
UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of a doctoral dissertation by

ANASTASIOS MOURIKIS

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

STERGIOS ROUMELIOTIS

Name of Faculty Adviser

Signature of Faculty Adviser

Date

GRADUATE SCHOOL



CHARACTERIZATION AND OPTIMIZATION OF THE ACCURACY

OF MOBILE ROBOT LOCALIZATION

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

ANASTASIOS MOURIKIS

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

STERGIOS ROUMELIOTIS, ADVISOR

JUNE 2008



c© Anastasios Mourikis 2008



Acknowledgements

This work would never have been possible without the help and support of many people,

to whom I am deeply grateful. First, I would like to thank my parents, for being beside me

all these years, even though they live so far away. I have devoted five years of my life to my

doctoral studies, but my parents have devoted many more years of their lives, to give me

the opportunity to be here today. Without their guidance, I would not have made it.

My advisor, Stergios Roumeliotis has spared no effort in providing me with support,

help, and mentoring. For the past five years he has been an advisor, in every possible sense

of the word. Not just in academic matters, but also during difficult times in my graduate

life. He has created an incredible learning environment in our lab, and has worked tirelessly

to provide us with great research and career opportunities. I am grateful for all his efforts.

I would also like to thank the members of my committee, Professor Georgios Giannakis,

Professor Yousef Saad and Professor Paul Schrater, for their time and valuable advice.

I owe a lot to my friends, relatives and labmates, who have helped make my time in

Minnesota a great experience. My current and former labmates, Joel, Paul, Faraz, Esha,

Thor-Andreas, Kyle, Nikolas, Ke and Sam, have offered me their help every time I needed

it, and have made our office a great place to work. Alki, Vassilis (×2), Nikos (×3), Yiannis

(×N), Dimitris, Elissaios, George, Ioanna, Zafi, Bree, Vasia, Triantafyllos, Sofia, Spyros

(and others, who I am surely forgetting here) have helped me maintain my sanity, through

the often insane times of my PhD.

Finally, financial support for my work came from the National Science Foundation, the

NASA Jet Propulsion Laboratory, the Digital Technology Center at University of Min-

nesota, and the University of Minnesota Doctoral Dissertation Fellowship.

i



Abstract

Robot localization is the task of processing sensor measurements to estimate a robot’s

position and orientation in real time. Accurate localization is a prerequisite for robot

autonomy, since, without knowledge of its location, a vehicle cannot navigate effectively in

its environment. Despite the substantial research interest in robot localization, the question

of analytical performance evaluation has received very little attention in the literature, and

no theoretical tools exist for predicting the localization accuracy a given system will attain.

The lack of such tools also hinders the development of methods for maximizing the attainable

accuracy, under constraints imposed by the, inevitably limited, system resources. In this

work, we address these limitations by proposing methods for analytically characterizing and

optimizing the accuracy of robot localization.

In particular, the first problem we address is that of providing performance guarantees

for localization. We focus on three classes of localization algorithms: Cooperative Local-

ization (CL), Simultaneous Localization and Mapping (SLAM), and Cooperative SLAM

(C-SLAM). In each of these cases, we derive analytical expressions that determine up-

per bounds on the localization uncertainty, as a function of the relevant system parameters:

(i) the accuracy of all available sensors, (ii) the number of robots and/or landmarks, (iii) the

spatial distribution of the robots and/or landmarks, and (iv) the structure of the graph de-

scribing the robot-to-robot and robot-to-landmark measurements. The derived closed-form

expressions allow us to study the asymptotic properties of localization, and examine the

impact of several factors on the localization accuracy.

The second problem we address is that of optimal resource utilization during CL in robot

formations. We propose a methodology for selecting the optimal set of measurements to

process at each time-step, so as to attain the highest possible localization accuracy given the
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robots’ limited computational and communication resources. Our approach is based on first

expressing the localization accuracy as a function of the rate at which each of the available

sensors is utilized, and then formulating a convex optimization problem, to determine the

optimal rate for each of the sensors. Due to the convex nature of the optimization problem,

a globally optimal solution is computed using efficient minimization routines.

Finally, the third problem we focus on is that of optimal resource allocation during

vision-based localization. One of the key challenges in this domain is the very large number

of available feature measurements, which can overwhelm the limited computational capabil-

ities of a real-time system. Our approach to this problem is based on the observation that

the vast majority of features can only be tracked in a small number of frames (transient

features). We thus propose an algorithm that can optimally process the measurements of

such features, with computational complexity only linear in their number. We then show

how this algorithm can be incorporated into a two-layer localization system that utilizes

the information of both the transient features, as well as the loop-closure information that

becomes available when a robot re-visits an area. The combination of these two types of

positioning information produces pose estimates that are available in real time, and have

bounded long-term errors.

By providing performance guarantees and methods for the optimal allocation of the

available system resources, the research presented in this dissertation aims at increasing

the reliability and cost efficiency of robot designs, both of which are prerequisites for their

widespread use and commercial success.
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Chapter 1

Introduction

1.1 Robot localization

The work presented in this thesis describes methods for characterizing and improving the

accuracy of mobile robot localization. Localization, i.e., the task of using sensor measure-

ments to estimate the robot position and orientation in real time, is a fundamental problem

in mobile robotics. Without knowledge of its location, a robot cannot navigate and interact

with its environment in a meaningful way. It should be pointed out that animals and humans

themselves possess impressive navigational skills. Through millions of years of evolution,

species have developed mechanisms enabling them to determine their location by processing

visual information [114,135], measurements of electric [17] and magnetic [24] fields, echolo-

cation [146], and other sensory input. The ultimate goal of localization methods in the field

of robotics is to endow robots with similar capabilities, which are a prerequisite for robots

to be able to operate autonomously.

The sensors that robots employ for localization can be broadly divided in two categories:

proprioceptive and exteroceptive sensors. Sensors in the first category provide measurements

of quantities related to motion, such as velocity and acceleration, and are the most com-

monly available sensors on mobile robots. Typical examples of proprioceptive sensors are

wheel encoders (odometry sensors) [72], which provide measurements of linear and rota-

tional velocity for ground vehicles, and Inertial Measurement Units (IMUs) [160], which

measure rotational velocities and linear accelerations. On the other hand, exteroceptive
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sensors measure quantities of interest in the robot’s surroundings, such as the range and

bearing to a nearby object. Examples of exteroceptive sensors typically employed in ro-

botics applications include cameras [28], sonars [82], laser range finders [85], and GPS

receivers [158].

Due to disturbances, modeling errors, and other factors, the sensor measurements avail-

able to a robot are inevitably corrupted by noise. The presence of noise implies that the

true pose (i.e., position and orientation) of a robot cannot, in general, be estimated with

zero error; some uncertainty will always exist about the robot pose. Thus, the goal of a

localization algorithm is to fuse the available proprioceptive and exteroceptive measure-

ments in real time, to compute an estimate for the robot pose, as well as a measure of the

uncertainty of this estimate. Depending on the sensors available onboard a robot, several

localization approaches are possible [156]. In the following, we briefly discuss some of the

approaches that will be addressed in this work.

• Dead Reckoning (DR) is the simplest form of localization. It consists of simply

propagating the pose estimates of a mobile robot by integrating the measurements of

its proprioceptive sensors. The limitation of this approach, however, is that due to

the integration of the measurement noise, the pose estimates quickly drift from their

true values, and eventually become unusable (cf. Fig. 1.1) [72, 107]. Therefore, for

most practical purposes, additional information from exteroceptive sensors must be

processed, in order to reduce or even eliminate the growth of DR errors.

• GPS-based localization: Vehicles moving outdoors can obtain measurements of

their absolute position, by measuring range to the GPS satellites [158]. When this is

possible, the localization problem is simplified significantly, because the availability

of direct measurements of the robot’s position prevents drift, and maintains bounded

position errors over time (cf. Fig. 1.2). In many environments of interest, however,

GPS signals are unavailable or unreliable (e.g., indoors, underwater, on other planets,

in the “urban canyon”). Additionally, the accuracy of pose estimates based on GPS

may be insufficient for some applications (e.g., autonomous navigation in traffic).

Therefore, it is important to develop methods for localization in the absence of (or in

addition to) GPS. Two such approaches are presented next.
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Figure 1.1: DR illustration. The solid line represents the true robot trajectory, while
the dashed line represents the estimated one. The ellipses represent the uncertainty of
the position estimates (they are the estimates’ 99.7% confidence regions). During DR, the
uncertainty of the estimates continuously increases, asymptotically approaching infinity [72].
The growth rate of the errors is determined by the accuracy of the robot’s proprioceptive
sensors.

t1 t3t2

Figure 1.2: Illustration of GPS-based localization. At time instants t1, t2, and t3, GPS
measurements are recorded, and used for updating the robot’s pose estimate. Every time
an absolute position measurement is processed, the uncertainty of the resulting estimate is
reduced (shaded ellipses). If the robot proceeds by periodically using GPS measurements
for position updates, drift is prevented, and at steady state the uncertainty of the pose
estimates is bounded (cf. Section 2.4).
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R2

R1

t1 t3t2

Figure 1.3: Illustration of CL: At time instants t1, t2, and t3, Robot 2 records measurements
of the relative position of Robot 1 (denoted by dotted arrows). Using these measurements,
both robots’ pose estimates are updated, and the resulting estimates have reduced uncer-
tainty. However, in absence of any absolute position information, the relative measurements
cannot fully compensate for position drift. Therefore, the position uncertainty gradually
increases over time, albeit at a rate lower than that of DR (cf. Section 2.4).

• Cooperative Localization (CL): In many cases, a team of robots is required to

cooperate in order to accomplish a certain task (e.g., object transportation [170], con-

struction [127], exploration [16], etc). When multiple autonomous vehicles operate

in the same area, one attractive approach for aiding the localization of all robots is

for them to record relative (i.e., robot-to-robot) measurements, such as distance and

bearing, and to combine this information with their odometric estimates (cf. Fig. 1.3).

When robots record, communicate, and process such relative pose information for lo-

calization purposes, the process is termed Cooperative Localization (CL) [78]. CL

provides the means for an implicit sensor sharing, as localization information is dis-

sipated over a wireless network to all the members of the group. In Chapter 2, it is

shown that this results in considerable gains in terms of localization accuracy for all

robots.

• Simultaneous Localization and Mapping (SLAM): When robots operate in un-

known environments, they can process their sensor measurements to detect features

(also termed landmarks), which can be used to aid localization. The term feature
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Figure 1.4: Examples of exteroceptive measurements, and the features extracted from them:
(a) A camera image, with a few points of interest superimposed. These points are local
maxima of the image intensity gradient. (b) A typical planar laser scan. The raw data
consist of range measurements along 181 rays, evenly spaced in a 180o field of view. The
detected features correspond to geometric corners.

in this context refers to a distinctive point of interest, which can be detected in the

sensor data by applying an interest operator. In images, for example, features are

typically selected as points where the image intensity gradient is large [56, 84], while

in laser scanner data, corners and line segments are the most commonly detected

features [136] (cf. Fig. 1.4). When the positions of the features in the robot’s sur-

roundings are not known in advance, they can be estimated along with the robot’s

trajectory (cf. Fig. 1.5). This is the task of Simultaneous Localization and Mapping

(SLAM) [115, 148]. The main benefit of SLAM is that, since the point features are

static, they serve as “localization beacons.” Observing features over multiple time

instants, or when the robot re-visits an area (this is often termed “loop closing”),

results in bounded estimation errors over long time periods [105]. Thus, SLAM per-

mits accurate, long-term localization in unknown environments, and is considered an

enabling technology for robot autonomy [35].

• Cooperative Simultaneous Localization and Mapping (C-SLAM): When

multiple robots operate in an area, and at least one of the robots is capable of obtain-
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t1 t3t2

Figure 1.5: SLAM: At time t1, the robot observes for the first time a static feature (denoted
by a star), and computes an estimate of its position. At later time instants, t2 and t3, the
robot re-observes the same feature, and employs these measurements in order to update its
pose estimates, as well as the estimate of the feature’s position. Every re-observation results
in a reduction of uncertainty, and asymptotically, the errors of the robot’s and feature’s
estimates remain bounded [105]. A similar situation arises when multiple cooperating robots
localize as a group, while observing static features.

ing measurements to static features, then the positions of all robots and all features

can be simultaneously estimated [104,108]. This process is termed Cooperative SLAM

(C-SLAM), or multi-robot SLAM. The “sensor sharing” that occurs during C-SLAM,

in conjunction with the use of static landmarks as localization anchors, results in

bounded localization errors for all robots of the team (cf. Section 2.5).

1.2 Research objectives

CL, SLAM and C-SLAM have been very active topics of research in recent years. Specifi-

cally, mobile robot teams have attracted the interest of the robotics community, because of

the increased efficiency and reliability offered when multiple robots cooperate for performing

a task [16,67,127,132,168,170]. Several algorithms have been proposed for pose estimation

in cooperating groups of robots (e.g., Extended Kalman Filtering (EKF) [137, 142], max-

imum likelihood estimation [62], particle filtering [43, 44, 63], set-based methods [87, 154],

etc.), while the design of sensors for obtaining relative measurements [46, 52, 89, 132] has

also been investigated.

On the other hand, SLAM (both single- and multi-robot) has been the most active
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research area of mobile robotics for the past two decades. Research efforts have focused

primarily on developing scalable estimation algorithms, capable of operating in large envi-

ronments [53, 70, 70, 98, 119, 128, 157], while issues such as feature detection in raw sensor

data [136,145], data association techniques for matching sensor readings to physical points of

interest [116,144], implementation of SLAM with different sensing modalities [61,71,82,145],

and designing estimators to tackle the nonlinearity of the problem [4, 30, 98] have also re-

ceived considerable attention.

Despite the great research interest in the areas of CL, SLAM, and C-SLAM, the vast

majority of work has focused on implementation techniques and on addressing the problem

of computational complexity. As a result, the issue of theoretical performance analysis has

largely been left unexplored. However, the lack of theoretical tools for predicting the attain-

able accuracy in a localization system is a significant impediment to robot design. Without

such tools, a designer must resort to exhaustive simulations and/or experimentation to ver-

ify whether a given selection of the system parameters meets the accuracy requirements of

the target application. In turn, this leads to increased requirements of time, cost, and effort

for designing a robot system. Performance analysis tools, which are commonly available in

other, more mature fields of engineering, are essential for the advancement and widespread

adoption of robotics technology.

The lack of analytical means for predicting the accuracy of robot localization also hin-

ders the development of methods for accuracy optimization. During a robot’s mission, the

computing resources available for localization are limited, due to the need to simultane-

ously perform multiple tasks (e.g., in a surveillance application, the robot might also be

performing image analysis for detecting intruders). Naturally, when only limited resources

are available for localization, the accuracy of the resulting estimates degrades. Therefore,

determining methods for optimal utilization of the available resources, so as to achieve the

highest possible estimation accuracy, is of great significance for mission success. To date,

this task has been addressed mostly in ad-hoc ways, or by using a trial-and-error approach

in system design, due to the absence of methods for analytically evaluating the impact of

various design choices.

In this work, we address the aforementioned limitations, by proposing methods for an-
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alytically characterizing and optimizing the accuracy of robot localization. Our approach is

based on analytically studying the properties of localization, and then employing a rigor-

ous methodology for optimal design of localization algorithms. Specifically, the three main

contributions of this work are the following:

1.2.1 Localization performance characterization

The first key contribution of this work is the derivation of analytical expressions for char-

acterizing the performance, in terms of positioning accuracy, of CL, SLAM, and C-SLAM.

In particular, we derive analytical expressions that determine the guaranteed accuracy of

localization, as closed-form functions of the relevant system design parameters. These pa-

rameters are (i) the accuracy of all available sensors, (ii) the number of robots and/or

landmarks, (iii) the spatial distribution of the landmarks and robots, and (iv) the structure

of the sensing graph, which determines which measurements are processed at each time

instant. By allowing us to predict the localization accuracy attainable by a given robot

design, these expressions facilitate the process of selecting system parameters for achiev-

ing the accuracy requirements of a given task. Moreover, by employing these expressions,

we can analytically study the effect of the system parameters on the position uncertainty

during CL, SLAM, and C-SLAM. This enables us to identify key properties of these lo-

calization methods, and develop a deeper understanding of the interactions between the

various factors affecting accuracy.

1.2.2 Optimal resource utilization in robot formations

The second key contribution of this work is an algorithm that allows optimal resource

utilization during CL in robot formations. When a team of robots localizes cooperatively,

constraints on the available computational and communication resources may prohibit the

robots from transmitting and processing all available sensor measurements. In this situation,

a strategy for selecting which measurements to use at each time-step, so as to attain the

highest possible localization accuracy, is required. To address this problem, we propose a

methodology for optimal sensor scheduling, under the constraints imposed by the robots’

limited resources. The developed algorithm computes the rate at which the measurements
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of each of the available sensors should be processed, to ensure the best steady-state accuracy

for the robots’ pose estimates. This algorithm can be employed for determining the optimal

sensing strategy for robot formations of any size and shape, comprised of robots with various

types of sensors and sensing capabilities. By enabling robots to optimally utilize their

available resources, the described methodology enables more cost-effective system design.

Moreover, the improved localization accuracy can increase the operational capabilities of

robot teams, allowing them to perform challenging tasks that require high-precision pose

estimates.

1.2.3 Optimal use of transient feature information

The third key contribution of this work is a real-time algorithm that allows for optimal use

of exteroceptive sensor data, at a low computational cost. In most realistic applications,

a very large number of features can be detected in the exteroceptive sensor measurements

(this is especially true in the case of visual sensing). An important observation is that the

vast majority of these features are typically tracked for a small number of consecutive time-

steps, and are never re-detected. Only a small fraction of features are tracked for longer

time-periods, or when the robot re-visits an area. This motivates us to divide features

into two categories: stable features, which are used for loop closing, and transient features,

which are used for improving the accuracy of the robot motion estimates. In this work,

we propose an algorithm, termed multi-state constraint Kalman filter (MSC-KF), that

can optimally utilize the information content of the transient feature measurements, at a

computational cost only linear in the number of such features. Moreover, we describe a

dual-layer estimator architecture, where the MSC-KF is used in conjunction with a bundle-

adjustment module, resulting in a localization system whose pose estimates are available in

real-time and have bounded long-term errors. Due to its low computational requirements,

and the fact that measurements are used in a statistically optimal fashion, the MSC-KF is

ideal for applications where hard real-time constraints exist, and high localization accuracy

is required.
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1.3 Organization of the manuscript

In the following chapter, the issue of analytical performance characterization is addressed.

First, the derivation of analytical expressions for the guaranteed accuracy of CL, SLAM

and C-SLAM is presented, and these expressions are then employed for exploring several

properties of the uncertainty in these classes of localization algorithms. Moreover, the

derived theoretical results are validated through both numerical and real-world experiments.

In Chapter 3, our methodology for attaining optimal resource utilization during CL in robot

formations is presented. The derivation of the proposed algorithm is described, and its use

is demonstrated in real-world experiments. Next, in Chapter 4, the MSC-KF algorithm,

and its use in conjunction with a loop-closure module, is described in the context of vision-

aided inertial navigation. Finally, Chapter 5 summarizes the key results of this work, and

identifies interesting avenues for future research.
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Chapter 2

Localization Performance

Characterization

2.1 Introduction

In this chapter, we present analytical results that enable us to predict the accuracy of

localization in the cases of CL, C-SLAM, and SLAM. Our approach is based on deriving

upper bounds on the uncertainty of the state estimates, as closed-form expressions of all the

relevant parameters of a given system. The reason for adopting this approach is the fact

that, in general, the exact value of the uncertainty in a given localization task cannot be

computed in advance. This uncertainty depends on the actual trajectories followed by the

robots, and the placement of landmarks in the environment, in the case of (C-)SLAM. If

these variables were known a priori, we would be able to predict the uncertainty of the robot

pose estimates (cf. Chapter 3). However, in most practical cases, the robots’ trajectories

cannot be pre-specified, and thus an alternative method for predicting the accuracy of the

pose estimates is required.

In our work, we achieve this goal by deriving the guaranteed accuracy of localization, as

a closed-form function of the design parameters of a given system. These design parameters

include (i) the characteristics of the robots’ sensors, (ii) the number of robots and land-

marks, (iii) the spatial distribution of landmarks, and (iv) the structure of the sensing graph

describing the measurements between robots and/or landmarks. It should be pointed out
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that, in most cases, these factors are either precisely known (e.g., the sensor characteristics),

or their properties can be predicted in advance (e.g., the density of landmarks). Therefore,

by applying the derived closed-form expressions during the design phase, informed deci-

sions can be made, for example, about the necessary number of robots in a team, and the

accuracy of their sensors, in order to meet task-imposed accuracy specifications.

Before presenting the details of our analysis, in the next section we discuss the related

prior work. Section 2.3 presents the key elements of our methodology, while Sections 2.4-

2.6 describe in detail the main results of this chapter. The theoretical results are validated

by the experimental and simulation tests presented in Section 2.7, and finally, Section 2.8

summarizes the key findings of this chapter.

2.2 Prior work

In this section, we discuss prior approaches that study properties of the uncertainty in CL,

C-SLAM and SLAM. We point out that, as discussed in Section 1.2, a substantial amount of

work in the literature addresses the design of estimators suitable for real-time applications,

sensor data processing, and several other implementation issues. However, since these

topics are not the primary focus of our work, we will not discuss such approaches here. The

interested reader is referred to [101,107,108] for an overview. In what follows, we concentrate

on the (quite limited) prior work that examines the properties of the uncertainty during

localization.

2.2.1 Cooperative localization

To the best of our knowledge, there exist only few cases in the literature where the properties

of position uncertainty in CL have been studied. In [142], the improvement in localization

accuracy is computed, after only a single update step, with respect to the previous values

of position uncertainty. In this case, the robots’ orientations are assumed to be perfectly

known, and no expressions are derived for the propagation of the localization uncertainty

with respect to time, or with respect to the accuracy of the odometric and relative position

measurements.

In [133], the authors studied, in simulation, the effect of different robot-tracker sensing
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modalities on the accuracy of CL. Statistical properties of the pose covariance were derived

using a Monte-Carlo approach, and it was shown that, as the number of robots in the team

increases, the robots’ position estimates become more accurate. Moreover, the impact of

the relative positions of the robots on their localization accuracy was demonstrated with

numerical experiments. This work was the first to touch upon the issue of the time evolution

of the uncertainty in CL; however, no analytical results were derived.

In [140, 141], the special case of N identical robots localizing cooperatively is consid-

ered. Under the assumption that every robot can always measure the relative positions of

all other robots, an upper bound on the expected position covariance matrix is derived. The

results of that work constitute the first analytical assessment of the positioning accuracy

of multi-robot teams. However, the assumption of homogeneity and the requirement that

every robot measures the relative position of all other robots in the team, limit their ap-

plicability to small groups of identical robots. In realistic scenarios, even teams consisting

of identically built robots, may actually be heterogeneous, due to the inherent variability

during the manufacturing of their sensors (cf. Section 2.7.1). In our work, the assumptions

of a homogeneous group and of a complete measurement graph are removed.

2.2.2 SLAM and C-SLAM

One of the first attempts to study the properties of the covariance matrix of the state

estimates in SLAM was presented in [50]. In this case, a Linear Time Invariant (LTI)

SLAM model is employed, in which both the robot and the landmarks are constrained

to lie in a one-dimensional (1D) space. For this simplistic model, the solution to the

Riccati differential equation, that describes the time evolution of the covariance matrix

of the position estimates, is derived in closed form. This work has also been extended

to the case of a team of multiple vehicles performing C-SLAM in 1D [117]. Under the

additional assumptions that (i) all robots can observe all landmarks, (ii) no robot-to-robot

measurements occur, (iii) the initial covariance matrix of the feature map is diagonal, and

(iv) the robots have perfect initial knowledge of their position, a closed-form solution to

the Riccati equation is computed. These results are useful, in that they demonstrate some

of the properties of the covariance matrix in single- and multi-robot SLAM. However, their
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practical importance is limited by the fact that the analysis holds only for motion in 1D,

and for a LTI system model.

A different set of properties of the covariance matrix in SLAM is studied in [25,33,118].

In particular, an LTI SLAM model is considered, and it is shown that (i) the covariance

matrix of the landmarks’ position estimates is decreasing monotonically, as more exterocep-

tive measurements are processed, and (ii) after sufficient time (i.e., asymptotically) the map

estimates become fully correlated. Additionally, the authors derive a lower bound on the

robot’s and landmarks’ covariance matrix, by considering the case in which the odometry

measurements are perfect (i.e., noise-free). Since no additional uncertainty is introduced in

the system during state propagation, this is the “best-case scenario,” and the covariance of

the state estimates in this hypothetical system defines a lower bound that depends only on

the initial uncertainty of the robot’s pose. These results are extended to the case of an LTI

C-SLAM model in [41,42].

In [65,66], a similar analysis is applied to EKF-based SLAM. In particular, lower bounds

for the covariance are derived, by considering the cases in which a robot observes landmarks

an infinite number of times, from either one or two positions. It should be pointed out,

however, that in all the aforementioned approaches the derived lower bounds are indepen-

dent of the accuracy of the robot’s sensors, and thus cannot be employed for comparing the

performance of robots with sensors of different quality. Moreover, if the robots’ initial pose

is perfectly known, which is a common situation in SLAM, the bounds are equal to zero, and

thus they are uninformative. In contrast, the results presented in Sections 2.5 and 2.6 are

applicable to this case of interest, and can be used to compute the guaranteed localization

accuracy.

2.3 Overview of the approach

Robot localization is a nonlinear estimation problem, and consequently, no exact recursive

estimator can be developed for it. This has led to the development of a large number of

approximate estimators for robot localization (cf. Section 1.2). Depending on the particular

estimator employed, the expression of the accuracy, or, equivalently, of the uncertainty, of

the state estimates varies. For example, in the Extended Kalman Filter (EKF) [118], the
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uncertainty is expressed by the covariance matrix, in particle filtering [98] by the sample

covariance of the particles, in set-based methods [87] by the volume of the sets where the

state is contained, etc. Since our goal is to derive closed-form expressions for the uncertainty,

we have chosen to employ an EKF for our analysis. The reason is that the Riccati recursion

(cf. (2.14)) provides the means for analytically studying the time-evolution of the state

estimates’ uncertainty in the EKF. However, it should be pointed out that as long as

different estimators provide good approximations to the true pdf of the state (e.g., they do

not fail due to large linearization errors, particle depletion, or similar issues), then their

computed uncertainty estimates should all reflect the true uncertainty of the robot pose.

In this case, the uncertainty metrics associated with all such estimators are equivalent, and

the results of our work can be employed to characterize their performance.

In what follows, we briefly describe EKF-based localization, and introduce the Riccati

recursion, which will play a key role in the ensuing analysis. In the EKF, our knowledge

about the state at any time instant is described by a Gaussian probability density function

(pdf) [92]. The state estimate is given by the mean of this pdf, while the uncertainty is

described by its covariance matrix. The EKF evolves recursively in two steps: propaga-

tion and update. During propagation, the proprioceptive measurements are employed for

predicting the state at the next time-step, while during updates, the exteroceptive measure-

ments are utilized for correcting the estimate and improving its accuracy. The details of

these two steps are described hereafter.

Consider a system, in which the state that we wish to estimate (e.g,. the position and

orientation of the robots in a team) at time-step k is Xk. The state evolves in time according

to the nonlinear equation:

Xk+1 = f(Xk,uk) (2.1)

where uk is the actual control input (e.g., the robot linear and rotational velocities) at

time-step k. The robots do not have direct access to the control input uk, but can obtain

measurements of it, using their proprioceptive (e.g., odometric) sensors. These measure-
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ments are described by the equation:

umk
= uk + wk (2.2)

where wk is the measurement noise vector, modeled as a zero-mean, white Gaussian random

variable, with known covariance Qk. In the EKF propagation phase, the measurement umk

is used to compute the predicted value of the state at time-step k + 1 as follows:

X̂k+1|k = f(X̂k|k,umk
) (2.3)

In this expression, X̂k|k and X̂k+1|k denote the estimates for the states at time-steps k and

k + 1, respectively, computed using all proprioceptive and exteroceptive measurements up

to time-step k. The covariance matrix of the error in the state estimate X̂k+1|k, denoted as

Pk+1|k, is computed as:

Pk+1|k = ΦkPk|kΦT
k + GkQkGT

k (2.4)

where Pk|k is the covariance matrix of the error in the estimate X̂k|k, and

Φk = ∇Xk
f
∣∣∣
{X̂k|k,umk

}
(2.5)

Gk = ∇uk
f
∣∣∣
{X̂k|k,umk

}
(2.6)

are the Jacobians of f with respect to the state and the control input, respectively. Equa-

tions (2.3) and (2.4) describe the propagation phase of the EKF.

The exteroceptive measurements recorded by the robots at time-step k+1 are described

by a (generally nonlinear) equation of the form:

zk+1 = h(Xk+1) + nk+1 (2.7)

where nk+1 is the exteroceptive measurement noise vector, modeled as a white, zero-mean

Gaussian random variable with covariance matrix Rk+1. The EKF update proceeds by first
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computing the residual:

rk+1 = zk+1 − ẑk+1 = zk+1 − h(X̂k+1|k) (2.8)

By employing first-order Taylor series approximation of the measurement function h, the

residual can be written as:

rk+1 ' Hk+1X̃k+1|k + nk+1 (2.9)

where X̃k+1|k = Xk+1 − X̂k+1|k is the error in the estimate X̂k+1|k, and

Hk+1 = ∇Xk+1
h
∣∣∣
X̂k+1|k

(2.10)

is the Jacobian of the measurement function h with respect to the state. Based on the

linearization in (2.9), the EKF proceeds to update the state estimate similar to the Kalman

filter for linear systems. Specifically, the state estimate is updated by the equation:

X̂k+1|k+1 = X̂k+1|k + Kk+1rk+1 (2.11)

where the Kalman gain, Kk+1, is given by:

Kk+1 = Pk+1|kHT
k+1

(
Hk+1Pk+1|kHT

k+1 + Rk+1

)−1
(2.12)

while the covariance matrix of the updated state estimate is given by:

Pk+1|k+1 = Pk+1|k −Pk+1|kHT
k+1

(
Hk+1Pk+1|kHT

k+1 + Rk+1

)−1
Hk+1Pk+1|k (2.13)

By combining the last expression with the covariance propagation equation (cf. (2.4), we

obtain the Riccati recursion, which describes the time evolution of the covariance matrix:

Pk+2|k+1 = Φk+1

(
Pk+1|k −Pk+1|kHT

k+1

(
Hk+1Pk+1|kHT

k+1 + Rk+1

)−1
Hk+1Pk+1|k

)
ΦT

k+1

+ Gk+1Qk+1GT
k+1 (2.14)
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To simplify the notation, we set Pk = Pk+1|k, and Pk+1 = Pk+2|k+1. Thus the Riccati

recursion assumes the simpler form:

Pk+1 = Φk+1

(
Pk −PkHT

k+1

(
Hk+1PkHT

k+1 + Rk+1

)−1
Hk+1Pk

)
ΦT

k+1 + Gk+1Qk+1GT
k+1

(2.15)

Studying the properties of the Riccati recursion allows us to draw conclusions for the

localization uncertainty of a given system. A key observation is that the right-hand side of

the above expression is a function of the noise covariance matrices, Qk+1 and Rk+1, which

are known in advance, and of the Jacobian matrices Φk+1, Gk+1, and Hk+1. These Jacobian

matrices depend on the values of the state estimates themselves, and as a result, the time

evolution of the covariance Pk will also depend on the values of the state. This means

that in order to predict the accuracy of localization, we would need to know in advance

the trajectories followed by the robots, as well as other factors, such as the distribution of

landmarks. However, this is not practical from a design standpoint, since it implies that

a very large number of trajectories would need to be simulated, to guarantee that a given

system meets certain accuracy specifications.

To address this problem, our approach relies on computing an upper bound on the

covariance, for every time-step k. This bound provides us with the guaranteed accuracy of

localization, as a function of a priori known parameters, regardless of the trajectory that

the robots may follow. Moreover, it is the case for many practical scenarios, that even

though the exact values of the states may not be known in advance, a statistical description

of them may be available. For example, we may be able to model the pose of the robots

by a known pdf in their operational area. We utilize this additional knowledge in order to

obtain a tighter upper bound on the expected covariance of the position estimates in CL

and C-SLAM.

The analysis in the following sections consists of the following steps: first, we formulate

an appropriate Riccati recursion with special structure, for each of the localization cases

considered (i.e., CL, C-SLAM, and SLAM). Subsequently, we utilize the monotonicity and

concavity properties of the Riccati, in order to construct a constant-coefficient recursion,

whose solution is provably an upper bound on the actual covariance of the state estimates.
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In this step, the following two lemmas will be employed:

Lemma 1 Consider the Riccati recursion

Pk+1 = Φk+1

(
Pk −PkHT

(
HPkHT + Rk+1

)−1
HPk

)
ΦT

k+1 + GQk+1GT (2.16)

If Ru and Qu are constant matrices such that Ru º Rk and Qu º Qk, for all k ≥ 0, then

the solution to the Riccati recursion

Pu
k+1 = Φk+1

(
Pu

k −Pu
kH

T
(
HPu

kH
T + Ru

)−1
HPu

k

)
Φk+1 + GQuGT (2.17)

with the initial condition Pu
0 = P0, satisfies Pu

k º Pk for all k ≥ 0.

Proof: See Appendix A.1.

Lemma 2 Consider the Riccati recursion

Pk+1 = Pk −PkHT
(
HPkHT + Rk+1

)−1
HPk + GQk+1GT (2.18)

If R̄ = E{Rk+1} and Q̄ = E{Qk+1} are the expected values of matrices Rk+1 and Qk+1,

respectively, then the solution to the following Riccati recursion

P̄k+1 = P̄k − P̄kHT
(
HP̄kHT + R̄

)−1
HP̄k + GQ̄GT (2.19)

with initial condition P̄0 = P0, satisfies P̄k º E{Pk} for all k ≥ 0.

Proof: See Appendix A.2.

These lemmas allow us to derive constant-coefficient Riccati recursions, whose solutions

are upper bounds to the worst case and the expected value of the uncertainty, respectively.

Once these recursions are obtained, we subsequently evaluate their steady-state (i.e., asymp-

totic) solution. This solution provides us with a description of the long-term performance

of the localization system, which can be of critical importance for applications. Finally,

once the asymptotic solution has been obtained in closed form, we proceed to examine its

properties, so as to identify the way in which key factors affect the estimates’ accuracy. In
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the remaining sections of this chapter, these steps are described in detail for the problems

of CL, C-SLAM, and SLAM.

2.4 Cooperative localization

We first study the properties of the position uncertainty in CL [100,107]. Consider a group

of N robots moving in 2D that employ odometry and relative position measurements (e.g.,

provided by laser range finders) to cooperatively estimate their poses. In our formulation,

we assume that each robot has access to measurements of its absolute orientation, and that

an upper bound on the variance of these measurements can be determined a priori. This is

the case, for example, when each robot is equipped with a heading sensor of limited accuracy

(e.g., a compass [34,49] or a sun sensor [48,166]) that directly measures its orientation, or if

the robots infer their orientation from measurements of the structure of the environment in

their surroundings (e.g., from the direction of the walls when this is known a priori) [129].

Alternatively, absolute orientation measurements can be obtained by observing objects in

the horizon [161], or equivalently, the vanishing points of sets of parallel lines [11].

The variance of the absolute orientation measurements that each robot receives defines

an upper bound on each robot’s orientation uncertainty. The availability of such a bound

enables us to decouple the task of position estimation from that of orientation estimation,

for the purpose of determining upper bounds on the performance of CL. Specifically, we for-

mulate a state vector comprising of only the positions of the N robots, and the orientation

estimates are used as inputs to the system, of which noise-corrupted observations are avail-

able. Clearly, the resulting EKF-based estimator is a suboptimal one, since the correlations

that exist between the position and orientation estimates of the robots are discarded. Thus,

by deriving an upper bound on the covariance of the estimates produced by this suboptimal

“position-only” estimator, we simultaneously determine an upper bound on the covariance

of the position estimates that would result from using a “full-state” EKF estimator [137].

We should note that, for most cases in practice, the condition for bounded orientation

uncertainty is satisfied. If special care is not taken and the errors in the orientation estimates

of the robots are allowed to grow unbounded, any EKF-based estimator of their poses

will eventually diverge [92]. The significance of having small orientation errors for the
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consistency of the EKF has also been demonstrated in [18, 70]. Thus, the requirement

for bounded orientation errors is not an artificially imposed assumption; it is essentially

a prerequisite for performing EKF-based localization. In fact, if we can determine the

maximum tolerable value of the orientation variance, so as to ensure that the linearization

errors are acceptably small, we can use this variance value in the derivations that follow.

Throughout this chapter, we consider that all robots move constantly in a random

fashion (i.e., no specific formation is assumed, which is the case in Chapter 3). At every time-

step, some (or all) robots record relative position measurements, and use this information to

improve the position estimates for all members of the group. During each EKF update cycle,

all exteroceptive measurements, as well as the current position estimates of the robots, must

be available to the estimator. These can then be fused either in a distributed scheme [137],

or at a central fusion center. Therefore, it is assumed that an appropriate communication

network exists, enabling all robots to transmit all necessary information.

A key element in this analysis is the Relative Position Measurement Graph (RPMG),

which is defined as a graph whose vertices represent robots in the group and its directed

edges correspond to relative position measurements (Fig. 2.6). That is, if robot i mea-

sures the relative position of robot j, the RPMG contains a directed edge from vertex i

to vertex j. In this work, we primarily consider the most challenging scenario, where the

absolute positions of the robots cannot be measured or inferred. However, the case where

global positioning information is available to at least one of the robots in the group, is

also addressed in our formulation. In what follows, we present the EKF equations for the

decoupled position-only estimator, and derive the Riccati recursion that will serve as the

basis of our analysis.

2.4.1 EKF propagation

We first study the influx of uncertainty to the system, due to the noise in the odometric

measurements of the robots. The discrete-time motion equations for the i-th robot of the

team are

xi(k + 1) = xi(k) + Vi(k)δt cos(φi(k)) (2.20)
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yi(k + 1) = yi(k) + Vi(k)δt sin(φi(k)) (2.21)

where Vi(k) denotes the robot’s translational velocity at time k and δt is the sampling period.

