
 

  
Abstract—In this paper, the implementation of a classical 

identification technique with medium computational complexity 
over a system with limited computing capability, is addressed. As 
a testbed, the Frequency-Domain Least Mean Squares (FD-LMS) 
algorithm [1] is implemented with fixed--point (finite 
wordlength) rather than floating--point routines. The 
fundamental issue of faster sampling at a reduced wordlength, 
compared to the case of a slower sampling rate with increased 
accuracy (smaller roundoff errors) is investigated in the ensuing 
simulation studies. This problem is typical in embedded systems 
(controllers) with limited number crunching capabilities, where 
their computational power significantly limits the maximum 
number of operations (multiplications and additions) that can be 
executed within a time interval. The results of this study point 
towards the need of jointly optimizing the sampling rate, the 
wordlength size and the complexity of the assumed filter (model) 
in system identification cases. 
 

Index Terms—System identification, Finite wordlength, 
Computational resources, LMS 

I. INTRODUCTION 

 
YSTEM identification is an essential issue in adaptive 
control. Several identification algorithms, suitable for 

various system-characteristics have been developed, whose 
behavior in the case of precise arithmetic has been studied 
thoroughly in the literature (for example [2,3]). However, the 
task of identification may be subject to computational 
constrains, resulting from low-power or low-cost limitations, 
set by the problem at hand. In that case, the underlying 
arithmetic cannot be precise anymore, and this affects the 
accuracy of the identification process.  

In this paper, we use a medium-complexity identification 
algorithm as a test bed for the ensuing simulations. The FD-
LMS algorithm has been selected, due to the fact that it has 
superior convergence rate properties compared to the standard 
time-domain LMS-algorithm [1], while its implementation 
keeps the computational overhead inflicted by the use of the 
DFT to a minimum. 

The article has the following structure. Section II presents 
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the algorithm, and the utilized implementation [1]. In Section 
III, relying on the presented simulation results, we highlight 
several fundamental issues related to the need to achieve a 
compromise between the used wordlength, the accuracy on 
the estimated transfer function, and the need to implement the 
algorithm as fast as possible with limited computing 
resources. Section IV summarizes the conclusions of the 
preceding discussion. 
 

II. FREQUENCY DOMAIN LMS ALGORITHM 

 
The estimation scheme’s objective is to identify an 

unknown continuous-time time-invariant system. The 
system’s input and output are sampled at a sampling rate sf , 

and the estimated model corresponds to an N-th order FIR 
filter. Thus the system’s estimated output at the nth time step 
is given by  

T
n n ny X A=  ,     (1) 

where the system’s estimated impulse response at the nth 

iteration is denoted by 0 1 ( 1)

T

n n n n NA a a a − =    and the 

input signal vector, containing the delayed samples of the 

input nx , by 1 ( 1)

T

n n n n NX x x x− − − =   . 

The input signal vector and the parameter vector are 
transformed by the DFT: 

0 1 ( 1)

T

n N n n n n NZ W X z z z − = =   , and n N nB W A= , 

where we have denoted the N N×  transform matrix of the N -
point DFT by NW . Due to the orthogonality of the DFT, we 

have T
N NW W I= , thus (1) yields:  

T T T
n n N N n n ny X W W A Z B= =  .   (2)  

The adaptation process has now been transformed into the 
frequency domain, and the new system parameter vector, nB , 

is recursively updated at each iteration, according to  
2

1 2n n n nB B Zµ ε−
+ = + Λ  .    (3) 

In this relation, nε  is the error between the estimated system 

output, given by (2), and the measured system output nd : 

( n n nd yε = − ), µ  is the adaptive step size, a positive constant 

value that governs the rate of convergence of the algorithm. 
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To ensure stability, µ  must satisfy the condition 

2
0

inpNP
µ< < , where inpP is the power of the input signal, i.e. 

the power of each of the DFT coefficients: 
2

( )inp niP E z= , 

0,2,.., 1i N= − . 2−Λ  is a diagonal N N×  matrix, whose ith 
element equals the estimate of the power of the ith DFT 
coefficient, computed by a moving average window. 

