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Abstract—This paper addresses the problem of resource allo- Riccati equation, for propagating the covariance matrix of
cation in formations of mobile robots localizing as a group. Each the pose estimates through time. Thus, it provides us with
robot receives measurements from various sensors that provide 4 theoretically sound metric of localization accuracy.
relative (robot-to-robot) and absolute positioning information. R lioti d Bekev [6] h h that . fi
Constraints on the sensors’ bandwidth, as well as communication oumeliotis and Bekey [6], a\{e shown that proprioceptive
and processing requirements, limit the number of measurements Measurements from the robots’ odometry sensors can be
that are available or can be processed at each time step. Theprocessed locally by each robot to propagate its own pose
localization uncertainty of the group, determined by the covari- estimates. However, every time an exteroceptive measurement
ance matrix of the equivalent continuous-time system at steady is received by any of the robots in the formaticil, robots
state, is expressed as a function of the sensor measurements ¢ icate thei t timates. Additi I
frequencies. The trace of the weighted covariance matrix is mus Comm_unlcae €ir curren po_se_ estimates. iona y
selected as the optimization criterion, under linear constraints theé measuring robot must transmit its new measurement in
on the measuring frequency of each sensor and the cumulative order for the EKF update to be performed. Therefore, every
rate of the Extended Kalman filter updates. This formulation exteroceptive measurement that is processed incurs a penalty
leads to a convex optimization problem (semidefinite program) i terms of use of both communication bandwidth and CPU
whose solution provides the sensing frequencies, for each sensort. I in t f fi | listi
on every robot, required in order to maximize the positioning Ime, a_s well as in terms of power (’tonsump lon. In a realistic
accuracy of the group. Simulation and experimental results are Scenario, the robots of a team will need to allocate com-
presented that demonstrate the applicability of this method and putational and communication resources to mission-specific
provide insight into the properties of the resource-constrained tasks and this may force them to reduce the number of mea-
cooperative localization problem. surements they process for localization purposes. Moreover,

Index Terms—Robot Formations, Multirobot Localization, the finite battery life of robots imposes constraints on the
Resource-constrained Localization, Sensor Scheduling, Semidef-amount of power that can be used for tracking their position.
inite Program, The limitations on the available resources may thus prohibit

the robots from registering, transmitting, and processing all
|. INTRODUCTION measurements available at every time instant.

A large number of applications require robots to move It is clear that whethgr or not an exteroceptwe mea;urement
ghould be processed in an EKF update, is determined by a

in a coordinated fashion, in order to accomplish a certa o2 R o
task (e.g., object moving [1], surveillance [2], platooning fofradeoff between the value of the localization information it

efficient transportation systems [3], formation flying [4], angarries, and the cost of processing it. In .this paper, we assume
spacecraft formations [5]). In particular, the case in whic at the robots process each of the available measurements at

the members of a robotic team maintain constant reIati(f?econs’t"’lnt frequency, and we seek dptimal measurement

positions as they traverse the space, offers certain advantaggguenciesin order to attain the highest possible positioning
such as simplified motion control, collision avoidance, and tf¢cUracy. The key element in our analysis is the derivation
ability to collectively manipulate objects in the environmen @n €quivalent continuous-time system mofie| the robot

Due to the increased versatility that robot formations providga,am' whose noise parameters are functionally related to the
they have recently attracted significant interest in the mobﬁ%equgncy of the.measurements. This enable; us to EXpress the
robotics community. covariance matrix of the pose errors aguactional relation

In this paper, we address the problemCfoperative Local- of the frequencies, and thus to formulate the problem of

ization (CL) in robot formations. Several estimation techniquedeermining the optimal sensing strategy as an optimization

have been applied to the CL problem, such as Extend8@€:An important result that we prove is that this isomvex
Kalman Filtering (EKF) [6], Least Squares Estimation [7]9pt|m|zat|on problemand therefore it is possible to compute

Particle Filtering [8], etc. In this paper, we study the probler 91obally optimal solution, using very efficient algorithms.

of determining sensing strategies that maximize localization!" add!tloq to satisfying apphcatlon_-lmposed constraints on
accuracy, and for this reason employ an EKF approach, simigmunication, power, and processing resources, the results
to the one presented in [6]. The EKF was chosen for off this work may also be employed to reduce the cost of a

work because it encompasses a well-studied mechanism, rtﬂléot team design. Specifically, if measurements from ce_rtam
active sensors (e.g., lasers) are processed at a low rate, it may

This work was supported by the University of Minnesota (DTC), the Jhie possible to replace these particular sensors with slower

Propulsion Laboratory (Grant No. 1251073, 1260245, 1263201), and ‘(ﬁnd cheaper) ones. Finally, in the event that the utilization
National Science Foundation (ITR-0324864, MRI-0420836).

The authors are with the Dept. of Computer Science and Engineeringff)?qu?ncy of a specific sensor is _determined, thrf)Ugh the
the University of Minnesota. E-mail§mourikisstergio§ @cs.umn.edu. optimization process, to be approximately zero, this sensor



can then be excluded from the payload of the host robot, thaisd identify configurations that yield the maximum possible
reducing the total cost for equipping the robot group. localization accuracy at the end of a straight-line path.

The rest of the paper is structured as follows: In the We note that in all aforementioned approaches the con-
following section, we outline relevant approaches that appesraints imposed by the available computational and commu-
in the literature. In Section IlIl, the formulation of the local-nication resources are not taken into consideration. In [14],
ization problem is presented. In Section IV, we show howarticle filtering-based localization with limited processing
the measurement frequencies are related to the localizatimwer is examined. The authors study the case where, due
accuracy of the robots. Section V describes the formulation tof restricted CPU capabilitieg; > 1 measurements become
the optimization problem, and in the following sections, wavailable in the time interval necessary to update the entire
present experimental and simulation results that demonstraggticle set. In an effort to avoid completely discarding these
the application of this method to several example caseseasurements, an approximate real-time particle filter is pro-
Finally, in Section VIII the conclusions of this work are drawrposed, that expresses the belief function of the robot pose as
and future research directions are suggested. a mixture ofk belief functions. The sample set is separated
in k subsets, and each of the measurements is employed to
process one subset. This approach is well-suited for single-
robot localization, where the dimension of the state vector