The estimates of the robot’s position are propagated using the measurements of the robot’s

velocity, Vmi(k), and the estimates of the robot’s orientation, φ̂i(k):

x̂ik+1|k = x̂ik|k + Vmi(k)δt cos(φ̂i(k))

ŷik+1|k = ŷik|k + Vmi(k)δt sin(φ̂i(k))

By linearizing (2.20) and (2.21), the error propagation equation for the robot position is

derived:


 x̃ik+1|k

ỹik+1|k


 =


 x̃ik|k

ỹik|k


 +


 δt cos(φ̂i(k)) −Vmi(k)δt sin(φ̂i(k))

δt sin(φ̂i(k)) Vmi(k)δt cos(φ̂i(k))





 wVi(k)

φ̃i(k)




⇔ p̃ri k+1|k = p̃ri k|k + Gi(k)wi(k) (2.22)

where p̃ri = [x̃i ỹi]T is the error in the i-th robot’s position estimate and Vmi(k) = Vi(k)−
wVi(k) are the measurements of the translational velocity of the robot, contaminated by

a white, zero-mean, Gaussian noise process with known variance σ2
Vi

. The errors in the

orientation estimates, φ̃i(k) = φi(k) − φ̂i(k), are modeled by a white zero-mean Gaussian

noise process, whose variance, σ2
φi

= E{φ̃i
2}, is bounded.

The covariance function of the system noise affecting the i-th robot is

Qi(k, `) = E{Gi(k)wi(k)wi(`)
TGi(`)

T }

= C(φ̂i(k))


 δt2σ2

Vi
0

0 δt2σ2
φi

V 2
mi

(k)


C(φ̂i(k))T δk`

= C(φ̂i(k))QdiC(φ̂i(k))T δk` (2.23)

where δk` is the Kronecker delta function, and C(φ̂i(k)) is the 2×2 rotation matrix associated
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with φ̂i(k):

C(φ̂i(k)) =


cos(φ̂i(k)) − sin(φ̂i(k))

sin(φ̂i(k)) cos(φ̂i(k))


 (2.24)

The state vector for the entire system is defined as the stacked vector comprising the

positions of the N robots, i.e.,

X(k) =
[

pT
r1

(k) pT
r2

(k) · · · pT
rN

(k)

]T
(2.25)

From (2.22) we see that the error propagation equation for the entire EKF state vector is:

Xk+1|k = Xk|k + w(k) (2.26)

where w(k) is a block vector with elements Gi(k)wi(k), i = 1, . . . N (cf. (2.22)). Since the

errors in the odometric measurements of different robots are uncorrelated, the covariance

matrix of w(k) is given by

Qr(k) =




Q1(k, k) · · · 02×2

...
. . .

...

02×2 · · · QN (k, k)


 = Diag (Qi(k, k)) (2.27)

and therefore the covariance propagation equation is written as:

Pk+1|k = Pk|k + Qr(k) (2.28)

2.4.2 Exteroceptive measurement models

Relative Position Measurements

At this point, we consider the exteroceptive measurements that the robots process to update

their position estimates. The relative position measurement, zij , between robot i and j at

time-step k + 1 is defined as

zij(k + 1) = CT (φi(k + 1))
(
prj (k + 1)− pri(k + 1)

)
+ nzij (k + 1)

23



= CT (φi(k + 1))∆pij(k + 1) + nzij (k + 1) (2.29)

where nzij (k + 1) is a white, zero-mean, Gaussian noise process affecting the measurement.

By linearizing (2.29), the measurement residual is obtained:

rij(k + 1) = zij(k + 1)− ẑij(k + 1)

' Hij(k + 1)X̃k+1|k + Γij(k + 1)nij(k + 1)

where

Hij(k + 1) = CT (φ̂i(k + 1))Hoij (2.30)

Hoij =

[
02×2 .. −I2︸︷︷︸

i

.. I2︸︷︷︸
j

.. 02×2

]
(2.31)

Γij(k + 1) =
[

I2 −CT (φ̂i(k + 1))J∆̂pij(k + 1)

]
, J =


 0 −1

1 0




∆̂pij(k + 1) = p̂rj k+1|k − p̂ri k+1|k

nij(k + 1) =


 nzij (k + 1)

φ̃i(k + 1)




In Appendix A.3 it is shown that, if robot i performs Mi relative position measurements at

each time-step, the covariance matrix of the errors in these measurements is given by:

Ri(k + 1) = ΞT
φ̂i

(k + 1)Roi(k + 1)Ξφ̂i
(k + 1) (2.32)

where Ξφ̂i
(k + 1) = IMi ⊗C(φ̂i(k + 1)), and

Roi(k + 1) = σ2
ρi
I2Mi −Di(k + 1) diag

(
σ2

ρi

ρ̂ij(k + 1)2

)
Di(k + 1)

T + σ2
θi
Di(k + 1)Di(k + 1)

T

+ σ2
φi

Di(k + 1)1Mi×MiDi(k + 1)
T (2.33)

In this last expression, Di(k + 1) = Diag
(
J∆̂pij(k + 1)

)
is the block diagonal matrix with

diagonal elements J∆̂pij(k + 1), j ∈ NMi , where NMi is the set of the indices of the robots j

observed by robot i. Additionally, σρi and σθi
are the standard deviations of range and
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bearing measurements (which, combined, comprise the relative position measurement), and

ρ̂ij(k + 1) is the estimated distance between robots i and j at time-step k + 1.

The measurement matrix describing the relative position measurements obtained by

robot i at each time-step is a matrix whose block rows are Hij , j ∈ NMi , i.e.:

H i(k + 1) = ΞT
φ̂i

(k + 1)Hoi (2.34)

where Hoi is a constant matrix with block rows Hoij ,j ∈ NMi (cf. (2.31)).

The measurement matrix for the entire system, H(k + 1), which describes the relative

position measurements recorded by all robots, is the block matrix with block rows H i(k + 1),

i.e.,

H(k + 1) =




ΞT
φ̂1

(k + 1)Ho1

ΞT
φ̂2

(k + 1)Ho2

...

ΞT
φ̂N

(k + 1)HoN




= Diag
(
ΞT

φ̂i
(k + 1)

)




Ho1

Ho2

...

HoN




= ΞT
(k + 1)Ho (2.35)

where Ξ(k + 1) = Diag
(
Ξφ̂i

(k + 1)

)
is a block diagonal matrix with block elements Ξφ̂i

(k + 1),

for i = 1 . . . N , and Ho is a matrix with block rows Hoi , i = 1 . . . N . Since the measure-

ments performed by different robots are independent, the measurement covariance matrix

for the entire system is given by

R(k + 1) = Diag (Ri(k + 1)) = Diag
(
ΞT

φ̂i
Roi(k + 1)Ξφ̂i

)
= ΞT

(k + 1)Ro(k + 1)Ξ(k + 1)(2.36)

where Ro(k + 1) is a block diagonal matrix with block elements Roi(k + 1), i = 1 . . . N .

Absolute position measurements

Up to this point, only relative position measurements have been considered. If any of the

robots, e.g., robot `, has access to absolute positioning information, such as GPS measure-
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ments, the corresponding submatrix element of H(k) is:

Ha`
=

[
02×2 . . . I2︸︷︷︸

`

. . . 02×2

]
(2.37)

while Ra`
, the covariance of the absolute position measurement, is a constant provided by

the specifications of the absolute positioning sensor. To account for the absolute position

measurements, the matrix H(k + 1) in (2.42) is augmented by simply appending the appro-

priate block rows Ha`
, while R(k + 1) is augmented by appending the matrices Ra`

on the

diagonal. Specifically, we obtain:

H(k + 1) =




ΞT
φ̂1

(k + 1)Ho1

ΞT
φ̂2

(k + 1)Ho2

...

ΞT
φ̂N

(k + 1)HoN

Ha`




= Diag
(
ΞT

φ̂i
(k + 1), I2

)




Ho1

Ho2

...

HoN

Ha`




= ΞT
(k + 1)Ho (2.38)

where now Ξ(k + 1) = Diag
(
Ξφ̂i

(k + 1), I2

)
is a block diagonal matrix with block elements

Ξφ̂i
(k + 1), i = 1 . . . N , and I2, while Ho is a matrix with block rows Hoi , i = 1 . . . N ,

and Ha`
. Since the measurements performed by different robots are independent, the

measurement covariance matrix for the entire system is given by

R(k + 1) = ΞT
(k + 1)Ro(k + 1)Ξ(k + 1) (2.39)

where

Ro(k) =


 Diag (Roi(k)) 0

0 Diag (Ra`
)


 (2.40)

We note that the case where more than one robot is recording absolute-position measure-

ments can be treated in the same way, by further augmenting the above matrices.
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2.4.3 The Riccati recursion

The covariance update equation of the EKF is written as:

Pk+1|k+1 = Pk+1|k −Pk+1|kH(k + 1)
T

(
H(k + 1)Pk+1|kH(k + 1)

T + R(k + 1)
)−1

H(k + 1)Pk+1|k

(2.41)

Substitution from (2.35) and (2.39) (or from (2.35) and (2.36), if no absolute-position

measurements are available) and simple algebraic manipulation leads to the orientation-

dependent terms Ξ(k + 1) being cancelled out, owing to the property Ξ(k + 1)Ξ(k + 1)T = I.

We thus obtain the expression:

Pk+1|k+1 = Pk+1|k −Pk+1|kHT
o

(
HoPk+1|kHT

o + Ro(k + 1)
)−1

HoPk+1|k (2.42)

By combining this expression with the covariance propagation equation (cf. (2.28)), we ob-

tain the Riccati recursion describing the time evolution of the position estimates’ covariance

during CL:

Pk+1 = Pk −PkHT
o

(
HoPkHT

o + Ro(k + 1)
)−1

HoPk + Qr(k + 1) (2.43)

where the substitutions Pk = Pk+1|k and Pk+1 = Pk+2|k+1 have been introduced to simplify

the notation. The initial value of this recursion, P0, is equal to the initial covariance matrix

of the team’s position estimates.

2.4.4 Structure of the measurement matrix

It will be useful for our analysis to examine the structure of the matrix Ho more closely.

From (2.31) we conclude that each of the block rows of Ho that describes a relative position

measurement contains a term I2 corresponding to the measured robot, and a term −I2

corresponding to the measuring robot. As a result, the matrix Ho can be written as:

Ho = ARPMG ⊗ I2
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where ARPMG is the incidence matrix of the RPMG describing the relative position mea-

surements recorded at each time-step. If, in addition to relative positions, some of the

robots in the team also record measurements of absolute position, this relationship still

holds, and in this case the RPMG is a grounded graph [95].

This observation indicates the close connection between the structure of the RPMG

and the equations describing the time evolution of the positioning uncertainty during CL.

Moreover, we can now employ known properties of the incidence matrix, to derive useful

properties of Ho. For instance, when only relative position measurements are recorded, the

incidence matrix of the RPMG is rank-deficient. The sum of the elements of each row of

ARPMG equals zero, which implies that:

ARPMG1N×1 = 0N×1 ⇒

Ho (1N×1 ⊗ I2) = 02N×2 ⇒

H(k) (1N×1 ⊗ I2) = 02N×2 (2.44)

Using this result, it is trivial to show that the system is not observable (intuitively, this

means that any displacement of the entire robot team with respect to the origin of the

global coordinate frame will not cause a change in the measurements). Additionally, it is

clear that a basis of the unobservable subspace is formed by the columns of the matrix

Vunobs = 1N×1 ⊗ I2.

2.4.5 Upper bound on the worst-case covariance

Having formulated the Riccati recursion in (2.43), we can now apply Lemma 1 to com-

pute an upper bound on the robots’ position uncertainty. By inspection, we see that the

recursion (2.43) is in the form of (2.16), with the correspondences:

Φk ↔ I2N , G ↔ I2N , H ↔ Ho, Rk+1 ↔ Ro(k + 1), Qk+1 ↔ Qr(k + 1) (2.45)

In order to apply Lemma 1, we need to first compute appropriate upper bounds for the

matrices Qr(k + 1) and Ro(k + 1).

An upper bound for Qr(k + 1) is derived by noting that since C(φ̂i) is an orthonormal ma-
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trix, the eigenvalues of Qi(k + 1, k + 1) are equal to δt2σ2
Vi

and δt2σ2
φi

V 2
mi

(k + 1) (cf. (2.23)).

Assuming that the maximum velocity of robot i is equal to Vmax, we denote

qi = max
(
δt2σ2

Vi
, δt2V 2

maxσ
2
φi

)
(2.46)

This definition states that qi is the maximum eigenvalue of Qi(k + 1, k + 1), and therefore

Qi(k + 1, k + 1) ¹ qiI2, which implies that an upper bound for Qr(k + 1) is:

Qr(k + 1) ¹ Diag (qiI2) = Qu (2.47)

An upper bound for Ro(k + 1) can be derived by considering the maximum distance, ρo,

at which relative position measurements can be recorded by each robot. This distance can,

for example, be determined by the maximum range of the robots’ relative position sensors,

or, by the size of the area in which the robots operate. In Appendix A.4 it is shown that:

Roi(k + 1) ¹ (
σ2

ρi
+ Miσ

2
φi

ρ2
o + σ2

θi
ρ2

o

)
I2Mi = riI2Mi

and thus an upper bound on Ro(k + 1) is given by

Ru =


Diag (riI2Mi) 0

0 Diag (Ra`
)


 , ri = σ2

ρi
+ Miσ

2
φi

ρ2
o + σ2

θi
ρ2

o (2.48)

We note at this point that the upper bounds derived in the preceding expressions are valid

only for the particular range-and-bearing sensor model. However, the approach is valid for

any sensor model, as long as it is possible to determine appropriate upper bounds on the

measurement and system-noise covariance matrices. For example, a holonomic kinematic

model could be employed instead of the non-holonomic model in (2.20)-(2.21), and the more

accurate method of evaluating the covariance of the relative position measurements of Lerro

and Bar-Shalom [83] could be employed in (A.10).

Following Lemma 1, and using the above results, we obtain a constant-coefficient Riccati

recursion, whose solution is an upper bound on the covariance of the position estimates in
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CL:

Pu
k+1 = Pu

k −Pu
kH

T
o

(
HoPu

kH
T
o + Ru

)−1
HoPu

k + Qu (2.49)

Intuitively, we see that this recursion describes the time evolution of the covariance of a

deduced Linear Time Invariant (LTI) system, whose measurements’ covariance is larger or

equal to the covariance of the measurements in the actual nonlinear time-varying system.

Moreover, all the parameters of this deduced system (and therefore, of the Riccati (2.49))

depend on known parameters of the actual robot team. Specifically, Ho describes the

structure of the RPMG (cf. Section 2.4.4), Qu depends on the accuracy of the robots’

velocity and orientation measurements, while Ru depends on the accuracy and range of the

robots’ relative position sensors, and the structure of the RPMG.

Numerical evaluation of the solution to the recursion in (2.49) yields an upper bound on

the maximum possible uncertainty of the position estimates in CL at any time instant after

the deployment of the robot team. However, significant insight into the properties of the

covariance matrix can be gained by evaluating the solution of (2.49) at steady state, i.e.,

after sufficient time has elapsed from the onset of the localization task. In order to evaluate

the steady-state solution for Pu
k , we first re-write the Riccati in a form more amenable to

manipulation. We first apply the matrix inversion lemma (cf. Appendix D) to obtain

Pu
k+1 = Pu

k

(
I2N + HT

o R−1
u HoPu

k

)−1
+ Qu (2.50)

The derivations are simplified by defining the normalized covariance matrix as

Pnk
= Q−1/2

u Pu
kQ

−1/2
u

We now obtain

Pnk+1
= Pnk

(I2N + CuPnk
)−1 + I2N (2.51)

where

Cu = Q1/2
u HT

o R−1
u HoQ1/2

u
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Note that the only parameter in the above Riccati recursion is the matrix Cu, which con-

tains all the parameters that characterize the localization performance of the robot team.

In Appendix A.5 the properties of this matrix are studied, and it is shown that it is closely

related to the Laplacian matrix of the RPMG. The eigenvalues of this matrix depend on the

type and number of exteroceptive measurements recorded by the robot team, and determine

the properties of the upper bound on the steady-state positioning uncertainty. Specifically,

in Appendix A.5 it is shown that when at least one robot has access to absolute positioning

information, matrix Cu is nonsingular. In contrast, when the robots of the team record

relative position measurements only, this matrix is singular, and has two eigenvalues equal

to zero. We hereafter present the asymptotic uncertainty bounds for these two cases:

Observable System

If at least one of the robots receives absolute position measurements the system is observable

and the covariance of the robots’ position estimates remains bounded at steady state [137].

An upper bound for the steady-state covariance of CL in this case is determined by the

asymptotic solution of the Riccati recursion in (2.51). This derivation is presented in Ap-

pendix A.6, and the final result is stated as a lemma:

Lemma 3 The steady-state covariance of the position estimates for a team of robots per-

forming CL, when at least one robot has access to absolute positioning information, is upper

bounded by the matrix

Pu
ss = Q1/2

u Udiag
(

1
2

+
√

1
4

+
1
λi

)
UTQ1/2

u (2.52)

where we have denoted the singular value decomposition of Cu as Cu = Udiag(λi)UT .

At this point we should note that the upper bound on the steady-state uncertainty de-

pends on the topology of the RPMG (affecting Cu) and the accuracy of the proprioceptive

and exteroceptive sensors of the robots, represented by Qu and Ru, which are “embedded”
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in Cu. However, the steady-state uncertainty is independent of the initial covariance of the

robots, which comes as no surprise, since the system is observable.

Unobservable System

If none of the robots receives absolute position measurements, the system is unobserv-

able. As a result, the steady-state uncertainty for the robots’ position estimates will be a

monotonically increasing function of time. The upper bound on the asymptotic covariance

of the position estimates is described by the following lemma, whose proof is presented in

Appendix A.6:

Lemma 4 When none of the robots of the team has access to absolute position measure-

ments, the asymptotic positioning uncertainty of CL is bounded above by:

Pu
ss(k) = k · qT1N×N ⊗ I2 + Q1/2

u U


 diag2N−2

(
1
2 +

√
1
4 + 1

λi

)
0(2N−2)×2

02×(2N−2) 02×2


UTQ1/2

u

+ qT1N×N ⊗

 α β

γ δ


 (2.53)

where λi, i = 1 . . . 2N − 2 are the non-zero singular values of Cu, and qT is defined as

1
qT

=
N∑

i=1

1
qi

(2.54)

and the parameters α, β, γ, δ are defined as follows. Let

W = qTQ−1
u (I2N + P0Q−1/2

u Udiag

(
λi

2
+

√
λ2

i

4
+ λi

)
UTQ−1/2

u )−1P0Q−1
u

Then α =
∑

i,j odd wij (δ =
∑

i,j even wij) is the sum of all elements of W = [wij ] with two

odd (even) indices and γ =
∑

i odd,j even wij is the sum of all elements of W = [wij ] with

an odd row index and an even column index. Due to symmetry, β = γ.
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Several observations can be made with respect to the above result. We note that the

upper bound comprises three terms, the first of which contributes with a constant rate

of uncertainty increase, equal to qT δt−1. The second term in (2.53) is a constant term,

whose value depends on the topology of the RPMG and the accuracy of the sensors on the

robots. Finally, the third term in (2.53) is a constant term that describes the effect of the

initial uncertainty on the asymptotic values of the covariance. It also depends on the noise

characteristics of the sensors of the robots, as well as the RPMG topology. The fact that

the steady-state bound depends on the initial uncertainty is a consequence of the fact that

the system is not observable, and therefore initial errors in the estimates for the robots’

positions cannot be fully compensated for.

It is clear that the most important term in (2.53) is the one that corresponds to a

constant rate of uncertainty increase. After sufficient time, this term will always dominate

the remaining ones, and will largely determine the worst-case positioning performance of the

team. A striking observation is that qT , the rate of increase of the maximum uncertainty, is

independent of both the topology of the RPMG and of the precision of the robots’ relative

position measurements. This quantity depends solely on the number of robots in the team,

and the accuracy of the robots’ dead reckoning capabilities. An intuitive interpretation of

this result is that the primary factor determining the rate of uncertainty increase is the

rate at which uncertainty is injected in the unobservable subspace of the system. Since the

number, or the accuracy, of the relative position measurements does not alter this subspace,

we should expect no change in the rate of uncertainty increase, as a result of changes in

the information contributed by the exteroceptive measurements. Additional properties of

the uncertainty increase rate of CL are discussed in the next section, where bounds for the

expected covariance matrix are derived.

2.4.6 Upper bound on the expected covariance

The results of the preceding section enable us to determine the guaranteed accuracy of CL

for a team of robots with a given set of sensors, and a specified RPMG topology. The

bounds determined in (2.52) and (2.53) hold for any scenario of the robots’ motion, as long

as the maximum distance between any pair of them remains smaller than ρo. However,
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it is the case for many practical scenarios, that a better characterization of the robots’

trajectories is known in advance. For example, we may be able to model the pose of the

robots by a known probability distribution function (pdf) in their operational area. In this

case, the covariance matrices Qr and Roi (cf. (2.27) and (2.33)) are functions of random

variables, whose mean value can be determined. This additional knowledge, in the form of

a prior distribution for the robots’ poses, is used to derive an upper bound on the expected

covariance of the position estimates, by application of Lemma 2.

The first step for applying Lemma 2 is to derive the expected values of Qr(k + 1) and

Roi(k + 1), where expectation is computed with respect to the robot poses. The average

value of Qr(k + 1) is easily computed by averaging over all values of orientation of the

robots. Assuming a uniform distribution of the robots’ orientation, from (2.23) we obtain:

E{Qi(k + 1, k + 1)} = δt2
σ2

Vi
+ σ2

φi
V 2

i

2
I2 = q̄iI2 (2.55)

and thus

Q̄ = E{Q(k + 1)} = Diag (q̄iI2) , q̄i = δt2
σ2

Vi
+ σ2

φi
V 2

i

2
(2.56)

In order to evaluate the expected value of Ro(k + 1), we assume that the positions of the

robots are modeled by a uniform1 pdf, inside a rectangular area of side a. Using the

definition of Roi(k + 1) in (2.33), it is shown in Appendix A.7 that:

R̄i = E{Roi} =
(

σ2
ρi

1
2

+ σ2
θi

a2

6
+ σ2

φi

a2

12

)
I2Mi + σ2

φi

a2

12
(1Mi×Mi ⊗ I2) (2.57)

and thus

R̄ =


 Diag

(
R̄i

)
0

0 Diag (Rai)


 (2.58)

Using these results, upper bounds on the expected steady-state covariance of the position
1The uniform distribution was employed in the calculation of R̄, since it was deemed an appropriate

model for the positions of the robots in the experiments presented in Section 2.7. However, the analysis
holds for any given pdf.
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estimates in CL, for both the observable and unobservable case, can be derived. The

solutions of the Riccati recursion in (2.19) for the two cases are completely analogous to

those presented in Lemmas 3 and 4, with the sole difference that the quantities Qu and

Ru are replaced by Q̄ and R̄, respectively (and therefore the matrix Cu is also replaced by

C̄ = Q̄1/2HT
o R̄−1HoQ̄1/2).

Some interesting remarks can be made about the uncertainty increase rate in a robot

team that has no access to absolute position information. The upper bound on the expected

rate of increase is equal to q̄T δt−1, where

1
q̄T

=
N∑

i=1

1
q̄i

(2.59)

We once again underline the fact that the maximum expected rate of uncertainty increase

is independent of the initial uncertainty P0, the accuracy of the relative position measure-

ments, and the topology of the RPMG. Moreover, we can compare this value with the rate

at which uncertainty increases when each robot localizes independently, using DR. In that

case, the covariance matrix for all robots’ estimates evolves in time according to (2.28), and

therefore the average rate of increase in uncertainty for robot i is

E
{ 1

δt

(
Pik+1

−Pik

) }
= E

{ 1
δt

Qi(k, k)
}

=
q̄i

δt
I2 ⇒

E
{
Pik+1

}
= E

{
Pik

}
+ q̄iI2 (2.60)

From the definition of q̄T (cf. (2.59)), it becomes clear that it will be smaller than the

smallest of the q̄i’s (notice that the definition of q̄T is analogous to the expression for the

total resistance of resistors in parallel). This implies that it suffices to equip only one robot

in the team with proprioceptive sensors of high accuracy, in order to achieve a desired rate

of uncertainty increase. All the robots of the group will experience a reduction in the rate

at which their uncertainty increases and this improvement is more significant for robots

with sensors of poor quality. Moreover, the maximum expected rate of uncertainty increase

is identical for all robots of the team, regardless of the accuracy of each robot’s odometry.

Corollary 5 The maximum expected rate of positioning uncertainty increase of all the ro-
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bots of a heterogeneous team performing CL is the same, equal to q̄T δt−1, where

1
q̄T

=
N∑

i=1

1
q̄i
≥ max

(
1
q̄i

)
⇒ q̄T ≤ min q̄i (2.61)

This rate is smaller than the rate of uncertainty increase of the robot with the best DR

performance, if it were to localize independently.

In the following section we study some important properties of the derived upper bounds.

2.4.7 RPMG reconfigurations

In the preceding analysis, it is assumed that the topology of the graph describing the

relative position measurements between robots does not change. However, this may be

difficult to implement in a realistic scenario. For example, due to the robots’ motion or

because of obstacles in the environment, some robots may not be able to measure their

relative positions. Additionally, robot teams often need to allocate computational and

communication resources to mission-specific tasks and this may force them to reduce the

number of measurements they process for localization purposes. Consequently, it is of

considerable interest to study the effects of changes in the topology of the RPMG on the

localization accuracy of the team.

Consider the following scenario: At the initial stage of the deployment of a robot team,

the RPMG has a dense topology TA, e.g., the complete graph shown in Fig. 2.6(a), and

retains this topology until some time instant t1, when it assumes a sparser topology TB, e.g.,

the ring graph shown in Fig. 2.6(b). This sparse topology may even be an empty graph,

i.e., the case in which the robots localize independently, based only on DR. Subsequent

topology changes are assumed to occur at time instants ti, i = 1 . . . n − 1, and finally, at

time instant tn, the RPMG returns to its initial, dense topology, TA. Assuming that the

time intervals [ti−1, ti] are of sufficient duration for the transient phenomena in the time

evolution of uncertainty to subside, the following lemma applies.

Lemma 6 Once the RPMG resumes its initial topology after a sequence of reconfigurations,

the maximum positioning uncertainty of the robots at steady state is identical to the one the
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robot team would have had if no RPMG reconfigurations had taken place.

Proof: See Appendix A.8.

This implies that during time intervals when the RPMG topology is a sparse one, the

“additional uncertainty” is introduced in directions of the state space that belong to the

observable subspace. Thus, when the topology resumes its initial dense form, this additional

uncertainty vanishes.

This is a significant result due to its practical implications. Consider the scenario where

the robots of a team, during a phase of their mission, are forced to receive and process a

small number of measurements, or even resort to mere DR, due to communication or sensor

failures, or because CPU and bandwidth resources are required by other tasks of higher

priority. During this interval, a reduced amount of positioning information is available to

the robots (sparse RPMG topology) and as a result the performance of CL will temporarily

deteriorate. However, once the initial, dense RPMG topology is restored, the team’s posi-

tioning performance will have sustained no degradation. Furthermore, Lemma 6 indicates

that a dense topology for the RPMG during the initial phase of the deployment of a robot

team has a long-term effect on the localization performance of the team. Specifically, if

during the initial deployment, the robots leverage their communication and computational

resources to support a dense RPMG, this will improve their positioning accuracy at the be-

ginning of CL. Later on, and as the robots focus on mission-specific and other time-critical

tasks, they will have to rely on sparser RPMGs as resources dictate. However, when at a

subsequent time instant the RPMG resumes its initial, dense topology, the above lemma

states that the guaranteed accuracy will be identical to the one that would result if the

dense RPMG topology was retained throughout the run of the robots.

2.5 Cooperative SLAM

The previous section presented our analysis of the positioning accuracy during CL, where

a group of robots update their estimates using relative position and (possibly) absolute-

position measurements. We now address the case in which the robots localize while simul-

taneously estimating the positions of M static landmarks in the environment. This is the
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case of C-SLAM [104,108]. The formulation of the problem bears similarities to that of CL:

We consider N robots moving in 2D, each equipped with an odometric sensor, allowing it

to measure its translational velocity, and an orientation sensor, allowing it to measure its

global orientation. Moreover, some (or all) the robots are capable of measuring the relative

positions of other robots or landmarks. The RPMG is once again employed for describing

the measurements occurring at every time instant in the system, with the difference that

now some of the nodes of this graph are landmarks, instead of robots (cf. Fig.2.7(a)).

Our approach for determining upper bounds on the localization uncertainty is analogous

to that followed in the case of CL. Specifically, we formulate a suboptimal, position-only

EKF estimator for the system of robots and landmarks, and subsequently compute the

guaranteed accuracy of the position estimates produced by this estimator, to obtain the

desired bounds.

2.5.1 The Riccati recursion

The state vector for the C-SLAM system at time-step k is:

X(k) =
[
pT

r1
(k) · · · pT

rN
(k) pT

L1
· · · pT

LM

]T
(2.62)

where pri(k), i = 1, . . . , N are the positions of the N robots, and pLi , i = 1, . . . , M are the

positions of the M landmarks. The state propagation equation, for each of the N robots, is

identical to that presented in Section 2.4.1. On the other hand, the landmarks are modeled

as static points in 2D space, and therefore the state propagation equations for them are

pLi(k + 1) = pLi(k), for i = 1 . . . M

Similarly, the estimates for the landmark positions are propagated using the relations

p̂Lik+1|k = p̂Lik|k, for i = 1 . . .M

while the errors are propagated by

p̃Lik+1|k = p̃Lik|k, for i = 1 . . .M
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Hence, the error-state propagation equation is:

X̃k+1|k = X̃k+1|k + Gw(k) (2.63)

where

G =


 I2N

02M×2N




and w(k) is a noise vector with covariance matrix Qr(k) (cf. (2.27)). The equation for

propagating the covariance matrix of the state error is written as:

Pk+1|k = Pk|k + GQr(k)GT (2.64)

At every time-step, the robots perform robot-to-robot and robot-to-landmark relative

position measurements. The relative position measurement between robots ri and rm is

given by:

zrirm = CT (φi) (prm − pri) + nzrirm
(2.65)

where ri (rm) is the observing (observed) robot, and nzrirm
is the noise affecting this mea-

surement. Similarly, the measurement of the relative position between the robot ri and

landmark Ln is given by:

zriLn = CT (φi) (pLn − pri) + nzriLn
(2.66)

Both of these equations adhere to the form of the measurement model encountered in the

case of CL (cf. (2.29)). As a result, the derivation of the covariance update equation is

analogous to that presented in Section 2.4.2, and the resulting expression is:

Pk+1|k+1 = Pk+1|k −Pk+1|kHT
o

(
HoPk+1|kHT

o + Ro(k + 1)
)−1

HoPk+1|k (2.67)

where the matrix Ho is once again closely related to the structure of the RPMG:

Ho = ARPMG ⊗ I2 (2.68)
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while Ro(k + 1) is a block-diagonal matrix with block elements Roi(k + 1), i = 1 . . . N

(cf. (2.33)).

By combining the covariance propagation and update equations, the Riccati recursion

describing the time evolution of the position uncertainty is obtained:

Pk+1 = Pk −PkHT
o

(
HoPkHT

o + Ro(k + 1)
)−1

HoPk + GQr(k + 1)GT (2.69)

The initial value of this recursion is assumed to be equal to

P0 =


 Prr0 02N×2M

02M×2N PLL0


 (2.70)

i.e., we assume that the position estimates for the robots and the map features are initially

uncorrelated, which is the case at the onset of a mapping task within an unknown area.

We note that the Riccati recursion in (2.69) is very similar to that obtained in the

case of CL. However, it should be pointed out that the covariance matrix in this case

describes the position uncertainty of both the robots and landmarks, and is of dimensions

(2N + 2M) × (2N + 2M), while in the case of CL, the covariance matrix is of dimensions

2N × 2N , since it pertains to the robots’ positions only. Moreover, it should be pointed

out that during propagation, in the case of CL the uncertainty of all states increases (since

all robots are moving), while in the case of C-SLAM the uncertainty of the landmarks

remains unchanged during propagation. As a result of these differences, the properties of

the covariance in C-SLAM are quite different than those in CL, as shown in the next section.

2.5.2 Upper bound on the worst-case covariance

Application of Lemma 1 enables us to determine the guaranteed accuracy of localization.

In particular, the solution of the following constant-coefficient Riccati is an upper bound to

the covariance of the C-SLAM position estimates:

Pu
k+1 = Pu

k −Pu
kH

T
o

(
HoPu

kH
T
o + Ru

)−1
HoPu

k + GQuGT (2.71)

where Qu and Ru are given in (2.47) and (2.48), respectively.
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While the above recursion provides us with the guaranteed accuracy for any time instant

after the robots’ deployment, it is interesting to evaluate the performance of C-SLAM at

steady state, i.e., when the covariance of the map has converged to a constant value [41].

To this end, it is necessary to compute the solution to the recursion in (2.71) after sufficient

time, i.e., as k → ∞. This computation is simplified by employing the following lemma,

adapted from [58]:

Lemma 7 Suppose Pu(0)
k+1 is the solution to the discrete-time Riccati recursion in (2.71)

with initial value Pu
0 = 0κ×κ, where κ = 2M + 2N . Then the solution to the same Riccati

recursion but with an arbitrary initial condition, P0, is determined by the identity

Pu
k+1 −Pu(0)

k+1 = Ψ(0, k + 1) (Iκ + P0Jk+1)
−1 P0ΨT

(0, k + 1)

where

Ψ(0, k + 1) = (Iκ −KpHo)k+1 (Iκ + PJk+1)

In these expressions, P is any solution to the Discrete Algebraic Riccati Equation (DARE):

P = P−PHT
o (HoPHT

o + Ru)−1HoP + GQuGT ,

and Kp = PHT
o

(
HoPHT

o + Ru

)−1. Finally, Jk+1 denotes the solution to the dual Riccati

recursion:

Jk+1 = Jk − JkG(GTJkG + Q−1
u )−1GTJk + HT

o R−1
u Ho

with zero initial condition, J0 = 0κ×κ.

Lemma 7 simplifies the evaluation of the steady-state value of Pu
k+1, since the solution to

the Riccati recursion with zero initial condition can be easily derived. We note that (2.71)

describes the time evolution of the covariance for a deduced C-SLAM scenario, in which the

robots’ kinematic equations and measurement equations are time invariant. Zero initial co-
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variance of the landmarks’ position estimates corresponds to a perfectly known map. In this

case the robots essentially perform cooperative localization, while the robot-to-landmark

measurements are equivalent to absolute position measurements. Thus, the resulting sys-

tem is observable, and the steady-state solution to the Riccati equation is of the form:

Pu(0)
∞ =


 Pu

rr∞ 02N×2M

02M×2N 02M×2M


 (2.72)

where the term Pu
rr∞ is given by [102]:

Pu
rr∞ = Q1/2

u Udiag
(

1
2

+
√

1
4

+
1
λi

)
UTQ1/2

u

In the last expression, the quantities U and λi, i = 1 . . . 2N are defined as the matrix of

eigenvectors and the eigenvalues of Cu = Q1/2
u YrQ

1/2
u respectively, where

Yr = [I2N 02N×2M ]HT
o R−1

u Ho


 I2N

02M×2N




It is interesting to note that HT
o R−1

u Ho represents the information matrix associated with

the measurements in the deduced linear time-invariant system, and Yr is the submatrix

expressing the information about the robots’ positions.

The rest of the derivations for the upper bound on the steady-state covariance matrix

involve only algebraic manipulations, and are not included here, since they offer only little

intuition about the properties of the problem. The interested reader is referred to [102] for

the details of the intermediate steps. The final result is stated in the following lemma:

Lemma 8 The worst-case asymptotic covariance matrix in C-SLAM is bounded above by

the matrix

Pu
∞ = Pu(0)

∞ + 1(N+M)×(N+M) ⊗Θ−1 (2.73)
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where Pu(0)
∞ is defined in (2.72) and

Θ = (11×M ⊗ I2)P−1
LL0

(1M×1 ⊗ I2) + (11×N ⊗ I2)
(
J−1

rr∞ + Prr0

)−1 (1N×1 ⊗ I2) (2.74)

with

Jrr∞ = Q−1/2
u Udiag

(
λi

2
+

√
λ2

i

4
+ λi

)
UTQ−1/2

u (2.75)

Note that the first term in (2.73) depends only on the RPMG and the accuracy of the

robots’ sensors, while the second term also encapsulates the effect of the initial uncertainty.

Additionally, it is worth mentioning that only the second term affects the accuracy of the

computed map, while both terms determine the localization accuracy of the robots.