To reduce the computational cost of the DFT, the algorithm 
is implemented recursively, using the following recursion 

formula ( 1)
k

nk n k N n n Nz z w x x− −= + − . Furthermore, for the case 

of a real system output, nd ∈R , we can reduce the required 

computations, by noting that ( )ni n N iz z −= , for 1, 2,.., / 2i N= .  

 

III. SYSTEM IDENTIFICATION ISSUES 

 
The implementation of the aforementioned algorithm on a 

system with reduced computational resources, raises several 
issues related to the selection of various parameters such as 
the selection of: a) the filter’s order, b) the sampling 
frequency sf , used in the discretization process of the 

continuous system, and c) the internal number wordlength 
representation. 

In the sequel, these issues will be highlighted over a 
simulation study. The need to complete a single iteration of 
the algorithm, within each sampling period, given a set of 
computational constraints (i.e., limited CPU clock-frequency), 
limits the selection of the algorithm’s parameters. 

In order to highlight several of these issues, consider the 

following system with transfer function 
2

100
( )

2 100
H s

s s
=

+ +
 

and an induced 3-dB frequency at 2.45HzBWf = .  

Initially, a measure for the evaluation of the quality of the 
results of each simulation is defined. Rather than using the 
output error as a measure of goodness for the identification, 
we define the following error measure in the frequency 
domain in order to be unbiased against all sampling frequency 
rates 

1000
2

est
1

Error ( ( ) ( ) )i i
i

H j H jω ω
=

= −∑ .    (4) 

In (4), the frequency bins iω  are logarithmically spaced 

between the frequencies of 0.1Hz and 3 BWf× .in order to 

penalize results that exhibit larger deviations in the lower 
frequency range. 

 
A. System Identification Intrinsic-Parameter Settings 
 

The algorithm’s intrinsic-parameters are the fixed-point 
word length Q, the sampling frequency sf , the number of 

samples of the estimated impulse response N , and the time 
interval allowed for identification, t . 

Fixed point representations of Q = 32, 24, 16, 12, 10, and 
8 bits were used, as these are the representations found in 
most commercial DSPs and microcontrollers. 

The sampling frequency sf  varies between 6 and 22 times 

BWf . Since our error criterion uses the frequencies up to 

3 BWf× , we have to sample at a frequency of at least 6 BWf× , 

to avoid the effects of aliasing. On the other hand, the upper 
bound of 22 times BWf  is a practical limit set by our 

computational resources, since increasing sf  leads to a 

deterioration of the results, as will be shown further on. 

The same reasoning applies to the choice of bounds for 
the number of parameters we use to model the identified 
system, N . We have found that a value of N  less than 30 
produces unacceptable results for all used sampling 
frequencies, while a N  of more than 140 samples is either not 
feasible due to our computational resources, in most of the 
cases, or leads to actual deterioration of the results, as will be 
presented. 

Finally, the time allotted for the algorithm to adapt ranges 
between 10 and 170 seconds. Before 10 seconds the algorithm 
is still behaving under the influence of initial conditions, and 
results are usually not meaningful, even for high sampling 
frequencies. On the other hand, after 170 seconds the 
algorithm has fully converged (up to the convergence amount 
allowed by the given algorithm parameters), and more 
iterations are not required. 

The system is excited with uniform white noise 
sequences, and precaution has been taken to avoid overflow of 
each parameter used in the identification algorithm. 
 
B. System Identification under Computational Constraints 
 

Our objective is to determine the optimal combination of 
Q, sf  and N  that under given computational constraints will 

produce the smaller identification error, as this is computed by 
(4). The computational constraints arise from the frequency of 
our microcontroller’s CPU clock, compared to the natural 

frequency ( 10nω = ) of the system under identification. For 

the experiments presented in this section, no time constraints 
were imposed, i.e. the algorithm was run until no further 
reduction in the output MSE was observed.  

