order to construct a measurement model in our
EKF estimator is explained in the next section. As a final
remark, we note that to ensure a minimal representation for

the errors, the error-state for a given line parameterization
fL = [GnT

πA
a1 a2]

T is defined as:

f̃L =
[
k1 k2 ã1 ã2

]T
where ã1 and ã2 represent the errors in the estimates of a1
and a2, while k1 and k2 are used to define a minimal repre-
sentation for the error in the unit vector GnπA . Specifically,
to a first-order approximation, the relationship between the
true and estimated unit vectors is given by:

GnπA = Gn̂πA +BnπA

[
k1
k2

]
(4)

where BnπA
is a matrix whose columns are chosen to be

two orthogonal vectors perpendicular to Gn̂πA
.

IV. ESTIMATOR FORMULATION

We now turn to the problem of using line measurements
to track the motion of a platform equipped with an IMU and
a RS camera in an unknown environment. The EKF-based
estimator that we employ to track this state is a modification
of the “hybrid” filter proposed in [3]. In our prior work,
the hybrid estimator was employed in conjunction with
point-feature measurements only. Here, in addition to point
features, we utilize the observations of straight-line features
in the environment. Since the details of the hybrid estimator
have been presented in prior work, we here briefly describe
the structure of the estimator (see Algorithm 1), and refer
the reader to [3] for further details.

Our goal is to estimate the pose of the moving platform
with respect to a global coordinate frame {G}. To this end,
we affix a “body” coordinate frame, {B}, to the IMU, and
track the motion of this frame with respect to {G}. We here
assume that the camera intrinsics and the extrinsic calibration
between the camera and IMU are known through prior offline
calibration, but stress that these are not strict requirements
for our work.

The state vector of the EKF at time-step k is given by:

xk =
[
xT
Ek

xT
B1

· · · xT
Bm

fT1 · · · fTs
]T

(5)

where xEk
is the “evolving state” of the IMU, comprising

the current body-frame position, velocity, orientation, as well
as the time-varying IMU biases; the states xBj , j = 1 . . .m
are the body states corresponding to the time instants the
past m images were recorded; and fi, for i = 1, .., s
are the currently visible features. These features include
both points, which are being represented in inverse-depth
parameterization (IDP) [18], and straight lines, which are
represented in the TPIDP parameterization described in the
preceding section.

When an IMU measurement is received, it is used to
propagate the evolving state and covariance. On the other
hand, when a new image is received, the sliding window of
states is augmented with a new state. Note that each image is
sampled over a time interval of non-zero duration (the rolling
shutter readout time). By convention, we here consider that
the timestamp associated with each image corresponds to
the time instant the middle row of the image is captured.



Algorithm 1 Hybrid EKF algorithm
Propagation: Propagate the state vector and the state
covariance matrix using the IMU readings.

Update: When camera measurements become available:
• Augment the sliding window with a new state, and begin

image processing.
• For each feature track that is complete after m or fewer

images, do the following
– Obtain an estimate for the feature’s parameters

(IDP for points or TPIDP for lines) using all its
observations.

– Compute the residuals associated with all the fea-
ture measurements and their Jacobians, and apply
the method of [17] to remove the effect of the
feature-estimate error.

– Perform a Mahalanobis-distance gating test.
• For the features included in the state vector, compute

the residuals and measurement Jacobians.
• Perform an EKF update using all the features.
• Initialize into the state vector features that are still

actively tracked after m images.

State Management:
• Remove from the state vector features that are no longer

tracked.
• Remove all sliding-window states that have no active

feature tracks associated with them.

Therefore the state corresponding to each image in the filter
represents the body-frame state at that time instant.

The images are processed to extract and match point and
line features, which are processed in one of two ways: if a
feature’s track is lost after m or fewer images, it is used
to provide constraints involving the poses of the sliding
window. For this purpose, the multi-state-constraint method
of [17], [19] is employed, which makes it possible to use
the feature measurements without including the feature in
the EKF state vector. On the other hand, if a feature is still
being tracked after m frames, it is initialized in the state
vector and any subsequent observations of it are used for
updates as in the EKF-SLAM paradigm.