A case of particular interest in C-SLAM is that of a robot team building a map of an

area for which no prior knowledge exists. We model this scenario by setting PLL0 = µI2M ,

with µ →∞, which yields the following simplified expression for matrix Θ:

Θ = (11×N ⊗ I2)
(
J−1

rr∞ + Prr0

)−1 (1N×1 ⊗ I2)

If additionally, the initial position of all robots is perfectly known, which is often the case

in many mapping applications, the previous equation further simplifies to

Θ = (11×N ⊗ I2)Jrr∞ (1N×1 ⊗ I2)

Clearly, the topology of the RPMG has a significant impact on the positioning accuracy of

the robots and the quality of the map. As one would expect, for a given set of robots and

landmarks, the λi’s (cf. (2.75)) receive their lowest values when the RPMG corresponds

to a dense graph, and higher values for sparser graphs [22]. Intuitively, the best C-SLAM

results are obtained for groups of robots that can detect all landmarks and all other robots

at every time instant. Finally, (2.74) indicates that the eigenvalues of the RPMG also affect

the way the initial uncertainty is diffused via the C-SLAM process.
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2.5.3 Upper bound on the expected covariance

If additional information about the spatial distribution of the robots and landmarks is

available, then application of Lemma 2 enables us to compute an upper bound on the

average position uncertainty during C-SLAM. The process is completely analogous to the

derivation of an upper bound on the worst-case uncertainty, presented in the previous

section. We only state the final result:

Lemma 9 The expected steady-state covariance of the position estimates in C-SLAM, when

the spatial density of landmarks is described by a known pdf, is bounded above by the matrix

P̄∞ =


 P̄rr∞ 02N×2M

02M×2N 02M×2M


 + 1(N+M)×(N+M) ⊗ Θ̄−1

with

P̄rr∞ = Q̄1/2Ūdiag
(

1
2

+
√

1
4

+
1
λ̄i

)
ŪT Q̄1/2

and

Θ̄ = (11×M ⊗ I2)P−1
LL0

(1M×1 ⊗ I2) + (11×N ⊗ I2)
(
J̄−1

rr∞ + Prr0

)−1 (1N×1 ⊗ I2)

The quantity J̄rr∞ appearing in this last expression is:

J̄rr∞ = Q̄−1/2Ūdiag

(
λ̄i

2
+

√
λ̄2

i

4
+ λ̄i

)
ŪT Q̄−1/2 (2.76)

where Ū and λ̄i, i = 1 . . . 2N are defined based on the singular value decomposition of the

matrix Ȳr:

Ȳr = [I2N 02N×2M ]HT
o R̄−1Ho


 I2N

02M×2N




= Ūdiag(λ̄i)ŪT
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The matrices R̄ and Q̄ appearing in the equations of the above lemma are defined,

similarly to the case of CL, as:

R̄ = E{Ro(k)} = Diag(R̄i), and Q̄ = E{Qr(k)} = Diag(q̄iI2) (2.77)

2.6 Single-robot SLAM

The results of the preceding section, which provide performance guarantees for C-SLAM,

encompass, as a special case, the situation where a single robot localizes using SLAM [101].

This is a very important special case, which has been at the focus of robotics research for

more than a decade. The results of Lemmas 8 and 9 enable us to characterize the per-

formance of SLAM with a single robot, when an upper bound on the orientation errors’

variance can be determined a priori. Such a bound was obtained in the preceding analy-

sis, by considering the accuracy of the robot’s orientation sensor. However, it is often the

case that global orientation measurements are impossible to obtain or unreliable (e.g., com-

passes often suffer from electrical interference in urban environments). For this reason, it

is important to relax the requirement that an absolute orientation sensor is available.

In what follows, we present an analysis of the performance of single-robot SLAM, and

study the estimation accuracy attainable without absolute orientation measurements [105].

When the variance of the orientation errors of the robot cannot be determined in advance,

the decoupling of the position and orientation estimators, which was instrumental in the

analysis for CL and C-SLAM, is no longer valid. If, following the “standard” EKF-SLAM

approach [149], we formulate a state vector comprising the robot’s position and orientation,

as well as the global position of the M landmarks, the resulting Riccati recursion has the

form:

Pk+1 = Φ(k)

(
Pk −PkHT

(k)
(
H(k)PkHT

(k) + R(k + 1)
)−1

H(k)Pk

)
ΦT

(k) + Q(k + 1)

(2.78)

where Pk+1 is a (3 + 2M) × (3 + 2M) covariance matrix. In this formulation, the state-

transition matrix, Φ(k), is not equal to the identity matrix, as was the case for the position-

only estimators for CL and C-SLAM (cf. 2.28 and (2.64)). Moreover, the measurement
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Jacobian matrix H(k) is time varying, and a suitable factorization into a constant and a

time-varying matrix (cf. (2.35)) cannot be derived. Due to the particular structure of the

matrices Φ(k) and H(k), the recursion of (2.78) is not amenable to an analysis similar to

the one presented in the preceding sections.

In order to circumvent this problem, we introduce a novel formulation of SLAM, which

we term the dual-map filter. Specifically, instead of employing a state vector comprising

the pose of the robot and the global landmark coordinates, we formulate a state vector

that consists of both the global and the relative2 coordinates of the landmarks. The basic

idea here is that the robot pose is not explicitly included in the state of the EKF, but it is

implicitly defined from the transformation between the global and the robot-relative map.

This formulation of SLAM is equivalent to the standard one, and therefore, by studying the

covariance properties of the dual-map filter, we can derive conclusions for the covariance in

the standard EKF-based SLAM. The details of this analysis are presented in what follows.

2.6.1 The dual-map filter

The state vector of the dual-map filter is defined as

X(k) = [RX(k)
T GXT ]T

where RX and GX are 2M × 1 vectors, comprising the positions of M landmarks in the

robot and and global frames, respectively. We will refer to these as the relative map and

global map, respectively. It is worth noting that the computational complexity of this

formulation is higher than that of the “standard” extended Kalman filter (EKF), whose

state vector contains the robot pose and the global landmark coordinates. However, the

sole purpose of employing such a formulation of SLAM is to determine analytical upper

bounds for the covariance of the state estimates. As will be made clear in the following, in

the dual-map EKF all available measurements are used, and apart from linearization, no

other approximations are made. Therefore, the covariance of the absolute map computed
2The term relative coordinates refers to the coordinates of the landmarks expressed with respect to a

frame attached on the robot. This frame moves along with the robot, and thus the relative coordinates of
the landmarks change in time, even though their global coordinates remain constant. This is different than
the notion of the relative map employed, for example, in [118].
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with this filter will be identical (except for small linearization inaccuracies) to the covariance

that is computed with the traditional EKF SLAM algorithm [149].

Initialization

Here, we assume that the landmark positions are unknown prior to the first observation,

and the robot has perfect knowledge of its initial pose, which is the most common setting

for SLAM. Following standard practice, we select the global coordinate frame to coincide

with the initial robot frame. Thus, immediately after the first set of robot-to-landmark

measurements (at time-step 0), the absolute and relative maps coincide, i.e., GX = RX0.

Moreover, the uncertainty of both the relative and the absolute map is equal to the covari-

ance matrix of the exteroceptive measurement used for initialization, and the two maps are

fully correlated. The initial covariance matrix of the dual-map filter is thus given by

P0|0 =


R0 R0

R0 R0


 (2.79)

where R0 is the covariance matrix of the robot-to-landmark measurement used for initial-

ization.

Propagation

As the robot moves, the relative-map coordinates of all landmarks change, while the global

ones remain constant. Thus, during the EKF propagation phase, the relative-map estimates

and the filter covariance matrix must be updated. If we denote the position of the i-th

landmark with respect to the robot at time-step k by Rkpi, i = 1 . . . M , we obtain the

following propagation equation:

Rk+1pi = Rk+1pRk
+ C(−ωkδt)Rkpi (2.80)
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where the rotation matrix expressing the rotation of the robot frame between time-steps

k + 1 and k is:

C(−ωkδt) =


 cos(ωkδt) sin(ωkδt)

− sin(ωkδt) cos(ωkδt)


 (2.81)

and Rk+1pRk
is the position of the robot at time-step k, expressed with respect to the robot

frame at time-step k + 1:

Rk+1pRk
= −C(−ωkδt)RkpRk+1

= −VkδtC(−ωkδt)e1 (2.82)

In the preceding expressions, Vk and ωk are the translational and rotational velocity of the

robot at time-step k, respectively, δt is the sampling interval, and e1 = [1 0]T .

Using the measurements of the robot’s translational and rotational velocities, Vmk
and

ωmk
, respectively, the position estimate of the i-th landmark is propagated according to:

Rk+1p̂i = Rk+1p̂Rk
+ C(−ωmk

δt)Rk p̂i

= C(−ωmk
δt)

(−Vmk
δte1 + Rk p̂i

)
(2.83)

By linearizing (2.80), we obtain the error-propagation equation for the relative position of

the i-th landmark:

Rk+1p̃i = C(−ωmk
δt)Rk p̃i + δtC(−ωmk

δt)e1Ṽk − δtJRk+1p̂iω̃k

= C(−ωmk
δt)Rk p̃i + δt

[
C(−ωmk

δt)e1 −JRk+1p̂i

]

︸ ︷︷ ︸
RGik


Ṽk

ω̃k




︸ ︷︷ ︸
nod

(2.84)

The vector nod is the noise of the robot’s odometry measurements, assumed to be zero-

mean, white and Gaussian, with covariance matrix Q = diag(σ2
v , σ

2
ω). Based on (2.84),

and taking into account the fact that the global landmark coordinates do not change dur-

ing propagation, the linearized error-state propagation equation for the dual-map filter is
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derived as:

X̃k+1|k =




RΦk 02M×2M

02M×2M I2M




︸ ︷︷ ︸
Φk

X̃k|k +


 I2M

02M×2M




︸ ︷︷ ︸
G

RGknod

= ΦkX̃k|k + G RGknod (2.85)

where

RΦk = IM ⊗C(−ωmk
δt) (2.86)

and RGk is a 2M × 2 block matrix, whose i-th element is

RGik = δt
[
−C(−ωmk

δt)e1 −JRk+1p̂i

]
(2.87)

The covariance propagation equation for the dual-map filter is

Pk+1|k = ΦkPk|kΦT
k + G RQkGT (2.88)

where we have denoted

RQk = RGkQRGT
k (2.89)

Update

At every time-step, the robot performs a direct observation of the relative positions of all

landmarks, and therefore the measurement vector at each time-step is described by

z(k) = HX(k) + n(k), with H =
[
I2M 02M×2M

]
(2.90)

where n(k) is a Gaussian, zero-mean, white noise vector. The measurements of different

landmarks are independent, and therefore the covariance matrix of n(k) will generally be a
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time-varying, block-diagonal matrix:

Rk = Diag(Rik) (2.91)

where Rik is the 2× 2 covariance matrix of the measurement of the i-th landmark. Using

these definitions, we can write the covariance update equation of the EKF as:

Pk+1|k+1 = Pk+1|k −Pk+1|kHT
(
HPk+1|kHT + Rk+1

)−1
HPk+1|k (2.92)

It is interesting to note that in the dual-map filter formulation, the measurement matrix

H is constant, and this result is exact (i.e., it does not involve linearization). This fact,

which facilitates the analytical study of the time evolution of the covariance matrix, was

our main motivation for introducing the dual-map filter. We also note that, even though

the measurement equation does not directly involve the absolute position estimates of the

landmarks, the correlations that exist between the relative- and absolute-map estimates

ensure that the absolute map is appropriately updated every time a new measurement is

processed.

The Riccati recursion

By combining the covariance propagation and update equations (cf. (2.88) and (2.92)), we

form the Riccati recursion that describes the time evolution of the state covariance matrix.

This is given by:

Pk+1 = Φk

(
Pk −PkHT

(
HPk+1|kHT + Rk+1

)−1
HPk

)
ΦT

k + G RQkGT (2.93)

where we have introduced the substitutions Pk = Pk|k−1 and Pk+1 = Pk+1|k to simplify the

notation. In the next section, we show how an upper bound on the asymptotic covariance

can be computed, by applying Lemma 1.
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2.6.2 Upper bounds on the asymptotic map covariance

In order to apply Lemma 1, we first need to compute appropriate upper bounds for the

matrices RQk, Rk, and P0. We start by rewriting the system noise covariance matrix RQk,

as (cf. (2.85), (2.87), and (2.89)):

RQk = δt2σ2
v · RΦkvvT (RΦk)T

︸ ︷︷ ︸
Qvk

+ δt2σ2
ω · (IM ⊗ J)RX(k)

RX(k)
T (IM ⊗ J)T

︸ ︷︷ ︸
Qωk

(2.94)

where

v =
[
1 0 1 0 · · ·

]T
= 1M×1 ⊗ e1

We now consider each of the components of RQk independently. For Qvk
we obtain:

Qvk
= δt2σ2

v · RΦkvvT (RΦk)T (2.95)

¹ δt2σ2
v · RΦk

(
vvT + uuT

)
(RΦk)T (2.96)

where

u =
[
0 1 0 1 · · ·

]T
= 1M×1 ⊗ e2

We now note that

vvT + uuT = 1M×M ⊗ I2 (2.97)

and thus

Qvk
¹ δt2σ2

v · RΦk (1M×M ⊗ I2) (RΦk)T (2.98)

= δt2σ2
v(1M×M ⊗ I2) (2.99)

For the term Qωk
we obtain:

trace(Qωk
) = σ2

ωδt2 trace
(
(IM ⊗ J)RX(k)

RX(k)
T (IM ⊗ J)T

)
(2.100)

= σ2
ωδt2 trace

(
RX(k)

T (IM ⊗ J)T (IM ⊗ J)RX(k)
)

(2.101)

= σ2
ωδt2 trace

(
RX(k)

T RX(k)
)

(2.102)
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= σ2
ωδt2

M∑

i=1

ρ2
i (2.103)

where ρi is the distance of the i-th landmark to the robot. Thus, if ρo is the maximum

possible distance between the robot and any landmark (determined, for example, by the

robot’s maximum sensing range), we obtain trace (Qωk
) ≤ Mρ2

oσ
2
ωδt2 and therefore

Qωk
¹ Mρ2

oσ
2
ωδt2I2M (2.104)

By combining this result with those of (2.94) and (2.99), we obtain:

RQk ¹ δt2σ2
v(1M×M ⊗ I2) + Mρ2

oσ
2
ωδt2I2M = q1(1M×M ⊗ I2) + q2I2M (2.105)

And thus an upper bound for RQk is given by the matrix

Qu = δt2σ2
v︸ ︷︷ ︸

q1

(1M×M ⊗ I2) + Mρ2
oσ

2
ωδt2︸ ︷︷ ︸

q2

I2M (2.106)

= q1(1M×M ⊗ I2) + q2I2M (2.107)

An upper bound on the measurement covariance matrix, Rk, can be derived by consider-

ing the characteristics of the particular sensor used for the relative position measurements.

If the covariance matrix of the measurement of each individual landmark can be bounded

above by Rik ¹ rI2, then we obtain

Rk ¹ rI2M = Ru

Regarding the initial value of the recursion in (2.93), it is easy to see that the following

matrix satisfies the condition Pu
0 º P0:

Pu
0 =


Qu + rI2M rI2M

rI2M rI2M


 (2.108)

Using the above results, and following Lemma 1, we can formulate the following Riccati
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recursion:

Pk+1 = Φk

(
Pk −PkHT

(
HPk+1|kHT + Rk+1

)−1
HPk

)
ΦT

k + GQuGT (2.109)

whose solution is an upper bound for the covariance of the state estimates in the dual-map

filter. A difficulty in solving for the steady-state value of this recursion is that the matrix

Φk is time-varying. Considering, however, the special structure of the matrices that appear

in this recursion, the following lemma can be proven:

Lemma 10 Let the solution, Pu
k, to the recursion in (2.109) be partitioned into 2M × 2M

blocks as

Pu
k =




RPu
k PRGk

PT
RGk

GPu
k


 (2.110)

Additionally, let P′
k be the solution to the recursion

P′
k+1 = P′

k −P′
kH

T
(
HP′

kH
T + Ru

)−1
HP′

k + GQuGT (2.111)

with initial condition P′
0 = Pu

0 , and let P′
k be partitioned as

P′
k =




RP′
k P′

RGk

P′T
RGk

GP′
k


 (2.112)

Then, for any k ≥ 0, and for the transition matrix Φk defined in (2.85), the following

relations hold:

RP′
k = RPu

k , GP′
k = GPu

k , and PRGk
= RCkP′

RGk
(2.113)

where RCk = RΦk · RΦk−1 · · ·RΦ0.

Proof: See Appendix A.10

The above lemma demonstrates that to derive an upper bound on the steady-state

covariance of the absolute and relative maps in SLAM, it suffices to determine the steady-
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state solution of the Riccati in (2.111). This recursion is simpler than that of (2.109), since it

is a constant-coefficient Riccati recursion. It should be pointed out that (2.111) provides us

with an upper bound for the covariance of the dual-map filter after every EKF propagation

step. To derive a bound for the covariance immediately after the update step of the EKF,

we account for the fact that during propagation, the absolute map covariance remains

unchanged, while the uncertainty of the relative map is increased according to (2.88).

Application of Lemma 10, and evaluation of the asymptotic solution of (2.111) yields

the following upper bound on the steady-state covariance matrix of both the relative and

the absolute map after the EKF update step (cf. Appendix A.11):

RPu
∞ = GPu

∞ = b1(1M×M ⊗ I2) + b2I2M (2.114)

where

b1 = −q1

2
+

1
M

√
(Mq1 + q2)2

4
+ (Mq1 + q2)r − 1

M

√
q2
2

4
+ q2r (2.115)

and

b2 = −q2

2
+

√
q2
2

4
+ q2r (2.116)

This result provides bounds for the accuracy of the map in SLAM, which are evaluated

in closed form, and depend on the accuracy of the robot’s sensors, as well as on the size

of the mapped area. Interestingly, the bounds on both the relative and absolute map are

equal. However, it should be clear that the actual covariance matrices of the two map

representations are not identical at steady state (in fact, the covariance of the relative map

will fluctuate at steady state, due to the infusion of uncertainty during the robot’s motion).

In the next section, we show how these results can be used for obtaining bounds on the

covariance of the robot’s pose estimates in SLAM.
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2.6.3 The accuracy of pose estimation in SLAM

Estimation of the robot pose from the dual map

Although the robot pose is not explicitly contained in the state vector of the dual-map

filter, an estimate for this pose is implicitly defined from the estimates of the relative map,
RX(k), and the absolute map, GX. Specifically, the relation between the representation of

the i-th landmark in the global frame, Gpi, and in the robot frame at time-step k, Rkpi, is

given by:

Gpi = GpRk
+ C(φk)Rkpi (2.117)

where GpRk
and φk are the position and orientation of the robot with respect to the global

frame at time-step k, respectively. Thus, given the augmented state vector at time-step k,

X(k) = [RX(k)T GXT ]T , and its covariance, Pk, we are able to determine the robot pose,

θk =
[
GpT

Rk
φk

]T

and its covariance, Pθθ, by solving the least-squares minimization problem:

min
θk

εT
k W−1

k εk (2.118)

where εk is the vector of errors that we seek to minimize, i.e., the 2M × 1 vector whose i-th

block is equal to

εki = GpRk
+ C(φk)Rkpi − Gpi (2.119)

and Wk is the covariance matrix of the vector εk. Employing linearization of (2.119), we

obtain

Wk = HXk
PkHT

Xk
(2.120)
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where

HXk
=

[
IM ⊗C(φk) −I2M

]
(2.121)

is the Jacobian of the error vector εk with respect to the state vector Xk. The covariance

matrix of the least-squares estimate for θk is:

Pθθ =
(
HT

θk
W−1

k Hθk

)−1

=
(
HT

θk

(
HXk

PkHT
Xk

)−1
Hθk

)−1
(2.122)

where Hθk
is the Jacobian matrix of the error vector εk with respect to θk. This is a 2M×3

block matrix, whose i-th block element is equal to

Hi =
[
I2 p̆ik

]
, with p̆ik = JC(φk)Rkpi (2.123)

We point out that the solution of the least-squares problem in (2.118) and the covariance of

this solution, given by (2.122), yield the same results for the robot’s pose as the “standard”

EKF formulation for SLAM, when at least 2 landmarks are available. This is because in

both cases, all the available measurements are used, and no approximations are made (apart

from linearization). Thus, we can use the expression of (2.122), to study the properties of

the robot’s pose covariance in EKF-based SLAM.

2.6.4 Upper bounds on the robot-pose covariance

We now focus on deriving upper bounds on the steady-state value of the matrix Pθθ. Note

that since Pk ¹ Pu
k , an upper bound on the covariance of the robot pose at time-step k is

given by (cf. (2.122)):

Pu
θθk

=
(
HT

θk

(
HXk

Pu
kH

T
Xk

)−1
Hθk

)−1
=


Pppk

Ppφk

PT
pφk

Pφφk


 (2.124)

Substitution of the asymptotic results from (2.114), and of the values of the Jacobians Hθk

and HXk
from (2.121) and (2.123), enables us to determine upper bounds on the asymptotic
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uncertainty of the robot pose during SLAM. Specifically, the upper bound on the steady-

state orientation variance is computed from the above expression as (cf. Appendix A.12):

Pφφ∞ =
4Mb2∑M

i=1

∑M
j=1 ρ2

ij

(2.125)

where ρij is the distance between landmarks i and j (and ρii = 0). Thus, if the pairwise

distances of the landmarks are known, an upper bound on the robot’s orientation variance

is determined by the preceding expression. Alternatively, if some properties of the place-

ment of the landmarks in space are known, then using this expression, we can determine

bounds that are independent of the actual landmark positions. For example, if the minimum

allowable distance between any two landmarks is equal to ρLLmin , then

Pφφ∞ ≤ 4b2

(M − 1)ρ2
LLmin

(2.126)

For the upper bound on the covariance matrix of the robot’s position estimates at steady

state, we obtain from (2.124) (cf. Appendix A.12):

Ppp∞ =
2b2 + 2Mb1

M
I2 +

2b2

(∑M
i=1 p̆i

) (∑M
i=1 p̆T

i

)

M2
(∑M

i=1

(
p̆T

i p̆i

)− 1
M

(∑M
i=1 p̆T

i

) (∑M
i=1 p̆i

))

︸ ︷︷ ︸
T2

To derive an upper bound for Ppp∞ , we examine the trace of the second term, T2, in the

last expression. In Appendix A.12 it is shown that:

trace(T2) = 4b2

∑M
i=1

(
RpT

i
Rpi

)
∑M

i=1

∑M
j=1 ρ2

ij

− 2b2

M
(2.127)

and thus, by combining the preceding two equations we obtain:

Ppp∞ ¹ 2b2 + 2Mb1

M
I2 + trace(T2)I2 (2.128)

= 2b1I2 +
1
M

Pφφ

M∑

i=1

ρ2
i I2 (2.129)

Finally, given that the maximum distance between the robot and any landmark is ρo, the
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covariance of the robot’s position estimate is bounded above by

Ppp∞ ¹ (
2b1 + ρ2

oPφφ

)
I2 (2.130)

This result, along with those of (2.125)-(2.126), which determine upper bounds on the ro-

bot’s orientation uncertainty, and that of (2.114), which yields the upper bounds on the

covariance of the map, are the key results of the SLAM performance analysis. They enable

us to compute the guaranteed accuracy of the state estimates in SLAM, as an analytical

function of the accuracy of the robot’s sensors, and the properties of the landmarks’ spatial

configuration. Hence, these expressions can be employed to determine whether a candidate

robot system design satisfies the accuracy requirements of a given SLAM application, with-

out the need for simulations or experimentation. In the following section, we present results

from real-world experiments, which demonstrate the validity of the preceding theoretical

analysis.

2.7 Experimental and simulation results

2.7.1 Cooperative localization

Real-World Experiments

A series of experiments were conducted for validating the theoretical analysis of the accuracy

in CL, presented in Section 2.4. Our experimental setup is shown in Fig. 2.1(a). A team of

four Pioneer I robots moves in a rectangular area, within which the positions of the robots

are being tracked by an overhead camera. For this purpose, rectangular targets are mounted

on top of the robots and the vision system is calibrated in order to provide measurements

of the pose of the robots in a global coordinate frame. The standard deviation of the noise

in these measurements is approximately 0.5o for orientation and 1 cm, along each axis, for

position. The robots were commanded to move at a constant velocity of 0.1 m/sec, while

avoiding collision with the boundaries of the arena as well as with their teammates.

Although four identical robots were used, calibration of their odometric sensors showed

that the accuracy of the wheel encoder measurements is not identical for all robots. Specifi-
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Figure 2.1: (a) Calibrated image of robots with targets mounted on top of them. (b) True
and estimated trajectories for robot 1. For presentation clarity only part of the trajectory,
corresponding to the first 450 sec, is plotted. The size of the arena is approximately 2.5×
4.5 m.

cally, the measurement errors are well-modeled as Gaussian, zero-mean, white-noise processes

and the standard deviation of the velocity measurements ranges from σVmin = 0.038V , for

the most accurate odometer, to σVmax = 0.069V , for the robot with the highest noise lev-

els. Similarly, the standard deviations of the rotational velocity measurements have values

between σωmin = 0.0078 rad/sec and σωmax = 0.02 rad/sec for the four robots. Although

this had not been planned for, we observe that as a result of the variability of the sen-

sor characteristics, attributed to manufacturing imperfections, the experiments involve a

heterogeneous robot team.

Each of the robots is equipped with a laser range finder, that is used for measuring

absolute orientation. This is done by exploiting the perpendicularity of the surfaces sur-

rounding the arena and employing a simple line-fitting technique. The standard deviation

of the errors in the orientation measurements is approximately 0.5o for all robots.

Relative position measurements are produced synthetically, using the differences in the

positions of the robots recorded by the overhead camera, expressed in the measuring robot’s

coordinate frame, with the addition of noise. This facilitates the study of the effects of

varying the accuracy of the relative position measurements, and allows for control of the

topology of the RPMG. For the experimental results shown in this section, a complete
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Figure 2.2: Time evolution of the true covariance of the position estimates (solid bounding
lines), and theoretically computed values (dashed black lines).

RPMG topology is formed and the relative position measurements (distance and bearing)

are corrupted by zero-mean white Gaussian noise processes with standard deviation σρ =

0.05 m and σθ = 0.0349 rad.

In Fig. 2.1(b), the true trajectory (solid line) for one of the robots, as measured by

the overhead camera, is compared to the trajectory estimated using DR (asterisks) and

CL (dashed line). The significant improvement in positioning performance, resulting from

the use of relative position information, is apparent and is demonstrated more clearly in

Fig. 2.2, where the time evolution of the covariance is shown. Fig. 2.2(a) corresponds to

the case in which the four robots localize independently and compares the true3 covariance

of the robots’ position estimates (solid lines) to the expected covariance values computed

by (2.60) (dashed lines). On the other hand, Fig. 2.2(b) corresponds to the CL case and

presents the true covariance (solid lines) as well as the theoretically derived upper bound

for the expected covariance (dash-dotted lines) and the upper bound for the worst-case

covariance (dashed lines). It is evident that the derived upper bound is indeed larger than

the actual covariance of the position estimates. Moreover, we note that despite the fact

that we deal with a heterogeneous team, the positioning uncertainty increases at the same
3By “true” we refer to the covariance estimated by the EKF employed for position estimation.
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rate for all robots. This rate is significantly smaller compared to that of the robot with

the most accurate sensors localizing when relying on DR (Robot 2 as shown in Fig 2.2(a)).

This observation agrees with the theoretical result of Corollary 5.

In Figs. 2.3-2.4, the errors in the position estimates of the robots are plotted, and com-

pared against the ±3σ values of the position estimates’ covariance. The solid lines represent

the ±3σ values associated with the true covariance, while the dashed ones represent the

±3σ values computed using (2.60) for the case of DR, and the upper bound on the expected

covariance for the case of CL. In these plots, the substantial improvement in positioning

accuracy, achieved when the robots are recording and processing relative position measure-

ments, is illustrated. However, the most important conclusion drawn from these figures is

that the derived analytical expressions can be employed in order to accurately predict the

localization performance of a robot team. The ±3σ enveloping lines, evaluated using the

derived analytical expressions, define a confidence region that closely describes the magni-

tude of the position errors. This justifies the use of the covariance matrix as a performance

metric, and demonstrates that for a robot team with known sensor noise characteristics, it

is possible to predict the positioning accuracy, without resorting to simulations or experi-

mentation.

Simulation Results

We now present simulation results that demonstrate the effect of RPMG reconfigurations

and corroborate the corresponding theoretical analysis. In order to isolate the effects of

different RPMG topologies, a homogeneous team comprised of 9 robots is considered in

these simulations. The robots are restricted to move in an area of radius r = 20 m, and

their velocity is assumed to be constant, equal to Vi = 0.25 m/sec. The orientation of the

robots, while they move, changes randomly using samples drawn from a uniform distribution

of width 20o.

The parameters of the noise that corrupts the proprioceptive measurements of the simu-

lated robots are identical to those measured on a iRobot PackBot robot (σV = 0.0125 m/sec,

σω = 0.0384 rad/sec). The absolute orientation of each robot was measured by a simulated

compass with σφ = 0.0524 rad. The robot tracker sensor returned range and bearing mea-
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(c) Robot 2 - DR
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(d) Robot 2 - CL

Figure 2.3: Left column: errors (solid blue lines) in the position estimates for the first two
robots when they perform DR. Right column: position errors during CL for the same robots.
The solid bounding lines represent the ±3σ values of the actual covariance, computed by the
EKF, while the dash-dotted bounding lines represent the ±3σ values computed employing
the theoretical upper bound for the expected covariance.
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(c) Robot 4 - DR
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Figure 2.4: Left column: errors (solid blue lines) in the position estimates for the third
and fourth robots when they perform DR. Right column: position errors during CL for the
same robots. The solid bounding lines represent the ±3σ values of the actual covariance,
computed by the EKF, while the dash-dotted bounding lines represent the ±3σ values
computed employing the theoretical upper bound for the expected covariance.
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surements corrupted by zero-mean white noise with σρ = 0.01 m and σθ = 0.0349 rad. The

above values are compatible with noise parameters observed in laboratory experiments [134].

All measurements were available at 1 Hz.

In Fig. 2.5, the time evolution of the positioning uncertainty of the robot team is shown.

Initially, up to t = 200 sec, the robots do not record any relative position measurements

and propagate their position estimates using DR. At t = 200 sec, the robots start receiving

relative position measurements and the topology of the RPMG becomes a complete one

(Fig. 2.6(a)). The significant improvement in the rate of uncertainty increase, achieved by

using relative positioning information, is demonstrated in this transition. At t = 400 sec,

the RPMG assumes a ring topology (Fig. 2.6(b)). We note that the uncertainty undergoes

a transient phase, during which it increases at a higher rate and then, once steady state

is reached, the rate of increase is identical to the rate associated with the complete graph.

This corroborates the result of (2.53) and shows that the dominant factor in determining

the rate of localization uncertainty increase is the quality of the proprioceptive sensors of

the robots.

At t = 600 sec, a supposed failure of the communication network occurs, and in the

time interval between 600 sec and 800 sec only two robots are able to measure their relative

positions (Fig. 2.6(c)). This case can be viewed as a degenerate one, where the 7 robots

localize based solely on DR, while the other 2 robots form a smaller team. As expected,

the rate of uncertainty increase is higher when the team consists of only 2 robots, instead

of 9, but lower when compared to DR.

At t = 800 sec, the RPMG resumes the complete graph topology (Fig. 2.6(a)). It is evi-

dent that the uncertainty in the position estimates during the time intervals (200, 400) sec

and (800, 1000) sec is described by the same linear function of time. This occurs despite

the prior two reconfigurations of the topology of the RPMG, which occurred at t = 400 sec

and t = 600 sec. This result is in accordance with the theoretical analysis of Section 2.4.7.

At t = 1000 sec, the RPMG assumes a non-canonical topology (Fig. 2.6(d)). This

scenario is perhaps the most important one for real applications, since robots will usually

measure the relative positions of neighboring robots that are within their field of view. We

observe that the positioning uncertainty increases at a rate identical to that of Phases I
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and II of the graph’s topology, as predicted by our theoretical analysis. It is also apparent

that the uncertainty for each robot converges to a set of lines with the same slope (rate

of uncertainty increase), but with different constant offset. This is due to the effect of the

different degree of connectivity in the RPMG of each robot. Connection-rich robots have

direct access to positioning information from more robots and thus attain lower positioning

uncertainty.

Finally, at t = 1200 sec, one of the robots starts receiving GPS measurements, while

the RPMG retains the topology of Fig. 2.6(d) The GPS measurements are corrupted by

noise with a standard deviation of σGPS = 0.05 m along each axis. It is evident that

the availability of absolute position measurements to any robot drastically reduces the

localization uncertainty for all the robots in the group. Furthermore, the system becomes

observable and the uncertainty is bounded for all the members of the team. As in the

previous phase, the uncertainty for the position of each robot converges to a value (constant

in this case) that depends on its degree of connectivity.

2.7.2 Cooperative SLAM

Simulation Results

We now focus on the case of Cooperative SLAM. A series of numerical experiments were

conducted, in order to validate the analysis presented in Section 2.5. The four simulated

robots move in an arena of dimensions 10 m × 10 m, where point landmarks are located.

The velocity of the robots is kept constant at V = 0.25 m/s, while their orientation changes

randomly, using samples drawn from a uniform distribution. To simplify the presentation, a

homogeneous robot team is assumed. The standard deviation of the velocity measurement

noise is σV = 0.05V , and the standard deviation of the errors in the orientation estimates

is σφ = 2o, for all robots. Similarly, the values selected for the standard deviations of the

exteroceptive measurements of the robots are σθ = 2o, for the bearing measurements, and

σρ = 0.05 m, for the range measurements. For the results presented in this section, the

RPMG shown in Fig. 2.7(a) is used. For this experiment, it is assumed that initially the

robots have perfect knowledge of their positions, while the landmark positions are unknown.

In order to demonstrate the validity of the bound on the worst-case covariance of C-
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Figure 2.5: Uncertainty evolution during CL for a RPMG with changing topology. The
thinner dashed line has been superimposed on the figure to facilitate the comparison between
the values of the covariances for different topologies of the RMPG.
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(a) Graph I (b) Graph II

(c) Graph III (d) Graph IV

Figure 2.6: The four different relative position measurement graph topologies considered in
the CL simulations. Each arrow represents a relative position measurement, with the robot
(node) where the arrow starts being the observing robot.

SLAM, provided in Lemma 8, a particularly adverse scenario for the placement of the

landmarks is considered. Specifically, all the landmarks form a cluster at one corner of

the arena, while the robots begin their exploration at the opposite corner (Fig. 2.7(b)).

In this case the exteroceptive measurements provide only a small amount of positioning

information during the crucial first few updates. In Fig. 2.7(c), the time evolution of the

covariance of the position estimates for the robots and landmarks is shown and compared

to the theoretically-derived steady-state performance bound. Clearly, the upper bound

is indeed larger than the steady-state covariance of the landmarks and robots. It is also
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worth noting that the covariance of the position estimates converges to the same value for

all landmarks, while the accuracy of the position estimates varies between robots. These

differences result from the non-symmetric topology of the RPMG, which causes each robot

to have access to positioning information of different quality.

Although the bound of Lemma 8 accounts for the worst-case accuracy of C-SLAM, it

does not yield a close description of the accuracy when the map features are more evenly

distributed in space. In such cases, employing Lemma 9 results in a tighter bound on the

average positioning uncertainty, as demonstrated in Fig. 2.8. In this plot, the average values

(over 50 runs) of the covariance in C-SLAM, are compared against the theoretically derived

bounds on the expected uncertainty. For each run of the algorithm, the locations of the

landmarks, as well as the initial positions for the robots, were selected using samples from a

uniform distribution. Note that the scale of the axes in Fig. 2.8 has been changed compared

to Fig. 2.7(c), to preserve clarity. Mere comparison of the values for the covariance of the

robots’ and landmarks’ position estimates with the corresponding bounds demonstrates

that when available information about the distribution of the landmarks is exploited, i.e.,

by employing the expressions from Lemma 9, a better characterization of the expected

accuracy of the position estimates is achieved.

Real-World Experiments

In the simulation results presented above, the RPMG remained unchanged throughout the

duration of each experiment. However, due to occlusions and data association failures, this

is usually not the case in practice. In order to demonstrate the validity of the theoretical

analysis in a more realistic setting, we have also conducted real-world experiments. A team

comprising two Pioneer 3 robots, each equipped with two opposite-facing SICK LMS200

laser scanners to provide a 360o field of view, was employed (cf. Fig. 2.9). The robots move

randomly at a constant velocity of 0.1 m/sec, while performing C-SLAM in an area with

approximate dimensions of 10 m×4 m. The estimated trajectories of the robots are shown

in Fig. 2.10(a). A sample laser scan, acquired by robot 1, is superimposed on the same

figure (after being transformed to the global frame), to illustrate the geometry of the area

where the robots operate.
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Since the indoor environment where the experiment takes place is rectilinear, absolute

orientation measurements were obtained by employing line-fitting on the laser scans. The

upper bound for the standard deviation of these measurements is σφ = 1o. Moreover,

the laser scans are processed for detecting corners (which are used as landmarks), and

for obtaining relative position measurements. The RPMG for this experiment is shown in

Fig. 2.10(b). We note that 8 landmarks were reliably detected; of these, 6 are observed by

robot 1, and 4 are observed by robot 2. Moreover, robot 1 measures the relative position

of robot 2 at every time-step. To avoid introducing correlations in the measurements, each

laser scan point is used at most once: for computing either the robot-to-robot, or robot-

to-landmark, or absolute orientation measurements. The robots are equipped with wheel

encoders that provide velocity measurements, with standard deviation σV = 5×10−3 m/sec.

In Figs. 2.11(a) and 2.11(b), the time evolution of the diagonal elements of the covariance

matrix of the position estimates is shown, and compared to the upper bounds on the worst-

case and average covariance, respectively. We note at this point that, primarily due to

the existence of occlusions, the robot-to-landmark measurements described in the RPMG

shown in Fig. 2.10(b) were not possible at every time instant. As a result, the RPMG

did not remain constant for the entire duration of the experiment. On the average, the

measurements described by the edges of the RPMG were successfully recorded 85% of

the time. We observe that despite the changing topology of the RPMG in this case, the

theoretical bounds still provide an accurate characterization of the positioning accuracy of

C-SLAM.

2.7.3 SLAM

We now turn our attention to single-robot SLAM, and demonstrate the application of the

analysis in Section 2.6 to real-world experiments. For the experiments presented in this

section, the same experimental setup as in the case of C-SLAM is employed, but with only

a single robot. Moreover, this robot does not utilize absolute orientation measurements. In

Figs. 2.12-2.14, the standard deviation of the estimation errors (solid lines), computed by

the filter, is compared to the standard deviation determined by the theoretically derived

bounds (dashed lines). These three figures present the results for the landmark positions,
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the robot position, and the robot orientation, respectively. For the robot orientation, the

bound in (2.126) is employed. The results shown here validate the theoretical analysis, and

show that the derived bounds can be used to predict the guaranteed localization accuracy

of SLAM. We should point out that in this particular case, where the robot moves randomly

in space, the actual standard deviations are approximately 2-3 times smaller than the cor-

responding upper bounds. If the robot’s trajectory was such that the robot-to-landmark

distances were always close to their maximum values, the bounds would have been signifi-

cantly tighter.