In [9], [10], [7], localization algorithms for recoveringis small, and localization is possible with a relatively small
the relative poses between the robots in a formation, usingumber of particles.
omnidirectional cameras as the primary sensors, are describe®ur work is more closely related to work in the Sensor
The authors propose suboptimal estimation algorithms fiietworks community, that aims at determining the optimal
achieving efficient implementations. These are derived Bgheduling of measurements received Isgadic set of sensors,
either considering that each robot localizes using only relar order to attain the best possible estimation results. Repre-
tive position measurements to a “leader” robot in the tearsentative examples of this line of research can be found in [15],
or by decoupling the problems of orientation and positiof16], [17], while a similar analysis, in the context of designing
estimation. In presenting these methods, the trade-offs thiservers for dynamical systems, is presented in [18], [19],
exist between localization accuracy and the overhead for coj@@], [21]. The defining assumption in all these cases is that
municating and processing relative position measurements tire observation model switchegquentiallybetween modes
pointed out by the authors. However, no analysis is conducteetermined by the candidasebset®f sensors, dinite number
to reveal the effect of the varying available resources @i times during a certain time interval. This problem amounts
positioning uncertainty, and no optimal sensing strategies acedetermining the optimal measurement ordering, so as to
proposed. maximize the achieved estimation accuracy and/or minimize

The impact of thegeometryof a robot formation on the consumed energy [17]. For this problem, tree-search algo-
localization accuracy has been addressed in previous waikims (e.g., [15], [16]), as well as optimization methods in
Specifically, the case of atatic formation is studied in the the continuous domain (e.g., [18]-[21]), have been proposed.
work of Zhang et al. [11]. The authors consider formations The main limitation of these approaches, that consider a
of robots that receive absolute position measurements, as Viigite time-horizon (or equivalently a finite number of mea-
as robot-to-robot measurements (i.e., relative range, beariagiements), is that the complexity of determining the optimal
or orientation). A study of the structure of the measuremesénsing strategy increases, often exponentially (e.g., in tree-
equations shows that the information matrix corresponding $earch based algorithms) as the time-span of sensor operation
the exteroceptive measurements is a function of the relativereases. In contrast, in our work we considerfteguencies
positions of the robots, and a gradient-based optimizatioh the measurements as the design variables, and we are
technique is employed to determine local maxima of the tragderested in thesteady-statestimation accuracy. The benefit
of this matrix. However, due to the non-concavity of thef this formulation is that the optimal strategy has to be
objective function, the selected optimization method does ri¢termined onlyonce potentially off-line, for a given spatial
guarantee global optimality of the solution. The effects afonfiguration of the sensors, and the computational cost of
formation geometry in the case afiovingrobots is studied determining the optimal solution imdependenof the time
in [12]. In that work, an evolutionary optimization algorithmduration of the sensor’s operation.
is proposed for determining the optimal relative positions of A formulation of the scheduling problem that also con-
the robots in a moving formation. The optimality criteriorsiders the infinite time-horizon problem has been presented
is the steady-state position uncertainty of the team, andirit [22], [23]. In that work, a probability density function
is shown that genetic algorithm-based minimization is aipdf) is employed to describe the time instants at which each
appropriate tool for this problem, due to the existence ofeasurement is performed. An upper bound onekgected
multiple local minima in the objective function. In [13], asteady-state covariana# the target’s position estimate is then
robot team comprised of one master and two slave robatsmputed as a function of the pdf's parameters. Employing
is considered, and aortable landmarks-basetechnique is a numerical optimization routine, it is possible to minimize
adopted for localization, i.e., at each time instant at least otiés upper bound, and the resulting pdf is used as the opti-
robot remains stationary. The authors propose a method foal sensing strategy. Despite its mathematical elegance, this
determining the optimal relative positions between the robotsgproach only aims at optimizing an upper bound (this is the
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case also in [20]). Since no means of determining the loosenasavhich each individual sensoshould be utilized, in order

of the bound are available, we cannot have any guaranteetofattain the highest possible localization accuracy. Before

optimality, or a measure of suboptimality, when this methodescribing the details of our method for obtaining the optimal

is used. measurement frequencies, we now present the system and
Our work differs from the aforementioned approaches, imeasurement models used for pose estimation.

that we consider a team of robots timadvewhile maintaining

their formation, and localize in a global coordinate frame. The ]

steady-state covariance matrix of the robots’ localization is eR: Propagation

pressed as a function of the frequencies of all the exteroceptiveConsider N non-holonomic robots moving in 2D. The

measurements, and we seek to select the optimal frequenciscrete-time kinematic equations for th¢h robot are:
in order to attain the best possible positioning accuracy for

the team. The constraints imposed by the available resources itk +1) = x;(k) + Vi(k)dt cos(d;(k)) (1)

Iare IFakﬁn into account, and. th(;eir effect on the attainable yitk+1) = y;(k) + Vi(k)dt sin(¢i(k)) (2)

ocalization accuracy is examined. Gihi1) = Guk)+wik)t, i=1.. N 3)
I1l. PROBLEM FORMULATION whereV; (k) and w;(k) denote the translational and rotational

) . . velocity of thei-th robot at time stef;, respectively, andt is
We consider a team ol robots that move in formation, y,6 odometry sampling period. In the Kalman filter framework,
employing a suitable control strategy in order to maintaifp, position estimates of robat are propagated using the

a constant heading and constant relative positions amaidasurements from its proprioceptive sendors:
them. The spatial configuration of the robots is assumed to

gﬁ gi\t/)ert], defined,l fordexgtr:]]ple, by thet_application :Elt herl]nd. Biror = Figy + Vi, (k)&COS(‘Z;im) (4)
robots are equipped with proprioceptive sensors (such as . . o

wheel encoders) that measure their translational and rotational ~ ¥#+11x Yirgs Vin, (k)0 sin(s, ) ®)
velocities at every time step. Additionally, some (or all) of Pirrpy = Pipy twm(k)ot, i=1...N (6)

the robots are equipped with exteroceptive sensors that enable ,
them to measure: (i) distance between two robots, (ii) relatiyé€€Vm, (k) andw,,, (k) are the measurements of the robot's
bearing between two robots, (i) relative orientation betweér@nslatlonal and rotational velocity, respectively. By lineariz-

two robots, (iv) absolute position of a robot, and (v) absolutB9 EAs- (1) - (3) the error propagation equation for the robot's

orientation of a robot. The measurements received from all tR@S€ is readily derived:
sensors are processed using an Extended Kalman Filter (EKF),gl

in order to estimate the pose of the robots with respect to g ~ “*'!* 10 —Vin, (k) Sm(fbiw) L

global frame of reference. Jik+1]k 0 1 Vi, (k)tcos(ei,,) Yinjx
Clearly, due to cost, reliability, or other design considera Pir sk AO 0 1 P

tions, it may not be desirable for all robots to be equipped with ot cos(q}ik‘k) 0 wy (k)

identical sensors. This potential heterogeneity of the team is + | §¢ Sin(@m 0 { wVi(k) }