Initially, we compute the number of operations executed, 
and CPU clock cycles used per second by the algorithm, as a 
function of the finite wordlength, the sampling frequency, and 
the number of estimated parameters. This is done by counting 
the number of operations needed per iteration of the FD-LMS 
algorithm, and multiplying by the number of cycles each 
operation takes, for all values of Q. 

For our implementation of the algorithm 
6N multiplications, N divisions, and 21N additions of real 
numbers are needed per iteration. If we denote the clock 
cycles needed for multiplication by M, the cycles needed for 



 

division by D, and the cycles needed for addition by A, we 
have 

Cycles per sec= ×(6 ×M + ×D+21 ×A)sf N N N  .  (5) 

The values for M, D and A are functions of the finite 
wordlength, Q, and are shown in Table 1. We have used the 
values provided for the PIC16C5X / PIC16CXX 
microcontroller fixed point routines described in [4]. Note that 
the PIC16C5X / PIC16CXX does not support 10 and 12 bit 
fixed point numbers, therefore the values of cycles per 
operation for these representations are projections based on 
the multiplication and division routines. The fourth column of 
Table 1 contains the total cycles per second needed by the FD-
LMS algorithm, computed from (5), and the last column 
contains the maximum achievable × sN f  product for a CPU 

clock frequency of 10MHz, which is the maximum allowable 
for the PIC16C5X / PIC16CXX family. The values in the last 
column have been computed using the total cycles needed 
(column 4 of Table 1), with an additional implementation 
overhead of 4-10%. 

Table 1: FD-LMS algorithm Computing Requirements 
 

From the data in Table 1 it becomes obvious that a trade-
off between representation accuracy, sampling frequency, and 
the number of parameters used for identification has to be 
made. We have to choose between a larger N  with few bits of 
accuracy or better accuracy with a small number of estimated 
parameters. Similarly, as the sampling frequency increases, 
both Q and N  face limitations. 

Although the data in Table 1 allow us to compute the 
maximum achievable N  for a given sampling frequency and 
a given Q, it is not correct to assume that using that maximum 
N  will yield the best possible results for the given 
combination of Q and sf . Indeed, Figure 1 shows the 

identification error measure of (4) as a function of N  for a 
sampling frequency 10s BWf f= . The data trends that appear 

in this Figure are typical of all simulations, and allow us to 
draw useful conclusions. 

As expected, the estimation error is increasing, when for a 
given N  we use fewer bits in the fixed-point representation. 
When 10 and 8 bits are used, the error measure (4) ranges in 
the order of magnitude of thousands, so we can claim that no 
useful identification is possible. Contrary to that, when 32 and 
24 bits are used, results are almost identical and are almost as 
good as the results we obtain using double precision numbers. 

In addition, we observe that for a given Q, the optimum 
N  is not the largest possible. The error curves for Q= 32, 24, 
16 and 12 bits all have a minimum, which is located 

around 70N =  for Q=12 bits, around 100N =  for Q=16 bits, 
and around 130N =  for Q=32 and 24 bits. We assume that 
this is caused by the increased algorithm’s complexity that a 
larger N  implies. This complexity augments round-off 
accumulation, which eventually becomes dominant. This 
phenomenon is more intense in representations with fewer 
bits, since these algorithms suffer more from numerical errors, 
and therefore the error minimum appears for smaller N . 
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Figure 1: Identification Error vs. size of Identification Vector 

 
From the algorithmic point of view, the fact that for large 

values of N  we obtain worse results than those obtained for 
smaller values, can be explained if we consider the exact 
nature of the estimated parameters. We explicitly estimate the 
N -point DFT of the system’s impulse response, nB , which is 

directly dependent on the system’s impulse response. This 
means that whatever inaccuracy occurs in the estimation of the 
DFT coefficients, will be reflected in the samples of the 
identified system’s impulse response, and vice versa. 
However, we know that the high order samples of the impulse 
response contain only a small amount of the total energy of 
the system’s impulse response, and therefore contain little 
information. Therefore when a large N  is used, the estimation 
becomes significantly more vulnerable to round-off errors, 
and, whatever gain we have from the use of a larger number 
of parameters to be estimated, is lost due to numerical 
problems. 