2.8 Summary

In this chapter, we have presented a study of the localization accuracy during cooperative

localization, cooperative SLAM, and single-robot SLAM. We have derived closed-form ex-

pressions that allow us to predict the localization accuracy as a function of the relevant

system parameters. The main results of our analysis are upper bounds on the worst-case

uncertainty, as well as on the average uncertainty of the state estimates. These bounds

are functions of the number of robots and landmarks, the accuracy of all available sensor

measurements, the structure of the sensing graph, and the spatial distribution of the robots

and landmarks in the operational area. By analytically studying the properties of the de-

rived expressions, we have been able to identify key properties of the time evolution of the

uncertainty. These properties, which have also been verified in numerical and real-world

experiments, can help develop intuition about the interaction of the various factors affect-

ing the accuracy of localization. In addition to their theoretical significance, the results of

this chapter are also useful from a practical standpoint: by enabling a designer to predict

the localization capabilities of a robot system, the derived relations reduce the dependence

on time-consuming simulations and experimentation. This has the potential to not only

significantly speed-up the design process, but also provide theoretical guarantees for the

performance of a given system.
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Figure 2.7: (a) The RPMG used for the numerical experiments (b) The initial positions and
part of the trajectories of the robots for an adverse C-SLAM scenario. (c) Comparison of
the actual covariance of the position estimates against the worst-case performance bound,
for the scenario in (b). The plotted lines correspond to the mean of the covariance along
the two coordinate axes.
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Figure 2.8: Comparison of the average true covariance of the position estimates against
the corresponding upper bound. Landmark positions and the initial robot positions are
selected using samples from a uniform distribution. Averages over 50 runs of C-SLAM are
computed.

Figure 2.9: The Pioneer III robots used in the experiments. Two laser range-finders are
installed on each robot, to provide a 360o field of view.
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Figure 2.10: (a) The estimated trajectories of the robots, plotted along with a sample laser
scan of the area where the experiment was conducted. The initial positions of the robots
are indicated by asterisks (b) The RPMG used in the C-SLAM experiment.

73



0 100 200 300 400 500 600
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Time (sec)

C
ov

ar
ia

nc
e 

(m
2 )

True Covariance−robots
Upper bound−robots
True Covariance−Landmaks
Upper bound−Landmarks

(a)

0 100 200 300 400 500 600
0  

0.0005

0.001  

0.0015

0.002  

0.0025

Time (sec)

C
ov

ar
ia

nc
e 

(m
2 )

True Covariance−robots
Upper bound−robots
True Covariance−Landmaks
Upper bound−Landmarks

(b)

Figure 2.11: The time evolution of the diagonal elements of the covariance matrix during
the experiments vs. the theoretical upper bounds. In plot (a) the true values are compared
to the worst-case upper bounds, while in (b) they are compared to the upper bounds on the
average uncertainty. The dashed lines correspond to the robot coordinates’ covariance, the
solid lines to the landmark coordinates’ covariance, the lines with asterisks to the robots’
covariance bounds, and the lines with circles to the landmarks’ covariance bounds.
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Figure 2.12: The landmarks’ position standard deviation and corresponding upper bound
during the SLAM experiment.
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Figure 2.13: The robot’s position standard deviation and corresponding upper bound during
the SLAM experiment.
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Figure 2.14: The robot’s orientation standard deviation and corresponding upper bound
during the SLAM experiment.
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Chapter 3

Optimal CL in Robot Formations

3.1 Introduction

The study of the estimation accuracy in CL, presented in Section 2.4, considered the case

where the robots of the team follow arbitrary trajectories within an area. We showed that

in that case, the time-varying nature of the Riccati recursion prevents us from obtaining a

closed-form description of the asymptotic covariance. For this reason, we resorted to de-

riving upper bounds, to obtain a characterization of the attainable accuracy as a function

of relevant system parameters. However, there exists a number of applications where the

robots of a team are required to move in a pre-specified geometric configuration, to accom-

plish a certain task. Such robot formations are encountered in several tasks (e.g., object

moving [167], surveillance [8], platooning for efficient transportation systems [15], forma-

tion flying [165], and spacecraft formations [2]). In this chapter, we show that, because the

relative poses of the robots in a formation are known in advance, a much closer description

of the localization accuracy of a robot formation can be obtained. Moreover, we show how

this can be employed in order to optimize the accuracy of localization [103,106].

3.2 Overview of the approach

We study the problem of determining sensing strategies that maximize localization accuracy,

given constraints on the available computational and communication resources. Roumeliotis

and Bekey [137], have shown that proprioceptive measurements from the robots’ odometry
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sensors can be processed locally by each robot to propagate its own pose estimates. However,

every time an exteroceptive measurement is received by any of the robots in the formation,

all robots must communicate their current pose estimates. Additionally, the measuring

robot must transmit its new measurement in order for the EKF update to be performed.

Therefore, every exteroceptive measurement that is processed incurs a penalty in terms

of use of both communication bandwidth and CPU time, as well as in terms of power

consumption. In a realistic scenario, the robots of a team will need to allocate computational

and communication resources to mission-specific tasks, and this may force them to reduce

the number of measurements they process for localization purposes. Moreover, the finite

battery life of robots imposes constraints on the amount of power that can be used for

tracking their position. The limitations on the available resources may thus prohibit the

robots from registering, transmitting, and processing all measurements available at every

time instant.

It is clear that whether or not an exteroceptive measurement should be processed in an

EKF update, is determined by a tradeoff between the value of the localization information it

carries, and the cost of processing it. In this chapter, we assume that the robots process each

of the available measurements at a constant frequency, and we seek the optimal measurement

frequencies, in order to attain the highest possible positioning accuracy. The key element

in our analysis is the derivation of an equivalent continuous-time system model, whose noise

parameters are functionally related to the frequency of the measurements. This enables

us to express the covariance matrix of the pose errors (and thus the localization accuracy)

as a function of the sensors’ frequencies. Moreover, using this description of accuracy,

we formulate an optimization problem for determining the optimal sensing strategy. An

important result that we prove is that this is a convex optimization problem and therefore

it is possible to compute a globally optimal solution, using efficient algorithms.

3.3 Prior work

In [26, 27, 152], localization algorithms for recovering the relative poses between the robots

in a formation, using omnidirectional cameras as the primary sensors, are described. The

authors propose suboptimal estimation algorithms for achieving efficient implementations.
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These are derived by either considering that each robot localizes using only relative position

measurements to a “leader” robot in the team, or by decoupling the problems of orientation

and position estimation. In presenting these methods, the trade-offs that exist between

localization accuracy and the overhead for communicating and processing relative position

measurements are pointed out by the authors. However, no analysis is conducted to reveal

the effect of the varying available resources on positioning uncertainty, and no optimal

sensing strategies are proposed.

The impact of the geometry of a robot formation on localization accuracy has been

addressed in previous work. Specifically, the case of a static formation is studied in the

work of Zhang et al. [171]. The authors consider formations of robots that receive absolute

position measurements, as well as robot-to-robot measurements (i.e., relative range, bearing,

or orientation). A study of the structure of the measurement equations shows that the

information matrix corresponding to the exteroceptive measurements is a function of the

relative positions of the robots, and a gradient-based optimization technique is employed to

determine local maxima of the trace of this matrix. However, due to the non-concavity of the

objective function, the selected optimization method does not guarantee global optimality

of the solution.

The effects of formation geometry in the case of moving robots are studied in [60]. In

that work, an evolutionary optimization algorithm is proposed for determining the optimal

relative positions of the robots in a moving formation. The optimality criterion is the

steady-state position uncertainty of the team, and it is shown that genetic algorithm-based

minimization is an appropriate tool for this problem, due to the existence of multiple local

minima in the objective function. In [77], a robot team comprised of one master and

two slave robots is considered, and a portable landmarks-based technique is adopted for

localization, i.e., at each time instant at least one robot remains stationary. The authors

propose a method for determining the optimal relative positions between the robots, and

identify configurations that yield the maximum possible localization accuracy at the end of

a straight-line path.

We note that in all aforementioned approaches the constraints imposed by the available

computational and communication resources are not taken into consideration. Our work is
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more closely related to work in the sensor networks community that aims at determining

the optimal scheduling of measurements received by a static set of sensors, in order to attain

the best possible estimation results. Representative examples of this line of research can

be found in [6, 23, 94], while a similar analysis, in the context of designing observers for

dynamical systems, is presented in [9, 81, 143, 147]. The defining assumption in all these

cases is that the observation model switches sequentially between modes determined by the

candidate subsets of sensors, a finite number of times during a certain time interval. This

problem amounts to determining the optimal measurement ordering, so as to maximize the

achieved estimation accuracy and/or minimize the consumed energy [6]. For this problem,

tree-search algorithms (e.g., [23, 94]), as well as optimization methods in the continuous

domain (e.g., [9, 81,143,147]), have been proposed.

The main limitation of these approaches, which consider a finite time-horizon (or equiv-

alently a finite number of measurements), is that the complexity of determining the optimal

sensing strategy increases, often exponentially (e.g., in tree-search algorithms) as the time-

span of the sensor operation increases. In contrast, in our work we consider the frequencies

of the measurements as the design variables, and we are interested in the steady-state es-

timation accuracy. The benefit of this formulation is that the optimal strategy has to be

determined only once, potentially off-line, for a given spatial configuration of the sensors,

and the computational cost of determining the optimal solution is independent of the time

duration of the sensors’ operation.

A formulation of the scheduling problem that also considers the infinite time-horizon

problem has been presented in [54, 55]. In that work, a probability density function is

employed to describe the time instants at which each measurement is performed. An upper

bound on the expected steady-state covariance of the target’s position estimate is then

computed as a function of the pdf’s parameters. Employing a numerical optimization

routine, it is possible to minimize this upper bound, and the resulting pdf is used as the

optimal sensing strategy. Despite its mathematical elegance, this approach only aims at

optimizing an upper bound. Since no means of determining the looseness of the bound are

available, we cannot have any guarantee of optimality, or a measure of suboptimality, when

this method is used.
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Our work differs from the aforementioned approaches, in that we consider a team of

robots that move while maintaining their formation, and localize in a global coordinate

frame. The steady-state covariance matrix of the robots’ localization is expressed as a

function of the frequencies of all the exteroceptive measurements, and we seek to select the

optimal frequencies, in order to attain the best possible positioning accuracy for the team.

The constraints imposed by the available resources are taken into account, and their effect

on the attainable localization accuracy is examined.

3.4 The asymptotic uncertainty of CL in robot formations

In this section, we present our approach for characterizing the asymptotic uncertainty dur-

ing CL in robot formations. We consider a team of N robots that move in formation,

employing a suitable control strategy in order to maintain a constant heading and constant

relative positions among them. The spatial configuration of the robots is assumed to be

given, defined, for example, by the application at hand. All robots are equipped with pro-

prioceptive sensors (such as wheel encoders) that measure their translational and rotational

velocities at every time-step. Additionally, some (or all) of the robots are equipped with

exteroceptive sensors that enable them to measure quantities such as: (i) distance between

two robots, (ii) relative bearing between two robots, (iii) relative orientation between two

robots, (iv) absolute position of a robot, and (v) absolute orientation of a robot. The mea-

surements received from all the sensors are processed using an EKF, in order to estimate

the pose of the robots with respect to a global frame of reference.

Clearly, due to cost, reliability, or other design considerations, it may not be desirable

for all robots to be equipped with identical sensors. This potential heterogeneity of the team

is incorporated naturally in our approach, under the restriction that at least one robot has

access, at least intermittently, to absolute position information, such as those provided by

a GPS receiver or from observing previously mapped features. This constraint is imposed

because our goal is to minimize the steady-state localization uncertainty of the robots in

a global coordinate frame (cf. Section 3.5). As shown in the previous chapter, when no

absolute position information is available to a robot team, the system is unobservable, and

at steady state, the uncertainty of the robots continuously increases. The assumption for the
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availability of absolute positioning information could be removed if we studied a scenario in

which only relative localization was sought. For that scenario, robot-to-robot measurements

would (under certain observability conditions) be sufficient, in order to attain a bounded

steady-state error covariance, and our approach would be applicable.

Since the processing, communication, and power resources allocated for localization are

inevitably limited, it may not be possible to process all available exteroceptive measurements

at every time instant. We here assume that measurements can be processed at a maximum

total rate of ftotal throughout the robot team, and our goal is to determine the frequency

at which each individual sensor should be utilized, in order to attain the highest possible

localization accuracy. Before describing the details of our method for obtaining the optimal

measurement frequencies, we now present the system and measurement models used for

pose estimation.

3.4.1 EKF propagation

Consider N non-holonomic robots moving in 2D. The discrete-time kinematic equations for

the i-th robot are:

xi(k + 1) = xi(k) + Vi(k)δt cos(φi(k)) (3.1)

yi(k + 1) = yi(k) + Vi(k)δt sin(φi(k)) (3.2)

φi(k + 1) = φi(k) + ωi(k)δt, i = 1 . . . N (3.3)

where Vi(k) and ωi(k) denote the translational and rotational velocity of the i-th robot at

time-step k, respectively, and δt is the odometry sampling period. Note that, in contrast

to the position-only estimator employed in the analysis of Section 2.4, we here use the full-

state EKF estimator, where the state comprises all robots’ positions and orientations. The

pose estimates of robot i are propagated using the measurements from its proprioceptive

sensors:

x̂ik+1|k = x̂ik|k + Vmi(k)δt cos(φ̂ik|k) (3.4)

ŷik+1|k = ŷik|k + Vmi(k)δt sin(φ̂ik|k) (3.5)
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φ̂ik+1|k = φ̂ik|k + ωmi(k)δt, i = 1 . . . N (3.6)

where Vmi(k) and ωmi(k) are the measurements of the robot’s translational and rotational

velocity, respectively. By linearizing (3.1) - (3.3) the error propagation equation for the

robot’s pose is derived:




x̃ik+1|k

ỹik+1|k

φ̃ik+1|k


 =




1 0 −Vmi(k)δt sin(φ̂ik|k)

0 1 Vmi(k)δt cos(φ̂ik|k)

0 0 1







x̃ik|k

ỹik|k

φ̃ik|k


 +




δt cos(φ̂ik|k) 0

δt sin(φ̂ik|k) 0

0 δt





 wVi(k)

wωi(k)




⇔ X̃ik+1|k = Φi(k)X̃ik|k + Gi(k)wi(k) (3.7)

where wVi(k) and wωi(k) are white, zero-mean, Gaussian and uncorrelated noise sequences

of variance σ2
Vi

and σ2
ωi

affecting the translational and rotational velocity measurements,

respectively.

Considering that the robot team moves in a predefined formation, all robots are required

to head towards the same direction, and move with the same velocity, both of which are

known constants. Assuming that a motion controller is used in order to minimize the

deviations from the desired formation, and that the accuracy of the velocity measurements

and orientation estimates is sufficiently high, we can replace the quantities Vmi(k), ωmi(k),

and φ̂ik|k in the above expressions by their respective predefined values, Vo, ωo and φo. Thus

the time-varying matrices Φi(k) and Gi(k) can be approximated by the constant matrices:

Φi(k) '




1 0 −Voδt sin(φo)

0 1 Voδt cos(φo)

0 0 1


 = Φoi (3.8)

and

Gi(k) '




δt cos(φo) 0

δt sin(φo) 0

0 δt


 = Goi (3.9)

With this approximation, the error-state covariance propagation equation for the i-th robot
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can be written as:

Pik+1|k+1
= ΦoiPik+1|kΦ

T
oi

+ GoiQiGT
oi

(3.10)

where Qi = diag(σ2
Vi

, σ2
ωi

).

At this point, a comment regarding our selection of the state propagation model is

due. In the preceding expressions, a simple non-holonomic kinematic model for the robots’

motion is employed, because it is appropriate for the robots used in our experiments (cf.

Section 3.6). However, any other motion model could be employed in our analysis, such

as that of skid-steered vehicles [5], that of four-wheeled vehicles [15], or a more accurate

kinematic model that assumes constant rotational velocity during an integration step [156].

If a different motion model is used, the structure of the Jacobians (cf. (3.8) and (3.9)) will be

different, but the approach for determining the optimal measurement frequencies remains

unchanged.

The state vector for the entire robot team, X, is defined as the 3N×1 vector comprising

the poses of all the robots, Xi = [xi yi φi]T , i = 1 . . . N . Therefore, the covariance

propagation equation can be written as:

Pk+1|k = ΦoPk|kΦT
o + Qo (3.11)

where Φo = Diag(Φoi) and Qo = Diag(GoiQiGT
oi

) are 3N × 3N block-diagonal matrices.

3.4.2 EKF update

The robots of the team employ the measurements recorded by their exteroceptive sensors

for EKF updates. In general, these measurements are described by nonlinear equations

(cf. (2.7)), and thus linearization is employed (cf. (2.9)). The Jacobians of the measurement

models (cf. (2.10)) are generally time varying, due to the dependence on the state estimates.

However, for many practical observation models in robotics, the Jacobians are only functions

of the robots’ orientations and the relative poses between robots, both of which are, in

the case of formation motion, approximately constant. We can thus employ the constant
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approximation

Hi(k) = ∇X(k)h(X(k))
∣∣∣
X̂k|k−1

' ∇X(k)h(X(k))
∣∣∣
Xo(k)

= Hio (3.12)

where Xo(k) is the desired state of the formation at time-step k. To demonstrate this based

on concrete examples, we hereafter consider five types of exteroceptive measurements:

Relative range measurements

If robot i is equipped with a sensor capable of measuring the distance of other robots with

respect to itself, such as a laser scanner, then the distance measurement between robots i

and j is:

zρij (k) =
√

∆xij(k)2 + ∆yij(k)2 + nρij (k) (3.13)

where ∆xij(k) = xj(k) − xi(k), ∆yij(k) = yj(k) − yi(k), and nρij (k) is a white, zero-mean,

Gaussian noise process, whose standard deviation, σρi , is determined by the characteristics

of the sensor. By linearizing (3.13), the measurement residual equation is determined:

rρij (k) ' Hρij (k)X̃k|k−1 + nρij (k)

=
[

0 .. Hρi(k) .. Hρj (k) .. 0
]
X̃k|k−1 + nρij (3.14)

where Hρij (k) is a 1× 3N matrix, whose i-th and j-th block elements are, respectively:

Hρj (k) = −Hρi(k) =
[ c∆xij(k)

ρ̂ij(k)

c∆yij(k)

ρ̂ij(k)
0

]
(3.15)

In the preceding expression, ∆̂xij(k), ∆̂yij(k) and ρ̂ij(k) represent the estimated differences

in the x and y coordinates, and the estimated distance between robots i and j, respectively.

By replacing the estimates with the values corresponding to the desired formation of the

robots, we can derive the following approximations:

Hρi(k) '
[
−∆xijo

ρijo

−∆yijo
ρijo

0
]

= Hρio
(3.16)

Hρj (k) '
[

∆xijo
ρijo

∆yijo
ρijo

0
]

= Hρjo
(3.17)
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For practical reasons, it may not be possible for all robots to measure relative distances

to all other robots in the team. For example, some robots may not be equipped with range

sensors, or certain measurements may be impossible due to occlusions in the formation. In

order to describe the set of all possible measurements we define the set

Hρ = {Hρij | robot i can measure range to robot j}

Relative bearing measurements

Assuming robot i measures the relative bearing towards robot j, the corresponding mea-

surement equation is:

zθij (k) = Atan2(∆yij(k),∆xij(k))− φi(k) + nθij (k) (3.18)

where nθij (k) is a white, zero-mean, Gaussian noise process, with standard deviation σθi .

Linearization yields the following measurement residual equation:

rθij (k) ' Hθij (k)X̃k|k−1 + nθij (k)

' Hθijo
X̃k|k−1 + nθij

(k)

=
[

0 .. Hθio
.. Hθjo

.. 0
]
X̃k|k−1 + nθij (3.19)

where we have once again approximated the time-varying position estimates with their

constant, desired values. Note that Hθijo
is a 1 × 3N matrix, whose i-th and j-th block

elements are, respectively:

Hθio
=

[
∆yijo

ρ2
ijo

−∆xijo

ρ2
ijo

−1
]

(3.20)

Hθjo
=

[
−∆yijo

ρ2
ijo

∆xijo

ρ2
ijo

0
]

(3.21)

Similarly to the case of range measurements, we describe all possible bearing measurements

with the set

Hθ = {Hθij | robot i can measure bearing to robot j}
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Relative orientation measurements

If robot i measures the relative orientation of robot j, the corresponding measurement

equation is:

z∆φij (k) = φj(k)− φi(k) + n∆φij (k) (3.22)

where n∆φij (k) is a white, zero-mean, Gaussian noise process, with standard deviation σ∆φi .

The residual equation is:

r∆φij (k) = H∆φijX̃k|k−1 + n∆φij (k)

=

[
.. [0 0 − 1]︸ ︷︷ ︸

ith block

.. [0 0 1]︸ ︷︷ ︸
jth block

..
]
X̃k|k−1 + n∆φij (k)

All possible relative orientation measurements are described by the set

H∆φ = {H∆φij
| robot i can measure rel. ori. of robot j}

Absolute orientation measurements

If the i-th robot of the team is equipped with an absolute orientation sensor, such as a

compass, the corresponding measurement equation is:

zφi(k) = φi(k) + nφi(k) (3.23)

where nφi is a white, zero-mean, Gaussian noise process, with standard deviation σφi . In

this case the residual is:

rφi(k) = HφiX̃k|k−1 + nφi(k)

=

[
0 .. [0 0 1]︸ ︷︷ ︸

ith block

.. 0
]
X̃k|k−1 + nφi(k) (3.24)

All possible absolute orientation measurements are described by the set

Hφ = {Hφi | robot i can measure absolute orientation}
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Absolute position measurements

In this work, the robots localize with respect to a global coordinate frame. Therefore, in

order for the position errors to remain bounded for all times, it is necessary that at least

one of the robots has access to absolute position measurements. The measurement equation

for the i-th robot is

zpi(k) =


xi(k)

yi(k)


 + npi(k) (3.25)

where npi(k) is a 2 × 1 white, zero-mean, Gaussian noise process, with covariance matrix

Rpi . The measurement error equation for this type of measurement is

rpi(k) = HpiX̃k|k−1 + npi(k)

=

[
02×3 .. [I2 02×1]︸ ︷︷ ︸

ith block

.. 02×3

]
X̃k|k−1 + npi(k)

where Hpi is a 2× 3N matrix.

In order to describe all possible absolute position measurements we define the set

Hp = {Hpi | robot i can measure absolute position}

3.4.3 Discrete-time evolution of the covariance

The time evolution of the covariance of the EKF state estimates is described by the Riccati

recursion:

Pk+2|k+1 = Φo

(
Pk+1|k −Pk+1|kHT

k

(
HkPk+1|kHT

k + Rk

)−1
HkPk+1|k

)
ΦT

o + Qo (3.26)

where Hk is the measurement matrix for the system at time-step k, and Rk is the cor-

responding measurement-noise covariance matrix. These matrices will be block matrices

containing the Jacobians and covariance matrices of all the measurements occurring at

time-step k. It is important to observe that, when only a subset of sensor measurements,

often varying, can be processed at each time instant, Hk and Rk will not remain constant,
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and will possibly vary even in size at each time-step. Specifically, if at time-step k a total

of mk measurements are performed, Hk will comprise mk block rows belonging in the set

H = Hρ
⋃Hθ

⋃H∆φ
⋃Hφ

⋃Hp, and Rk will be a block-diagonal matrix whose elements

can be defined accordingly.

Because the system is observable, after undergoing an initial transient phase the covari-

ance matrix will enter a steady state, where its elements will fluctuate around some mean

value (cf. Fig. 3.1). Had we been able to provide a description of this mean value as a

function of the measurement frequencies, then we would have a means of directly relating

the localization performance of the system to these frequencies. However, the Riccati re-

cursion (3.26) has time-varying coefficients, and thus such an analysis cannot be conducted

based on it. To address this problem, we utilize a transition from the discrete-time system

model to a continuous-time one, as described in the following.

3.4.4 The Riccati differential equation

Intuitively, the rate at which a given sensor is providing measurements determines the

amount of localization information this sensor contributes per unit of time. If we view this

as a continuous information flow, then the frequency of the measurements determines the

magnitude of the flow. This key idea allows us to express the steady-state localization accu-

racy of the robots as an analytical function of the measurement frequencies, by employing

a transition to the continuous-time domain.

In particular, in [91] it is shown that given a discrete-time Riccati recursion, we can

derive a continuous-time Riccati differential equation that is equivalent, in the sense that

the state estimates’ accuracy in both cases is the same. Specifically, if state observations

whose covariance is Rd are performed with frequency f in the discrete-time description,

then the equivalent continuous-time measurements’ covariance function is E{nc(t)nT
c (τ)} =

Rcδ(t − τ), where nc(·) is a white Gaussian noise process, δ(·) denotes the Dirac delta

function, and1 Rc = f−1Rd. We observe that the covariance matrix of the continuous-time

model is scaled by the inverse measurement frequency, to ensure a constant information

influx. By a similar argument, we can derive the appropriate value of the system noise
1The subscripts c and d denote continuous- and discrete-time quantities, respectively.
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covariance matrix.

We now employ the idea of deriving an equivalent continuous-time Riccati, in order

to formulate a constant coefficient differential equation for the covariance of the pose esti-

mates in the robot team. Specifically, since each of the measurements in the set H occurs

at a constant frequency (generally different for each measurement), we can formulate a

continuous-time model, where all the measurements occur continuously, and the covariance

of each measurement is scaled by the inverse of its frequency. In the continuous-time formu-

lation, the measurement matrix Hc will be a constant matrix comprising all the block rows

in the set H. The covariance matrix of the measurements, Rc, will be a (block) diagonal

matrix, with elements the weighted covariances of the discrete-time measurements. For

example, if robot i receives absolute orientation measurements with covariance σφi at a rate

of fφi , then the continuous-time covariance function corresponding to this measurement is

Rφic
δ(t− τ), where

Rφic
= σ2

φic
=

σ2
φid

fφi

=
1

fφi

Rφid
(3.27)

We can now use the Riccati differential equation in order to describe the time evolution of

the covariance of the robots’ pose estimates. We note that the state transition matrix for

the system in continuous time is equal to Fc = Diag(Fo), where

Fo =




0 0 −Vo sin(φo)

0 0 Vo cos(φo)

0 0 0


 (3.28)

while the matrix describing the influx of uncertainty in the continuous-time system is equal

to Qc = Diag(GocQicG
T
oc

) with

Goc =




cos(φo) 0

sin(φo) 0

0 1


 (3.29)

and Qic = f−1
oi

diag(σ2
Vi

, σ2
ωi

). In this last expression, foi denotes the rate at which robot i
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samples its proprioceptive sensors. Using the previous relations, the Riccati differential

equation is written as

Ṗ(t) = FcP(t) + P(t)FT
c + Qc −P(t)CP(t) (3.30)

where we have denoted

C = HT
c R−1

c Hc (3.31)

The first two terms in (3.30) describe the effect of the dynamics of the system on the state

covariance matrix, the term Qc accounts for the increase in uncertainty due to the existence

of system noise, while the term P(t)CP(t) describes the influx of localization information

due to the exteroceptive measurements. If we denote by M the total number of available

exteroceptive measurements (i.e., the number of elements in H), by fi the frequency of

the i-th measurement in H, by Hi the corresponding measurement matrix, and by Rdi the

associated covariance matrix, then C can be rewritten as

C =
M∑

i=1

fiHT
i R−1

di
Hi =

M∑

i=1

fiCi (3.32)

We can therefore see that the elements of C are linear combinations of the measurement

frequencies. This is an important observation, because it allows us to express the problem

of determining the optimal measurement frequencies as a convex optimization problem, as

shown in the next section.

We note that the Riccati equation in (3.30) is a constant-coefficient differential equation,

and its steady-state solution, Pss, can be found by solving the Algebraic Riccati Equation

(ARE)

FcPss + PssFT
c + Qc −PssCPss = 0 (3.33)

The solution is a function of the matrix coefficients of the ARE [14], and therefore the

steady-state covariance of the pose estimates for the robots of the formation is a function

of the measurement frequencies, which appear in C. To be more precise, Pss is the steady-
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Figure 3.1: True covariance vs. theoretical values. The diagonal elements of the covariance
matrix corresponding to the position of the 3 robots are plotted.

state covariance of the equivalent continuous-time system, whose parameters depend on the

measurement frequencies. In Fig. 3.1, we present the time-evolution of the diagonal elements

of the covariance matrix in the actual discrete-time system (solid lines) and compare them

to the theoretical continuous-time values (dashed lines) computed by solving (3.33). For

these simulations, a team of 3 robots, that have access to all four types of exteroceptive

measurements, discussed in Section 3.4.2, was considered. The relative positions, as well as

the measurement frequencies for all robots were selected randomly.

It becomes clear that, at steady state, the actual values of the covariance fluctuate

around the theoretically predicted values. Thus, we can employ the continuous-time analysis

in order to study the properties of the localization accuracy in the formation.

3.5 Measurement frequency optimization

In this section, we formulate the problem of determining the optimal measurement frequen-

cies as a convex optimization problem. Our goal is to determine the optimal frequencies for

all available measurements, i.e., those frequencies that will yield the best possible localiza-
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tion results under given constraints. Clearly, in order to improve the localization accuracy

of the formation, the steady-state covariance matrix should be minimized. However, Pss is

a 3N × 3N matrix, and several criteria of optimality can be defined based on it (e.g., its

determinant, its maximum eigenvalue, or its trace). A difficulty that arises is that while the

elements of Pss that correspond to the position estimates of the robots have units of m2,

the elements that correspond to orientation have units of rad2. Clearly, we cannot treat

these two types of elements equally. One approach is to introduce a weighting matrix W,

and try to minimize a function of the weighted matrix WPssWT . However, any selection

of W that would incorporate both the orientation and the position uncertainty in the ob-

jective function would be ad-hoc and thus difficult to motivate. We have therefore selected

to focus only on the diagonal elements of Pss that correspond to the position estimates of

the robots, while ensuring that the orientation uncertainty of each robot does not exceed

a threshold εφ (this is necessary, in order to guarantee small linearization errors). We thus

formulate the following optimization problem:

minimize trace(WpPssWT
p )

subject to FcPss + PssFT
c + Qc −PssCPss = 0

C =
M∑

i=1

fiCi

0 ≤ fi ≤ fimax , for i = 1 . . .M (3.34)
M∑

i=1

fi ≤ ftotal

eT
3iPsse3i ≤ εφ, for i = 1 . . . N

In the preceding expressions ei denotes the i-th canonical basis vector in the 3N -dimensional

space, and the weighting matrix is defined as

Wp =
N∑

i=1

(
e3i−2eT

3i−2 + e3i−1eT
3i−1

)
(3.35)

This definition means that the objective function is the sum of all the diagonal elements

of Pss that correspond to the positions of the robots. The linear constraints on the mea-

94



surement frequencies express the facts that: (i) each sensor has a maximum sampling rate,

fimax , that cannot be exceeded, and (ii) the total frequency of the measurements cannot

exceed a threshold, ftotal, which is determined by the available communication and com-

putational resources. We note that more general constraints can be incorporated in this

formulation. For example, different types of measurements may have different costs asso-

ciated with them, and this can be easily taken into consideration, by introducing weights

for each of their frequencies. Additionally, if the positioning accuracy of some robots in the

team is of higher importance than that of others, this can be easily taken into account by

introducing weights, i.e., by defining a weighting matrix of the form

Wwp =
N∑

i=1

wi

(
e3i−2eT

3i−2 + e3i−1eT
3i−1

)
(3.36)

For clarity of presentation, the case of equal weights for all robots and all frequencies will

be considered here.

In [45], it is shown that the steady-state solution of the ARE in (3.33) is a convex func-

tion of the matrix C. Because the elements of C are linear functions of the measurement

frequencies (cf. (3.32)), we conclude that Pss is a convex function of the measurement fre-

quencies. As a result, the optimization problem (3.34) is a convex one (the objective is a

convex function, and the feasible set is convex). This is a very important property, because

it guarantees that the problem has a unique global minimum which can be found using

standard gradient-based optimization techniques [12]. Moreover, we can reformulate the

above optimization problem as a Semi-Definite Programming (SDP) problem:

Lemma 11 The original problem in (3.34) is equivalent to the following one:

minimize trace(WpPWT
p )

subject to


 P I3N

I3N J


 º 0


−JFc − FT

c J +
∑M

i=1 fiCi JQ1/2
c

Q1/2
c J I3N


 º 0
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0 ≤ fi ≤ fimax , for i = 1 . . . M (3.37)
M∑

i=1

fi ≤ ftotal

eT
3iPe3i ≤ εφ, for i = 1 . . . N

where the variables in this problem are the matrices P and J, belonging to the positive

semidefinite cone S3N
+ , and the measurement frequencies, fi, i = 1 . . . M .

Proof:

We first note that by employing the properties of the Schur complement, the first in-

equality constraint in problem (3.37) is written as:

P º J−1 (3.38)

while the second matrix inequality is equivalent to:

−JFc − FT
c J +

M∑

i=1

fiCi − JQcJ º 0 (3.39)

Using these relations, problem (3.37) is written equivalently as

minimize trace(WpPWT
p )

subject to J−1 − P ¹ 0

JFc + FT
c J−

(
M∑

i=1

fiCi

)
+ JQcJ ¹ 0

0 ≤ fi ≤ fimax , for i = 1 . . . M (3.40)
M∑

i=1

fi ≤ ftotal

eT
3iPe3i ≤ εφ, for i = 1 . . . N

This is a convex optimization problem, since the objective as well as the inequality con-

straints are convex. Our goal is to show that this problem is equivalent to the problem

described in (3.34), in the sense that the optimal frequencies for this problem are also opti-
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mal for (3.34).

We observe that for any feasible point, Y , for (3.34), with Y = (f1, . . . , fM ,Pss) ∈
RM×S3N

+ , we can construct the point Ξ = (f1, . . . , fM ,P = Pss,J = P−1
ss ) ∈ RM×S3N

+ ×S3N
+

which is also feasible for (3.40), and yields the same objective value.

Similarly, given any feasible point for the problem (3.40), we can also construct a feasible

point for (3.34). Let Ξ? = (f?
1 , . . . , f?

M ,P?,J?) be the optimal solution to the problem (3.40).

Then, solving the ARE

FcP?
ss + P?

ssF
T
c + Qc −P?

ss

(
M∑

i=1

f?
i Ci

)
P?

ss = 0 (3.41)

for P?
ss yields a feasible point Y ? = (f?

1 , . . . , f?
M ,P?

ss) for the problem described in (3.34).

In Appendix B.1 it is shown that the objective value corresponding to Y ? in (3.34) is equal

to the objective value corresponding to Ξ? in (3.40). Using this key result, we can employ

proof by contradiction to show that Y ? is optimal for (3.34). Specifically, if Y ? were not

optimal, there would exist a point Y̆ that would give an objective value smaller than that of

Y ?. But in that case, we would be able to construct a point Ξ̆ for problem (3.40), that would

give a smaller objective value than Ξ?. However, this is a contradiction since Ξ? is optimal.

Thus, the optimal solution for the measurement frequencies arising from problem (3.40) is

also optimal for problem (3.34).

The above proof relies on the fact that the objective value corresponding to Y ? is equal to

the optimal value of problem (3.40). To provide intuition about this key result, whose proof

can be found in Appendix B.1, we consider the simple case where the weighting matrix Wp

is replaced by the identity matrix, and thus the minimization objective in (3.40) is simply

trace(P). We note that since P is bounded below only by J−1, selecting P = J−1 yields

the minimum cost. Thus, at the optimal solution we have P? = J?−1, and substitution

in (3.39) yields

FcP? + P?FT
c + Qc − P?

(
M∑

i=1

f?
i Ci

)
P? ¹ 0 (3.42)
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or equivalently,

FcP? + P?FT
c + Q′

c − P?

(
M∑

i=1

f?
i Ci

)
P? = 0, Q′

c º Qc

Thus, P? satisfies an ARE with Q′
c º Qc. However, the solution of an ARE is a monotoni-

cally increasing function of Qc [45], and therefore the smallest value of the objective function,

trace(P), is obtained when Q′
c is minimum. Clearly, this occurs when Q′

c = Qc, thus the

optimal solution P? satisfies (3.42) with equality. Note that this ARE is identical to the

one in (3.41), hence P? = P?
ss, which means that the objective values of the two problems

are equal. We stress that this proof outline is only valid when Wp is invertible. This is

clearly not the case for the selection of Wp in (3.35), and this results in a significantly more

complicated proof in Appendix B.1. However, the main underlying ideas remain the same.

An interesting remark is that by employing the principle of strong duality, which holds

for convex SDPs under mild qualifications that are valid in the particular problem [12], we

can obtain a bound for the suboptimality of any solution. In particular, for any convex SDP

problem we can define a dual SDP maximization problem [12]. When strong duality holds,

the optimal solutions to the primal and dual problems yield the same objective value. This

implies that, if any solution to the dual problem of (3.37) is available, we immediately have

a lower bound on the minimum attainable objective value for (3.37).

Most SDP solvers automatically generate the dual problem, and proceed by simultane-

ously solving the primal and dual problems in an iterative fashion. Therefore the problem of

determining the optimal measurement frequencies is solved by an any-time algorithm, since

at any point during the solution procedure, a suboptimal solution is available. Moreover,

by comparing the objective value of this intermediate solution to that of the corresponding

intermediate solution of the dual problem, and employing strong duality, we obtain a con-

crete measure of “how good” the solution is. In a scenario where a large number of sensors

is involved, and in which computation time is a significant factor (e.g., if we are solving

in real-time to determine the best sensing strategy in a slowly varying formation), we may

wish to trade-off optimality for efficiency, and in this case, the any-time property of the

solution algorithm is very important.

At this point, we comment on the applicability of the method to cases where the as-
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sumption of a constant formation shape does not hold. A significant property of the solution

to the ARE in (3.33) is that it is independent of the initial conditions, since the system

under consideration is observable. This implies that if the geometry of the robot formation

changes temporarily, for example due to the presence of obstacles that need to be avoided,

then, once the robots return to the initial configuration, the solution becomes valid again.

For practical purposes, this observation means that if we know in advance that a robot

team will move in a known formation most of the time, then it might be desirable, from

an implementation point of view, to use the measurement frequencies obtained with the

proposed method for the entire duration of the robots’ run.