incorporated naturally in our approach, under the restriction 0 ot @i

that at least onerobot has access, at least intermittently, z, 0K, + CubWiE) @

k4+1|k

to absolute position information, such as those provided by

a GPS or from observing previously mapped features. Thigerew, (k) andw,,, (k) are white, zero-mean, Gaussian and
constraint is imposed because our goal is to minimize th@correlated noise sequences of variangeandos?_affecting

steady-statdocalization uncertainty of the robots in a globane jinear and rotational velocity measurements, respectively.
coordinate frame. It is well known [24], [25], that when no  cqnsidering that the robot team moves in a predefined

absolute position information is available to a robot team, thgmation all robots are required to head towards the same

system is unobservable, and at steady state, the uncertaifjiféction, and move with the same velocity, both of which are

of the robots continuously increases. The assumption for §€qyn constants. Assuming that a motion controller is used in

availability of absolute positioning information could be raised,qar to minimize the deviations from the desired formation,
if we studied a scenario in which onfglativelocalization was 54 that the accuracy of the velocity measurements and
sought. For that scenario, robot-to-robot measurements Woylgbtation estimates is sufficiently high, we can replace the
(under certain conditions) be sufﬂuent, in order to attain QuantitiesV,,,. (k), wm, (k), anddﬁ'k‘k in the above expressions
bounded steady-state error covariance, and our approach wcwqheir respéctive predefined valuds, w, andé,. Thus the

be applicable. . o time-varying matricesb;(x) and G;(k) can be approximated
Since the processing, communication, and power resources

alloc‘_’ﬂed for localization a.re 'neV'tably “m'_ted’ It may not be 1in the remainder of the paper the subschigt refers to the estimate of a
possible to process all available exteroceptive measurementsuaitity at time steg, after all measurements up to time-stgfhave been

every time instant. In this paper, we assume that measuremé¥ftgessed. The “hat” symbal,, is used to denote the estimated value of a
quantity, while the “tilde” symbol;, is used to signify the error between

can be processed at a maX|mum total fat?%géfal throughout the actual value of a quantity and its estimate. The relationship between a
the robot team, and our goal is to determine the frequenayiable,z, and its estimateg, is ¥ = « — 7.



by the constantmatrices: many practical observation models, the Jacobians are only

. functions of the robots’ orientation and the relative poses
1 0 —V,dtsin(¢,) . _ .
iy~ | 0 1 Vdtcos(d) | = ®) between robots, both of which are, in the case of formation
! 0 0 ° 1 ° ° motion, approximately constant. We can thus employ the
constantapproximations
and
St cos(¢,) 0 Hi(k) ~ Vx(k)h(X(k),ni(k))’X o H; (16)
Gi(k) ~ | dtsin(o,) 0 | =G, 9 o
0 ot and

With this approximation, the error-state covariance propaga- Tok) ~ V BX (). T (K ‘ -1 17

tion equation for the-th robot can be written as: k) 2 Vi, () H(X(R), (k) X,(k),0  ° (17)
Piiess = ®oPi,, B0+ GoQiGE (10) where X, (k) is the desired state of the formation at time

whereQ; = diag(o2 ,02 ) stepk. To demonstrate the application of our method based
AN on concrete examples, we hereafter consider five types of

At this point, a comment regarding our selection of the . .
exteroceptive measurements:

state propagation model is due. In the preceding expressions, T) Relative range measurementtrobot i is equipped with

simple non-holonomic kinematic model for the robots’ motion ble of ing the dist f oth bots with
is employed, because it is appropriate for the robots usedJeNsOr capable of measuring the distance ot ofher robots wi

our experiments (cf. Section VI). Howevemy other motion respect to itself, such as g Iaser 's.canner, then the distance
model could be employed in our analysis, such as that r&easurement between robatand is:

skid-steered vehicles [26], that of four-wheeled vehicles [3], 2 2
or a more accurate kinematic model that assumes constant “ris (%) = \/Axij(k) + Ayij (k) + np, (K) (18)
rotational velocity during an integration step [27]. If a differeru\g\f

motion model is used, the structure of the Jacobians (E
Egs. (8) and (9)) will be different, but the approach 1‘0{r7
determining the optimal measurement frequencies remaj
unchanged.

The state vector for the entire robot teak, is defined as = ) = 1, ()X (k) + n,,, (k)
the 3N x 1 vector comprising of the poses of all the robots, S
Xi=[z; yi #)%, i=1...N . Therefore, the covariance Hy, .. 0 }X_HLPH (19)
propagation equation can be written as:

here Ax;; = x; — x;, Ayi; = y; — yi, andn,,; is a white,

ero-mean, Gaussian noise process, whose standard deviation,

., iIs determined by the characteristics of the sensor. By
arizing, the measurement error equation is determined:

=[0 . H

Pi

whereH,, (k) is al x 3N matrix, whosei-th andj-th block
P, = (I)Pk|k(I)T +Q (11) elements are, respectively:

where Py, = E{X;X[,), ® = Diag(®,), andQ = g, () = —H,@m = [ Zmw 2w g (o)
Diag(G,Q;GT) are3N x 3N block-diagonal matrices. Pi P
In the preceding expressiorﬁ;;ij(k), &/ij(k) and p;; (k)

B. Update represent the estimated differences in thendy coordinates,

The robots of the team employ the measurements recorddifl the estimated distance between robatsd;, respectively.
by their exteroceptive sensors, in order to perform po&Y replacing the estimates with the values corresponding to the
updates in the EKF. Thé-th exteroceptive measurement iglesired formation of the robots, we can derive the following
described by the (generally nonlinear) model approximations:

2i(k) = h(X(k), n(k)) (12) H, (k) =~ [ e ] — H, (21)
tJo %Jo °

wheren; (k) is a Gaussian noise vector. In the EKF framework,

af>auss| ; Hy. (k) =~ [ Doy, BV, ] = H, 22
we employ linearization, to obtain the measurement error ps (k) Pio (22)

Pijo  Pido

equation For practical reasons, it may not be possible for all robots

Zi(k) = Hi(k)f((k) + T (k)n; (k) (13) to measure relative distances to all other robots in the team.

h For example, some robots may not be equipped with range
where

sensors, or certain measurements may be impossible due to
(14) occlusions in the formation. In order to describe the set of all

Hi(k) = Vx () M(X(k), ni(k)) |
® SR )0 possible measurements we define the set

and
H, = {H,,,| robot i can measure range to robot j}

X (k),0
. . . 2In the following derivations, the time step indices are omitted wherever
Clearly, the Jacobian matrice;(k) and I'i(k) are time- this does not cause confusion. This is done in order to make the notation less

varying, due to the dependence on the state estimates. Eoibersome.