At each time step, the hybrid filter processes a number of
features with each of the two approaches. For each feature
the appropriate residuals and Jacobian matrices are com-
puted, and a Mahalanobis-distance gating test is performed.
All the features that pass the gating test are then employed for
an EKF update. At the end of the update, features that are no
longer visible and old sliding-window states with no active
feature tracks associated with them are removed. Note that,
to ensure the correct observability properties of the linearized
system model, and thus improve the estimation accuracy
and consistency, the hybrid filter employs fixed linearization
points for each state [19].

A. Line measurement model

We now describe the formulation of the measurement
model that we employ for the straight-line features detected
in the images. In prior work, the standard practice is to
employ line fitting in the images to obtain the equations
of the lines in the images, and to subsequently relate these
equations to the configuration of the line and camera in
space. However, when a moving RS camera observes straight
lines, these are no longer guaranteed to project into straight
lines in the images. Therefore, our approach completely
forgoes the line-fitting step. Instead, all the pixels that are
deemed to belong to a straight line (see Section VI for a
description of our line-detection strategy) are directly used
to define measurement residuals for the EKF update.

Specifically, let us consider an image point that belongs
to the projection of a 3D line, and lies in the i-th row of the
RS image. If we denote the normalized coordinates of the
point as (ui, vi), then the following equation is satisfied:[

ui vi 1
]
CinπC

= 0

where Ci is the camera pose at time ti, i.e., at the time instant
the i-th image row was recorded, and CinπC

is defined
by equations (2) and (3). We note that the above equation
involves the noise-less image projection coordinates, as well
as the true line parameters. In any real-world estimation
problem, however, the measurements will be corrupted by
noise, and only estimates of the line parameters are available.
Therefore, using these quantities, we obtain a residual:

ri =
[
zTi 1

]
Ci n̂πC

=
[
zTi 1

]
C
GR̂(ti)

(
Gn̂πA

+
(
Gp̂C(ti)− GpA

)
× Gv̂ℓ

)
(6)

where
Gv̂ℓ = â1

Gn̂πA
×w1 + â2

Gn̂πA
×w2

In the above, zi represents the normalized-image measure-
ment vector,

zi =

[
ui

vi

]
+ ηi

where ηi is the image measurement noise, modelled as zero-
mean, Gaussian, with covariance matrix σ2I2, and ·̂ denotes
the estimated value of a quantity. By employing linearization,
we can express the residual, up to a first order approximation,
as a function of the errors in the state estimates, the line-
parameter estimates, and the measurement noise:

ri ≃ Hθθ̃B(ti) +Hp
Gp̃B(ti) +Hf f̃L + Γiηi (7)

where θ̃B(ti) and Gp̃B(ti) are the errors in the orientation
and position estimates at time instant ti, Hθ and Hp are the
corresponding Jacobians, f̃L is the error in the estimates of
the line parameters and Hf is the corresponding Jacobian,
and Γi is the Jacobian of ri with respect to ηi.

Having defined a residual in (6) and its linearized expres-
sion in (7), we can now directly apply the method of [3]
for performing an EKF update. Specifically, for each image



TABLE I
LINEARITY INDEX OF DIFFERENT LINE PARAMETERIZATIONS

Parameterization Average Linearity Index
TPIDP 0.000049
OIDP 0.0013
ODP 0.0149

Roberts 0.0045
Ortho 0.0017
Cayley 0.0055

one body state is included in the state vector of the EKF,
corresponding to the time instant the middle row of the
image was captured. In order to be able to compute residuals
for pixels captured in any possible row of the image, we
employ IMU propagation within the image readout interval,
to compute the state estimates corresponding to all N image
rows, i.e., the state estimates at the N different time instants
given by:

ti = to +
itr
N

, i ∈
[
− N

2
,
N

2

]
(8)

where tr is the image-readout time of the RS sensor. These
state estimates are employed for computing the residuals
shown in (6). Note that, since our IMU propagation method
does not make any assumption about the form of the tra-
jectory [19], we are able to compute the residuals without
any assumptions on the trajectory (e.g., without assuming a
constant-velocity model).