If alternatively, the optimal sequence of measurements for a time-varying formation were

sought, a tree-search within a finite time horizon of n time-steps would be necessary [54].

However, the complexity of such a search is exponential in the number of time-steps, and

can become intractable even for a search within a short-time horizon, if many measurements

are available in the system. Such a search would need to be performed necessarily in real

time, employing the most current pose estimates for the robots, and the results would need

to be transmitted to all the members of the team. Contrary to that, the proposed method

lends itself to off-line execution2, before the robot team is deployed, and additionally, pro-

gramming the sensors to record measurements at fixed time intervals is simpler. Clearly,

the proposed approach is suboptimal when the robots do not maintain a fixed formation,

and its performance has to be evaluated on a case-by-case basis.

3.6 Experimental results

To demonstrate the application of our method for optimal resource allocation, we have

conducted experiments with a heterogeneous robot team comprised of one iRobot Packbot

robot and 3 Pioneer-I robots. The robots move outdoors in a diamond-shaped formation,

where the Packbot is the “leader”, as shown in Fig. 3.2. Each of the Pioneers is equipped

with a laser scanner, and is able to detect the robots of the team that lie within its field

of view. Using a linefitting technique, relative position (i.e., range and bearing) as well
2If the geometry of the relative positions of the robots of a team changes slowly, then our algorithm can

also be used on-line, to provide an approximate solution to the optimal measurement scheduling.
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Figure 3.2: The heterogeneous robot team used in our experiments.

as relative orientation measurements are obtained. It is important to note that since the

same laser points are used in order to measure the relative position and relative orientation

of a particular robot, these measurements are correlated, and must be treated as a single,

vector-valued measurement.

In addition to the relative pose measurements, absolute position and orientation mea-

surements are provided to the team by a GPS receiver and a magnetic compass, which are

mounted on the Packbot. In total, 5 relative pose measurements (the robot in the rear is

able to measure the relative pose of all other robots, while the ones on the sides can only de-

tect the formation leader) and 2 absolute measurements (absolute position and orientation

of the Packbot) are available. The absolute measurements are available at a maximum fre-

quency of 1 Hz, while the relative pose measurements are available at a maximum frequency

of 3 Hz. In Fig. 3.3, the geometry of the formation is shown, and the available relative pose

measurements are presented by the dash-dotted arrows. R1 is the Packbot, while R2 - R4

are the Pioneer robots, and Mij denotes the measurement of the relative pose of robot j

with respect to robot i. The formation moves on a 50-meter path parallel to the global x

axis at a velocity of Vo = 0.2 m/sec. During the experiments the robots keep records of
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Figure 3.3: Robot formation and motion direction. The dash-dotted arrows represent the
relative pose measurements available to the robots.

the raw sensor data, thus enabling us to run the EKF off-line with various measurement

frequencies, and facilitating comparison between different sensing strategies.

In order to maintain the desired formation shape, a simple leader-follower control scheme

is implemented. Each of the Pioneer-I robots adjusts its rotational and translational ve-

locity using a PI-controller. The feedback input to the controller is the difference between

the desired and the measured relative pose of the formation leader with respect to the

measuring robot. Since control is performed locally on each robot, it does not introduce

any communication overhead, and additionally, it is very inexpensive computationally. Al-

though very simple, this controller is sufficient for the purposes of our experiments, in which

the formation is commanded to move in an almost straight line. In fact, the deviations from

the desired geometry, that arise due to the simple controller we have employed, facilitate

the demonstration of the robustness of our measurement frequency optimization method to

small changes in formation shape3.
3We should note that our objective is to determine optimal measurement frequencies given a formation

geometry, and not to design an optimal controller for maintaining such a desired geometry. This second
problem has received considerable attention in the literature, and the interested reader is referred to [155]
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Table 3.1: Optimal measurement frequencies for the experiment
GPS Comp. M21 M42 M41 M43 M31

1.0 1.0 0.216 0.234 0.099 0.234 0.216

By constraining the maximum total frequency of measurements that can be processed

by the system to be equal to 3 Hz, the optimal frequencies of all measurements are shown

in Table 3.1. These results are obtained by a Matlab implementation of the algorithm,

that requires 11 sec of CPU time on a 1.6 GHz Pentium M processor. From the numerical

results in Table 3.1, we note that the absolute position and absolute orientation sensors

are utilized at their maximum frequency, while the remaining resources are allocated to the

relative pose measurements. It is interesting to note that the measurement between the

rear robot and the leader is assigned a smaller frequency (although not zero), which should

be attributed to the fact that this measurement is less accurate, due to the larger distance

from the leader.

In Fig. 3.4 we present the time evolution of the covariance along the x and y axes, for

the robots of the team (solid lines). The time evolution of the actual covariance is compared

to the theoretically predicted values (dashed lines), computed by solving the SDP (3.37).

Although the time duration of the experiment did not allow for the covariance matrix to

converge fully to its steady-state value, these figures indicate, that the deviation between the

theoretically predicted values, and those computed by the EKF, is very small. This deviation

is due to the facts that (i) there is a small discretization error inherent in the transition

between the continuous- and discrete-time system models [91], (ii) in the EKF the estimates

for the pose of the robots are employed to evaluate the measurement Jacobians, and these

estimates are generally not precisely equal to the desired poses of the robots, (iii) the laser

scanners provide measurements at a frequency which is only approximately constant, and

(iv) the formation maintains the desired geometry within some error, determined from the

controller’s performance.

Variations in the formation geometry during the experiment are shown in Fig. 3.5, where

we plot the estimated coordinates of the relative position of R1 with respect to R4, as a

function of time. As evident, the estimates deviate significantly from their nominal values

for an overview of existing approaches.
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Figure 3.4: Time evolution of the covariance along the two coordinate axes for all the
robots, when the optimal measurement frequencies are used. The (red) solid lines represent
the actual covariance values computed by the EKF, while the dashed lines represent the
theoretically computed steady-state values.
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of (∆x14,∆y14) = (2, 0) m. These deviations are primarily due to the rough terrain that

the robots move on, which often resulted in the Pioneers’ caster wheels getting stuck. As

a consequence of the fluctuations in the relative poses of the robots, the covariance of the

relative pose measurements was also time-varying, since the number of laser points used for

linefitting was not constant for each robot pair. It is significant to observe that despite these

differences from the nominal values, the theoretically predicted covariance is very close to

the actual one, which verifies the applicability of our approach to practical scenarios.

In order to demonstrate the positioning accuracy improvement that is achieved using

the proposed optimization algorithm, we compare the performance of the optimal strategy

with that of an “intuitive” strategy, where the available resources are divided equally among

all the available measurements (i.e., when we use all measurements at the same rate, fj =

3/7 Hz). In Fig. 3.6, the time evolution of the covariance in these two scenarios is shown.

As evident, there is a clear improvement of performance by using the frequency values

produced by the proposed algorithm. Evaluating the steady-state covariance attained with

the equal-frequency strategy shows that it is approximately 130% and 50% larger along the

x and y axes, respectively, compared to the optimal values obtained with our approach. Due

to the slow transient response of the covariance, the steady-state value for the case of equal

frequencies is not reached in the duration of this experiment. This explains the smaller

difference in covariance between the optimal and the “intuitive” approach that appears in

Fig. 3.6.

3.7 Simulation results

This section presents simulation results that demonstrate certain additional interesting

properties of the problem of determining the optimal sensing frequencies for groups of

robots. We here consider a formation with the same geometry as the one shown in Fig. 3.3,

but we now examine the case where all robots are equipped with a distance and a bearing

sensor, that are capable of providing independent measurements, with standard deviations

σρ = 0.05 m, and σθ = 1o, respectively. Additionally, we assume that all robots have

a 360o field of view, and can potentially record relative measurements of all other robots.

The leader robot receives absolute position measurements with standard deviations equal to

104



0 50 100 150 200 250
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x 
ax

is
 (

m
)

0 50 100 150 200 250
−0.3

−0.2

−0.1

0

0.1

0.2

Time (sec)

y 
ax

is
 (

m
)

Figure 3.5: Time evolution of the estimates for the relative position of the leader with
respect to the rear robot.
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measurements (dashed lines with circles). The two plots correspond to the covariance along
the x- and y-axis respectively, for all robots.
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Figure 3.9: (a) The optimal cost as a function of the formation size, for two values of the
relative bearing errors’ standard deviation. (b) The percentage of resources allocated to
each type of measurement, as a function of the formation size, for σθ = 1o.

σp = 0.3 m along each axis, and absolute orientation measurements with standard deviation

σφ = 3o. The maximum frequency of all measurements is equal to 1 Hz, and the threshold

on the orientation variance for the robots, is equal to εφ = 0.0027 rad2, corresponding to a

standard deviation of 3o.

We first examine the effect of varying the total frequency of measurements processed

by the robots. In Fig. 3.7, the optimal value of the cost function is plotted as a function

of the total frequency of measurements (solid line) (ftotal = 0.5 . . . 20 Hz), and compared

to the cost that arises if equal measurement frequencies are employed (dashed line). In

this plot, the substantial improvement in localization accuracy attained using our method

becomes apparent. For example, for ftotal = 1 Hz, the cost when using equal frequencies is

560% larger than when using the optimal frequencies. Moreover, in this plot we observe a

law of diminishing return: there is a sharp improvement in performance by increasing the

total number of measurements per time-step, when this number is small, but the incremen-

tal gain reduces as the frequency of measurements increases further. Since the necessary

communication and computational resources increase linearly with the number of measure-

ments performed by the robots, it becomes clear that unless resources are abundant, it is

not beneficial for the robots to process a very large number of measurements.

We now constrain the total frequency of measurements to be equal to ftotal = 2 Hz, and
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run the optimization algorithm. At the optimal solution, the GPS receiver is utilized at

its maximum frequency (fGPS = 1 Hz), and interestingly, no absolute orientation measure-

ments need to be recorded. The optimal frequencies for the range and bearing measurements

are shown in Fig. 3.8, in the form of a bar plot, where each row of the plot corresponds to the

measurements recorded by one robot. The fact that no absolute orientation measurements

are used implies that the correlations between the position and orientation estimates of the

robots suffice for guaranteing orientation variance smaller than εφ for all robots. However,

it should be made clear that this is not a general result. For example, if we double the

standard deviation of the absolute position measurements, the results of the optimization

under the same conditions show that absolute orientation measurements are processed by

the robots. Nevertheless, the fact that for certain formations some measurement frequencies

may turn out to be equal to zero implies that the corresponding sensors are not necessary,

and can be omitted, thus resulting in lower cost and easier implementation.

In the last set of experiments, we assume that no absolute orientation sensors are avail-

able to the robots, and thus the absolute position measurements of R1 constitute the only

source of absolute state information. We once again select ftotal = 2 Hz, and vary the

formation size, by scaling all distances among robots by a factor ranging between 1 and 20.

The solid line in Fig. 3.9(a) presents the optimal cost as a function of the formation size, for

σθ = 1o. It is worth noting that in this case as the formation scale factor increases, the ro-

bots’ localization accuracy becomes better. This is attributed to the fact that in the sensor

model for relative measurements, the noise variance is independent of the distance between

robots. Therefore, the bearing measurements provide better orientation information for the

measuring robot, as the robots get further apart, since the errors in the measured robot’s

position have less impact. This interpretation is also corroborated by Fig. 3.9(b) where

we plot the proportion of resources (i.e., proportion of the total measurement frequency)

assigned to each type of measurement, as the formation size increases. We observe that

as robots become more distant, more relative bearing information is utilized. However this

is, once again, not a general result: if we increase the standard deviation of the bearing

measurements by a mere factor of 2, to σθ = 2o, then as the formation becomes larger, the

robots’ localization accuracy degrades (this is shown by the dashed line in Fig. 3.9(a)). In
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this case, the bearing measurements contribute less localization information, and cannot

compensate for the loss of information in the range measurements, due to the increased

distances among robots.

As a closing remark, we note that the parameters affecting the selection of optimal

measurement frequencies include the number of robots, the size and geometric configuration

of the formation in space, the robots’ velocity, the accuracy of all available sensors, the

type and number of available measurements, and the maximum frequency of each sensor.

The results presented in this section illustrate the fact that the interactions between these

factors are quite intricate, and determining general “rules of thumb” for the optimal sensing

strategy appears difficult, if not infeasible. This further establishes the necessity for a design

tool that allows, given all the relevant parameters of a particular robot team, to determine

measurement strategies that are provably optimal. In this work, we have presented a method

that yields these optimal results, within the described problem formulation.

3.8 Summary

In this chapter we have described a methodology for studying and optimizing the accuracy

of localization in robot formations. The key element of our approach is the transition

from the discrete-time system model, where the computation of the asymptotic accuracy is

analytically intractable, to a continuous-time one. The frequency at which each sensor input

is processed specifies the accuracy of the corresponding measurement in the continuous-

time model. This relation enables us to formulate a convex optimization problem for the

measurement frequencies, where the constraints on the communication, processing, and

power resources of the team are naturally incorporated. Moreover, this problem can be

cast as a semidefinite programming (SDP) problem, whose unique global solution can be

computed using well-studied and efficient minimization algorithms.

The results of our work can be employed in practice for determining the sensing fre-

quencies for robot formations of any size and shape comprised of robots with various types

of sensors and sensing capabilities. The optimal sensing frequencies can be used not only

for obtaining the best localization results, but also for determining the necessity of certain

sensors (e.g., sensors with zero frequency can be omitted) which can lead to significant cost
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savings. As a closing remark, we point out that the applicability of the proposed method

is not limited to the problem of formation localization. The idea of employing a transition

from the discrete-time to a continuous-time system model is general, and can be applied to

any scheduling problem for which the continuous-time system is linear time invariant.
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Chapter 4

The Multi-State Constraint

Kalman Filter (MSC-KF)

4.1 Introduction

The work presented in the preceding two chapters has focused on vehicles moving in 2D.

For robots operating in most man-made environments (e.g., indoors, on paved roads, etc),

the assumption of 2D motion is satisfied; however, in an increasing number of robotics

applications, the motion of vehicles cannot be described by 2D kinematics. For example,

estimation of the full 3D pose (3 degrees of freedom for position and 3 for attitude) is

necessary for spacecraft [10,20,69,159], Unmanned Aerial Vehicles (UAVs) [73,74,79,80,125],

autonomous underwater vehicles [39, 40], robots operating on rugged outdoor terrain [75,

120,158], and, in some cases, robots moving indoors [59,112,169].

The proprioceptive and exteroceptive sensors that can be employed for pose tracking in

3D differ from those that are suitable for 2D localization. For motion in 3D, proprioceptive

information is typically obtained from Inertial Measurement Units (IMUs), which provide

measurements of rotational velocity and linear acceleration. Recent advances in MEMS-

based IMU technology have made possible the manufacturing of small, low-power, and

lightweight IMUs, which attain good measurement accuracy at low cost. This, in turn,

enables the use of inertial sensing for position tracking in small-scale systems, such as

miniature UAVs and ground robots. However, pose tracking with IMU measurements alone
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is susceptible to significant drift, due to the integration of noise and biases. As a result, for

accurate pose estimation over longer time periods, additional sensing modalities must be

used to aid inertial sensing.

In the case of 3D motion, and in the absence of GPS, cameras are the most attractive

option for obtaining exteroceptive information. While 3D laser scanners have been em-

ployed in certain cases [163], their high cost, weight, and power consumption render their

use impractical, at least with currently existing technology. On the other hand, cameras

are inexpensive, small, and have low power requirements, properties that make them easy

to incorporate in any robot’s sensing payload. Moreover, an important advantage of visual

sensing is that images are high-dimensional measurements, with rich information content.

For these reasons, the topic of vision-aided inertial navigation has recently received consid-

erable attention in the research community [1].

A major difficulty when utilizing visual feature measurements for localization is the

high volume of available data. Feature extraction methods can typically detect and track

hundreds of features in images [56, 84, 86], and processing all these measurements for real-

time pose estimation is a truly challenging problem. If computing resources were unlimited,

one would jointly estimate the positions of all features along with the camera trajectory, by

employing a SLAM algorithm. This would result in the best possible estimation accuracy.

However, in any real application the available computing resources are limited, and one is

faced with a fundamental trade-off between the computational complexity of an algorithm

and the resulting estimation accuracy.

In this chapter we propose a solution to the problem of processing a large number of

features, motivated by the properties of visual features encountered in practice. Specifically,

a key observation is that, typically, the vast majority of features can only be tracked for a

small number of frames, while only few of them can be detected for long periods of time,

or when a robot re-visits an area. We term the former transient features, while the latter

stable features. It becomes clear that including both types of features in the map of a

SLAM formulation constitutes suboptimal use of the available resources: once transient

features are lost, maintaining them in the SLAM state vector does not offer any additional

localization information.
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Our proposed solution is to utilize all transient features for improving the robot’s motion

estimates, while stable features are employed for loop closing, in order to maintain long-

term bounded errors. In this chapter, we describe an algorithm that is capable of processing

the transient-feature measurements in a statistically optimal fashion, while having compu-

tational complexity only linear in the number of features [109]. This algorithm, termed

multi-state constraint Kalman filter (MSC-KF), is described in Section 4.4. Moreover, in

Section 4.5 a dual-layer system architecture is described, which utilizes the MSC-KF in

conjunction with a module that processes loop-closure information. By exploiting both the

real-time performance of the MSC-KF, and the localization information provided by the

stable features, the resulting system is capable of producing pose estimates that are avail-

able not only at a high rate, but also with bounded long-term errors [110]. Before delving

into the details of the methods, in the next section we present the key ideas of our approach.

4.2 Overview of the approach

The design of the MSC-KF estimator is motivated by the observation that, when a static

feature is viewed from several camera poses, it is possible to define geometric constraints

involving all these poses. This is demonstrated in Fig. 4.1, which illustrates the scenario

where a feature (denoted by a star) is viewed from a number of consecutive camera poses

(denoted by circles). Each measurement of the feature (denoted by an arrow) defines a

constraint between the feature and the camera. In a SLAM algorithm, these constraints are

utilized by including the feature in the state vector, and estimating its position simultane-

ously with the camera pose. In contrast, in the MSC-KF the feature is not included in the

state vector. Instead, the feature measurements are processed so as to remove the depen-

dence on the feature position, which leaves a number of constraints involving the camera

poses only, as shown in the bottom part of Fig. 4.1. The key contribution of the MSC-KF is

a measurement model that optimally utilizes these constraints within the EKF framework.

We note that the MSC-KF only processes local motion information, in the form of IMU

measurements and features tracked in consecutive images. Thus, it is essentially a combined

visual/inertial odometry estimator. As a result, the uncertainty of the pose estimates in

the MSC-KF will gradually increase over time. To compensate for the error growth, we
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Figure 4.1: Demonstration of the key idea behind the MSC-KF. The constraints of the
feature measurements (top) are transformed into constraints involving the camera poses
only (bottom).
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Figure 4.2: The block diagram of the dual-layer localization architecture.

design a system that, in addition to the local motion information, also utilizes loop-closure

constraints (i.e., the re-observations of stable features that occur when the robot re-visits

an area). The key characteristic of the system is its dual-layer estimation architecture

(cf. Fig. 4.2): At the first layer, the MSC-KF fuses the visual and inertial measurements, and

reports the pose estimates at the IMU data rate. At the second layer of the architecture we

employ a least-squares Bundle-Adjustment (BA) estimator [162] in conjunction with a loop-

closure detection module. Every time a loop-closing event is detected, the re-observations

of previously seen features are processed by the BA algorithm, to obtain an improved pose

estimate. This estimate is then fed back to the MSC-KF, thus resulting in diminished

localization errors.

4.3 Prior work

Before presenting the details of the MSC-KF algorithm, in this section we examine al-

ternative candidate approaches for using the transient feature information. We point out

that the MSC-KF algorithm is general, and can be applied with any type of exteroceptive

feature measurements (e.g., features extracted in laser-scan data). However, the problem

of processing a large number of transient features is primarily important for vision-based

localization, and for this reason our review of relevant methods will focus on this domain.

The existing approaches can broadly be categorized in three classes:
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SLAM methods

One family of algorithms for fusing proprioceptive information with visual feature obser-

vations follows the SLAM paradigm. In these methods, the current robot pose, as well as

the 3D positions of all visual landmarks are jointly estimated, and estimation is typically

carried out by an EKF (e.g., [21,28,80,99,125,130,153]). While in these approaches all the

measurements of the transient features can be processed optimally (up to linearization),

the cost of doing so is quadratic in the number of features. For this reason, EKF-based

SLAM approaches for vision-based localization focus on a small subset of features that can

be tracked over long time periods, and all other measurements are discarded. Clearly, this

leads to loss of the information provided by the transient features.

Use of pair-wise constraints

Several algorithms exist that, contrary to SLAM, estimate the pose of the camera only (i.e.,

do not jointly estimate the feature positions), with the aim of achieving real-time operation.

The most computationally efficient of these methods utilize the feature measurements to

derive constraints between pairs of images. For example in [138, 139], an image-based mo-

tion estimation algorithm is applied to consecutive pairs of images, to obtain displacement

estimates that are subsequently fused with inertial measurements. Similarly, in [10, 31, 32]

constraints between current and previous image are defined using the epipolar geometry,

and combined with IMU measurements in an EKF. In [150, 151] the epipolar geometry is

employed in conjunction with a statistical motion model, while in [131] epipolar constraints

are fused with the dynamical model of an airplane.

These algorithms fuse image-based displacement measurements with motion informa-

tion. In addition, a number of visual odometry approaches exist, which propagate the robot

pose using displacement measurements only. These methods typically employ a stereo-pair

of cameras for displacement estimation [90, 122–124], since the absolute magnitude (scale)

of motion cannot be determined when only a single camera is available. The use of feature

measurements for imposing constraints between pairs of images is similar in philosophy to

the MSC-KF. However, one fundamental difference is that our algorithm can express con-

straints between multiple camera poses, and can thus attain higher estimation accuracy, in
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the common case where features are visible in more than two images.

Pairwise constraints have also been employed in algorithms that maintain a state vector

comprised of multiple camera poses. In [47], an augmented-state Kalman filter is imple-

mented, in which a sliding window of robot poses is maintained in the filter state. On the

other hand, in [38–40], all camera poses are simultaneously estimated. In both of these

algorithms, pairwise relative-pose measurements are derived from the images, and used for

state updates. The drawback of this approach is that, when a feature is seen in multiple

images, the additional constraints between the multiple poses are discarded, thus resulting

in loss of information. Furthermore, when the same image measurements are processed for

computing several displacement estimates, these are not statistically independent, as shown

in [111].

Use of multi-state constraints

A number of approaches exist that, similarly to the MSC-KF, utilize the feature measure-

ments to impose constraints on a sliding window of poses. For instance, the algorithms

presented in [75, 120] temporarily initialize features, use them for imposing constraints on

windows of consecutive camera poses, and then discard them. These methods, however,

employ only a loose coupling between the visual and inertial measurements: the IMU rota-

tional velocity measurements are used to independently compute attitude estimates, which

are subsequently fused with the results of the visual odometry module. In this case, the

resulting estimates are suboptimal, because the IMU biases are not updated. A loose cou-

pling of visual and inertial measurements is also employed in the system presented in [126],

which uses multiple cameras for visual odometry, and then fuses the result with that of

pure IMU-based pose tracking. In contrast, in the MSC-KF the visual and proprioceptive

measurements are fused in a tightly coupled formulation, which results in increased accuracy.

A window of camera poses is also maintained in the Variable State Dimension Filter

(VSDF) [93]. The VSDF is a hybrid batch/recursive method, that carries out bundle ad-

justment over a sliding window of camera poses. The VSDF (i) uses delayed linearization

to increase robustness against linearization inaccuracies, and (ii) exploits the sparsity of the

information matrix, that naturally arises when no dynamic motion model is used. How-
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Algorithm 1 Multi-State Constraint Filter (MSC-KF)
Propagation: For each IMU measurement received, propagate the filter state and
covariance (cf. Section 4.4.2).

Image registration: Every time a new image is recorded,

• augment the state and covariance matrix with a copy of the current camera pose
estimate (cf. Section 4.4.3).

• image processing module begins operation.

Update: When the feature measurements of a given image become available, perform an
EKF update (cf. Sections 4.4.4 and 4.4.6).

ever, in cases where a dynamic motion model is available (such as in vision-aided inertial

navigation) the computational complexity of the VSDF is at best quadratic in the number

of features [29].

In contrast to the VSDF, the MSC-KF is able to exploit the benefits of delayed lineariza-

tion, while having complexity only linear in the number of features. By directly expressing

the constraints between multiple camera poses it avoids the computational burden and loss

of information associated with pairwise displacement estimation. Moreover, in contrast to

SLAM-type approaches, it does not require the inclusion of the 3D feature positions in the

filter state vector, but still attains optimal pose estimation (up to linearization). As a result

of these properties, the algorithm is very efficient, and as shown in Section 4.6, is capable

of high-precision vision-aided inertial navigation in real time.

4.4 The MSC-KF estimator

We now describe the MSC-KF estimator for vision-aided inertial navigation. The goal of the

estimator is to track the 3D pose of the IMU-affixed frame {I} with respect to a global frame

of reference {G}. In order to simplify the treatment of the effects of the earth’s rotation

on the IMU measurements, the global frame is chosen as an Earth-Centered, Earth-Fixed

(ECEF) one. An overview of the algorithm is given in Algorithm 1. The IMU measurements

are processed immediately as they become available, for propagating the EKF state and

covariance. On the other hand, each time an image is recorded, the current camera pose
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estimate is appended to the state vector, and the image processing algorithm commences

feature extraction. State augmentation allows us to create a state vector comprising a

sliding window of the N latest camera poses. During EKF updates, the measurements of

each tracked feature are used for imposing constraints between these poses. Therefore, at

any time instant the EKF state vector comprises (i) the evolving IMU state, XIMU, and

(ii) a history of N past poses of the camera. In the following, we describe the various

components of the algorithm in detail.

4.4.1 Structure of the EKF state vector

The evolving IMU state is described by the vector:

XIMU =
[
I
Gq̄T bg

T GvI
T ba

T GpT
I

]T
(4.1)

where I
Gq̄ is the unit quaternion [13] describing the rotation from frame {G} to frame {I},

GpI and GvI are the IMU position and velocity with respect to {G}, and finally bg and

ba are 3 × 1 vectors that describe the biases affecting the gyroscope and accelerometer

measurements, respectively. The IMU biases are modeled as random walk processes, driven

by the white Gaussian noise vectors nwg and nwa, respectively [3]. Following (4.1), the IMU

error-state is defined as:

X̃IMU =
[
δθT

I b̃T
g

GṽT
I b̃T

a
Gp̃T

I

]T
(4.2)

For the position, velocity, and biases, the standard additive error definition is used (i.e., the

error in the estimate x̂ of a quantity x is defined as x̃ = x− x̂). However, for the quaternion

a different error definition is employed. In particular, if ˆ̄q is the estimated value of the

quaternion q̄, then the orientation error is described by the error quaternion δq̄, which is

defined by the relation:

q̄ = δq̄ ¯ ˆ̄q, where δq̄ =
[

1
2δθT

√
1− 1

4δθT δθ
]T

'
[

1
2δθT 1

]T
(4.3)

In this expression, the symbol ¯ denotes quaternion multiplication. Intuitively, the quater-

nion δq̄ describes the (small) rotation that causes the true and estimated attitude to coincide.
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Since attitude corresponds to 3 degrees of freedom, using δθ to describe the attitude errors

is a minimal representation.

Assuming that N camera poses are included in the EKF state vector at time-step k,

this vector has the following form:

X̂k =
[
X̂T

IMUk

C1
G

ˆ̄q
T Gp̂T

C1
. . . CN

G
ˆ̄q
T Gp̂T

CN

]T
(4.4)

where Ci
G

ˆ̄q and Gp̂Ci , i = 1 . . . N are the estimates of the camera attitude and position,

respectively, for the N poses maintained in the sliding window. The EKF error-state vector

is defined accordingly:

X̃k =
[
X̃T

IMUk
δθT

C1

Gp̃T
C1

. . . δθT
CN

Gp̃T
CN

]T
(4.5)

4.4.2 Propagation

During each propagation step the estimates for the N poses of the sliding window remain

unchanged, while the IMU state estimate is propagated using the IMU measurements.

Specifically, at every time-step the IMU provides measurements, ωm and am of the rota-

tional velocity and the linear acceleration signals. These measurements are processed for

propagating the IMU pose estimate:

X̂IMUk+1|k = ψ(X̂IMUk|k ,ωm,am) (4.6)

The state propagation function, ψ, is implemented using Runge-Kutta numerical integration

of the continuous-time IMU system model, as described in Appendix C.1. Moreover, the

EKF covariance matrix has to be propagated. For this purpose, we introduce the following

partitioning for the covariance matrix:

Pk|k =


PIIk|k PICk|k

PT
ICk|k PCCk|k


 (4.7)

where PIIk|k is the 15 × 15 covariance matrix of the evolving IMU state, PCCk|k is the

6N × 6N covariance matrix of the camera pose estimates, and PICk|k is the correlation
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between the errors in the IMU state and the camera pose estimates. With this notation,

the covariance matrix of the propagated state is given by:

Pk+1|k =


 PIIk+1|k Φ(k + 1, k)PICk|k

PT
ICk|kΦ(k + 1, k)T PCCk|k


 (4.8)

where the terms PIIk+1|k and Φ(k +1, k) are computed by Runge-Kutta numerical integra-

tion, as explained in Appendix C.1.

4.4.3 State augmentation

Upon recording a new image, the camera pose estimate is computed from the IMU pose

estimate as:

C
G

ˆ̄q = C
I q̄ ¯ I

G
ˆ̄q, and Gp̂C = Gp̂I + C(I

G
ˆ̄q)T IpC (4.9)

where C
I q̄ is the quaternion expressing the rotation between the IMU and camera frames,

and IpC is the position of the origin of the camera frame with respect to {I}, both of

which are known [96]. This camera pose estimate is appended to the state vector, and the

covariance matrix of the EKF is augmented accordingly:

Pk|k ←

I6N+15

J


Pk|k


I6N+15

J




T

(4.10)

where the Jacobian J is derived from (4.9) as:

J =


 C

(
C
I q̄

)
03×9 03×3 03×6N

bC(I
G

ˆ̄q)T IpC ×c 03×9 I3 03×6N


 (4.11)

4.4.4 Measurement model

We now present the measurement model employed for updating the state estimates, which

is the key element of the MSC-KF algorithm. Since the EKF is used for state estimation, for

constructing a measurement model it suffices to define a residual, r, that depends linearly
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on the state errors, X̃k+1|k, according to the general form:

r = HX̃k+1|k + noise (4.12)

In this expression H is the measurement Jacobian matrix, and the noise term must be zero-

mean, white, and uncorrelated to the state error, for the EKF framework to be applied.

We present the measurement model by considering the case of a single feature, fj , that

has been observed from a set of Mj camera poses (Ci
G q̄, GpCi), i ∈ Sj . Each of the Mj

observations of the feature is described by the model:

z(j)
i = hproj(Gpfj ,Πi) + n(j)

i =
1

Cizj




Cixj

Ciyj


 + n(j)

i , i ∈ Sj (4.13)

where Πi = {Ci
G q̄, GpCi} denotes the i-th camera pose, and n(j)

i is the 2 × 1 image noise

vector, with covariance matrix R(j)
i = σ2

imI2. The feature position expressed in the camera

frame, Cipfj , is given by:

Cipfj =




Cixj

Ciyj

Cizj


 = C(Ci

G q̄)(Gpfj − GpCi) (4.14)

where Gpfj is the 3D feature position in the global frame. Since this is unknown, in the first

step of our algorithm we employ least-squares minimization to obtain an estimate, Gp̂fj , of

the feature position. This is achieved using the measurements z(j)
i , i ∈ Sj , and the filter

estimates of the camera poses at the corresponding time instants (cf. Appendix C.2).

Once the estimate of the feature position is obtained, we compute the measurement

residual:

r(j)
i = z(j)

i − ẑ(j)
i (4.15)
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where

ẑ(j)
i =

1
Ci ẑj




Ci x̂j

Ci ŷj


 ,




Ci x̂j

Ci ŷj

Ci ẑj


 = C(Ci

G
ˆ̄q)(Gp̂fj − Gp̂Ci)

Linearizing about the estimates for the camera pose and for the feature position, the residual

of (4.15) can be approximated as:

r(j)
i ' H(j)

Xi
X̃k+1|k + H(j)

fi

Gp̃fj + n(j)
i (4.16)

In the preceding expression H(j)
Xi

and H(j)
fi

are the Jacobians of the measurement z(j)
i with

respect to the state and the feature position, respectively, and Gp̃fj is the error in the

position estimate of fj . The Jacobians are given by:

H(j)
Xi

=

[
02×15 02×6 . . . J(j)

i bCiX̂fj ×c − J(j)
i C(Ci

G
ˆ̄q)︸ ︷︷ ︸

Jacobian wrt pose i

. . .
]

(4.17)

and

H(j)
fi

= J(j)
i C(Ci

G
ˆ̄q) (4.18)

where

J(j)
i = ∇Ci p̂fj

z(j)
i =

1
Ci ẑj


1 0 −Ci x̂j

Ci ẑj

0 1 −Ci ŷj
Ci ẑj




By stacking the residuals of all Mj measurements of this feature, we obtain:

r(j) ' H(j)
X X̃k+1|k + H(j)

f
Gp̃fj + n(j) (4.19)

where r(j), H(j)
X , H(j)

f , and n(j) are block vectors or matrices with elements r(j)
i , H(j)

Xi
, H(j)

fi
,

and n(j)
i , for i ∈ Sj . Since the feature observations in different images are conditionally

independent, the covariance matrix of n(j) is R(j) = σ2
imI2Mj .

Note that since the state estimate X̂k+1|k is used to compute the feature position es-

timate (cf. Appendix C.2), the error Gp̃fj in (4.19) is correlated with the errors X̃k+1|k.
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Thus, the residual r(j) is not in the form of (4.12), and cannot be directly applied for

measurement updates in the EKF. To overcome this problem, we define a residual r(j)
o , by

projecting r(j) on the left nullspace of the matrix H(j)
f . Specifically, if we let U denote the

unitary matrix whose columns form the basis of the left nullspace of H(j)
f , we obtain:

r(j)
o = UT (z(j) − ẑ(j)) ' UTH(j)

X X̃k+1|k + UTn(j) (4.20)

= H(j)
o X̃k+1|k + n(j)

o (4.21)

Since the 2Mj×3 matrix H(j)
f has full column rank, its left nullspace is of dimension 2Mj−3.

Therefore, r(j)
o is a (2Mj − 3) × 1 vector. This residual is independent of the errors in the

feature coordinates, and thus EKF updates can be performed based on it. Equation (4.21)

defines a linearized constraint between all the camera poses from which the feature fj was

observed. This expresses all the available information that the measurements z(j)
i provide

for the Mj states, and thus the resulting EKF update is optimal, except for the inaccuracies

caused by linearization. A proof of this statement is presented in Appendix C.3.

It should be mentioned that in order to compute the residual r(j)
o and the measurement

matrix H(j)
o , the unitary matrix U does not need to be explicitly evaluated. Instead, the

projection of the vector r(j) and of the matrix H(j)
X on the nullspace of H(j)

f can be computed

very efficiently using Givens rotations [51], in O(M2
j ) operations. Additionally, since the

matrix U is unitary, the covariance matrix of the noise vector n(j)
o is given by:

E{n(j)
o n(j)T

o } = σ2
imUTU = σ2

imI2Mj−3

It is important to note that the residual defined in (4.20) is not the only possible expres-

sion of the constraints that are induced by observing a static feature in multiple images.

An alternative approach would be, for example, to employ the epipolar constraints that are

defined between 2Mj − 3 pairs of the images, or to use the multi-linear constraints defined

by the Mj measurements directly [57]. However, the resulting constraints are highly nonlin-

ear, and moreover, they are not statistically independent, since each measurement is used

in defining multiple constraints. Our experiments have shown that employing linearization

of these constraints yields inferior results compared to the approach described above.
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4.4.5 Outlier rejection

Prior to using each feature’s measurements for updates, an outlier rejection test is per-

formed. Specifically, for each feature the Mahalanobis distance:

γ = r(j)T
o

(
H(j)

o Pk+1|kH(j)T
o + σ2

imI2Mj−3

)−1
r(j)
o (4.22)

is computed, and compared against the 95-th percentile of the χ2 cumulative distribution

function with 2Mj − 3 degrees of freedom. If γ is smaller than this threshold, the feature is

accepted as an inlier, and used in the updates.

Note that, in contrast to outlier rejection based on vision alone, in this outlier rejection

scheme the MSC-KF state estimate is used as a prior, to help identify outliers. Additionally,

it is important to observe that all the measurements of the feature are simultaneously used

for the rejection test. As a result, features that correspond to slowly-moving objects, or

whose tracking is unreliable, can be more easily detected and discarded. These properties,

which arise from the tight coupling of the visual and inertial measurements in the MSC-KF,

result in very robust outlier detection.

4.4.6 EKF updates

In Section 4.4.4 we presented the measurement model that expresses the constraints imposed

by observing one static feature from multiple camera poses. We now present in detail the

update phase of the EKF, in which the constraints from observing L > 1, features, are

available. A feature is used for EKF updates when it can no longer be detected by the

feature tracker. Following the procedure described in the preceding section, we compute

a residual vector r(j)
o , j = 1 . . . L, as well as a corresponding measurement matrix H(j)

o ,

j = 1 . . . L for each of these features (cf. (4.20)). By stacking all residuals in a single vector,

we obtain:

ro = HXX̃k+1|k + no (4.23)

where ro and no are vectors with block elements r(j)
o and n(j)

o , j = 1 . . . L, respectively, and

HX is a matrix with block rows H(j)
o , j = 1 . . . L.
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Since the feature measurements are statistically independent, the noise vectors n(j)
o are

uncorrelated. Therefore, the covariance matrix of the noise vector no is equal to Ro = σ2
imId,

where d =
∑L

j=1(2Mj − 3) is the dimension of the residual ro. One issue that arises in

practice is that d can be a quite large number. For example, if 10 features are seen in 10

camera poses each, the dimension of the residual is 170. In order to reduce the computational

complexity of the EKF update, we employ the QR decomposition of the matrix HX [10].