2) Relative bearing measurement&ssuming robot mea- 5) Absolute position measurements:this work, the robots
sures the relative bearing towards roljotthe corresponding localize with respect to a global coordinate frame. Therefore,
measurement equation is: in order for the position errors to remain bounded for all times,
it is necessary that at least one of the robots has access to
absolute position measurements. The measurement equation
whereny, (k) is a white, zero-mean, Gaussian noise procedsy the i-the robot is
with standard deviationy,. Linearization yields the following o) = [ 2k yk) }T . () (30)

measurement error equation: ) i ) .
where n,, (k) is a2 x 1 white, zero-mean, Gaussian noise

2p,, (k) = Atan2(Ay,;(k), Azi; (k) — (k) + ng,, (k) (23)

Zo;; (k) = Hp,; (k)X (k) + 10, (k) process, with covariance matri®,,. The measurement error
~ Hy,, X (k) + n,, (k) equation for this type of measurement is
=[0 . Ho, . Hy . 0]X+ng, (24) Zp(k)=HpX(k)+ny k)
where we have once again approximated the time-varying — O2xs - [f2 O] - Oa2xs X (k) + np, (k)
position estimates with their constant, desired values. Note ith block
that Hy,, is a1l x 3N matrix, whosei-th and j-th block whereH,, is a2 x 3N matrix, I,, denotes the: x n identity
elements are, respectively: matrix, ando,,,«,, iS am x n matrix of zeros.
o In order to describe all possible absolute position measure-
H, Aytm Azij, 1 2 X
i [ A ] (25)  ments we define the set
At Tij, _
Hy, = [ % A;,T 0 } (26) H, = {Hp,

Similarly to the case of range measurements, we describe@ll The Riccati recursion

possible bearing measurements with the set The exteroceptive measurements recorded by the robots at
each time instant are processed by the EKF, in order to update

the robots’ pose estimates. The covariance update equation of
3) Relative orientation measurement$:robot : measures the EKF is

the relative orientation of robgt, the corresponding measure- _
Piiijie1r = P — PrppHE S, HyPre (31)

ment equation is:
whereS; = H;Pj.1,Hf + Ry. In these equation®I;, is
Zagi; (k) = @j(k) — @i(k) + nag,; (k) (27) " the measurement matrix for the system at time &tegndR,
WherenA¢7 (k) is a white, zero-mean, Gaussian noise process the corresponding measurement-noise covariance matrix.
with standard deviation 4, . The measurement error equation In most realistic cases, when only a subset of sensor

Ho = {Hp,,| robot i can measure bearing to robot j}

is: measurements, often varying, can be processed at each time
_ ~ instant, H; and R; will not remain constant, and will pos-
Zngi; (k) = Hag; X +nag,; (k) sibly vary even in size at each time step. Specifically, if
00 -1 .. [001] .| at time stepk a total of m; measurements are performed,
= — — X +nas; (k) H, will comprise m; block rows belonging in the set
ith block jth block

H=H,UHo UHas UHgs UH,, andR;, will be a block-
All possible relative orientation measurements are descrlbgglgonau matrix whose elements can be defined accordingly.

by the set Combining Egs. (11) and (31) yields the Riccati recur-
Hae = {Hnag,;| robot i can measure rel. ori. of robot j} sion [28]
_ _ Tq-1 T
4) Absolute orientation measurementsthe i-the robot of Prioprr = @ (Prape = Propap Hi S HiPryayy) @
the team is equipped with an absolute orientation sensor, such +Q (32)

as a compass, the corresponding measurement equation ishat describes the discrete-time evolution of the covariance
_ of the pose estimates for the robot team. If the system is

29: (k) = 9ilk) + g, (k) (28) observrfble, then after undergoing an initial, transient phase,

wherengy, is a white, zero-mean, Gaussian noise process, witie covariance matrix will enter a steady state, where its
standard deviatiorry,. In this case the measurement erroglements will fluctuate around some mean value (cf. Fig. 1).
equation is: Had we been able to provide a description of this mean
value as a function of the measurement frequencies, then

Zg: (k) = Ho X (k) + gy (k) we would have a means of directly relating the localization

_| 0 - Loy .0 X(k) + ng, (k) (29) performance of the system to these frequencies. However,

ith block ' there exist no analytical tools for describing the mean value

All possible absolute orientation measurements are descritféd Riccati recursion with time-varying coefficients. To solve
by the set this problem, we propose a transition from the discrete-time

system model to a continuous-time one, as described in the
Hg = {¢:| robot ¢ can measure absolute orientation} following section.



IV. THE RICCATI DIFFERENTIAL EQUATION while the matrix describing the influx of uncertainty in the

; : . T AT
In this section, we present the main idea of this paper, whigntinuous-time system is equal @. = Diag(G,.Qi.G.,)
enables us to formulate a convex optimization problem for gwit

termining the optimal frequencies at which the measurements cos(¢,) 0
of the available sensors should be utilized. Intuitively, the rate Go, = | sin(¢p) 0 (35)
at which a given sensor is providing measurements determines 0 1

the amount of localization information this sensor contribut%snd Q.. = f-'diag(o2 02 ). In this last expressionf,
per unit of time. If we view this as aontinuous information ie = Jo, C1ABLOV: Tuy)- P i

: qunotes the rate at which robotsamples its proprioceptive
flow, then the frequency of the measurements determines &hsors. Using the previous relations, the Riccati differential
magnitudeof the flow. This key idea allows us to express thg ' 9 P '

steady-state localization accuracy of the robots as an analyti%gvatlon IS written as
function of the measurement frequencies, by employing a P = F.Pw) +PuF! + Q. —Pt)CPt) (36)
transition to the continuous-time domain.

In particular, in [28] it is shown that given a discrete-tim&/here we have denoted
Riccat_i recursign, we can d_erive a_continuous—time Riccati dif- Cc = HIR;'H, 37)
ferential equation that isquivalentin the sense that the state
estimates’ accuracy in both cases is the same. SpecificallyJife first two terms in Eq. (36) describe the effect of the
state observations whose covarianc&jsare performed with dynamics of the system on the state covariance matrix, the
frequencyf in the discrete-time description, then the equivterm Q. accounts for theéncrease in uncertaintylue to the
alent continuous-time measurements’ covariance function égistence of system noise, while the telR)CP () describes
E{n.(t)nk (1)} = R.6(t—7), wheren.(-) is a white Gaussian the influx of localization informatiordue to the exteroceptive
noise processg(-) denotes the Dirac delta function, &nd measurements. If we denote By the total number of avail-
R. = f~'R,;. We observe that the covariance matrix of th@ble exteroceptive measurements (i.e., the number of elements
continuous-time model is scaled by the inverse measuremént), by f; the frequency of theé-th measurement ift{, by
frequency, to ensure a constant information influx. By a simildf; the corresponding measurement matrix, and/y the
argument, we can derive the appropriate value of the systa@ssociated covariance matrix, th€hcan be rewritten as
noise covariance matrix. M M