From the numerical point of view, this behavior of the 
FD-LMS algorithm is mainly attributed to the use of the DFT. 
The DFT is implemented in a recursive way, and therefore 
round-off errors are multiplied and accumulated, leading the 
DFT computation to numerical instability [5]. 

From the above discussion it becomes obvious that we 
have to be careful in the selection of the number of parameters 
we seek to identify, when we are working with limited 
precision numbers, and that the selection of the optimal 
combination of Q, sf  and N  in the case of limited 

computational resources, requires that we first investigate the 
unconstrained problem. 

 
We now examine how the identification error varies for a 

fixed word length, but for varying sampling rate and number 
of estimated parameters. Figure 2 shows the error as a 
function of N  and sf  for Q=12, while Figure 3 presents the 

Q M D A Total cycles × sN f  max. 

32 841 909 8 6123× × sN f  1570 

24 533 570 6 3894× × sN f  2424 

16 284 334 4 2122× × sN f  4363 

12 195 252 4 1506× × sN f  6123 

10 148 191 4 1163× × sN f  8123 

8 91 131 2 719× × sN f  12642 



 

same function for Q=16. In these Figures we observe that the 
overall minimum of the error occurs at the lowest sampling 
frequency, and for a moderate number of estimated 
parameters. Specifically, for Q=12 the minimum occurs at 

6s BWf f=  and for 50N = , while for Q=16 we have minimum 

error for 6s BWf f=  and 120N = . It is worth mentioning that 

although both surfaces follow the same trend as functions of 
frequency (we have smaller error at low frequencies for both 
graphs), they exhibit a different behavior for large values of 
N . While for Q=12 we observe an increase in the error as N  
increases, for Q=16 the error is almost monotonously 
decreasing. This behavior verifies the trends shown in Figure 
1. We may also note, that for Q=16, the estimation error 
increases as the sampling frequency increases. This should be 
expected, since when sampling at a higher sampling rate, a 
larger N is required in order for the estimated impulse 
response to contain a sufficient amount of the real system's 
impulse response energy.  
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Figure 2: Identification error vs. sf  and N , w/ Q=12 
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Figure 3: Identification error vs. sf  and N , w/ Q=16 

 
Next we examine what the globally best achievable error 

is, for all possible values of the algorithm’s parameters 
(namely Q, sf  and N ). Figure 4 presents the best possible 

error for all combinations of sf  and Q. We observe that the 

optimal error we could obtain, for the given identification 
task, occurs for Q=32 or 24 bits, a sampling frequency 

6s BWf f= , and a number of estimated parameters equal to 

140. It is worth noticing in Figure 4 that the error has a 
minimum for 6s BWf f= , for all the word lengths we have 

used. This indicates that at higher sampling rates, we also 
have to use a larger N, in order for the estimated impulse 

response to contain enough energy (that is, to cover enough 
duration) of the impulse response of the real system, and this 
effectively degrades the results, through the increased 
accumulation of round-off errors. 
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Figure 4: Achievable error vs. Q and sf  

 
After having examined the unconstrained problem, we 

may now describe a method for selecting the optimal set of 
algorithm parameters, when our computational resources do 
not allow for the use of the globally best parameters. 

The effect of having limited computational resources is 
examined, by considering the case of a CPU with a clock that 
is limited to a maximum operating frequency. The clock 
frequency, ckf , is set to successively smaller values, and the 

effects of this in the selection of algorithm parameters is 
presented. At this point we would like to point out that the 
following analysis does not only concern the case of a varying 

ckf , but that it is absolutely analogous to the problem of a 

fixed ckf , but with a system to be identified, whose natural 

frequency is set to successively larger values. Therefore, we 
can think of the ratio / / 2ck n ck nf f fω π= as the normalized 