Specifically, we denote this decomposition as

HX =
[
Q1 Q2

]

 TH

0(d−r)×r




where Q1 and Q2 are unitary matrices of dimensions d × r and d × (d − r), respectively,

whose columns form bases for the range and nullspace of HX. Moreover, TH is a r × r

upper triangular matrix. In these expressions, r is equal to the rank of HX, which, in turn,

expresses the number of independent constraints provided by the feature measurements.

With this definition, (4.23) yields:

ro =
[
Q1 Q2

]

TH

0


 X̃k+1|k + no ⇒ (4.24)


QT

1 ro

QT
2 ro


 =


 TH

0(d−r)×r


 X̃k+1|k +


QT

1 no

QT
2 no


 (4.25)

From the last equation it becomes clear that by projecting the residual ro on the basis

vectors of the range of HX, we retain all the useful information in the measurements. The

residual QT
2 ro is only noise, and can be completely discarded. For this reason, instead of

the residual shown in (4.23), we employ the following residual for the EKF update:

rn = QT
1 ro = THX̃k+1|k + nn (4.26)

In this expression nn = QT
1 no is an r × 1 noise vector, whose covariance matrix is equal to
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Rn = QT
1 RoQ1 = σ2

imIr. The EKF update proceeds by computing the Kalman gain:

K = Pk+1|kTT
H

(
THPk+1|kTT

H + Rn

)−1
(4.27)

while the correction to the state is given by the vector

∆X = Krn (4.28)

Due to the representation of attitude errors, the correction vector is not used for additive

updates to all the state variables. For example, the vector ∆X1:3, which corresponds to the

IMU attitude, is used to form the quaternion correction:

δq̄ =




1
2∆X1:3√

1− 1
4∆XT

1:3∆X1:3


 (4.29)

This is subsequently employed for updating the IMU quaternion estimate, according to:

I
G

ˆ̄qk+1|k+1 = δq̄ ¯ I
G

ˆ̄qk+1|k (4.30)

The quaternion estimates for the camera poses that are included in the state vector are up-

dated similarly. On the other hand, the variables that correspond to position, velocity, and

IMU biases, are updated using the standard additive updates. Finally, the state covariance

matrix is updated according to:

Pk+1|k+1 = (Iµ −KTH)Pk+1|k (Iµ −KTH)T + KRnKT (4.31)

where µ = 6N + 15 is the dimension of the covariance matrix.

It is interesting to examine the computational complexity of the operations needed

during the EKF update. The residual rn, as well as the matrix TH , can be computed

using Givens rotations in O(r2d) operations, without the need to explicitly form Q1. On

the other hand, (4.31) involves multiplication of square matrices of dimension µ, an O(µ3)

operation. Therefore, the cost of the EKF update is max(O(r2d), O(µ3)). If, on the other

hand, the residual vector ro was employed, without projecting it on the range of HX, the
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computational cost of computing the Kalman gain would have been O(d3). Since typically

d À µ, r, we see that the use of the residual rn results in substantial savings in computation.

4.4.7 Discussion

We now examine some of the properties of the described algorithm. As shown in the previous

section, the filter’s computational complexity is linear in the number of observed features,

and at most cubic in the number of states that are included in the state vector. Thus, the

number of poses that are included in the state is the most significant factor in determining

the computational cost of the algorithm. Since this number is a selectable parameter, it can

be tuned according to the available computing resources, and the accuracy requirements

of a given application. If required, the length of the filter state can be also adaptively

controlled during filter operation, to adjust to the varying availability of resources1.

One source of difficulty in recursive state estimation with camera observations is the non-

linear nature of the measurement model. Vision-based motion estimation is very sensitive to

noise, and, especially when the observed features are at large distances, false local minima

can cause convergence to inconsistent solutions [121]. The problems introduced by nonlin-

earity have been addressed in the literature using techniques such as Sigma-point Kalman

filtering [68], particle filtering [36], and the inverse depth representation for features [99].

Two characteristics of the described algorithm increase its robustness to linearization inac-

curacies: (i) the inverse feature depth parametrization used in the measurement model (cf.

Appendix C.2) and (ii) the delayed linearization of measurements [93]. By the algorithm’s

construction, multiple observations of each feature are collected, prior to using them for

EKF updates, resulting in more accurate evaluation of the measurement Jacobians.

4.5 Processing loop-closure information

In this section, we describe a system that employs the MSC-KF in conjunction with a module

that processes loop-closure information, to provide estimates with long-term bounded errors

(cf. Fig. 4.2). We point out that a simple approach for utilizing loop-closure information
1It should be clear that, in order to maintain optimality, N must be greater or equal to the maximum

feature-track length. If the window size is smaller, not all the available constraints are utilized.
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would be to include in the MSC-KF state vector a number of landmarks (stable features),

similarly to SLAM, and to use the re-observations of these landmarks for improving the

estimation accuracy. However, this approach has two limitations: First, even if we knew in

advance which landmarks will be re-observed, their inclusion in the EKF state vector would

require updating their position estimates (and the associated covariance matrix) every time

a filter update takes place. This would incur a significant computational cost. Secondly,

and most importantly, we typically cannot predict which landmarks will be re-observed in

the future. As a result, we would need to maintain a large number of landmarks in the

state vector, many of which would never be seen again.

For these reasons, we have opted for a different approach when processing loop-closure

information. In particular, a separate module of our system uses the recorded images, as well

as the history of camera-pose estimates, to detect when an area is re-visited (cf. Fig 4.2).

Since the MSC-KF estimates are typically very accurate (e.g., errors less than 0.5% of the

distance traveled) detecting candidate loop-closures along the trajectory can be performed

very efficiently, based on simple criteria, as described in Section 4.5.1. Once a candidate

location is identified, only then images are processed to detect features observed during

both visits. These feature re-observations are subsequently processed in a BA algorithm,

along with the IMU measurements and the features that passed the Mahalanobis gating

test in the MSC-KF.

The proposed dual-layer estimator approach offers two key benefits: First, the processing

is essentially trajectory-driven: the computational cost of loop closing is incurred only when

loop closing occurs, which is typically an infrequent event. Secondly, we note that, as

the camera keeps exploring new areas, all features are treated as transient features, and

processed by the MSC-KF. When the camera revisits a location, only then are the stable

features identified, by matching between images recorded in the first and second visits. As

a result, the approach does not necessitate predicting which features are stable enough for

re-detection.

In addition to using loop-closure information, the use of an iterative BA algorithm leads

to improved linearization. Since the MSC-KF algorithm is an EKF-based estimator, it

linearizes the measurements only once, and the gradual buildup of linearization errors can
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eventually lead to inconsistent estimates. To reduce the effect of linearization inaccuracies,

BA can be run intermittently (or continuously, as a background process), even when no

loop closure occurs, and its results can be used to “reset” the MSC-KF state and covariance

estimates, and remove any accumulated linearization errors. In fact, this mode of operation,

in which BA is run in parallel with the MSC-KF and periodically updates its estimates, is

ideally suited for implementation in multi-core architectures, which are rapidly becoming

prevalent.

4.5.1 Stable feature re-detection

We now describe the approach used in our implementation for matching stable features

when the camera revisits an area. We point out that this is not the main contribution

of this work, and alternative algorithms could be employed for this purpose. The method

presented here is well-suited to the scenario of a vehicle moving on a road network, which

is the case in the experimental results presented in Section 4.6.

In our system, candidate loop-closure sections of the trajectory are identified based on

two criteria: (i) spatial closeness of the trajectory, and (ii) motion in approximately the

same direction. The second criterion is necessary, because when using perspective cameras

(i.e., not omnidirectional), typically no features can be reliably matched if the vehicle re-

visits an area while moving in a substantially different direction. To limit the search space,

candidate loop closures are sought only in portions of the trajectory where the vehicle

either stops or turns. Once the trajectory segments that are candidates for loop-closure

are identified, a number of regularly-spaced images is selected in each segment, and SIFT

keypoints are extracted from them [84]. Those keypoints that are reliably matched in at

least three images, both within and across segments, are then passed for processing to

the BA algorithm. Using this approach, typically a few hundreds of stable features are

successfully detected every time a vehicle re-visits an area.

4.5.2 Bundle adjustment

We now describe the formulation of the batch Maximum a Posteriori (MAP) estimator for

processing the inertial and visual measurements, which is employed in the second layer of
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the system architecture. We consider the case in which K IMU measurements and K images

are available, recorded at every time-step in the interval2 [t1, tK ]. The MAP estimate for

all IMU states and all feature positions can be determined by minimizing the cost function:

J =
∣∣∣∣XIMU1 − Z1

∣∣∣∣
Rprior

+
∑

`,j

∣∣∣∣z(j)
` − hproj(Gpfj

, Π`)
∣∣∣∣

R
(j)
`

+
K−1∑

`=1

∣∣∣∣XIMU`+1
− ψ(XIMU`

, ωm,am)
∣∣∣∣

Q`
(4.32)

where
∣∣∣∣x∣∣∣∣

A
denotes the matrix-weighted norm xTA−1x. The three terms in this cost

function correspond to the following types of information that is available to the system:

• The first term in J expresses the prior information about the initial state of the IMU.

Typically, we have an estimate for the pose and velocity of the IMU at the start of

the system’s operation, while for the IMU biases such prior information is obtained

from the sensor specifications, or by sensor calibration. In (4.32) the prior estimate

and its covariance are denoted by Z1 and Rprior, respectively.

• The second term in (4.32) is the weighted squared error between the actual and

predicted feature measurements, and expresses the constraints due to the visual ob-

servations. This term is the cost that is typically minimized by photogrammetric

bundle-adjustment algorithms [162]. We note that the indices ` and j in this term

assume appropriate values to index all the available feature measurements. This in-

cludes both the feature tracks provided by the MSC-KF, as well as the stable feature

re-observations provided by the loop-closure module.

• The last term in (4.32) expresses the constraints due to the IMU process model. Each

of the K−1 summands is the weighted difference between the estimated IMU state at

time-step t`+1, and the IMU state predicted using the inertial measurements. To com-

pute this predicted state ψ(XIMU`
, ωm,am), we numerically integrate the IMU system

model over the time interval [t`, t`+1], starting from the estimate XIMU`
. The covari-

2To simplify the presentation in this section, we assume that IMU measurements and images are con-
currently recorded. In a real implementation, however, IMU measurements are most often available at a
higher rate than images. This case is treated analogously, by performing multiple propagation steps in the
computation of each of the summands of the third term in (4.32).
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ance matrix Q`, which expresses the uncertainty of the IMU-state-change estimate,

is similarly computed by numerically integrating the Lyapunov equation (cf. (C.6)),

starting from a zero initial value. The Jacobian of the term ψ(·), needed by the iter-

ative minimization algorithm, is computed by numerically integrating (C.7), starting

with the identity matrix as an initial value.

In order to minimize the cost function J with respect to all IMU states and all fea-

ture positions, we employ Gauss-Newton iterative minimization. Since the vast majority of

the features observed are tracked in a small number of frames, in each iteration we utilize

the technique of first marginalizing out all features, solving for the IMU states, and then

back-substituting for the feature positions, similarly to [37]. This leads to a sparse struc-

ture for the Hessian matrix of the system, which we solve using sparse skyline Cholesky

factorization [162]. Because the iterative minimization uses as an initial guess the MSC-KF

output, which is typically very accurate, only a few iterations (usually 3-4) are required for

convergence.

4.5.3 Feedback to the MSC-KF

Once the minimization has converged, the IMU and camera state estimates corresponding

to the current MSC-KF sliding window are fed back to the first layer. Moreover, the

corresponding covariance matrix is computed, and is used to replace the current MSC-KF

covariance matrix. The computation of the covariance matrix can be sped up significantly,

by taking into consideration the properties of Cholesky factorization. Specifically, from the

Gauss-Newton iteration, the Cholesky factor of the Hessian matrix corresponding to the

history of all IMU states is available:

A = GTG ⇒

Aoo Aoa

AT
oa Aaa


 =


GT

oo 0

GT
oa GT

aa





Goo Goa

0 Gaa




where blocks denoted by the subscript “oo” correspond to older poses, blocks denoted by

“aa” correspond to the poses that are currently active in the MSC-KF sliding window, and

“ao” corresponds to the cross-terms between these. Employing the properties of the block-

matrix inversion and substituting from the above expression, the covariance matrix of the
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active states is computed as:

Paa =
(
Aaa −AT

oaA
−1
oo Aoa

)−1
= G−1

aa G−T
aa (4.33)

At this point, we note that the Cholesky factorization of A (and thus, the block Gaa) is

already available, since it has been computed during the minimization process. Therefore,

the computational cost for obtaining the covariance matrix of the MSC-KF state is minimal

(note that Gaa is a triangular matrix).

4.5.4 Marginalization of old states

An important issue is that the computational cost of BA increases with the number of

states in the estimated trajectory (due to sparsity, the increase is approximately linear in

time). Thus, for very long trajectories the computational burden can become intractable.

To address this problem, we can choose to permanently marginalize out certain older poses

and the features seen from these poses. By limiting the number of estimated states, this

process allows the processing time for BA to remain bounded. Clearly, after marginalization

the linearization of the measurements that involve the removed states is not recomputed,

and hence marginalization leads to an approximation of the cost function. However, if only

older, “mature” states (i.e., states for which the estimates are deemed accurate) are removed,

the approximation will be very good. Finally, we note that once a pose is marginalized, we

no longer have the ability to close loops using this pose. Therefore, care should be taken in

order to always maintain a set of poses in areas that are likely to be revisited by the vehicle.

4.6 Experimental results

We hereafter present experimental results demonstrating the performance of the MSC-KF

and the dual-layer estimator architecture for vision-aided inertial navigation. The system

has been employed for estimating the trajectory of a vehicle moving in an urban environ-

ment. Some example images from the recorded sequences are shown in Fig. 4.3. Images are

recorded by a firewire camera with resolution 640× 480 pixels, and processed at a rate of

7.5 Hz. Inertial measurements are provided by an Inertial Science ISIS IMU, at a rate of
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Figure 4.3: Some images from the datasets collected in the experiments.

100 Hz. For the results presented here, transient features were extracted using the Harris

operator [56], and matched using normalized cross-correlation, while stable feature extrac-

tion and matching was performed using the SIFT algorithm [84]. Processing was carried out

off-line, on a 2 GHz CPU, and the algorithm run-times reported in what follows correspond

only to the time required by the estimation algorithms.

Experiment 1

In this experiment, we demonstrate the performance of the MSC-KF when used without

feedback from the BA module. For this experimental run the vehicle drove for about

16 minutes, covering a distance of approximately 7.6 km. A total of 8151 images were

processed, with an average of 800 features being tracked in each image. These feature

measurements were processed by the MSC-KF, in which a sliding window of 32 camera

poses was maintained. The MSC-KF required approximately 191 seconds for processing

the entire image sequence, which corresponds to a processing throughput approximately

five times faster than real-time.

In Fig. 4.4, the estimated trajectory is shown in the blue line, and compared to the GPS
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ground truth, denoted by red dots. Fig. 4.5 presents the same results superimposed on a

satellite map of the area. In this figure, the MSC-KF estimates are plotted in black, while

the GPS ground truth is represented by white dots. Even though Figs. 4.4 and 4.5 plot the

position estimates on the ground plane, we stress that the MSC-KF carries out estimation

of the full 3D pose of the system. In fact, in this particular experiment, the elevation profile

of the trajectory involves significant changes, of about 20 m. This can be seen in Fig. 4.6, in

which the elevation estimate is plotted, and compared to the GPS measurements3. It should

be pointed out that, unfortunately, the GPS ground truth is not of high quality. Due to the

dense foliage, the GPS satellite signals were often obstructed, which resulted in frequent

GPS drop-outs, large measurement errors (especially for the altitude), and additionally

caused the GPS measurements to exhibit an irregular time-lag. As a result, while the GPS

ground truth can be employed for qualitatively evaluating the accuracy of the estimates, it

is not possible to reliably compute the estimation errors.

Despite the limitations of the GPS ground truth, from Figs. 4.4-4.6 it becomes clear that

the MSC-KF can very accurately track the trajectory of the vehicle in 3D. By comparing

the estimates of the vehicle trajectory to the GPS measurements, we conclude that the

position errors remain smaller than approximately 20 m, throughout the trajectory. For a

trajectory of length 7.6 km, this corresponds to an error smaller than 0.27% of the distance

traveled. The attained estimation accuracy is also seen in Figs. 4.7-4.9, that plot the 3σ

values for the IMU attitude, position, and velocity, respectively. The plotted values are

equal to 3 times the square root of the corresponding elements of the MSC-KF covariance

matrix.

The results presented above demonstrate that the MSC-KF is capable of very accurate

pose estimation in real-time. It should be pointed out that this level of accuracy is achieved

without utilizing any additional localization information (e.g., knowledge of the map, vehicle

wheel odometry, or kinematic model of the car) and by processing images at a relatively low

rate of 7.5 Hz. This demonstrates the benefits of fusing visual with inertial measurements

using the tightly-coupled formulation of the MSC-KF.
3We note that the position estimates were transformed to a local frame having its x and y axes aligned

with the east-west, and north-south directions, respectively, for visualization purposes only. The filter
computes the estimates in the ECEF frame, as described in Section 4.4.
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Figure 4.4: The estimated trajectory (blue line), and GPS ground truth (red dots), for the
first experiment. The starting position is at (0, 0).
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Figure 4.5: The estimated trajectory for the first experiment, overlaid on a satellite image
of the area. The initial position of the vehicle is denoted by a red square. The white dots
represent the GPS measurements.
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Figure 4.6: The estimated elevation (blue line) and corresponding GPS measurements (red
dots), for the first experiment.
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Figure 4.7: The 3σ values for the IMU attitude, computed by the MSC-KF during the first
experiment. The three subplots correspond to the x, y, and z axes, respectively.
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Figure 4.8: The 3σ values for the IMU position, computed by the MSC-KF during the first
experiment. The three subplots correspond to the x, y, and z axes, respectively.
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Figure 4.9: The 3σ values for the IMU velocity, computed by the MSC-KF during the
first experiment. The three subplots correspond to the x, y, and z axes, respectively. The
“sawtooth-pattern” appearance of the plots is due to the fact that the velocity is more
accurately estimated in parts of the trajectory where the car is stopped or moving very
slowly.
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Experiment 2

We now present results from a second experiment, where the MSC-KF is used in conjunction

with the BA estimator, thus enabling the processing of loop-closure information. In this

test, the car covered a distance of 6.6 km within 17.5 minutes, and two loops were detected.

In the MSC-KF a sliding window of 32 poses is maintained. On the other hand, the non-

linear minimization is run every time a loop is successfully detected, or every 1000 images,

in order to periodically reduce the buildup of linearization errors. Moreover, in order to

prevent the computational cost of the minimization routine from becoming too large, we

employ marginalization of older poses. In particular, all poses that are both older than

2 minutes, and do not lie in a segment of the trajectory that is a loop-closure candidate,

are marginalized out.

With these settings, pose estimation requires a total of 328 sec of CPU time, which

corresponds to approximately 3 times faster than real-time processing. Of these 328 sec,

the MSC-KF and BA algorithms account for 221 sec and 107 sec, respectively. We therefore

see that the computational overhead of the second layer of the dual-layer estimator is less

than 50%, in this case. This overhead is relatively small considering that, by using the entire

two-layer architecture instead of the first layer alone, we obtain the benefits of (i) using loop

closure information, and (ii) obtaining better linearization.

The estimated trajectory is plotted versus GPS ground truth in cartesian axes in

Fig. 4.10, and overlaid on a satellite image of the area, in Fig. 4.11, respectively. For

comparison, Fig. 4.12 shows the trajectory estimate arising when the MSC-KF is used

alone. Close inspection of the data reveals that when the dual-layer estimator is utilized,

the position errors remain smaller than approximately 10 m, throughout the trajectory,

while when only the MSC-KF is used, the maximum error is approximately 20 m. Thus,

the benefit from the use of loop closure information becomes evident. However, it should be

pointed out that even the 20 m of position error, recorded when the MSC-KF is used with-

out feedback from the nonlinear minimization, corresponds to only 0.3% of the trajectory

length.

In Figs. 4.13-4.15, the 3σ values for the IMU attitude, position, and velocity, are shown,

respectively. The solid blue lines in these figures correspond to the case when loop closure
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information is utilized, while the dashed black lines correspond to the result of the MSC-

KF. The loop closure events (occurring at 895 and 957 sec) can be clearly identified by the

sharp drop in uncertainty. Interestingly, we observe that the state estimates that primarily

benefit from the additional localization information are those of (i) the IMU rotation about

its z axis (which is approximately parallel to the gravity vector during the experiment),

and (ii) the IMU position. This makes sense, intuitively, since these states are the ones

that experience the most pronounced uncertainty accumulation, when using visual/inertial

odometry alone. In contrast, the IMU tilt angles (i.e., the rotation about its x and y axes)

are estimated very accurately throughout the trajectory, due to the presence of the gravity

field.

Figs. 4.13-4.15 also demonstrate the fact that the MSC-KF slightly underestimates the

covariance matrix. Specifically, for the first 895 sec of the trajectory (i.e., prior to the loop

detection), the MSC-KF covariance estimate is slightly smaller than the estimate arising

when the covariance is periodically reset from the BA (cf. Section 4.5.3). This indicates

that the MSC-KF tends to become inconsistent, which is a known issue with EKF-based

pose estimation [7, 18, 66, 70]. A potential remedy for this problem would be to extend the

method of [64] to the case of 3D SLAM. In [64], only the first estimate of each state is

used in computing all Jacobians. For the case of 2D SLAM, this technique is shown to

result in better consistency than the standard-EKF approach, where the latest estimates

are employed for evaluating the Jacobians. In out future work, we plan to investigate the

performance of such a first-estimates Jacobian (FEJ)-EKF in the case of 3D vision-aided

inertial navigation.

As a final remark, it is worth noting that in the experiments presented here, the camera

motion is almost parallel to the optical axis, a condition which is particularly adverse for

image-based motion estimation algorithms [121, 164]. Moreover, in the images a signifi-

cant number of moving objects appear, such as cars, pedestrians, and trees moving due to

the wind. However, the fact that all the measurements of each feature are simultaneously

processed allows us to achieve better linearization, as well as more robust outlier rejection,

compared to EKF-SLAM algorithms where each feature measurement is processed immedi-

ately. This contributes to the high precision of the estimates, as seen in the results of this
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Figure 4.10: The estimated trajectory (blue line), and GPS ground truth (red dots), for the
second experiment. In this plot the result of the complete two-layer system, which utilizes
loop closure information, is shown. The starting position is at (0, 0).

section.

4.7 Summary

In this chapter we have presented the Multi-State Constraint Kalman filter (MSC-KF), an

EKF-based estimator that optimally processes transient-feature measurements. The key

contribution of the MSC-KF is a measurement model that is able to express the constraints

that arise when a static feature is observed from multiple consecutive camera poses. This

model does not require including the 3D feature positions in the state vector of the EKF,

and is optimal, up to the errors introduced by linearization. The resulting EKF-based pose

estimation algorithm has computational complexity linear in the number of features, and

is thus suitable for processing a large number of feature measurements in real time.
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Figure 4.11: The estimated trajectory for the second experiment, overlaid on a satellite
image of the area. The initial position of the vehicle is denoted by a red square. The white
dots represent the GPS measurements.
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Figure 4.12: The MSC-KF estimate for the trajectory (blue line), and GPS ground truth
(red dots), for the second experiment. The starting position is at (0, 0).
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Figure 4.13: The 3σ values for the IMU attitude during the second experiment. The solid
blue lines correspond to the case where loop-closure information is processed, while the
dashed ones correspond to the MSC-KF.
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Figure 4.14: The 3σ values for the IMU position during the second experiment. The solid
blue lines correspond to the case where loop-closure information is processed, while the
dashed ones correspond to the MSC-KF.
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Figure 4.15: The 3σ values for the IMU velocity during the second experiment. The solid
blue lines correspond to the case where loop-closure information is processed, while the
dashed ones correspond to the MSC-KF.
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Moreover, we have demonstrated how the MSC-KF can be integrated in a localization

system. Specifically, we have described a two-layer estimator architecture, where in the

first layer the MSC-KF performs combined visual/inertial odometry in real time, while in

the second layer a batch nonlinear minimization algorithm (bundle adjustment) is inter-

mittently run, for processing loop-closure constraints. As key advantages of the proposed

two-layer architecture we can identify: (i) The estimates are available in real time, and at

the IMU data rate, (ii) The estimation errors remain bounded when loops are detected,

thus enabling long-term localization, and (iii) The computational overhead of utilizing

loop-closure constraints is minimal, even though loop closure significantly improves local-

ization accuracy. These properties render the proposed architecture suitable for large-scale

localization applications.
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Chapter 5

Concluding Remarks

5.1 Summary of contributions

The work presented in the preceding chapters has focused on providing methodologies for

analytical prediction and optimization of the accuracy of mobile robot localization. The key

contributions of the work are summarized in the following:

• Analytical performance characterization

Chapter 2 presented theoretical tools for evaluating the performance, in terms of po-

sitioning accuracy, of Cooperative Localization (CL), Simultaneous Localization and

Mapping (SLAM), and Cooperative SLAM (C-SLAM). Analytical expressions were

derived that determine the guaranteed accuracy of localization, as closed-form func-

tions of (i) the accuracy of all available sensors, (ii) the number of robots and/or

landmarks, (iii) the spatial distribution of the robots and/or landmarks, and (iv) the

structure of the graph describing the robot-to-robot and robot-to-landmark measure-

ments. These expressions enable predicting the accuracy that a given robot system

will attain in an application, and can therefore serve as valuable tools in the design

of a localization system.

The derived analytical results allowed us to identify key properties of the positioning

uncertainty, especially for CL. For instance, it has been shown analytically that during

CL the rate at which the position uncertainty increases in time is independent of the
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accuracy of the exteroceptive measurements, and only depends on the number of

robots in the team and the quality of their dead-reckoning capabilities. This indicates

that during system design, it may be more important to invest in accurate odometry

sensors, rather than exteroceptive ones. The derived analytical expressions make it

possible to infer such “rules of thumb” for robot design, and facilitate developing

intuition about the several factors affecting localization performance.

• Optimal localization in robot formations

In Chapter 3, we examined a special case of interest in CL, that of localization in robot

formations. First, it was shown that in this case a precise description of the steady-

state estimation accuracy can be obtained, by considering an equivalent continuous-

time system model. Then, it was shown how this continuous-time formulation can

be employed for determining optimal sensing strategies, that can achieve the maxi-

mum possible localization accuracy under constraints imposed by the robots’ limited

computational and communication resources.

Specifically, it was shown that the frequency at which each sensor input is processed

determines the accuracy of the corresponding measurement in the continuous-time

model. This enables us to formulate a convex optimization problem for the measure-

ment frequencies, where the constraints on the communication, processing, and power

resources of the team are naturally incorporated. Moreover, this problem was exactly

reformulated to a semidefinite programming (SDP) problem, whose unique global so-

lution can be computed using well-studied and efficient minimization algorithms. Ex-

perimental and simulation studies have indicated that the proposed approach yields

results superior to those of competing methods, and additionally, it can be employed

in order to identify the effects of different design choices on the accuracy of pose

estimation.

• Optimal use of the transient-feature measurements

In Chapter 4, we focused on the issue of vision-aided inertial navigation for mobile

robots. One of the key challenges in this domain is the very large number of fea-

ture measurements, which can overwhelm the limited computational capabilities of
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a real-time system. Based on the observation that the vast majority of features are

only “short-lived,” we have proposed an algorithm that optimally processes the mea-

surements of transient features, i.e., of features only observed in a small number of

consecutive frames. This algorithm, termed Multi-State Constraint Kalman filter

(MSC-KF), utilizes the constraints that arise when a static feature is observed from

consecutive camera poses in a statistically optimal fashion (up to linearization). The

computational complexity of the MSC-KF is only linear in the number of features,

which renders the method suitable for processing a large number of feature measure-

ments in real time.

Moreover, we have described a two-layer estimator architecture, incorporating the

MSC-KF and a batch nonlinear minimization algorithm. The proposed architecture

utilizes both the motion constraints due to the transient features, as well as the loop-

closure information, which becomes available when a robot re-visits an area. The

merging of these two types of positioning information produces pose estimates that

are both available in real time and have bounded long-term errors. The operation of

the system has been demonstrated in large-scale real-world experiments, involving a

vehicle localizing in an urban environment.

Our aspiration is that, by providing performance guarantees and methods for the optimal

allocation of the available system resources, the above-described contributions can help

increase the reliability and cost efficiency of robot designs, both of which are prerequisites

for their widespread use and commercial success.

5.2 Future research directions

The performance analysis of Chapter 2 has unveiled several interesting properties of position

estimation in groups of communicating mobile robots. However, several open questions

remain. Of particular interest is the study of state estimation in large robot networks, with

stringent communication and/or computation constraints. One unexplored question in this

domain is the asymptotic performance of state estimation as the network size increases.

The effects of the network graph structure and of the communication and computation
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constraints in this case are not fully understood, and we believe that the theoretical results

presented in Chapter 2 can facilitate the study of such properties. For example, a recent

study has utilized the results of our analysis to examine the effect of special graph topologies

on localization [76].

Moreover, as the network size increases, the use of centralized estimators becomes in-

feasible, and approximate, distributed estimation schemes are necessary. So far in our work,

an optimal (up to linearization) estimator was considered (i.e., the estimator computes the

Minimum Mean Squared Error (MMSE) estimate given the measurements provided to it),

and in Chapter 3 a methodology was proposed for obtaining the best sensing strategy within

this framework. However, this is not the only possible choice for estimator design. An alter-

native approach would be to employ an approximate estimator that, instead of processing a

small number of measurements in an optimal fashion, it utilizes an approximate estimation

scheme that allows it to process a larger subset of the available measurements. Such an

approach was recently proposed in [88], based on the key ideas presented in Chapter 3. How-

ever, the selection of the most suitable approximation scheme, to attain optimal resource

utilization, remains an open issue.

Finally, vision-based real-time localization is currently one of the most active research

areas in robotics. The MSC-KF, presented in Chapter 4, offers an attractive option for

processing the large number of feature measurements, and is a versatile method, that can

be easily incorporated as part of a localization system. For instance, in [113] the MSC-KF

was used in conjunction with mapped-landmark measurements, in a system for lander-pose

estimation during planetary Entry, Descent, and Landing (EDL). However, even though the

complexity of the MSC-KF is linear in the number of features, the total number of available

features can still be too large to allow real-time processing. To address this problem,

one can seek to identify optimal feature selection techniques, that will allow the algorithm

to concentrate only on those features that can guarantee the highest possible localization

accuracy.
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Appendix A

Appendices for Chapter 2

A.1 Proof of Lemma 1

The proof is carried out by induction, and requires the following two intermediate results:

• Monotonicity with respect to the measurement covariance matrix

If R1 º R2, then for any P º 0

Φ
(
P−PHT

(
HPHT + R1

)−1
HP

)
ΦT + Q º

Φ
(
P−PHT

(
HPHT + R2

)−1
HP

)
ΦT + Q (A.1)

This statement is proven by taking into account the properties of linear matrix inequalities:

R1 º R2 ⇒
(
HPHT + R1

)−1 ¹ (
HPHT + R2

)−1 ⇒

PHT
(
HPHT + R1

)−1
HP ¹ PHT

(
HPHT + R2

)−1
HP ⇒

Φ
(
P−PHT

(
HPHT + R1

)−1
HP

)
ΦT º Φ

(
P−PHT

(
HPHT + R2

)−1
HP

)
ΦT

from which (A.1) follows directly.
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• Monotonicity with respect to the state covariance matrix

The solution to the Riccati recursion at time k + 1 is monotonic with respect to the

solution at time k, i.e., if P(1)
k and P(2)

k are two different solutions to the same Riccati

recursion at time k, with P(1)
k º P(2)

k , then P(1)
k+1 º P(2)

k+1. In order to prove the result

in the general case, in which P(1)
k and P(2)

k are positive semidefinite (and not necessarily

positive definite), we use the following expression that relates the one-step ahead solutions

to two Riccati recursions with identical H, Q and R matrices, but different initial values

P(1)
k and P(2)

k . It is [58]

P(2)
k+1 −P(1)

k+1 =

Fp,k

((
P(2)

k −P(1)
k

)
−

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)−1

H
(
P(2)

k −P(1)
k

))
FT

p,k

(A.2)

where Fp,k is a matrix whose exact structure is not important for the purposes of this proof.

Since we have assumed P(1)
k º P(2)

k we can write P(2)
k −P(1)

k ¹ 0. Additionally, the matrix

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)−1

H
(
P(2)

k −P(1)
k

)

is positive semidefinite, and therefore we have

−
(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)−1

H
(
P(2)

k −P(1)
k

)
¹ 0 ⇒

(
P(2)

k −P(1)
k

)
−

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)−1

H
(
P(2)

k −P(1)
k

)
¹ 0 ⇒

Fp,k

((
P(2)

k −P(1)
k

)
−

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)−1

H
(
P(2)

k −P(1)
k

))
FT

p,k ¹ 0 ⇒

P(2)
k+1 −P(1)

k+1 ¹ 0

The last relation implies that P(1)
k+1 º P(2)

k+1, which is the desired result.

We can now employ induction to prove the main result of Lemma 1. Assuming that, at
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some time instant k, the condition Pu
k º Pk holds, we can write

Pu
k+1 = Φk+1

(
Pu

k −Pu
kH

T
(
HPu

kH
T + Ru

)−1
HPu

k

)
ΦT

k+1 + GQuGT

º Φk+1

(
Pk −PkHT

(
HPkHT + Ru

)−1
HPk

)
ΦT

k+1 + GQuGT

º Φk+1

(
Pk −PkHT

(
HPkHT + Ru

)−1
HPk

)
ΦT

k+1 + GQk+1GT

º Φk+1

(
Pk −PkHT

(
HPkHT + Rk+1

)−1
HPk

)
ΦT

k+1 + GQk+1GT = Pk+1

where the monotonicity of the Riccati recursion with respect to the covariance matrix, the

property Qu º Qk+1 and the monotonicity of the Riccati recursion with respect to the

measurement covariance matrix have been used in the last three lines. Thus Pu
k º Pk ⇒

Pu
k+1 º Pk+1. For k = 0 the condition Pu

k º Pk holds, and therefore the proof by induction

is complete.

A.2 Proof of Lemma 2

We first prove a useful intermediate result:

• Concavity of the Riccati recursion

We note that the right-hand side of the Riccati recursion

Pk+1 = Pk −PkHT
(
HPkHT + Rk+1

)−1
HPk + GQk+1GT (A.3)

can be written as

[
I 0

]

 Pk 0

0 Rk+1





 I

0




−
[

I 0
]

 Pk 0

0 Rk+1





 HT

0







[
H I

]

 Pk 0

0 Rk+1





 HT

I






−1

×

[
H 0

]

 Pk 0

0 Rk+1





 I

0


 + GQk+1GT
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We now show that the above expression is concave with respect to the matrix


 Pk 0

0 Rk+1




A sufficient condition for this is that the function

f(X) = AXB
(
CXCT

)−1
BTXAT (A.4)

is convex with respect to the positive semidefinite matrix X, when A,B,C are arbitrary

matrices of compatible dimensions. This is equivalent to proving the convexity of the

following function of the scalar variable t [12]:

ft(t) = A(Xo + tZo)B
(
C(Xo + tZo)CT

)−1
BT (Xo + tZo)AT (A.5)

with domain those values of t for which Xo + tZo º 0,Xo º 0. ft(t) is convex if and only

if the scalar function

f ′t(t) = zTA(Xo + tZo)B
(
C(Xo + tZo)CT

)−1
BT (Xo + tZo)ATz (A.6)

is convex for any vector z of appropriate dimensions [12]. Moreover, a function is convex if

and only if its epigraph is a convex set, and therefore f(X) is convex, if and only if the set

{s, t|zTA(Xo + tZo)B
(
C(Xo + tZo)CT

)−1
BT (Xo + tZo)ATz ≤ s}

is convex. Employing the properties of Schur complements, we can write

zTA(Xo + tZo)B
(
C(Xo + tZo)CT

)−1
BT (Xo + tZo)ATz ≤ s ⇔


 C(Xo + tZo)CT BT (Xo + tZo)ATz

zTA(Xo + tZo)B s


 º 0 ⇔


 CXoCT BTXoATz

zTAXoB 0


 + t


 CZoCT BTZoATz

zTAZoB 0


 + s


 0 0

0 1


 º 0 (A.7)
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The last condition defines a convex set in (s, t) [12], and thus the epigraph of f ′t(t) is convex.