On the other hand, assumptions are necessary when
computing the EKF Jacobians. To see why, note that the
linearized expression in (7) involves the errors of the state
estimates at time instant ti, not at to, which is the time
instant represented in the EKF state vector. Since it is
computationally intractable to include in the EKF state vector
one body-state corresponding to each image row, we must
approximate the errors θ̃B(ti) and Gp̃B(ti) as a function of
the errors θ̃B(to) and Gp̃B(to). To this end, either a zero-
order of a first-order linear approximation can be used, as
explained in [3].

V. SIMULATION RESULTS

In this section we present simulation results which demon-
strate the properties of the proposed line parameterization
compared to alternatives, as well as the performance of the
proposed visual-inertial odometry estimator which processes
both point and line measurements.

A. Comparison of Line Parameterizations

We first examine the linearity characteristics of the pro-
posed line parameterization. We note that, as discussed
in [16], [18], one of the key properties a state parameteriza-
tion must have, when used in an EKF estimator, is that it has
to result in measurement models with “small” nonlinearity.
This is necessary, as large nonlinearities result in non-
Gaussian errors, and violate the small linearization-error
assumptions of the EKF, leading to poor performance. Hence,
we here compare the linearity of the proposed TPIDP against

the following parameterizations: (i) the orientation-depth pa-
rameterization (ODP) employed in [13], (ii) the orientation-
depth parameterization with the depth represented by its
inverse, which we term orientation-inverse depth (OIDP),
(iii) the Cayley parameterization of [20], (iv) the Roberts
parameterization [21], and (v) the orthonormal representation
(Ortho) of [22]. Note that, while additional parameterizations
have been proposed in the literature (e.g., Plücker coordi-
nates, two-point parameterizations), we are only interested in
minimal-error-representation parameterizations, due to their
numerical advantages in EKF-based estimation.

The metric that we use to measure linearity is the
measurement-linearity index defined in [16]. Specifically,
if we denote by y the n × 1 vector containing the line
parameters and the poses from which this line was observed,
the linearity index is defined as:

λ = ∥ϵ∥2, ϵ =


ϵ1
ϵ2
...
ϵq

 , ϵi ≃
1

2

n∑
j=1

n∑
k=1

HijkPjk (9)

where q is the number of pixel observations corresponding
to the line, Hijk = ∂2ri

∂yj∂yk
is the second-order derivative of

the measurement residual function (6), and Pjk is the (j, k)
element of the joint covariance matrix of the errors in y.
Intuitively, the above metric evaluates the magnitude of the
second-order and higher terms in the measurement model,
which are ignored during the EKF’s linearization.

To evaluate the linearity of the different parameterizations,
we perform Monte-Carlo simulations. In each trial, we
randomly generate a line feature and m camera poses, with
m randomly selected between 8 and 15. The joint covariance
matrix of the camera poses is selected to be identical to
the joint covariance matrix observed at a certain time in
one of our real-world experiments. For each randomly gen-
erated configuration we generate simulated line-pixel mea-
surements, and employ them to estimate the line parameters
using least-squares minimization. Subsequently, following
the approach in [23], we compute the joint covariance matrix
of the line and camera poses, and use it to compute the
linearity index λ as shown in (9).