We now employ the idea of deriving an equivalent C = ZfiHiTRclei — Zfici (38)
continuous-time Riccati, in order to formulate @nstant i—1 i—1

coefficientdifferential equation for the covariance of the POS@a can therefore see that the element€ddrelinear combi-

estimates in th? rorl:])ot team. Specifically, since ?aCh of tHﬁtionsof the measurement frequencies. This is an important
measurements in the séf occurs at a constant requUencyspservation, because it allows us to express the problem of

(gener_ally dlffe_rent for each measurement), we can form'“'laci‘étermining the optimal measurement frequencies as a convex
a continuous-time model, wheadl the measurements occur

: | 4 th ) ¢ h optimization problem, as shown in the next section.
continuously, and the covariance of each measurement I§ye note that the Riccati equation in (36) iscanstant-

scaled by the inverse of its frequency. In the continuous-tin@ i ientdifferential equation, and its steady-state solution,

formylation, thg measurement matr, Wi_" be a constant P, can be found by solving the Algebraic Riccati Equation
matrix comprising of all the block rows in the sét. The (ARE)

covariance matrix of the measuremers,, will be a (block)
diagonal matrix, with elements theeightedcovariances of the F.P,, + PSSFCT +Q.—-P,,CP,, =0 (39)
discrete-time measurements. For example, if rabaceives
absolute orientation measurements with covariange at

a rate of fy,, then the continuous-time covariance functio
corresponding to this measurementis, (¢t — 7), where

The solution is a function of the matrix coefficients of the
hARE [29], and therefore the steady-state covariance of the
pose estimates for the robots of the formation fsiraction of
the measurement frequencigghich appear inC. To be more
) aéi 1 precise,P,, is the steady-state covariance of the equivalent
Ry, =05, = 7 <= TR¢id (33) continuous-time system, whose parameters depend on the
o i measurement frequencies. In Fig. 1, we present the time-
We can now use the Riccati differential equation in order @yolution of the diagonal elements of the covariance matrix in
describe the time evolution of the covariance of the rObOtﬂ"]eactuaJdiscrete_time system (SOlld |ines) and compare them
pose estimates. We note that the state transition matrix for ﬁbethe theoretical continuous-time Computed values (dashed
system in continuous time is equal B = Diag(F},), where Jines) computed by solving Eq. (39). For these simulations,

0 0 —V,sin(ey) a team of 3 robots, that have access to all four types of
_ ¢ < exteroceptive measurements, discussed in Section IlI-B, was
F,=10 0 V,cos(¢o) (34) ) ) o
0 0 0 considered. The relative positions, as well as the measurement

frequencies for all robots were selected randomly.
3The subscripts: and d denote continuous- and discrete-time quantities, It becomes clear that, at steady State'.the actual.values of the
respectively. covariance fluctuate around the theoretically predicted values.
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This definition means that the objective function is the sum
of all the diagonal elements dP,, that correspond to the
positions of the robots. The linear constraints on the measure-
o s 10 10 200 20 a0 30 40 40 s Mment frequencies express the facts that: (i) each sensor has a
Time (sec) . .

maximum sampling ratef; ., that cannot be exceeded, and
Fig. 1. True covariance vs. theoretical values. The diagonal elements of (i the total frequency of the measurements cannot exceed a
covariance matrix corresponding to the position of the 3 robots are plottedhreshold, f.:.1, Which is determined by the available com-

munication and computational resources. We note that more

general constraints can be incorporated in this formulation. For
Thus, we can employ the continuous-time analysis in ordexample, different types of measurements may have different
to study the properties of the localization accuracy in thsbsts associated with them, and this can be easily taken

0.002

formation. into consideration, by introducing weights for each of their
frequencies. Additionally, if the positioning accuracy of some
V. MEASUREMENTFREQUENCY OPTIMIZATION robots in the team is of higher importance than that of others,

this can be easily taken into account by introducing weights,
In this section, we formulate the problem of determininge. by defining a weighting matrix of the form

the optimal measurement frequencies as a convex optimization
problem. Our goal is to determine the optimal frequencies for
all available measurements, i.e., these frequencies that will ~ Wwp = Zwi (e3i—2€3,-5 + €si1€3,-1) (42)
yield the best possible localization results under given con- =1

straints. Clearly, in order to improve the localization accuradyor clarity of presentation, the case of equal weights for all
of the formation, the steady-state covariance matrix should fbhots and all frequencies will be considered in the remainder
minimized. HoweverP,, is a3N x 3N matrix, and several of the paper.

criteria of optimality can be defined based on it (e.g., its In [30], it is shown that the steady-state solution of the ARE
determinant, its maximum eigenvalue, its trace). A difficultin Eq. (39) is aconvexfunction of the matrixC. Because
that arises is that while the elementsBf, that correspond the elements ofC are linear functions of the measurement
to the position estimates of the robots have units:3f the frequencies (cf. Eq. (38)), we conclude tHaj, is a convex
elements that correspond to orientation have units:@f. function of the measurement frequencids a result, the
Clearly, we cannot treat these two types of elements equathptimization problem (40) is a convex one (the objective is a
One approach is to introduce a weighting maiv, and try convex function, and the feasible set is convex). This is a very
to minimize a function of the weighted matr®P,,W”. important property, because it guarantees that the problem has
However, any selection oW that would incorporate both a unique global minimum which can be found using standard
the orientation and the position uncertainty in the objectivgradient-based optimization techniques [31].

function would bead-hocand thus difficult to motivate. We  Qur initial approach to solving the optimization prob-
have therefore selected to focus only on the diagonal elemelgi® (40) was to employ an iterative gradient-based
of P that correspond to the position estimates of the robotssnstrained-optimization method, in which at every iteration
while ensuring that the orientation uncertainty of each robgh instance of the ARE is solved to provid,, [32]. The
does not exceed a threshalg (this is necessary, in order tomethod we used for solving the ARE was the one based on
guarantee small linearization errors). We thus formulate tiige Hamiltonian matrix [29]. Despite the simplicity of this
following optimization problem: approach, the numerical experiments we conducted indicated
that due to ill-conditioning of the Hamiltonian matrix in cases
where the total frequency of measurements is low, the ARE