Consequently, ft(t) and f(X) are both convex functions, which implies that the right-hand

side of (A.3) is a concave function of the matrix


 Pk 0

0 Rk+1




We now employ this result to prove, by induction, Lemma 2. Assuming that at time-

step k the inequality P̄k º E{Pk} holds, we will show that it also holds for the time-step

k + 1. We have

Pk+1 = Pk −PkHT
(
HPkHT + Rk+1

)−1
HPk + GQk+1GT ⇒

E{Pk+1} = E{Pk −PkHT
(
HPkHT + Rk+1

)−1
HPk + GQk+1GT }

= E{Pk −PkHT
(
HPkHT + Rk+1

)−1
HPk}+ GE{Qk+1}GT

¹ E{Pk} − E{Pk}HT
(
HE{Pk}HT + E{Rk+1}

)−1
HE{Pk}+ GE{Qk+1}GT

where in the last line Jensen’s inequality was applied [12], in order to exploit the concavity

of the Riccati. By assumption, P̄k º E{Pk}, and thus employing the monotonicity of the

Riccati with respect to the covariance matrix (cf. Appendix A.1), we can write

E{Pk+1} ¹ P̄k − P̄kHT
(
HP̄kHT + E{Rk+1}

)−1
HP̄k + GE{Qk+1}GT

= P̄k − P̄kHT
(
HP̄kHT + R̄

)−1
HP̄k + GQ̄GT

= P̄k+1

Thus, we have proven that P̄k º E{Pk} implies P̄k+1 º E{Pk+1}. For k = 0 the condition

P̄k º E{Pk} holds with equality, and the proof is complete.
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A.3 The measurement covariance matrix for the position-

only EKF

The covariance of the error of the j-th measurement obtained by robot i is given by

iRjj(k + 1) = Γij(k + 1)E{nij(k + 1)nT
ij(k + 1)}ΓT

ij(k + 1)

= Rzij (k + 1) + Rφ̃ij
(k + 1) (A.8)

This expression encapsulates all sources of noise and uncertainty that contribute to the

measurement error. More specifically, Rzij (k + 1) is the covariance of the noise nij(k + 1)

in the recorded relative position measurement zij(k + 1) and Rφ̃ij
(k + 1) is the additional

covariance term due to the error φ̃i(k + 1) in the orientation estimate of the measuring

robot. Since these two error sources are uncorrelated, we obtain the decomposition shown

in (A.8). The second term in this expression is given by:

Rφ̃ij
(k + 1) = CT (φ̂i(k + 1))J∆̂pij(k + 1)E{φ̃i

2}∆̂p
T

ij(k + 1)JTC(φ̂i(k + 1))

= σ2
φi

CT (φ̂i(k + 1))J∆̂pij(k + 1)∆̂p
T

ij(k + 1)JTC(φ̂i(k + 1)) (A.9)

The last expression shows that the uncertainty σ2
φi

in the orientation estimate φ̂i(k + 1) of

the robot is amplified by the distance between the robot and corresponding landmark. We

now turn our attention to the term Rzij (k + 1), which expresses the covariance of the errors

due to the sensor noise. Each relative position measurement is comprised of the distance

ρij and bearing θij to the target, expressed in the measuring robot’s local coordinate frame,

i.e.,

zij(k + 1) =


 ρij(k + 1) cos θij(k + 1)

ρij(k + 1) sin θij(k + 1)


 + nzij (k + 1)

By linearizing, the noise in this measurement can be expressed as:

nzij (k + 1) '

 cos θ̂ij −ρ̂ij sin θ̂ij

sin θ̂ij ρ̂ij cos θ̂ij





 nρij (k + 1)

nθij (k + 1)



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where nρij is the error in the range measurement, nθij
is the error in the bearing measure-

ment, assumed to be independent white zero-mean Gaussian sequences, and

ρ̂ij =
√

∆̂p
T

ij(k + 1)∆̂pij(k + 1)

θ̂ij = Atan2(∆̂yij(k + 1), ∆̂xij(k + 1))− φ̂i(k + 1)

are the estimates of the range and bearing to the landmark, expressed with respect to the

robot’s coordinate frame. At this point we note that

C(φ̂i(k + 1))nzij (k + 1)

=


 cos φ̂i(k + 1) − sin φ̂i(k + 1)

sin φ̂i(k + 1) cos φ̂i(k + 1)





 cos θ̂ij −ρ̂ij sin θ̂ij

sin θ̂ij ρ̂ij cos θ̂ij





 nρij (k + 1)

nθij (k + 1)




=


 cos(φ̂i(k + 1) + θ̂ij) −ρ̂ij sin(φ̂i(k + 1) + θ̂ij)

sin(φ̂i(k + 1) + θ̂ij) ρ̂ij cos(φ̂i(k + 1) + θ̂ij)





 nρij (k + 1)

nθij (k + 1)




=
[

1
ρ̂ij

∆̂pij J∆̂pij

]

 nρij (k + 1)

nθij (k + 1)




and therefore the quantity Rzij (k + 1) can be written as:

Rzij (k + 1) = E{nzij (k + 1)nT
zij

(k + 1)} (A.10)

= CT (φ̂i(k + 1))
[

1
ρ̂ij

∆̂pij J∆̂pij

]

 σ2

ρi
0

0 σ2
θi




[
1

ρ̂ij
∆̂pij J∆̂pij

]T
C(φ̂i(k + 1))

= CT (φ̂i(k + 1))

(
σ2

ρi

ρ̂2
ij

∆̂pij∆̂p
T

ij + σ2
θi
J∆̂pij∆̂p

T

ijJ
T

)
C(φ̂i(k + 1))

= CT (φ̂i(k + 1))

(
σ2

ρi

ρ̂2
ij

(
ρ̂2

ijI2 − J∆̂pij∆̂pij

T
JT

)
+ σ2

θi
J∆̂pij∆̂p

T

ijJ
T

)
C(φ̂i(k + 1))

= CT (φ̂i(k + 1))

(
σ2

ρi
I2 +

(
σ2

θi
− σ2

ρi

ρ̂2
ij

)
J∆̂pij∆̂p

T

ijJ
T

)
C(φ̂i(k + 1)) (A.11)

where the variance of the noise in the distance and bearing measurements is given by

σ2
ρi

= E{n2
ρi
} , σ2

θi
= E{n2

θi
}
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respectively. Due to the existence of the error component attributed to φ̃i(k + 1), the ex-

teroceptive measurements that each robot performs at a given time instant are correlated.

The matrix of correlation between the errors in the measurements zij(k + 1) and zi`(k + 1) is

iRj`(k + 1) = Γij(k + 1)E{nij(k + 1)nT
i`(k + 1)}ΓT

i`(k + 1)

= σ2
φi

CT (φ̂i(k + 1))J∆̂pij(k + 1)∆̂p
T

i`(k + 1)JTC(φ̂i(k + 1)) (A.12)

The covariance matrix of all the measurements performed by robot i at the time instant

k + 1 can now be computed. To simplify the presentation, we here assume that NMi =

{1, 2, . . . ,Mi}, i.e., the i-th robot measures the robots with indices j = 1, . . . ,Mi. In that

case, the covariance matrix of all the measurements performed by robot i is a block matrix

whose mn-th 2× 2 submatrix element is iRmn, for m,n = 1, . . . , Mi. Using (A.9), (A.11),

and (A.12), this matrix can be written as

Ri(k + 1) = ΞT
φ̂i

(k + 1)Roi(k + 1)Ξφ̂i
(k + 1) (A.13)

where

Roi(k + 1) = σ2
ρi
I2Mi + Di(k + 1)

(
σ2

θi
IMi + σ2

φi
1Mi×Mi − diag

(
σ2

ρi

ρ̂2
ij

))
DT

i (k + 1)

= σ2
ρi
I2Mi −Di(k + 1) diag

(
σ2

ρi

ρ̂2
ij

)
DT

i (k + 1)

︸ ︷︷ ︸
R1(k + 1)

+σ2
θi
Di(k + 1)DT

i (k + 1)︸ ︷︷ ︸
R2(k + 1)

+ σ2
φi

Di(k + 1)1Mi×MiD
T
i (k + 1)︸ ︷︷ ︸

R3(k + 1)

(A.14)

where

Di(k + 1) =




J∆̂pi1(k + 1) . . . 02×1

...
. . .

...

02×1 . . . J∆̂piMi
(k + 1)


 = Diag

(
J∆̂pij(k + 1)

)

is a 2Mi ×Mi block diagonal matrix, depending on the estimated positions of the robots

and landmarks. In (A.14) the covariance term R1(k + 1) is the covariance of the error due
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to the noise in the range measurements, R2(k + 1) is the covariance term due to the error

in the bearing measurements, and R3(k + 1) is the covariance term due to the error in the

orientation estimates of the measuring robot.

A.4 Upper bound for the measurement covariance matrix

An upper bound on Ro(k + 1) is obtained by considering each of its block diagonal elements,

Roi(k + 1). Referring to (A.14), we examine the terms R1(k + 1) , R2(k + 1) and R3(k + 1)

separately: the term expressing the effect of the noise in the range measurements is

R1(k + 1) = σ2
ρi
I2Mi −Di(k + 1) diag

(
σ2

ρi

ρ̂2
ij

)
DT

i (k + 1) ¹ σ2
ρi
I2Mi (A.15)

where we have used the fact that the term being subtracted from σ2
ρi
I2Mi is a positive

semidefinite matrix. The covariance term due to the noise in the bearing measurement is

R2(k + 1) = σ2
θi
Di(k + 1)DT

i (k + 1)

= σ2
θi
Diag


ρ̂2

ij


 sin2(θ̂ij) sin(θ̂ij) cos(θ̂ij)

sin(θ̂ij) cos(θ̂ij) cos2(θ̂ij)







¹ σ2
θi
Diag

(
ρ̂2

ijI2

)

¹ σ2
θi

ρ2
oI2Mi (A.16)

where ρo is the maximum range at which a measurement can occur, determined either by

the characteristics of the robots’ sensors or by the properties of the area in which the robots

move. Finally, the covariance term due to the error in the orientation of the measuring

robot is R3(k + 1) = σ2
φi

Di(k + 1)1Mi×MiD
T
i (k + 1). Calculation of the eigenvalues of the

matrices 1Mi×Mi and IMi verifies that 1Mi×Mi ¹ MiIMi , and thus we can write R3(k + 1) ¹
Miσ

2
φi

Di(k + 1)DT
i (k + 1). By derivations analogous to those employed to yield an upper

bound for R2(k + 1), we can show that

R3(k + 1) ¹ Miσ
2
φi

ρ2
oI2Mi
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By combining this result with those of (A.15), (A.16), we can write Roi(k + 1) = R1(k + 1)+

R2(k + 1) + R3(k + 1) ¹ Ru
i , where

Ru
i =

(
σ2

ρi
+ Miσ

2
φi

ρ2
o + σ2

θi
ρ2

o

)
I2Mi = riI2Mi (A.17)

A.5 Connection to the Laplacian of the RPMG

In this appendix we present some results concerning the matrix:

Cu = Q1/2
u HT

o R−1
u HoQ1/2

u

which are useful in computing the steady-state solution to the Riccati recursion.

• Connection to the RPMG Laplacian

We first examine the relationship of the matrix Cu to the Laplacian matrix of the

RPMG [97]. As explained in Section 2.4.2, the matrix Ho is closely related to the inci-

dence matrix of the RPMG, ARPMG:

Ho = ARPMG ⊗ I2 (A.18)

In obtaining this expression, the RPMG is considered an unweighted graph. If, instead, we

consider the weighted RPMG, where the weight of the edge corresponding to the measure-

ment of robot j from robot i is
√

ri, we obtain the incidence matrix:

A′
RPMG = ARPMGR−1/2

u (A.19)

and the Laplacian matrix of this weighted RPMG is:

L = AT
RPMGR−1

u ARPMG (A.20)

Using this observation, we can write the matrix Cu as

Cu = Q1/2
u (L ⊗ I2)Q1/2

u (A.21)
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This result shows the close connection between Cu and the Laplacian matrix of the RPMG,

and will be helpful in determining important properties of the matrix Cu.

• Rank and eigenvalues of Cu: unobservable system

It is well-known that the Laplacian matrix of a graph has a nullspace of dimension equal

to the number of connected components of the graph [97]. In our analysis we are considering

the case of a connected graph, and thus rank(L) = N−1. Consequently, rank(Cu) = 2N−2,

since Qu is a full-rank matrix, and from the properties of the Kronecker product, we obtain

rank (L ⊗ I2) = 2 rank(L). In order to obtain a basis for the nullspace of Cu, we note that

the nullspace of L is spanned by the vector 1N×1, and therefore L1N×1 = 0N×1. We now

note that

Cu

(
Q−1/2

u 1N×1 ⊗ I2

)
= Q1/2

u (L ⊗ I2)Q1/2
u

(
Q−1/2

u 1N×1 ⊗ I2

)

= Q1/2
u (L ⊗ I2) (1N×1 ⊗ I2)

Employing the properties of the Kronecker product yields

(L ⊗ I2) (1N×1 ⊗ I2) = (L1N×1)⊗ I2 = 02N×2

and therefore

Cu

(
Q−1/2

u 1N×1 ⊗ I2

)
= 02N×2

which shows that the column vectors of the matrix Q−1/2
u 1N×1 ⊗ I2 span the nullspace of

Cu. These column vectors are:

c1 = Q−1/2
u




1

0

1

0
...



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and

c1 = Q−1/2
u




0

1

0

1
...




which are orthogonal (this is easily verified by computing the dot product cT
1 c2). Normal-

izing the above vectors to ensure unit length, yields an orthonormal basis for the nullspace

of Cu. It can be easily shown that the resulting basis vectors are the columns of the matrix:

V =
√

qTQ−1/2
u (1N×1 ⊗ I2) (A.22)

where qT is defined by the relation
1
qT

=
N∑

i=1

1
qi

• Rank and eigenvalues of Cu: observable system

When at least one of the robots has access to absolute position measurements, then the

RPMG becomes a grounded graph. In this case, the graph Laplacian (and therefore Cu)

are full-rank matrices [95].

A.6 Asymptotic covariance bound for CL

In this appendix, we show how to derive the steady-state solution of the Riccati recursion

in (2.51). We denote the SVD of matrix Cu as Cu = Udiag(λi)UT = UΛUT , and defining

Pnnk
= UTPnk

U yields the recursion

Pnnk+1
= Pnnk

(I2N + ΛPnnk
)−1 + I2N (A.23)

When the system is observable, at steady state we have Pnnk+1
= Pnnk

= Pnn∞ , and we

thus need to solve the matrix equation

Pnn∞ = Pnn∞ (I2N + ΛPnn∞)−1 + I2N
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In this expression, all the diagonal elements of Λ are positive, since Cu is a positive definite

matrix. Assuming a diagonal form for Pnn∞ , it is straightforward to derive the solution

Pnn∞ = diag
(

1
2

+
√

1
4

+
1
λi

)

However, the fact that we are dealing with an observable system, means that the asymptotic

solution to the Riccati recursion is unique [58]. Thus, the above derived solution is unique,

and from it, the expression in (2.52) follows directly from the relation

Pu
k = Q1/2

u Pnk
Q1/2

u = Q1/2
u UPnnk

UTQ1/2
u (A.24)

When none of the robots has access to absolute position measurements, the system is

unobservable, and the asymptotic solution to the Riccati recursion in (2.51) (or, equivalently,

to (A.23)) is not as straightforward, since the solution now depends on the initial value of

the covariance matrix. As shown in Appendix A.5, when the robots only record relative

position measurements, Cu is of rank 2N − 2, and therefore two of its singular values equal

zero.

We first address the case in which the initial covariance matrix is zero. We observe that

the right-hand side of (A.23) is a diagonal matrix in this case, and by a simple induction

argument, we can show that the solution to this recursion retains a diagonal form for all

k ≥ 0. Addressing each of the diagonal elements individually, we observe that for the first

2N − 2 elements, which correspond to the nonzero singular values, we obtain the equations

Pnnk+1
(i, i) = Pnnk

(i, i) (1 + λiPnnk
(i, i))−1 + 1

while for the last two elements we obtain

Pnnk+1
(i, i) = Pnnk

(i, i) + 1
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Therefore, the asymptotic solution for Pnnk
is given by

Pnnk
=


diagξ

(
1
2 +

√
1
4 + 1

λi

)
0ξ×2

02×ξ kI2


 (A.25)

= k


0ξ×ξ 0ξ×2

02×ξ I2




︸ ︷︷ ︸
D1

+


diagξ

(
1
2 +

√
1
4 + 1

λi

)
0ξ×2

02×ξ 02×2




︸ ︷︷ ︸
D2

(A.26)

where ξ = 2N − 2. Using this result, we can compute the upper bound on the position

uncertainty when the initial covariance matrix is equal to zero. To compute the solution

when the initial uncertainty is not zero, we introduce the matrix P̆k, which is defined as

follows:

P̆k = Pnnk
− kD1 ⇒ Pnnk

= P̆k + kD1 (A.27)

The matrix P̆k has the property that it asymptotically approaches a constant value, which

depends on the initial covariance matrix. In order to obtain a Riccati recursion for the time

evolution of P̆k, we substitute the above definition in (A.23):

P̆k+1 + (k + 1)D1 =
(
P̆k + kD1

)(
I2N + ΛP̆k + kΛD1

)−1
+ I2N ⇒

P̆k+1 + (k + 1)D1 =
(
P̆k + kD1

)(
I2N + ΛP̆k

)−1
+ I2N ⇒

P̆k + (k + 1)D1 = P̆k

(
I2N + ΛP̆k

)−1
+ kD1

(
I2N + ΛP̆k

)−1
+ I2N

Where we have used the fact that, since the 2 smallest eigenvalues of Cu equal zero, the rela-

tion ΛD1 = 02N×2N holds. By application of the matrix inversion lemma (cf. Appendix D)

in the second term of the right-hand side of the above expression, we obtain

P̆k + (k + 1)D1 = P̆k

(
I2N + ΛP̆k

)−1
+ kD1

(
I2N −Λ

(
I2N + P̆kΛ

)−1
P̆k

)
+ I2N ⇒

P̆k+1 + (k + 1)D1 = P̆k

(
I2N + ΛP̆k

)−1
+ kD1 + I2N

where the result ΛD1 = 02N×2N has been employed once more. Finally, from the last
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expression we obtain

P̆k+1 = P̆k

(
I2N + ΛP̆k

)−1
+ D3 (A.28)

where

D3 = I2N −D1 =


Iξ×ξ 0ξ×2

02×ξ 02×2




The solution of this recursion is derived employing the following lemma (adapted from [58]):

Lemma 12 Suppose P̆(0)
k is the solution to the Riccati recursion

P̆k+1 = P̆k

(
I2N + ΛP̆k

)−1
+ D3 (A.29)

= P̆k + P̆k

√
Λ

(
I2N +

√
ΛP̆k

√
Λ

)−1√
ΛP̆k + D3 (A.30)

with zero initial condition. Then the solution to this recursion when the initial covariance

matrix is an arbitrary positive semidefinite matrix P̆0, is defined by the relation

P̆k+1 − P̆(0)
k+1 = Ψ(0)

p (k + 1, 0)
(
I2N + P̆0Jk+1

)−1
P̆0Ψ(0)

p (k + 1, 0)T (A.31)

where

Ψ(0)
p (k + 1, 0) =

(
I2N −P

√
Λ

(
I2N +

√
ΛP

√
Λ

)−1√
Λ

)k+1

(I2N + PJk+1) (A.32)

In these expressions P is any solution to the discrete algebraic Riccati equation (DARE)

P = P−P
√

Λ
(
I2N +

√
ΛP

√
Λ

)−1√
ΛP + D3 (A.33)

and Jk denotes the solution to the dual Riccati recursion with zero initial condition:

Jk+1 = Jk + Λ− Jk (I2N + Jk)
−1 Jk, J0 = 02N×2N (A.34)

We now apply this lemma to derive the steady-state value of P̆k, when the initial
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covariance or the robots’ position estimates is an arbitrary positive semidefinite matrix P0,

in which case we have

P̆0 = Pnn0 − 0 ·D1 = UTPn0U = UTQ−1/2
u P0Q−1/2

u U (A.35)

We first note that the steady-state solution to the recursion in (A.30) with zero initial

condition can be directly derived by the definition of P̆k in (A.27) and the steady-state

solution for Pnn with zero in initial condition, given in (A.26). We obtain:

P̆(0)
ss (k) = D2 (A.36)

Substitution of P̆(0)
ss for P in (A.33) verifies that P̆(0)

ss is a solution of the DARE, and

therefore:

Ψ(0)
p (k + 1, 0) =

(
I2N − P̆(0)

ss

√
Λ

(
I2N +

√
ΛP̆(0)

ss

√
Λ

)−1√
Λ

)k+1 (
I2N + P̆(0)

ss Jk+1

)

=
(
I2N + P̆(0)

ss Λ
)−(k+1) (

I2N + P̆(0)
ss Jk+1

)

=


 diagξ

(
1 + λi

2 + λi

√
1
4 + 1

λi

)
0ξ×2

02×ξ I2



−(k+1) (

I2N + P̆(0)
ss Jk+1

)
(A.37)

where we have applied the matrix inversion lemma to simplify the expression. To obtain

the asymptotic value of this expression as k →∞, we note that

(
1 +

λi

2
+ λi

√
1
4

+
1
λi

)
> 1 ⇒ lim

k→∞

(
1 +

λi

2
+ λi

√
1
4

+
1
λi

)−(k+1)

= 0

Therefore we obtain:

lim
k→∞

Ψ(0)
p (k + 1, 0) = D1

(
I2N + P̆(0)

ss Jss

)
(A.38)

where Jss is the steady-state solution of the dual Riccati recursion (A.34). To compute this

solution, we observe that, since the initial condition of this recursion is zero, at k = 0 the

right-hand side of (A.34) is a diagonal matrix. By induction, it is simple to show that Jk

will retain its diagonal structure for all k ≥ 0, and therefore the solution to the recursion
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is obtained by solving a set of independent scalar recursions, for the diagonal elements

Jk(i, i), i = 1 . . . 2N . These recursions are given by

Jk+1(i, i) = Jk(i, i) + λi − Jk(i, i)2

1 + Jk(i, i)
, i = 1 . . . 2N − 2 (A.39)

while the elements Jk(2N−1, 2N−1) and Jk(2N, 2N) remain equal to zero for all time. By

evaluating the steady state solution of these recursions (i.e., by requiring that Jk+1(i, i) =

Jk(i, i), and solving the resulting equations) we obtain the following solution for Jk at steady

state:

Jss =




diagξ

(
λi
2 +

√
λ2

i
4 + λi

)
0ξ×2

02×ξ 02×2


 (A.40)

Substituting this expression as well as the result of (A.36) in (A.38), we obtain:

lim
k→∞

Ψ(0)
p (k + 1, 0) = D1

Using this result in (A.31) yields

lim
k→∞

(
P̆k+1 − P̆(0)

k+1

)
= lim

k→∞

(
Ψ(0)

p (k + 1, 0)
(
I2N + P̆0Jk+1

)−1
P̆0Ψ(0)

p (k + 1, 0)T

)

= D1

(
I2N + P̆0Jss

)−1
P̆0D1

and therefore

P̆ss = lim
k→∞

P̆k+1 = P̆(0)
ss + D1

(
I2N + P̆0Jss

)−1
P̆0D1

This result allows us to evaluate the asymptotic covariance bound for the case when none

of the robots has access to absolute position information. Using (A.27), we obtain

Pnnss = kD1 + D2 + D1

(
I2N + P̆0Jss

)−1
P̆0D1

Using the relation Pu
k = Q1/2

u UPnnk
UTQ1/2

u , we can now compute each of the three terms

of (2.53). Specifically, the first term equals kQ1/2
u UD1UTQ1/2

u , the second term equals
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Q1/2
u UD2UTQ1/2

u , while the third one equals Q1/2
u UD1

(
I2N + P̆0Jss

)−1
P̆0D1UTQ1/2

u .

To prove these results, we note that the matrix U can be partitioned as:

U = [S V] (A.41)

where S is a 2N × (2N − 2) matrix whose columns span the range of Cu, while V is the

2N × 2 matrix whose columns span the nullspace of Cu (cf. (A.22)). Using this result, we

see that

Q1/2
u UD1UTQ1/2

u = Q1/2
u VVTQ1/2

u

Substituting from (A.22) in the last expression yields:

Q1/2
u UD1UTQ1/2

u = qT1N×N ⊗ I2 (A.42)

which provides us with the first term of (2.53). The derivation of the second term is

straightforward, by substituting for D2, while for the third term, which expresses the effect

of the initial uncertainty, we obtain:

Pinit = Q1/2
u UD1

(
I2N + P̆0Jss

)−1
P̆0DT

1 UTQ1/2
u

= Q1/2
u UD1UTU

(
I2N + UTQ−1/2

u P0Q−1/2
u UJss

)−1
UTQ−1/2

u P0Q−1/2
u UDT

1 UTQ1/2
u

where we have used (A.35). Employing the result of (A.42) in the above expression yields

Pinit = q2
T (1N×N ⊗ I2)Q−1/2

u

(
I2N + Q−1/2

u P0Q−1/2
u UJssUT

)−1

×Q−1/2
u P0Q−1

u (1N×N ⊗ I2) (A.43)

= q2
T (1N×N ⊗ I2)Q−1/2

u

(
Q1/2

u + P0Q−1/2
u UJssUT

)−1
P0Q−1

u (1N×N ⊗ I2)

= q2
T (1N×N ⊗ I2)Q−1

u

(
I2N + P0Q−1/2

u UJssUTQ−1/2
u

)−1
P0Q−1

u (1N×N ⊗ I2)

(A.44)

At this point, we note that the term UJssUT appearing in the last expression equals
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(cf. (A.40)):

UJssUT = diag

(
λi

2
+

√
λ2

i

4
+ λi

)
(A.45)

Moreover, from the properties of the Kronecker product we obtain

1N×N ⊗ I2 = (1N×111×N )⊗ I2 = (1N×1 ⊗ I2) (11×N ⊗ I2)

Additionally, we note that if W is a 2N × 2N matrix, then

(1N×1 ⊗ I2)W (11×N ⊗ I2) = (1N×1 ⊗ I2) (11×N ⊗ I2)W (1N×1 ⊗ I2) (11×N ⊗ I2)

= (1N×1 ⊗ I2)
(

(11×N ⊗ I2)W (1N×1 ⊗ I2)
)

(11×N ⊗ I2)

= (1N×N ⊗ I2)⊗
(

(11×N ⊗ I2)W (1N×1 ⊗ I2)
)

Using the last result, in conjunction with (A.44) and (A.45), the third term in (2.53) can

be directly obtained.

A.7 Average value of the measurement covariance matrix

From (A.14) we note that evaluation of the average value of Roi(k + 1) requires the compu-

tation of the expected values of the following terms (omitting time indices for succinctness):

T1 =
∆̂pij∆̂p

T

ij

ρ̂2
ij

, T2 = ∆̂pij∆̂p
T

ij , and T3 = ∆̂pij∆̂p
T

i` (A.46)

for j, ` = 1 . . .Mi. The average value of T1 is easily derived by employing the polar coordi-

nate description of the vector ∆̂pij in terms of ρ̂ij and θ̂ij , which yields

T1 =
∆̂pij∆̂p

T

ij

ρ̂2
ij

=
1

ρ̂2
ij


 ρ̂2

ij cos2(θ̂ij) ρ̂2
ij sin(θ̂ij) cos(θ̂ij)

ρ̂2
ij sin(θ̂ij) cos(θ̂ij) ρ̂2

ij sin2(θ̂ij)



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=


 cos2(θ̂ij) sin(θ̂ij) cos(θ̂ij)

sin(θ̂ij) cos(θ̂ij) sin2(θ̂ij)




From the last expression we conclude that for any probability density function that guaran-

tees a uniform distribution for the bearing angle of the measurements (i.e., any symmetric

probability density function), the average value of the term T1 is

E{T1} =
1
2
I2

In order to compute the expected value of the terms T2 and T3, we assume that the robots

and landmarks are located in a square arena of side a, and that their positions are described

by uniformly distributed random variables in the interval [−a/2, a/2]. We can thus write

E{T2} = E{∆̂pij∆̂p
T

ij}

= E

{ 
 ∆̂x

2

ij ∆̂xij∆̂yij

∆̂yij∆̂xij ∆̂y
2

ij




}

=


 E{x2

j − 2xixj + x2
i } E{xjyj − xjyi − xiyj + xiyi}

E{yjxj − yjxi − yixj + yixi} E{y2
j − 2yjyi + y2

i }




=


 2E{x2

i } 0

0 2E{y2
i }




=




a2

6 0

0 a2

6




=
a2

6
I2

and similarly,

E{T3} = E{∆̂pij∆̂p
T

i`}

= E

{
 ∆̂xij∆̂xi` ∆̂xij∆̂yi`

∆̂yij∆̂xi` ∆̂yij∆̂yi`




}
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=


 E{xjx` − xix` − xjxi + x2

i } E{xjy` − xjyi − xiy` + xiyi}
E{yjx` − yjxi − yix` + yixi} E{yjy` − yiy` − yjyi + y2

i }




=


 E{x2

i } 0

0 E{y2
i }




=




a2

12 0

0 a2

12




=
a2

12
I2

These results enable us to obtain the average value of the matrices Roi(k), i = 1 . . . N .

Employing the linearity of the expectation operator yields

R̄i = E{Roi(k)}

=




(
1
2σ2

ρi
+ a2

6 σ2
φi

+ a2

6 σ2
θi

)
I2 . . . a2

12σ2
φi

I2

...
. . .

...
a2

12σ2
φi

I2 . . .
(

1
2σ2

ρi
+ a2

6 σ2
φi

+ a2

6 σ2
θi

)
I2




=
(

1
2
σ2

ρi
+

a2

12
σ2

φi
+

a2

6
σ2

θi

)
I2Mi +

a2

12
σ2

φi
(1Mi×Mi ⊗ I2)

A.8 RPMG reconfigurations

Our goal is to show that, once the RPMG resumes its initial topology after a series of

reconfigurations, the upper bound of (2.53) will be the same, as if no reconfigurations had

occurred. We here prove this result for the case where the RPMG is initially in topology

TA, then at time-step t1 assumes topology TB, and finally at time-step t2 it switches back

to its initial topology. The case of more general series of topology changes can be treated

similarly.

We first express the result of (2.53) with respect to the normalized covariance matrix

Pnk
= Q−1/2

u Pu
kQ

−1/2
u . In particular, we have

Pnss(k) = Q−1/2
u Pu

ss(k)Q−1/2
u
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= kqTQ−1/2
u (1N×N ⊗ I2)Q−1/2

u + U


 diagξ

(
1
2 +

√
1
4 + 1

λi

)
0ξ×2

02×ξ 02×2


UT (A.47)

+ q2
TQ−1/2

u (1N×N ⊗ I2)⊗

α β

β δ


Q−1/2

u

= kVVT + U


 diagξ

(
1
2 +

√
1
4 + 1

λi

)
0ξ×2

02×ξ 02×2


UT

+ q2
TQ−1/2

u (1N×N ⊗ I2)⊗

α β

β δ


Q−1/2

u (A.48)

where ξ = 2N − 2. Moreover, the third term in (2.53), which expresses the effect of the

initial uncertainty, can be written as (cf. (A.43)):

Pinit = q2
T (1N×N ⊗ I2)⊗


α β

β δ




= q2
T (1N×N ⊗ I2)Q−1/2

u (I2N + Pn0h(Cu))−1 Pn0Q
−1/2
u (1N×N ⊗ I2)

= Q1/2
u VVT (I2N + Pn0h(Cu))−1 Pn0VVTQ1/2

u

where

h(Cu) = Udiag

(
λi

2
+

√
λ2

i

4
+ λi

)
UT = Udiag(h(λi))UT (A.49)

Therefore (A.48) is equivalently written as

Pnss(k) = kVVT + U


 diagξ

(
1
2 +

√
1
4 + 1

λi

)
0ξ×2

02×ξ 02×2


UT

+ VVT (I2N + Pn0h(Cu))−1 Pn0VVT (A.50)

Introducing the notation

f(λi) =
1
2

+
√

1
4

+
1
λi
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further simplifies the preceding expression, to yield:

Pnss(k) = kVVT + U


 diagξ (f(λi)) 0ξ×2

02×ξ 02×2


UT + VVT (I2N + Pn0h(Cu))−1 Pn0VVT

= V
(
kI2 + VT (I2N + Pn0h(Cu))−1 Pn0V

)
VT (A.51)

+ U


 diagξ (f(λi)) 0ξ×2

02×ξ 02×2


UT

= U


 0ξ×ξ 0ξ×2

02×ξ kI2 + VT (I2N + Pn0h(Cu))−1 Pn0V


UT (A.52)

+ U


 diagξ (f(λi)) 0ξ×2

02×ξ 02×2


UT

= U


 diagξ (f(λi)) 0ξ×2

02×ξ kI2 + VT (I2N + Pn0h(Cu))−1 Pn0V


UT (A.53)

where we have employed the partitioning of U shown in (A.41), in the transition from (A.51)

to (A.52).

Assuming that the RPMG remains in the topology TA for the time-step interval [0, t1],

and that this interval is of sufficient duration for the covariance to reach steady state, then

at time-step t1 the normalized covariance matrix is given by

Pnss(t1) = UA


 diagξ (f(λAi)) 0ξ×2

02×ξ t1I2 + MA(Pn0)


UT

A (A.54)

where

MA(Pn0) = VT (I2N + Pn0h(CA))−1 Pn0V (A.55)

In these expressions the quantities that depend on the RPMG topology TA have been

denoted by the subscript A. It is important to note that the basis vectors of the nullspace of

the matrix Cu are independent of the topology of the RPMG and thus no subscript is needed

to distinguish them. This essentially is a consequence of the fact that the unobservable
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subspace remains the same, regardless of the topology of the RPMG.

The proof proceeds in three steps: first, we prove the desired result for the case where

the topology TB is a connected one. Then, we carry out the proof for the case where during

the second phase, all the robots localize using DR only (i.e., TB is an empty graph). Finally,

we prove the result for the general case, where TB is any arbitrary graph topology. These

three cases are described next

Connected RPMG topology during [t1, t2]

When the RPMG TB during the time interval [t1, t2] is a connected one, we can apply the

result of (A.53) to obtain the normalized covariance at time-step t2. Assuming that steady

state is reached, we obtain:

Pnss(t2) = UB


 diagξ (f(λBi)) 0ξ×2

02×ξ (t2 − t1)I2 + MB (Pnss(t1))


UT

B (A.56)

where

MB (Pnss(t1)) = VT (I2N + Pnss(t1)h(CB))−1 Pnss(t1)V

We now derive a simpler expression for MB (Pnss(t1)). We start by applying the matrix

inversion lemma (cf. Appendix D), to obtain

MB (Pnss(t1)) = VT (I2N + Pnss(t1)h(CB))−1 Pnss(t1)V (A.57)

= VTPnss(t1)V −VTPnss(t1) (I2N + h(CB)Pnss(t1))
−1 h(CB)Pnss(t1)V

= VTPnss(t1)V −VTPnss(t1) (I2N + h(CB)Pnss(t1))
−1 Z (A.58)

Next, we study the matrix product Z = h(CB)Pnss(t1)V, appearing in the last equation.

We have

Z = UB diag (h(λBi))U
T
BUA


 diagξ (f(λAi)) 0ξ×2

02×ξ t1I2 + MA(Pn0)


UT

AV

= UB diag (h(λBi))


ST

B

VT




[
SA V

]

 diagξ (f(λAi)) 0ξ×2

02×ξ t1I2 + MA(Pn0)





ST

A

VT


V
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= UB diag (h(λBi))


ST

BSA 0ξ×2

02×ξ I2





 diagξ (f(λAi)) 0ξ×2

02×ξ t1I2 + MA(Pn0)





0ξ×2

I2




In the last line we have used the fact that ST
AV = ST

BV = 0ξ×2, which results from the

orthogonality of the columns of the matrices UA and UB. We also note that the last two

diagonal elements of diag (h(λBi)) (i.e., the ones that correspond to the zero eigenvalues)

are equal to zero (cf. (A.49)). Thus, Z can be written as

Z = UB


diagξ (h(λBi))S

T
BSA 0ξ×2

02×ξ 02×2





 diagξ (f(λAi)) 0ξ×2

02×ξ t1I2 + MA(Pn0)





ST

A

VT


V

= UB


diagξ (h(λBi))S

T
BSA diagξ (f(λAi)) 0ξ×2

02×ξ 02×2





0ξ×2

I2




= UB


diagξ (h(λBi))S

T
BSA diagξ (f(λAi)) 0ξ×2

02×ξ 02×2





0ξ×2

I2




= 0ξ×2

This result means that the second term in (A.58)vanishes, and thus MB (Pnss(t1)) can be

written as

MB (Pnss(t1)) = VTPnss(t1)V

= VTUA


 diagξ (f(λAi)) 0ξ×2

02×ξ t1I2 + MA(Pn0)


UT

AV

= VT
[
SA V

]

 diagξ (f(λAi)) 0ξ×2

02×ξ t1I2 + MA(Pn0)





ST

A

VT


V

=
[
02×ξ I2

]

 diagξ (f(λAi)) 0ξ×2

02×ξ t1I2 + MA(Pn0)





0ξ×2

I2




= t1I2 + MA(Pn0) (A.59)

179



Substitution of this result in (A.56) yields

Pnss(t2) = UB


 diagξ (f(λBi)) 0ξ×2

02×ξ t2I2 + MA(Pn0)


UT

B (A.60)

From the last expression, we conclude that the term describing the effect of the initial

uncertainty is the same for both topologies TA and TB, and equals MA(Pn0).

If at time-step t2 the RPMG assumes its initial topology TA once again, then at some

time t3 > t2, once steady-state is reached, the normalized covariance is given by

Pnss(t3) = UA


 diagξ (f(λAi)) 0ξ×2

02×ξ (t3 − t2)I2 + MA(Pnss(t2))


UT

A (A.61)

By derivations completely analogous to those of (A.57)-(A.59), we can prove that

MA(Pnss(t2)) = t2I2 + MA(Pn0) (A.62)

and therefore:

Pnss(t3) = UA


 diagξ (f(λAi)) 0ξ×2

02×ξ t3I2 + MA(Pn0)


UT

A (A.63)

This result is the same one that would result from use of (A.53) if no reconfigurations had

occurred. We have thus proved the lemma for the case where the intermediate topology TB

is a connected one.

Empty RPMG topology during [t1, t2]

If during the intermediate phase the robots localize based only on odometry, then during

this time interval their covariance bounds are propagated by

Pu
k+1 = Pu

k + Qu
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or, expressed using the normalized covariance,

Pnk+1
= Pnk

+ I2N

Thus, at time-step t2 we would have

Pnod
(t2) = Pnss(t1) + (t2 − t1)I2N

= UA


 diagξ (f(λAi)) 0ξ×2

02×ξ t1I2 + MA(Pn0)


UT

A + (t2 − t1)UAUT
A

= UA


 diagξ (f(λAi)) + (t2 − t1)Iξ 0ξ×2

02×ξ t2I2 + MA(Pn0)


UT

A (A.64)

By comparison of this result with that of (A.60), we observe that the basic structure of the

covariance matrix is the same. Thus, by following steps analogous to those of (A.57)-(A.59)

we can show that

MA(Pnod
(t2)) = t2I2 + MA(Pn0) (A.65)

and therefore (A.63) holds without change.