CPU clock frequency. 
Given the frequency of our CPU’s clock, ckf  (expressed 

in MHz), we can compute the maximum value for the product 
× sN f , from Table 1. Since the values of the fifth column of 

the table correspond to a CPU clock max 10MHzf = , the 

maximum × sN f product for the given ckf  is acquired by 

multiplying the elements of the last column of Table 1 by 

max/ckf f . Then, for every Q, and for every possible sample 

rate within out set search space, we determine the maximum 
achievable N and compare that with the optimal N  we have 
defined from our previous analysis. The smaller value of the 
two is selected as the optimal achievable N  for that given 
combination of sf and Q, and we repeat the same process for 

all values of Q and sf . After we have defined the optimal 

achievable N for the entire search space, we plot the optimal 
identification error as a function of Q and sf , and we create a 

graph similar to that of Figure 4. 
The difference now is that due to the limited 

computational resources, for some combinations of high sf  

and a large wordlength, the maximum achievable N  is 
smaller than 30. In that case, we consider this set of 



 

parameters as not satisfying, and we omit it from the plot 
entirely. For the points for which the value of N  falls 
between the data points for which we have measurements, an 
interpolation is carried out. 

We assume a nominal CPU clock frequency of 10MHz, 
and carry out the above procedure for 10 different frequency 
division factors, ranging form 1 to 10. This could be otherwise 
interpreted as considering a system to be identified, whose 
natural frequency ranges from 1 to 10 times the system we 
have been working with so far. Figures 5 and 6 present the 
error plots for all the achievable combinations of Q and sf , 

for frequency division factors of 1 and 5 respectively. The 
reduction of the allowable search space is obvious, and has the 
effect that the minimum achievable identification error 
increases, as the division factor increases. We can also 
observe that the minimum achievable error values for some of 
the (Q, sf ) pairs differ from those in Figure 4, due to the fact 

that the optimum N  for that set of parameters can no longer 
be used, because it requires more computational resources 
than those available. 

Table 2 contains the values for the selected algorithm 
parameters, and the best achievable error given the available 
resources (which is the minimum of each of the surfaces as 
those plotted in Figures 5 and 6). Note that for a division 
factor of 7 and 8 (a CPU clock of 1.43 and 1.25MHz 
respectively), the smallest achievable error remains constant. 
This is caused by the fact that, for these two values of the 
CPU clock frequency, the optimal error is obtained using 12 
bits of accuracy. We have seen however, that for Q=12 and 

6s BWf f=  the error as a function of N has a minimum for 

50N = . This means that although our resources may allow us 
to use a larger N, it is to our best interest to use only 50 
parameters for system identification. This is what happens in 
this case, and accounts for the 'odd' behavior of the error. We 
should point out that the optimal sampling frequency is always 

6s BWf f= , and that the error is generally kept down to a 

satisfactory level, at least until we are forced to use 12 bits of 
accuracy.  
 
C. System Identification under combined computational and 

time constraints 

 
In this section, an additional algorithm characteristic, the 

rate of convergence, is taken into account. We are interested 
in selecting Q, sf  and N , when time constrains are forced, 

that is when we only have a finite time interval during which 
the algorithm must estimate the system’s parameters. 

It is quite straightforward that the shorter the period of 
time we allow for the algorithm to operate, the less iterations 
it performs, and the larger the estimation error is. Based on 
this observation, one might expect that when time constraints 
become very strict, a higher sampling rate would be 
preferable, since we would allow more algorithm iterations. 
However, this hypothesis is not validated by the simulation 
study. Figure 7 shows the estimation error as a function of the 
estimated parameters and the sampling rate, for Q=16 and 

20sect = .We find that the error becomes minimum for a low 
sampling frequency 6×s BWf f= , and for 60N = . This 

indicates that the improvement in performance, gained by the 
increased number of iterations at high sampling rates, is lost, 
mainly due to two factors. Firstly, when using a high sampling 
frequency, we need to estimate a large number of samples of 
the system’s impulse response, and this causes increased 
round-off accumulation, as we have shown. Secondly, a larger 
number of estimated parameters has the effect of slowing 
down the algorithm’s convergence. As a result, convergence is 
not yet complete for small values of t . 