N

minimize trace(W,P, W)

subject to F.P,, + P, F! +Q.—P,,CP,, =0 solver was often unable to provide a solution with sufficient
M accuracy. This caused the optimization procedure to suffer
C= ZfiC,- from a slow convergence rate, and to produce inaccurate

i=1 results. Additionally, enforcing the constraint$,P.es; <

0<fi< fips,fori=1...M (40) €4, =1...N in (40) had to be implemented in at-hoc



manner, by introducing an additional cost term in the objective, We observe that foany feasible point,Y’, for (40), with
to penalize solutions with large orientation uncertainties. Y = (fi,..., fu, Pss) € RM x SiN, we can construct
In order to overcome the numerical problems and tretite point= = (fi,..., fuar,P = Ps,J = P}l) € RM x
the constraints on the orientation uncertainty in a mo&}" x S3V which is also feasible for (46), and yields the
elegant way, we reformulate the optimization problem assameobjective value.
Semi-Definite Programming (SDP) problem, which exhibits Similarly, given any feasible point for the problem (46),
substantially better numerical characteristics. In particulave can also construct a feasible point for (40). £t =
the following Lemma holds: (ff,.--s fx, P*,J*) be the optimal solution to the prob-
lem (46). Then, solving the ARE
Lemma 1:The original problem in (40) is equivalent to the

: ) M
following one: F P, +P:FI + Q.- P, (Z fi*ci> P:, =0 (47)
minimize trace(WpPWZ;) i=1
bioct ¢ P I 0 for P}, yields a fe_asibl_e point™* = (fl*,._..,f]T/[_,P;s) for
subject to o I | & the problem described in (40). In Appendix | it is shown that

T M 1/2 the objective value corresponding 10" in (40) is equal to
—JF.—F.J+50,0, fiCi Qe -0 the objective value corresponding Er in (46). Using this

Qi/ ) Iy | key result, we can employ proof by contradiction to show that
0<fi < fi.fori=1...M (43) Y~ is optimal for (40). Spgcifically, i * were not optimal,
M there would exist a point” that would give an objective
Zfi < fiotal value smaller than that of’*. But in that case, we would
et be able to construct a poi for problem (46), that would
eLPes; < €pi=1...N give a smaller objective value thaf*. However, this is a

contradiction sinc&* is optimal. Thus, the optimal solution
where the variables in this problem are the matrigeésind for the measurement frequencies arising from problem (46) is
J, belonging to the positive semidefinite coBé", and the also optimal for problem (40).
measurement frequencieg;, ¢ = 1...M. In the above -
expressions the symbot denotes matrix inequality in the The above proof relies on the fact that the objective value
positive semidefinite sense, a@i’? is the symmetric matrix corresponding tdr* is equal to the optimal value of prob-
square root ofQ.. lem (46). To provide intuition about this key result, whose
Proof: proof can be found in Appendix I, we consider the simple case
We first note that by employing the properties of the Schwhere the weighting matrisW , is replaced by the identity
complement, the first inequality constraint in problem (43) imatrix, and thus the minimization objective in (46) is simply
written as: trace(P). We note that sincé” is bounded belowonly by
J—1, selectingP = J~! yields the minimum cost. Thus, at

= (44) the optimal solution we hav@* = J*~!, and substitution in
while the second matrix inequality is equivalent to: Eq. (45) yields
M M
~JF. - FIJ + Z fiC;i—JQ.J = 0 (45) F.P* + P*F! + Q. — P* (Z f,»*Ci> P* <0 (48)
1=1 i=1

Using these relations, problem (43) is written equivalently as equivalently,

M
FCP*+P*F5+Q;7P* (Zfz*cz> P* :()7 Q/c t Qc

i=1

minimize trace(W,PW)
subject to J7' —P <0
M

JF.+FTJ - (Z fiCi) +JQJ =<0 Thus, P* satisfies an ARE withQ,. > Q.. However, the

= solution of an ARE is a monotonically increasing function

0<fi<fi dfori=1...M (46) Of Q. [30], and thgreforg the smalles't vallug of the objective
"y function, trace(P), is obtained whei®’, is minimum. Clearly,
Zf' < Ffrotal this occurs whenQ., = Q., thus the optimal solutiorP*

Pl Coe satisfies Eq. (48) with equality. Note that this AREdgntical

to the one in Eqg. (47), hencB* = P, which means that
the objective values of the two problems are equal. We stress
This is a convex optimization problem, since the objective @sat this proof outline is only valid wheiW, is invertible.

well as the inequality constraints are convex. Our goal is fithis is clearly not the case for the selection W, in
show that this problem is equivalent to the problem describ#tis paper (cf. Eq. (41)), and this results in a significantly
in (40), in the sense that the optimal frequencies for thimore complicated proof in Appendix I. However, the main

problem are also optimal for (40). underlying ideas remain the same.

egi’Pegi §6¢,i:1...N



Notice that the solution of the SDP (43) doest involve ]
explicitly solving an ARE, thus resulting in superior numer-
ical performance. Additionally, by employing the principle
of strong duality, which holds for convex SDPs under mild
qualifications that are valid in the particular problem [31], we
can obtain a bound for the suboptimality of any solution. Ir
particular, for any convex SDP problem we can defirdual
SDP maximization problem [31]. When strong duality holds
the optimal solutions to the primal and dual problems yield this
same objective value. This implies that, if any solution to the
dual problem of (43) is available, we immediately havewaer
boundon the minimum attainable objective value for (43).

Most SDP solvers automatically generate the dual probler
and proceed by simultaneously solving the primal and dui
problems in an iterative fashion. Therefore the problem ¢ -
determining the optimal measurement frequencies is solved by
an any-time algorithmsince at any point during the solutionFig. 2. The heterogeneous robot team used in our experiments.
procedure, a suboptimal solution is available. Moreover, by

comparing the objective value of this intermediate solution ) ]
to that of the corresponding intermediate solution of tHyogramming the sensors to record measurements at fixed

dual problem, and employing strong duality, we obtain time intervals is simpler. Clearly, the proposed approach is
concrete measure of “how good” the solution is. In a scenagyPoptimal when the robots do not maintain a fixed formation,
where a large number of sensors is involved, and in whi@fd its performance has to be evaluated on a case-by-case