Arbitrary RPMG topology during [t1, t2]

Up to this point, we have proven the lemma for the situations where the intermediate

topology, TB, is either a connected or an empty graph. To show that the lemma also

holds for any other possible topology TB (for example, the case in which only some of the

robots localize using odometry, while a subgroup of robots can still record relative position

measurements) we study the Riccati recursion that describes the normalized covariance

during the intermediate phase. This recursion can be written as:

Pnk+1
=

(
P−1

nk
+ CB

)−1 + I2N (A.66)

where CB is given by

CB = Q1/2
u HT

Bo
R−1

Bu
HBoQ

1/2
u

181



We now consider a graph topology T ′B, which is connected, and contains the RPMG of TB

as a subgraph. For the topology T ′B, we can show that

HT
Bo

R−1
Bu

HBo ≺ H′T
Bo

R′−1
Bu

H′
Bo

and thus

Q1/2
u HT

Bo
R−1

Bu
HBoQ

1/2
u ≺ Q1/2

u H′T
Bo

R′−1
Bu

H′
Bo

Q1/2
u ⇒

CB ≺ C′
B (A.67)

Using this result, and employing the monotonicity properties of the Riccati in (A.66), it

can be shown that the normalized covariance corresponding to TB and T ′B satisfy:

Pnss(t2) º P′
nss

(t2) (A.68)

Similarly, using the monotonicity properties of the Riccati we obtain

Pnss(t2) ¹ Pnod
(t2)

Combining the last two results yields:

P′
nss

(t2) ¹ Pnss(t2) ¹ Pnod
(t2) (A.69)

In Appendix A.9 it is shown that the matrix

MA(X) = VT (I2N + Xh(CA))−1 XV

is a matrix-increasing function of X. Employing this result, in conjunction with (A.69), we

obtain

MA(P′
nss

(t2)) ¹ MA(Pnss(t2)) ¹ MA(Pnod
(t2))
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However, since T ′B is a connected topology, the results of the first part of this appendix

hold, and thus

MA(P′
nss

(t2)) = t2I2 + MA(Pn0)

Combining this result with that of (A.65) we conclude that

MA(Pnss(t2)) = MA(Pnod
(t2)) = MA(P′

nss
(t2)) = t2I2 + MA(Pn0) (A.70)

This implies that for any possible topology, the value of MA will be identical to the one

derived for the case of a connected graph and for the case of Dead Reckoning, and the proof

is complete.

A.9 Monotonicity of MA

In this appendix we show that the matrix

MA = VTX (I2N + h(Cu)X)−1 V (A.71)

is matrix-increasing in the argument X, i.e.,

X′ º X ⇒ MA(X′) º MA(X) (A.72)

We note that if X is invertible (which is the case of interest), then

MA = VT
(
X−1 + h(Cu)

)−1 V (A.73)

And from the last relation it follows that

X′ º X ⇒

X′−1 ¹ X−1 ⇒

X′−1 + h(Cu) ¹ X−1 + h(Cu) ⇒
(
X′−1 + h(Cu)

)−1 º (
X−1 + h(Cu)

)−1 ⇒
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VT
(
X′−1 + h(Cu)

)−1 V º VT
(
X−1 + h(Cu)

)−1 V ⇒

MA(X′) º MA(X)

A.10 Proof of Lemma 10

First, we note that the properties in (2.113) are equivalent to the expression:

Pu
k = CkP′

kC
T
k (A.74)

where

Ck = Φk ·Φk−1 · · ·Φ0

We will prove the above property by induction. Let us assume that this property holds at

time-step `, i.e., that:

Pu
` = C`P′

`C
T
` (A.75)

From the Riccati recursion we obtain:

Pu
`+1 = Φ`+1

(
Pu

` −Pu
` H

T
(
HPu

` H
T + Ru

)−1
HPu

`

)
ΦT

`+1 + GQuGT

= Φ`+1

(
Pu

` −Pu
` H

T
(
HPu

` H
T + Ru

)−1
HPu

` + GQuGT
)
ΦT

`+1 (A.76)

In the last expression, we have employed the property (cf. (2.85), and (2.107)):

GQuGT =


q1(1M×M ⊗ I2) + q2I2M 02M×2M

02M×2M 02M×2M


 (A.77)

= Φ`+1


q1(1M×M ⊗ I2) + q2I2M 02M×2M

02M×2M 02M×2M


ΦT

`+1 (A.78)

= Φ`+1GQuGTΦT
`+1 (A.79)
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Substitution from (A.75) into (A.76), yields:

Pu
`+1 = Φ`+1C`

(
P′

` −P′
`C

T
` HT

(
HC`P′

`C
T
` HT + Ru

)−1
HC`P′

` + GQuGT
)
CT

` ΦT
`+1

= C`+1

(
P′

` −P′
`C

T
` HT

(
HC`P′

`C
T
` HT + Ru

)−1
HC`P′

` + GQuGT
)
CT

`+1 (A.80)

At this point, we employ the following relations, which can be easily verified:

CT
` HT = HTCT

` (A.81)

Ru = C`RuCT
` (A.82)

Substitution in (A.80) yields

Pu
`+1 = C`+1

(
P′

` −P′
`H

T
(
HP′

`H
T + Ru

)−1
HP′

` + GQuGT
)
CT

`+1

= C`+1P′
`+1C

T
`+1 (A.83)

We have thus shown that if the property of (A.75) holds for time index `, it then also holds

for time index ` + 1. For ` = 0, the property can be easily shown to hold, since C0 = I2M .

Thus, the proof by induction is complete.

A.11 Steady-state solution of the Riccati recursion for the

dual map

To determine the asymptotic solution of (2.111), we employ the following lemma, which has

been adapted from [58]:

Lemma 13 Suppose P′(0)
k is the solution to the discrete-time Riccati recursion in (2.111)

with initial value P′
0 = 04M×4M . Then the solution with the initial condition given in (2.108)

is determined by the identity

P′
k −P′(0)

k = Tk

(
I4M + P′

0Jk

)−1 P′
0T

T
k (A.84)
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where Tk is given by

Tk = (I4M −KpH)k (I4M + PJk) (A.85)

In these expressions, P is any solution to the Discrete Algebraic Riccati Equation (DARE):

P = P−PHT (HPHT + Ru)−1HP + GQuGT (A.86)

and Kp = PHT
(
Ru + HPHT

)−1. Jk denotes the solution to the dual Riccati recursion:

Jk+1 = Jk − JkG(Q−1
u + GTJkG)−1GTJk + HTR−1

u H (A.87)

with zero initial condition, J0 = 04M×4M .

The derivations comprise three intermediate results:

Intermediate Result 1

We first derive the solution to (2.111) with zero initial condition. When the initial covari-

ance for the map coordinates is zero, the submatrix of P′
k corresponding to the global map

will remain equal to zero for all k, since no uncertainty is ever added to the static land-

marks’ positions. Therefore, the only submatrix of P′
k with nonzero value is the submatrix

RP′
k, which corresponds to the relative map. To simplify the derivations, we introduce the

eigenvalue decomposition of the matrix Qu, which we denote as

Qu = UΛUT = Udiag(λi)UT

Substitution of the values of the matrices H, G, Ru and Qu in (2.111), leads to the following

recursion for RP′
k:

RP′
k+1 = RP′

k − RP′
k

(
RP′

k + rI2M

)−1 RP′
k + UΛUT ⇒ (A.88)

UT RP′
kU = UT RP′

kU−UT RP′
kU

(
UT RP′

kU + rI2M

)−1
UT RP′

kU + Λ ⇒(A.89)

P′
nk+1

= P′
nk
−P′

nk

(
P′

nk
+ rI2M

)−1 P′
nk

+ Λ (A.90)
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where we have denoted

P′
nk

= UT RP′
kU (A.91)

We note that since P′
nk

is initially zero, and the matrix coefficients in the above recursion

are diagonal, P′
nk

will retain a diagonal structure for all time. The steady-state value of

P′
nk

, which we denote as P′
n∞ = diag(p∞i), is found by solving the equations:

p∞i = p∞i −
p2∞i

p∞i + r
+ λi, i = 1, ..., 2M (A.92)

Solving these equations and substituting in (A.91), we obtain the following steady-state

solution for RP′
k:

RP′
∞ = Udiag

(
λi

2
+

√
λ2

i

4
+ λir

)
UT (A.93)

and therefore the steady state solution to the Riccati in (2.111) with zero initial condition

is given by

P′(0)
∞ =



Udiag

(
λi
2 +

√
λ2

i
4 + λir

)
UT 02M×2M

02M×2M 02M×2M


 (A.94)

Intermediate Result 2

We next derive the steady-state solution to the dual Riccati in (A.87). Substituting the

values of the matrices H, G, Ru and Qu in this recursion, and studying the block structure

of the matrices that appear in it, leads to the observation that all block submatrices of Jk,

except for the one corresponding to the relative map, remain zero. The time evolution of

this submatrix is described by the recursion:

RJk+1 = RJk +
1
r
I2M − RJk

(
RJk + Udiag

(
1
λi

)
UT

)−1
RJk ⇒

UT RJk+1U = UT RJkU +
1
r
I2M −UT RJkU

(
UT RJkU + diag

(
1
λi

))−1

UT RJkU ⇒
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Jnk+1
= Jnk

+
1
r
I2M − Jnk

(
Jnk

+ diag
(

1
λi

))−1

Jnk

where we have defined

Jnk
= UT RJkU (A.95)

Similarly to the case of P′
nk

, we observe that Jnk
remains diagonal for all time. Its asymp-

totic value is found by setting Jnk
= Jnk+1

= Jn∞ , and is equal to

Jn∞ = diag
(

1
2r

+
√

1
4r2

+
1

λir

)

Therefore, the steady-state value of RJk is

RJ∞ = Udiag
(

1
2r

+
√

1
4r2

+
1

λir

)
UT = Udiag(Jn∞)UT (A.96)

and the asymptotic solution of the dual Riccati with zero initial condition is given by

J∞ =




RJ∞ 02M×2M

02M×2M 02M×2M


 =


Udiag

(
1
2r +

√
1

4r2 + 1
λir

)
UT 02M×2M

02M×2M 02M×2M


 (A.97)

Intermediate Result 3

The solution requires computation of the asymptotic value of the right-hand side of (A.84).

For this purpose, we now compute the asymptotic value of the matrix Tk (cf. (A.85)). We

first note that P′(0)
∞ is a solution to the DARE in (A.86) (this can be verified by substitution),

and thus

Tk = (I4M −KpH)k (I4M + PJk)

=
(
I4M −P′(0)

∞ HT
(
Ru + HP′(0)

∞ HT
)−1

H
)k (

I4M + P′(0)
∞ Jk

)

=




(
I2M − RP′(0)

∞
(
rI2M + RP′(0)

∞
)−1

)k

02M×2M

02M×2M I2M




(
I4M + P′(0)

∞ Jk

)
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=


Udiag

(
1− p∞

r+p∞

)k
UT 02M×2M

02M×2M I2M




(
I4M + P′(0)

∞ Jk

)

At this point we note that

1− p∞
r + p∞

< 1

and thus

lim
k→∞

(
1− p∞

r + p∞

)k

= 0

Therefore, we obtain

lim
k→∞

Tk =


02M×2M 02M×2M

02M×2M I2M


 (A.98)

Steady-state solution

To compute the steady-state solution of (2.111), we evaluate the right-hand side of (A.84)

as k →∞. Substitution from (2.108), (A.97) and (A.98) yields:

P′
∞ −P′(0)

∞ = T∞
(
I4M + P′

0J∞
)−1 P′

0T
T
∞

=


02M×2M 02M×2M

02M×2M I2M





I2M + (Qu + rI2M )RJ∞ 02M×2M

rRJ∞I2M I2M



−1

×

(Qu + rI2M ) rI2M

rI2M rI2M





02M×2M 02M×2M

02M×2M I2M




=


02M×2M 02M×2M

02M×2M I2M





Udiag (1 + (λi + r)J∞i)U

T 02M×2M

−Udiag (rJ∞i)U
T I2M



−1 

02M×2M rI2M

02M×2M rI2M




=


02M×2M 02M×2M

02M×2M I2M





 Udiag

(
1

1+(λi+r)J∞i

)
UT 02M×2M

−Udiag
(

rJ∞i
1+(λi+r)J∞i

)
UT I2M





02M×2M rI2M

02M×2M rI2M




=


02M×2M 02M×2M

02M×2M Udiag
(
r − r2J∞i

1+(λi+r)J∞i

)
UT


 (A.99)
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Substitution for the values of J∞i from (A.96) in the last expression, and simple algebraic

manipulation, yields

P′
∞ −P′(0)

∞ =



02M×2M 02M×2M

02M×2M Udiag
(
−λi

2 +
√

λ2
i
4 + λir

)
UT


 (A.100)

Combining the last result with that of (A.94), we obtain

P′
∞ =



Udiag

(
λi
2 +

√
λ2

i
4 + λir

)
UT 02M×2M

02M×2M Udiag
(
−λi

2 +
√

λ2
i
4 + λir

)
UT


 (A.101)

This expression provides an upper bound for the covariance of the augmented state vector

after every EKF propagation step. In order to derive a bound for the covariance immediately

after the update step of the EKF, we note that during propagation, the absolute map

covariance remains unchanged, while the uncertainty of the relative map increases. Using

this observation, we can show that an upper bound on the steady-state covariance matrix

of the relative map, immediately after every update step, is given by

RP′
∞ = Udiag

(
−λi

2
+

√
λ2

i

4
+ λir

)
UT (A.102)

while the asymptotic uncertainty of the absolute positions of the landmarks in SLAM is

bounded above by the matrix

GP′
∞ = Udiag

(
−λi

2
+

√
λ2

i

4
+ λir

)
UT (A.103)

We now employ the special structure of the matrix Qu (cf. (2.107)), in order to compute

its eigenvalues in closed form. The following result can be easily verified:

Lemma 14 The singular value decomposition of the matrix A = a1 (1m×m ⊗ I2) + a2I2m,

where a1, a2 > 0 is given by:

A = UA


(ma1 + a2)I2 02×2m

02m×2 a2I2m−2


UT

A (A.104)
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where UA is a unitary matrix. Moreover, if the singular value decomposition of a matrix

A′ is:

A′ = UA


 s1I2 02×2m

02m×2 s2I2m−2


UT

A (A.105)

then this matrix is equal to

A′ =
s1 − s2

m
(1m×m ⊗ I2) + s2I2m (A.106)

By application of this lemma, for UA ← U, a1 ← q1, a2 ← q2, m ← M , we obtain the

eigenvalues of Qu as λi = Mq1 +q2, for i = 1, 2, and λi = q2, for i = 3, . . . , 2M . As a result,

the singular values of the upper bounds shown in (A.102) and (A.103) are given by:

λpi = −Mq1 + q2

2
+

√
(Mq1 + q2)2

4
+ (Mq1 + q2)r, i = 1, 2 (A.107)

λpi = −q2

2
+

√
q2
2

4
+ q2r, i = 3, . . . , 2M (A.108)

The desired result follows directly from application of the second result of Lemma 14.

A.12 Upper bounds on robot pose uncertainty in SLAM

In this appendix, we derive some intermediate results that are used in the computation

of upper bounds on the robot pose uncertainty in SLAM. Using the asymptotic results

from (2.114) and the values of the Jacobian HXk
from (2.121), we obtain:

HXk
Pu
∞HT

Xk
= 2b1(1M×M ⊗ I2) + 2b2I2M ⇒ (A.109)

(
HXk

Pu
∞HT

Xk

)−1
=

1
2b2︸︷︷︸
α

I2M − b1

b2(2b2 + 2b1M)︸ ︷︷ ︸
β

(1M×M ⊗ I2) (A.110)

= αI2M − β(1M×M ⊗ I2) (A.111)
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where we have used the result of Appendix D. Substitution in (2.124) yields the following

asymptotic value for Pu
θθ:


 (αM − βM2)I2 (α− βM)

∑M
i=1 p̆i

(α− βM)
∑M

i=1 p̆T
i α

∑M
i=1

(
p̆T

i p̆i

)− β
(∑M

i=1 p̆i

)T (∑M
i=1 p̆i

)


−1

=


Ppp PPφ

PT
Pφ Pφφ




(A.112)

Employing the formula for the inversion of a partitioned matrix (cf. Appendix E),

we obtain the following expression for Pφφ, which is an upper bound of the asymptotic

orientation variance:

Pφφ =
1
α

1
∑M

i=1

(
p̆T

i p̆i

)− 1
M

(∑M
i=1 p̆T

i

)(∑M
i=1 p̆i

) (A.113)

For any i, j, the property p̆T
i p̆j = RpT

i
Rpj holds, and thus we can re-write the denominator

of the expression for Pφφ as

D =
1
M

(
M

M∑

i=1

(
RpT

i
Rpi

)−
(

M∑

i=1

RpT
i

)(
M∑

i=1

Rpi

))

Moreover, if we denote the distance between landmarks i and j as ρij , we obtain

M∑

i=1

M∑

j=1

ρ2
ij =

M∑

i=1

M∑

j=1

(Rpi − Rpj)T (Rpi − Rpj)

=
M∑

i=1




M∑

j=1

(
RpT

i
Rpi

)
+

M∑

j=1

(
RpT

j
Rpj

)− 2
M∑

j=1

(
RpT

j
Rpi

)



=
M∑

i=1


MRpT

i
Rpi +

M∑

j=1

(
RpT

j
Rpj

)− 2RpT
i




M∑

j=1

Rpj







= M
M∑

i=1

(
RpT

i
Rpi

)
+ M

M∑

j=1

(
RpT

j
Rpj

)− 2

(
M∑

i=1

RpT
i

)


M∑

j=1

Rpj




= 2

(
M

M∑

i=1

(
RpT

i
Rpi

)−
(

M∑

i=1

RpT
i

)(
M∑

i=1

Rpi

))

= 2MD (A.114)
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Using this result, the upper bound on the robot’s orientation uncertainty is written as:

Pφφ =
1
α

2M∑M
i=1

∑M
j=1 ρ2

ij

=
4Mb2∑M

i=1

∑M
j=1 ρ2

ij

(A.115)

We now show how an upper bound on the covariance matrix of the robot’s position

estimates can be determined. From (A.112) we obtain:

Ppp =

(αM − βM2)I2 − (α− βM)2

α
∑M

i=1

(
p̆T

i p̆i

)− β
(∑M

i=1 p̆i

)T (∑M
i=1 p̆i

)
(

M∑

i=1

p̆i

)(
M∑

i=1

p̆T
i

)


−1

which, by application of the matrix inversion lemma (cf. Appendix D) and simple algebraic

manipulation, yields:

Ppp =
1

αM − βM2
I2 +

(∑M
i=1 p̆i

)(∑M
i=1 p̆T

i

)

αM2
(∑M

i=1

(
p̆T

i p̆i

)− 1
M

(∑M
i=1 p̆T

i

)(∑M
i=1 p̆i

))

=
2b2 + 2Mb1

M
I2 +

2b2

(∑M
i=1 p̆i

)(∑M
i=1 p̆T

i

)

M2
(∑M

i=1

(
p̆T

i p̆i

)− 1
M

(∑M
i=1 p̆T

i

)(∑M
i=1 p̆i

))

︸ ︷︷ ︸
T2

We now compute the trace of T2, which will be useful in determining an upper bound on

Ppp:

trace(T2) =
2b2

M
trace




1
M

(∑M
i=1 p̆i

)(∑M
i=1 p̆T

i

)

∑M
i=1

(
p̆T

i p̆i

)− 1
M

(∑M
i=1 p̆T

i

)(∑M
i=1 p̆i

)



=
2b2

M




1
M

(∑M
i=1 p̆T

i

)(∑M
i=1 p̆i

)

∑M
i=1

(
p̆T

i p̆i

)− 1
M

(∑M
i=1 p̆T

i

)(∑M
i=1 p̆i

)



=
2b2

M




1
M

(∑M
i=1

RpT
i

)(∑M
i=1

Rpi

)

∑M
i=1

(
RpT

i
Rpi

)− 1
M

(∑M
i=1

RpT
i

)(∑M
i=1

Rpi

)



=
2b2

M




∑M
i=1

(
RpT

i
Rpi

)
∑M

i=1

(
RpT

i
Rpi

)− 1
M

(∑M
i=1

RpT
i

)(∑M
i=1

Rpi

) − 1



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=
4b2

M

∑M
i=1

(
RpT

i
Rpi

)
∑M

i=1

∑M
j=1 ρ2

ij

− 2b2

M
(A.116)
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Appendix B

Appendix for Chapter 3

B.1 Proof of SDP equivalence

In this appendix, we prove that the objective value corresponding to the point Y ? =

(f?
1 , . . . , f?

M ,P?
ss), with P?

ss defined in (3.41), is equal to the optimal objective value for

problem (3.40), i.e., that

WpP?
ssW

T
p = WpP?WT

p (B.1)

To simplify the notation, in the following derivations we employ the substitutions C =
∑M

i=1 fiCi and C? =
∑M

i=1 f?
i Ci. In order to prove (B.1) we will employ three intermediate

results:

Intermediate Result 1

Pre- and post-multiplying (3.39) by J−1 results in the equivalent matrix inequality:

−FcJ−1 − J−1FT
c −Qc + J−1CJ−1 º 0

Thus, at the optimal solution, we obtain

FcJ?−1 + J?−1FT
c + Qc − J?−1C?J?−1 = A
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where A ¹ 0. If we denote Q′
c = Qc−A, then it is Q′

c º Qc, and we see that J?−1 satisfies

an ARE given by

FcJ?−1 + J?−1FT
c + Q′

c − J?−1C?J?−1 = 0

It can be shown, that the solution of an algebraic Riccati equation is a monotonically

increasing function of Qc [45]. Therefore, by comparison of the last ARE to the ARE

in (3.41), we conclude that

J?−1 º P?
ss ⇒ J? ¹ P?−1

ss (B.2)

Additionally, from the property J?−1 º P?
ss we derive the first intermediate result:

WpJ?−1WT
p º WpP?

ssW
T
p (B.3)

Intermediate Result 2

The Karush-Kuhn-Tucker (KKT) optimality conditions [12] for problem (3.40) include the

following “complementary slackness” conditions:

trace(Λ?
1(J

?−1 −P?)) = 0 (B.4)

trace
(
Λ?

2

(
J?Fc + FT

c J?− C? + J?QcJ?)
)

= 0 (B.5)

λ?
i f

?
i = 0, i = 1 . . . M

µ?
i (f

?
i − fimax) = 0, i = 1 . . . M

ν?

(
M∑

i=1

f?
i − ftotal

)
= 0

ξ?
i

(
eT

3iP?e3i − εφ

)
= 0, i = 1 . . . N

as well as the “stationarity” condition:

∇ trace(WpPWT
p ) +∇ trace

(
Λ?

1

(
J−1 − P))

+∇ trace
(
Λ?

2

(
JFc + FT

c J−C + JQcJ
))
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−
M∑

i=1

∇λ?
i fi +

M∑

i=1

∇µ?
i (fi − fimax) +∇ν?

(
M∑

i=1

fi − ftotal

)
+

N∑

i=1

∇ξ?
i

(
eT

3iPe3i − εφ

)
= 0

(B.6)

where Λ1,Λ2 ∈ S3N
+ , and λi, µi, ν, ξi ≥ 0 are the variables of the dual problem, and the

superscript ? indicates the value of a variable at the optimal solution. In (B.6) differentiation

is with respect to the primal variables P, J, fi, and the derivatives are computed at the

optimal solution. Applying the derivative with respect to P, and evaluating at the optimal

point, yields:

0 = WpWT
p −Λ?

1 +
N∑

i=1

ξ?
i e3ieT

3i ⇒

Λ?
1 = WpWT

p +
N∑

i=1

ξ?
i e3ieT

3i ⇒ Λ?
1 = W′

pW
′T
p (B.7)

where W′
p is a diagonal matrix, whose diagonal elements corresponding to the robots’

positions are equal to 1, while the elements corresponding to the robots’ orientation are

equal to
√

ξ?
i , i = 1 . . . N .

We now employ the KKT complementary slackness condition with respect to the dual

variable Λ1 (cf. (B.4)), to obtain:

trace(Λ?
1(P? − J?−1)) = 0 ⇒

trace(W′T
p (P? − J?−1)W′

p) = 0 ⇒

W′T
p (P? − J?−1)W′

p = 0 (B.8)

This result follows from the fact that for any symmetric (positive or negative) semidefinite

matrix A,

trace(A) = 0 ⇒ A = 0

Pre- and post-multiplying (B.8) by Wp = WT
p , and using the fact that WpW′

p = Wp, we

obtain the second intermediate result:

WpP?WT
p = WpJ?−1WT

p (B.9)
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Intermediate Result 3

Applying (B.6) for the derivative with respect to J, and evaluating at the optimal solution,

yields

−J?−1Λ?
1J

?−1 + FT
c Λ?

2 + Λ?
2Fc + Λ?

2J
?Qc + QcJ?Λ?

2 = 0 (B.10)

We now pre-multiply (3.41) by Λ?
2P

?−1
ss , post-multiply by P?−1

ss , and apply the trace oper-

ator, to obtain the identity

trace
(
Λ?

2

(
P?−1

ss Fc + FT
c P?−1

ss −C? + P?−1
ss QcP?−1

ss

))
= 0

Subtracting this equation from the second complementary slackness condition (cf. (B.5)),

and rearranging terms, we find

trace
( (

J? −P?−1
ss

) (
Λ?

2Fc + FT
c Λ?

2 + Λ?
2J

?Qc + QcP?−1
ss Λ?

2

) )
= 0 (B.11)

Using the result of (B.10) to simplify this expression, and separating terms, yields

trace
( (

J? −P?−1
ss

)
J?−1Λ?

1J
?−1

)
= trace

( (
J? −P?−1

ss

)
Qc(J? −P?−1

ss )Λ?
2

)
(B.12)

At this point, we note that the right-hand side of this equation is a nonnegative quantity,

since the matrices
(
J? −P?−1

ss

)
Qc(J? −P?−1

ss ) and Λ?
2 are symmetric positive semidefinite.

We now show that the left hand side of (B.12) is nonpositive. Using the expression of (B.7),

as well as the property J? −P?−1
ss ¹ 0 (cf. (B.2)), we obtain

α = trace
((

J? −P?−1
ss

)
J?−1Λ?

1J
?−1

)

= trace
(
W′T

p J?−1
(
J? −P?−1

ss

)
J?−1W′

p

) ¹ 0

Combining this last result and the fact that the right-hand side of (B.12) is a nonnegative

quantity, we conclude that both sides must be equal to zero. Consequently,

W′T
p J?−1

(
J? −P?−1

ss

)
J?−1W′

p = 0 ⇒

W′T
p J?−1W′

p −W′T
p J?−1P?−1

ss J?−1W′
p = 0 (B.13)
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We now consider the following matrix:

E =


 P?

ss −J?−1W′
p

−W′T
p J?−1 W′T

p J?−1W′
p




This matrix will be used in conjunction with the following lemma:

Lemma 15 If A Â 0, and D is symmetric, then for any vector y of appropriate dimen-

sions, the minimum of 
x

y




T 
 A B

BT D





x

y




with respect to x is equal to yT
(
D−BTA−1B

)
y and is attained for x = −A−1By.

Applying this result, we see that the minimum value of the quadratic product [uT vT ]E[uT vT ]T

over all vectors [uT vT ]T is equal to

vT
(
W′T

p J?−1W′
p −W′T

p J?−1P?−1
ss J?−1W′

p

)
v

Using the result of (B.13) we conclude that the minimum value of the quadratic product

[uT vT ]E[uT vT ]T equals zero, and thus E is positive semidefinite. Therefore

[
Wp Wp

]
E

[
Wp Wp

]T
º 0 ⇒

WpP?
ssW

T
p −WpJ?−1WT

p º 0

WpP?
ssW

T
p º WpJ?−1WT

p (B.14)

where we have used the fact that W′
pWp = Wp. Equation (B.14) is the third intermediate

result.

Proof of (B.1): Substituting from (B.9) in (B.3) and (B.14) we obtain

WpP?WT
p º WpP?

ssW
T
p
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and

WpP?
ssW

T
p º WpP?WT

p

respectively. The desired result of (B.1) follows directly from the last two relations.
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Appendix C

Appendices for Chapter 4

C.1 IMU Propagation

The filter propagation equations are derived by discretization of the continuous-time IMU

system model, as described in the following:

Continuous-time system modeling

The time evolution of the IMU state is described by [19]:

I
G

˙̄q(t) = 1
2Ω

(
ω(t)

)
I
Gq̄(t), ḃg(t) = nwg(t)

Gv̇I(t) = Ga(t), ḃa(t) = nwa(t), ˙GpI(t) = GvI(t)

(C.1)

In these expressions Ga is the body acceleration in the global frame, ω = [ωx ωy ωz]T is

the rotational velocity expressed in the IMU frame, and

Ω(ω) =


−bω×c ω

−ωT 0


 , bω×c =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0




The gyroscope and accelerometer measurements, ωm and am respectively, are given by [19]:

ωm = ω + C(I
Gq̄)ωG + bg + ng (C.2)
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am = C(I
Gq̄)(Ga− Gg + 2bωG×cGvI + bωG×c2 GpI) + ba + na (C.3)

where C(·) denotes a rotational matrix, and ng and na are zero-mean, white Gaussian noise

processes modeling the measurement noise. It is important to note that the IMU measure-

ments incorporate the effects of the planet’s rotation, ωG. Moreover, the accelerometer

measurements include the gravitational acceleration, Gg, expressed in the local frame.

Applying the expectation operator in the state propagation equations (C.1) we obtain

the continuous-time first-order approximation equations for propagating the estimates of

the evolving IMU state:

I
G

˙̄̂q = 1
2Ω(ω̂)I

G
ˆ̄q, ˙̂bg = 03×1,

G ˙̂vI = C(I
G

ˆ̄q)T â− 2bωG×cGv̂I − bωG×c2 Gp̂I + Gg

˙̂ba = 03×1,
G ˙̂pI = Gv̂I

(C.4)

where â = am − b̂a and ω̂ = ωm − b̂g −C(I
G

ˆ̄q)ωG.

From (C.1) and (C.4) we obtain the linearized continuous-time model for the propagation

of the IMU error-state:

˙̃XIMU = FX̃IMU + GnIMU (C.5)

where nIMU =
[
nT

g nT
wg nT

a nT
wa

]T
is the system noise. The covariance matrix of nIMU,

QIMU, depends on the IMU noise characteristics and is computed off-line during sensor

calibration [3]. Finally, the matrices F and G that appear in (C.5) are given by:

F =




−bω̂×c −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−C(I
G

ˆ̄q)T bâ×c 03×3 −2bωG×c −C(I
G

ˆ̄q)T −bωG×c2

03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3



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and

G =




−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C(I
G

ˆ̄q)T 03×3

03×3 03×3 03×3 I3

03×3 03×3 03×3 03×3




Discrete-time implementation

The IMU samples the signals ωm and am with a period T , and these measurements are

used for state propagation in the EKF. Every time a new IMU measurement is received,

the IMU state estimate is propagated using 5th order Runge-Kutta numerical integration

of (C.4). Moreover, the covariance matrix of the IMU state estimates is propagated using

numerical integration of the following Lyapunov equation:

ṖII = FPII + PIIFT + GQIMUGT (C.6)

which describes the time evolution of the covariance in the linearized error-state model

of (C.5). Using numerical integration in the time interval [tk, tk+1], with initial condition

PIIk|k , we obtain the term PIIk+1|k (cf. (4.7) and (4.8)).

Finally, for propagating the covariance matrix of the entire EKF state vector, the state-

transition matrix of the IMU errors, Φ(k + 1, k), is required. This matrix is similarly

computed by numerical integration of the differential equation

Φ̇(tk + τ, tk) = FΦ(tk + τ, tk), τ ∈ [0, T ] (C.7)

in the time interval [tk, tk+1], with initial condition Φ(tk, tk) = I15.

C.2 Feature initialization

To compute an estimate of the position of a tracked feature fj we employ intersection [162].

To avoid local minima, and for better numerical stability, during this process we use an

203



inverse-depth parametrization of the feature position [99]. In particular, if {Cn} is the cam-

era frame in which the feature was observed for the first time, then the feature coordinates

with respect to the camera at the i-th time instant are:

Cipfj
= C(Ci

Cn
q̄)Cnpfj

+ CipCn , i ∈ Sj (C.8)

In this expression C(Ci
Cn

q̄) and CipCn are the rotation and translation between the camera

frames at time instants n and i, respectively. Equation (C.8) can be rewritten as:

Cipfj = CnZj


C(Ci

Cn
q̄)




CnXj
CnZj
CnYj
CnZj

1


 +

1
CnZj

CipCn


 (C.9)

= CnZj


C(Ci

Cn
q̄)




αj

βj

1


 + ρj

CipCn


 (C.10)

= CnZj




hi1(αj , βj , ρj)

hi2(αj , βj , ρj)

hi3(αj , βj , ρj)


 (C.11)

In the last expression hi1, hi2 and hi3 are scalar functions of the quantities αj , βj , ρj , which

are defined as:

αj =
CnXj

CnZj
, βj =

CnYj

CnZj
, ρj =

1
CnZj

, (C.12)

Substituting from (C.11) into (4.13) we can express the measurement equations as functions

of αj , βj and ρj only:

z(j)
i =

1
hi3(αj , βj , ρj)


hi1(αj , βj , ρj)

hi2(αj , βj , ρj)


 + n(j)

i (C.13)

Given the measurements z(j)
i , i ∈ Sj , and the estimates for the camera poses in the state

vector, we can obtain estimates for α̂j , β̂j , and ρ̂j , using Gauss-Newton least-squares mini-

204



mization. Then, the global feature position is computed by:

Gp̂fj =
1
ρ̂j

CT (Cn
G

ˆ̄q)




α̂j

β̂j

1


 + Gp̂Cn (C.14)

We note that during the least-squares minimization process the camera pose estimates

are treated as known constants, and their covariance matrix is ignored. As a result, the

minimization can be carried out very efficiently, at the expense of the optimality of the

feature position estimates. Recall, however, that up to a first-order approximation, the

errors in these estimates do not affect the measurement residual (cf. (4.20)). Thus, no

significant degradation of performance is inflicted.

C.3 MSC-KF optimality

We here prove that applying the MSC-KF measurement model results in optimal use of

the feature information, except for the inaccuracies caused by linearization. The proof is

carried out for the case of a single feature, but it can be trivially generalized to the case

where more features are processed.

Given the measurement equation (4.21), the EKF computes the exact (up to lineariza-

tion) covariance for the resulting state estimates. Thus, for the purposes of our proof it

suffices to show that the EKF covariance is identical to that arising from a non-linear

least-squares estimator, which is known to be optimal up to linearization.

The covariance of the updated state computed by the MSC-KF, when a single feature

is used for the update, can be re-written as [92]:

Pk+1|k+1 =
(
P−1

k+1|k + H(j)T
o (σ2

imI2Mj−3)−1H(j)
o

)−1
(C.15)

=
(
P−1

k+1|k +
1

σ2
im

H(j)T
o H(j)

o

)−1

(C.16)

We now show that this is identical to the result arising from the use of non-linear least-

squares to process the measurements of the feature. In this case, we formulate a state

vector, XLS comprising both the MSC-KF state (which consists of the IMU state and the
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sliding window of camera poses), as well as the feature position. The information matrix

for this state vector is given by [30]:

Ik+1|k+1 =


P−1

k+1|k 0ξ×3

03×ξ 03×3


 +

1
σ2

im


H(j)T

X H(j)
X H(j)T

X H(j)
f

H(j)T
f H(j)

X H(j)T
f H(j)

f


 (C.17)

=


IXX IXf

IfX Iff


 (C.18)

where the first term in (C.17) corresponds to the prior information, and the second to the

information carried by the feature measurements. The covariance matrix of XLS is equal

to I−1
k+1|k+1, and therefore the covariance matrix corresponding to the MSC-KF state is the

“top-right” submatrix of I−1
k+1|k+1. By employing the result of Appendix E, we obtain the

following expression for it:

PXX =
(
IXX − IXfI−1

ff IfX

)−1

=
(
P−1

k+1|k +
1

σ2
im

H(j)T
X H(j)

X − 1
σ2

im

(
H(j)T

X H(j)
f

)(
H(j)T

f H(j)
f

)−1 (
H(j)T

f H(j)
X

))−1

By comparison of the last expression with that of (C.16), we conclude that for proving

equality it suffices to show that the following holds:

H(j)T
o H(j)

o = H(j)T
X H(j)

X −
(
H(j)T

X H(j)
f

)(
H(j)T

f H(j)
f

)−1 (
H(j)T

f H(j)
X

)
⇔ (C.19)

H(j)T
o H(j)

o = H(j)T
X

(
I2Mj −H(j)

f

(
H(j)T

f H(j)
f

)−1
H(j)T

f

)
H(j)

X (C.20)

If we let H(j)
f = QR denote the thin QR factorization of H(j)

f , then we obtain:

I2Mj −H(j)
f

(
H(j)T

f H(j)
f

)−1
H(j)T

f = I2Mj −QR
(
RTQTQR

)−1
RTQT (C.21)

Using the fact that Q is unitary, we obtain:

I2Mj −H(j)
f

(
H(j)T

f H(j)
f

)−1
H(j)T

f = I2Mj −QR
(
RTR

)−1
RTQT

= I2Mj −QQT (C.22)
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However, since the columns of Q form a basis for the range of H(j)
f , we obtain QQT +UUT =

I2Mj , where we remind that U is the basis of the left nullspace of H(j)
f (cf. (4.21)). Thus:

I2Mj −H(j)
f

(
H(j)T

f H(j)
f

)−1
H(j)T

f = I2Mj −QQT = UUT (C.23)

We proceed to substitute this result in (C.20):

H(j)T
o H(j)

o = H(j)T
X UUTH(j)

X (C.24)

=
(
UTH(j)

X

)T (
UTH(j)

X

)
(C.25)

However, from (4.21) we see that H(j)
o = UTH(j)

X , and thus the above relation is a tautology.

This completes the proof.
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Appendix D

Matrix Inversion Lemma

If A is an n× n invertible matrix, B is an n×m matrix, C is an m×m invertible matrix

and D is an m× n matrix, then:

(A−1+BC−1D)−1 = A−AB(DAB + C)−1DA (D.1)
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Appendix E

Partitioned Matrix Inversion

Let a (m + n)× (m + n) matrix K be partitioned as

K =


 A B

C D




Where the m×m matrix A and the n×n matrix D are invertible. Then the inverse matrix

of K can be written as


 X Y

Z U


 =


 (A−BD−1C)−1 −A−1B(D−CA−1B)−1

−D−1C(A−BD−1C)−1 (D−CA−1B)−1


 (E.1)

=


 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1


 (E.2)
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