We use the methodology described in the previous 
section, to select the optimal set of Q, sf  and N , given a 

limited amount of time for the algorithm to operate, and a 
limited amount of computing power. The results for Q and sf  

are not presented here, but are almost identical to those of 
Table 2, for each given value of t . That is, the optimal 
sampling rate is invariably found to be 6× BWf , and the 

selection of the optimal Q follows the same trend as that of 
Table 2, with more precise representations chosen, when 
computing resources are abundant, and a decrease in the 
optimal choice of the finite wordlength (FWL) as ckf  

decreases. 

Figure 8 shows the best achievable estimation error as a 
function of the CPU clock frequency division factor, and the 
time we allow for estimation. As we might expect, we obtain 
better results when increased computing resources and longer 
time intervals are available, and performance improves more 
with the increase of t , when a low sampling frequency is 
used, since convergence of the algorithm is slower. 

Figure 9 shows the optimal selection of the number of the 
estimated parameters, as a function of the time and 
computational constraints. Note that the axes in Figures 8 and 
9 do not have the same orientation, but this is necessary for 
appropriate visualization of the desired characteristics. From 
this Figure we may conclude, that for short identification 
intervals, a smaller value of N  yields better results. The ‘step’ 

Table 2: Optimum attainable error (and associated parameters) subject to computing constraints 

ckf   1 2 3 4 5 6 7 8 9 10 

Error 2.36 2.94 4.93 5.78 6.28 9.12 12.8 12.8 15.8 18.3 
Q 24 16 16 16 16 16 12 12 12 12 
N  123 120 98 74 59 49 50 50 46 41 

sf  6× BWf  6× BWf  6× BWf  6× BWf  6× BWf  6× BWf  6× BWf  6× BWf  6× BWf  6× BWf  



 

that appears in the bottom right part of the plot corresponds to 
the point where the optimal selection of Q changes from Q=16 
to Q=12. 
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Figure 5: Attainable Identification Error for maxckf f=  
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Figure 6: Attainable Identification Error for max / 5ckf f=  
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Figure 7: Identification performance vs. fs and N, for t=20sec. 

 

IV. CONCLUSIONS 

 
In this article, it is shown that certain parameters related to 

the implementation of the identification algorithm need to be 
properly selected. Under reduced computational constraints, 
the sampling rate needs to be kept as low as possible. The 
lower limit for the sampling rate is the point at which the 
effects of aliasing begin to affect the identification of the 
system’s response. The number of estimated system 
parameters is strongly dependent on the accuracy of the 
arithmetic, while the wordlength is predominantly determined 

by the computing resources available. In general, given the 
sampling frequency and the CPU clock frequency it is 
preferable to use more bits of representation accuracy with a 
smaller number of estimated parameters. 
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Figure 8: Lowest attainable error vs. t and fck 

1030507090110130150170

123
45678910

20

40

60

80

100

120

140

C P U  fre q ue ncy d ivis io n fa c to rA d a p ta tio n tim e  (se c )

N
o 

of
 id

en
tif

ie
d 

pa
ra

m
et

er
s

 

Figure 9: Optimal selection of N vs. t and fck 

REFERENCES 
[1] [1] S.S. Narayan, A.M. Peterson, M.J. Narashima, “Transform Domain 

LMS Algorithm”, IEEE Transactions on Acoustics, Speech and Signal 
Processing, vol. ASSP-32, no. 3, pp. 609-615, Jun. 1983 

[2] [2] P.E Wellstead, M.B Zarrop, “Self-Tuning Systems: Control and 
Signal Processing”, Wiley Publishers, 1991 

[3] [3] K.J. Åström, B. Wittenmark, “Adaptive Control”, Addison-Wesley 
Publshing, 1995 

[4] [4] F.J. Testa, AN617 Application Notes: Fixed Point Routines for the 
PICmicro Microcontroller Families, www.microchip.com 

[5] [5] J.H Kim. T.G Chang, “Analytic derivation of the finite wordlength 
effect of the twiddle factors in recursive implementation of the sliding-
DFT”, IEEE Transactions on Signal Processing, vol. 48, no. 5, pp. 1485-
1488, 2000 