computation time is a significant factor (e.g., if we are solving@Sis:
in real-time to determine the best sensing strategy in a slowly
varying formation), we may wish to trade-off optimality for VI. EXPERIMENTAL RESULTS
efficiency, and in this case, the any-time property of the To demonstrate the application of our method, we have
solution algorithm is very important. conducted experiments with a heterogeneous robot team, com-
At this point, we comment on the applicability of theprised of one iRobot Packbot robot and 3 Pioneer-I robots.
method to cases where the assumption of a constant formafidre robots move outdoors in a diamond-shaped formation,
shape does not hold. A significant property of the solution tehere the Packbot is the “leader”, as shown in Fig. 2. Each of
the ARE in Eq. (39) is that it iSndependenif the initial the Pioneers is equipped with a laser scanner, and is able to
conditions, since the system under consideration is observaletect the robots of the team that lie within its field of view.
This implies that if the geometry of the robot formatiorUsing a linefitting technique, we are able to extract relative
changes temporarily, for example due to the presence psition (i.e., range and bearing) as well as relative orientation
obstacles that need to be avoided, then, once the robots reinformation. It is important to note that since the same laser
to the initial configuration, the solution becomes valid agaipoints are used in order to measure the relative position and
For practical purposes, this observation means that if welative orientation of a particular robot, these measurements
know in advance that a robot team will move in a knoware correlated, and must be treated as a single, vector-valued
formation most of the timethen it might be desirable, from measurement.
an implementation point of view, to use the measurementin addition to the relative pose measurements, absolute
frequencies obtained with the proposed method for the entpesition and orientation measurements are provided to the
duration of the robots’ run. team by a GPS receiver and a magnetic compass, which are
If alternatively, the optimal sequence of measurements fetounted on the Packbot. In total, 5 relative pose measurements
a time-varying formation were sought, a tree-search within(the robot in the rear is able to measure the relative pose of
finite time horizon ofn time steps would be necessary [22]all other robots, while the ones on the sides can only detect
However, the complexity of such a search is exponential the formation leader) and 2 absolute measurements (absolute
the number of time-steps, and can become intractable evengosition and orientation of the Packbot) are available. The
a search within a short-time horizon, if many measuremerdbsolute measurements are available at a maximum frequency
are available in the system. Such a search would needofolHz, while the relative pose measurements are available
be performed necessarily in real time, employing the most a maximum frequency of 3Hz. In Fig. 3, the geometry
current pose estimates for the robots, and the results wouofdthe formation is shown, and the available relative pose
need to be transmitted to all the members of the teameasurements are presented by the dash-dotted arfws.
Contrary to that, the proposed method lends itself to off-ling the Packbot, whil&?, - R, are the Pioneer robots, aid;;
executiort, before the robot team is deployed, and additionallgenotes the measurement of the relative pose of rplvith

) o respect to robot. The formation moves on a 50m-long path
4If the geometry of the relative positions of the robots of a team changes

slowly, then our algorithm can also be used on-line, to provide an approxim&@ra”el to the glqbalz axis at a velocity of/, = 0.2m/sec.
solution to the optimal measurement scheduling. During the experiments the robots keep records of the raw
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Fig. 3. Robot formation and motion direction. The dash-dotted arrows~

represent the relative pose measurements available to the robots. 0.081
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ovariance (m

sensor data, thus enabling us to run the EKF off-line withe
various measurement frequencies, and facilitating comparisch
between different sensing strategies. % 50 100 150 200 250
In order to maintain the desired formation shape, a simple Time (sec)
Ie_ader-follower Con.trm s_cheme .iS implemented. .EaCh of trJIZie 4. Time evolution of the covariance along the two coordinate axes for
Pioneer-I robots adjusts its rotational and translational Velocg)fgt.he- robots, when the optimal measurement frequencies are used. The (red)
using a Pl-controller. The feedback input to the controller ilid lines represent the actual covariance values computed by the EKF, while
the difference between the desired and the measured relatigedashed lines represent the theoretically computed steady-state values.
pose of the formation leader with respect to the measuring
robot. Since control is performed locally on each robot, it does
not introduce any communication overhead, and additionalfygquency (althougmot zero), which should be attributed to
it is very inexpensive computationally. Although very simplethe fact that this measurement is less accurate, due to the larger
this controller is sufficient for the purposes of our experimentgistance from the leader.
in which the formation is commanded to move in an almost In Fig. 4 we present the time evolution of the covariance
straight line. In fact, the deviations from the desired geometlong thexz and y axes, for the robots of the team (solid
that arise due to the simple controller we have employed, fadiles). The time evolution of the actual covariance is compared
itate the demonstration of the robustness of our measuremtnthe theoretically predicted values (dashed lines), computed
frequency optimization method to small changes in formatidsy solving the SDP (43) . Although the time duration of
shapé. the experiment did not allow for the covariance matrix to
By constraining the maximum total frequency of measonverge fully to its steady-state value, these figures indicate,
surements that can be processed by the system to be edfudll the deviation between the theoretically predicted values,
to 3Hz, the optimal frequencies of all measurements a@gd those computed by the EKF, is very small. This deviation
shown in Table I. These results are obtained by a Matléh due to the facts that i) there is a small discretization
implementation of the algorithm, that requires 11secs of CRasror inherent in the transition between the continuous- and
time on a 1.6GHz Pentium M processor. In order to execuéscrete-time system models [28], ii) in the EKF testimates
the optimization algorithm, it is necessary to evaluate ttfer the pose of the robots are employed to evaluate the
matricesC; (cf. Eq. (38)). This was performed by computingneasurement Jacobians, and these estimates are generally not
the measurement covariance matrices as well as the Jacobjaesisely equal to the desired poses of the robots, iii) the
H; for each of the exteroceptive measurements, based lager scanners provide measurements at a frequency which is
the nominal formation geometry. From the numerical resul@ly approximatelyconstant, and iv) the formation maintains
in Table I, we note that the absolute position and absoluige desired geometry within some error, determined from the
orientation sensors are utilized at their maximum frequen@gntroller’s performance.
while the remaining resources are allocated to the relative posé&/ariations in the formation geometry during the experiment
measurements. It is interesting to note that the measuremarg shown in Fig. 5, where we plot the estimated coordinates
between the rear robot and the leader is assigned a smablerthe relative position of R; with respect toRy, as a
function of time. As evident, the estimates deviate significantly
SWe should note that the objective of this work is the determination dfom their nominal values ofAx14, Ay14) = (2,0)m. These
optimal measurement frequencies given a formation geometrynathe deviations are primarily due to the rough terrain that the robots
design of an optimal controller for maintaining such a desired geometry. This . . . ,
second problem has received considerable attention in the literature, and'@v€ 0N, which often resulted in the Pioneers’ caster wheels
interested reader is referred to [33] for an overview of existing approachegetting stuck. As a consequence of the fluctuations in the
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Fig. 5. Time evolution of the estimates for the relative position of the IeadEr ) ) . . .
: Ig. 6. Comparison of the covariance values that arise when using the optimal
with respect to the rear robot. - A .
measurement frequencies (solid lines) vs. equal measurement frequencies for
all exteroceptive measurements (dashed lines with circles). The two plots
correspond to the covariance along the and y-axis respectively, for all
relative poses of the robots, the covariance of the relative pd8eets-

measurements was also time-varying, since the number of laser
points used for linefitting was not constant for each robot pair. °*
It is significant to observe that despite these differences from S
the nominal values, the theoretically predicted covariance is
very close to the actual one, which verifies the applicability
of our approach to practical scenarios.