In Table I we present the average linearity index, averaged
over the 6000 Monte-Carlo trials, for all the compared
parameterizations. Recall that in this table smaller values
indicate smaller nonlinearity, and are preferable. We can
clearly see that the linearity index associated with the TPIDP
parameterization is substantially smaller than the index as-
sociated with all other parameterizations. Specifically, it
is approximately 3.7 percent of the linearity index of the
second-best parameterization, which is the OIDP. This result
demonstrates that the TPIDP results in a measurement model
that is “closer to linear”, and thus we expect to obtain
improved performance when using this parameterization in
an EKF-based estimator. Moreover, this result indicates that
the covariance matrix computed by linearization of the
measurement models using TPIDP provides a more accurate
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Fig. 2. Hybrid EKF simulations: average NEES and RMSE over 100
Monte-Carlo trials

description of the uncertainty.

B. Comparison of the Hybrid EKF With Different Parame-
terizations

We next examine the effect of using straight-line measure-
ments, and parameterizing these lines in different ways, in
the hybrid EKF estimator. To this end, we perform Monte-
Carlo simulations in a simulation environment that emulates
a real-world dataset. Specifically, in each Monte-Carlo trial,
we generate a ground-truth trajectory that follows the trajec-
tory of the actual dataset, and in each image we generate
simulated point and straight-line feature measurements with
characteristics (noise levels, feature numbers, track lengths)
as in the real-world dataset. The trajectory’s length was
402 m, lasting about 328 s. The average number of point
features per image is 30, while the average number of
line features is 15, and each line consists of 20 pixels on
average. We process the data by the following methods: (i)
the hybrid EKF estimator that uses point features only, (ii)
the proposed hybrid EKF that uses both points and lines,
using the TPIDP representation for the lines included in the
state, (iii) the hybrid EKF using points and lines with the
OIDP representation, and (iv) the hybrid EKF using points
and lines with the orthonormal representation of [22]. The
three line parameterizations used here are the best three
parameterizations in terms of linearity, as shown in the
preceding tests.

The metrics we use to evaluate the performance of the dif-
ferent methods are (i) the root-mean square error (RMSE) of
the orientation and position estimates, and (ii) the normalized
estimation error squared (NEES) for the IMU state consisting
of the orientation, position, and velocity. The RMSE gives
us a measure of the accuracy of the estimator, while the
NEES provides us with a measure of consistency [19], [24].
Specifically, for zero-mean Gaussian errors the NEES should
equal the dimension of the error-state, i.e., 9 in this case.

TABLE II
AVERAGE RMSE AND NEES FOR FIG. 2

Simulation Position Orientation NEES
Settings RMSE (m) RMSE (deg)
TPIDP 0.7059 0.6964 11.8096
OIDP 0.8192 0.7875 14.4869
Ortho 0.8947 0.8793 15.5772

Points Only 0.9554 0.8699 11.6510

Larger values indicate that there exist unmodelled errors
(e.g., linearization errors) in the estimator, and that the
covariance matrix reported by the EKF underestimates the
actual magnitude of the estimation errors. Examining both
metrics provides us with a more complete picture of the
estimator’s performance.

Both the RMSE and NEES are averaged over 100 Monte-
Carlo trials, and the results are plotted over time in Fig. 2.
Table II lists the average values over all Monte-Carlo trials
and all time instants. From these results, we can first observe
that, as expected, using line features in addition to point
features provides additional information to the estimator, and
leads to lower estimation errors. Moreover, we can clearly
see that the TPIDP parameterization results in both lower
estimation errors, as well as in lower NEES, compared to the
alternative parameterizations examined. These results agree
with the linearity-index results presented earlier, and demon-
strate the advantages of the proposed TPIDP representation
for EKF-based estimation using line features.

We note that the NEES values computed using all three
line parameterizations, as well as for the point-only EKF, are
higher than the “ideal” value of 9. While TPIDP performs
better than the other parameterizations, it also appears to
be mildly inconsistent. We attribute this result primarily
to the small number of features used. Being able to track
only a small number of features, which is typical of low-
texture indoor environments (such as office environments
with textureless walls), results in increased errors and thus
more pronounced nonlinearities in all the methods tested.

VI. REAL-WORLD EXPERIMENT

In addition to the simulation tests, we also tested our
proposed approach in a real-world experiment, which was
conducted using the sensors of a Nexus 4 device. The
experiment was conducted in an indoor office area of the
UCR Engineering Building, where line features are the
most visually dominant ones. The device was hand-held
by a person walking the halls and stairwells between three
floors of the building during the experiment. For point-
feature extraction and matching, Shi-Tomasi features are
used [25], and matched by normalized cross-correlation. To
detect and match line features, we first use the Canny edge
detector [26] to identify edge pixels. The normalized coor-
dinates of these pixels are computed using the pre-computed
calibration parameters, and subsequently we perform partial
RS compensation. Specifically, we employ the rotation es-
timates from the IMU to remove the rotational component
of the RS distortion. The resulting compensated coordinates
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Fig. 3. Real world experiment: Estimated trajectory when (i) using point
features alone, (ii) using both points and straight lines with the proposed
method, and (iii) using both points and straight lines, where partial RS
compensation (for rotation only) is employed for the line features. The red
dot represents the start of the trajectory, while the green dot the end-point
of the estimated trajectory using points only, the black dot the estimated
end-point with the proposed method, and the cyan dot the end-point for the
method with partial RS compensation.

Fig. 4. Sample images recorded during the experiment.

are employed for straight-line detection using a split-and-
merge approach. We point out that, in our proposed method,
compensation is performed only to aid in detecting straight
lines in the environment, and the compensated coordinates
are not used for EKF updates. For line matching, a template
is generated at the midpoint of each line, and matching is
performed by normalized-cross correlation.

In this experiment, an average of 29.71 point features and
16 line segments are extracted per image. The trajectory
length of the experiment is approximately 400 m. The IMU
sample rate is 200 Hz, while the images are captured at
22 Hz (sample images are shown in Fig. 4). All the data
are post-processed off-line on a desktop computer, to enable
comparing the performance of different approaches. In this
test, we are comparing (i) the hybrid EKF estimator using
point features only, (ii) the proposed hybrid EKF using point
and line features, and (iii) the hybrid EKF using point and
line features concurrently, but using the RS-compensated
coordinates for the lines (computed as described above),
and processing them as if they come from a global-shutter
camera. Since the ground truth for the entire trajectory is
not available, the fact that the trajectory starts and ends at
the same point is used to evaluate the performance of the

algorithms.
The 3D trajectory estimated by each approach is shown

in Fig. 3. The computed final position errors for each of
the methods are 1.48 m for the proposed method (corre-
sponding to 0.37% of the travelled distance), 3.05 m for
the hybrid EKF that uses point measurements only and
4.05 m for the hybrid EKF that uses both points and lines
with partial RS compensation. Thus we can clearly see that
processing line features, especially in environments that are
poor in point features and rich in straight lines, can lead
to measurable performance gains in vision-aided inertial
navigation, compared to algorithms that only employ point
features. Furthermore, we notice that simply performing RS-
compensation, and treating the resulting measurements as
if they come from a global shutter camera, leads to worse
performance than the proposed approach. This is due to the
fact that RS compensation can only be reliably performed
for the rotational effects, while the effects of the camera’s
translational motion during the image readout time cannot
be exactly compensated for.

VII. CONCLUSION

In this paper, we present two main contributions. First,
we propose a novel parameterization for 3D lines, which is
shown to exhibit better linearity properties than alternatives,
and thus is better suited for use in linearization-based es-
timators such as the EKF. Second, we describe a method
for processing the observations of lines that is suitable for
use with RS sensors, which are found in the majority of low-
cost cameras. Our approach forgoes line-fitting, and relies on
processing the measurement of each line pixel individually,
thus avoiding assumptions on the shape of the projection of
a line in the image. These two contributions are employed in
conjunction with the hybrid EKF estimator for visual-inertial
odometry [3]. The simulation and experimental results we
present demonstrate that the proposed approach leads to
an improvement in performance, compared to using point
features alone, and that the proposed line parameterization
outperforms those proposed in prior work.
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