In order to demonstrate the positioning accuracy improve- ois|
ment that is achieved using the proposed optimization algo“g
rithm, we compare the performance of the optimal strategyg \
with that of an “intuitive” strategy, where the available re- © oif ]
sources are divided equally among all the available measure- \
ments (i.e., when we use all measurements at the same rate, AN
f; =3/7 Hz). In Fig. 6, the time evolution of the covariance ~ °%f S~ 7
in these two scenarios is shown. As evident, there is a clear T
improvement of performance by using the frequency values
produced by the proposed algorithm. Evaluating steady- 0 2 4 8 8 w0 2 1 18 18 2
state covariance attained with the equal-frequency strategy Total frequency of measurements (Hz)
shows that it is approximately 130% and 50% larger alo
the x andy axes, respectively, compared to the optimal value
obtained with our approach. Due to the slow transient response

. 0.15H I Rel. bearing q
of the covariance, the steady-state value for the case of equal [ Rel range
frequencies is not reached in the duration of this experiment.g | |
This explains the smaller difference in covariance between the ‘
optimal and the “intuitive” approach that appears in Fig. 6. 013 R2

021

sg. 7. Cost function vs. Total frequency of measurements.
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VIIl. SIMULATION RESULTS
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This section presents simulation results that demonstrae

certain additional interesting properties of the problem of .l |
determining the optimal sensing frequencies for groups of '0 ‘ ‘ ‘ ‘
robots. We here consider a formation with the same geometry o5 = Re ‘ R4 1

as the one shown in Fig. 3, but we now examine the case wherg °tf ]
all robots are equipped with a distance and a bearing sensor, °or i
that are capable of providing independent measurements, with  © ‘ ‘ :

standard deviations, = 0.05m, andoy = 1°, respectively. Measured robot

Additionally, we assume that all robots have a 3dield

of view, and can potentially record relative measurements ng 8. Optimal values for the relative range and bearing frequencies.
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Fig. 9. (@) The optimal cost as a function of the formation size, for two values of the relative bearing errors’ standard deviation. (b) The percentage of
resources allocated to each type of measurement, as a function of the formation sige=fdr°.

all other robots. The leader robot receives absolute positiand orientation estimates of the robots suffice for guaranteing
measurements with standard deviations equaffo= 0.3m orientation variance smaller thag for all robots. However,
along each axis, and absolute orientation measurements vititishould be made clear that this isot a general result.
standard deviatiow, = 3°. The maximum frequency of all For example, if we double the standard deviation of the
measurements is equal to 1Hz, and the threshold on the @afisolute position measurements, the results of the optimization
entation variance for the robots, is equaletp= 0.0027rac®, under the same conditions show that absolute orientation
corresponding to a standard deviation36f measurementare processed by the robots. Nevertheless, the

We first examine the effect of varying the total frequency dfct that for certain formations some measurement frequencies
measurements processed by the robots. In Fig. 7, the optiffay turn out to be equal to zero implies that the corresponding
value of the cost function is plotted as a function of the tot&ensors ar@ot necessaryand can be omitted, thus resulting
frequency of measurements (solid ling),{. = 0.5...20Hz), in lower cost and easier implementation.

and compared to the cost that arises if equal measuremenh the last set of experiments, we assume that no absolute
frequencies are employed (dashed line). In this plot, the sulrientation sensors are available to the robots, and thus the
stantial improvement in localization accuracy attained usirghsolute position measurements Bf constitute the only
our method becomes apparent. For exampleffar = 1Hz, source of absolute state information. We once again select
the cost when using equal frequencies is 560% larger than,,, = 2Hz, and vary the formation size, by scaling all
when using the optimal frequencies. Moreover, in this plefistances among robots by a factor ranging between 1 and
we observe a law of diminishing return: there is a shao. The solid line in Fig. 9(a) presents the optimal cost
improvement in performance by increasing the total numbgg a function of the formation size, far, = 1°. It is
of measurements per time step, when this number is small, Qigrth noting that in this case as the formation scale factor
the incremental gain reduces as the frequency of measuremémdgeases, the robots’ localization accuracy becoiveiser
increases further. Since the necessary communication anls is attributed to the fact that in the sensor model for
computational resources increase linearly with the number refative measurements, the noise variance is independent of the
measurements performed by the robots, it becomes clear ifigtance between robots. Therefore, the bearing measurements
unless resources are abundant, it is not beneficial for the robgitsvide better orientation information for the measuring robot,
to process a very large number of measurements. as the robots get further apart, since the errors in the measured
We now constrain the total frequency of measurements rabot's position have less impact. This interpretation is also
be equal tofiota1 = 2Hz, and run the optimization algorithm.corroborated by Fig. 9(b) where we plot the proportion of
At the optimal solution, the GPS receiver is utilized at itsesources (i.e., proportion of the total measurement frequency)
maximum frequency fops = 1Hz), and interestinglyno assigned to each type of measurement, as the formation size
absolute orientatiormeasurements need to be recorded. Thecreases. We observe that as robots become more distant,
optimal frequencies for the range and bearing measurememisre relative bearing information is utilized. However this is,
are shown in Fig. 8, in the form of a bar plot, where eaabnce again, not a general result: if we increase the standard
row of the plot corresponds to the measurements recordedd®gyviation of the bearing measurements by a mere factor of 2,
one robot. The fact that no absolute orientation measuremetatsry = 2°, then as the formation becomes larger, the robots’
are used implies that the correlations between the positilmalization accuracy degrades (this is shown by the dashed
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line in Fig. 9(a)). In this case, the bearing measurements conedified so as to express the optimization criterion as a

tribute less localization information, and cannot compensdtenction of the covariance of the pose estimates with respect to

for the loss of information in the range measurements, duedoe of the robots in the team (relative localization). Moreover,

the increased distances among robots. we should point out that the applicability of the proposed
As a closing remark, we note that the parameters affectimgethod is not limited to the problem of formation localization.

the selection of optimal measurement frequencies include fhlre idea of employing a transition from the discrete-time

number of robots, the size and geometric configuration tif a continuous-time system model is general, and can be

the formation in space, the robots’ velocity, the accuragpplied to any scheduling problem for which the continuous-

of all available sensors, the type and number of availalfiene system is linear time invariant.

measurements, and the maximum frequency of each sensor.

The results presented in this section illustrate the fact that APPENDIX |

the |nte_r§1ct|ons betvv“een these fact(?,rs are qwtg mtncate,_ anﬁin this appendix, we prove that the objective value cor-

determining general “rules of thumb” for the optimal sensing,

e . . . : sponding to the point™ = (f7,..., fi;, PZ,), with P%,
strategy appears difficult, if not infeasible. This further estala—efﬁ]ed ingEq (47) pis equal tcf{rl]e optffrrzgal obj)ective value for
lishes the necessity for a design tool that allows, given all t ' .

Foblem (46), i.e., that
relevant parameters of a particular robot team, to determine (46), i e,

measurement strategies that prevably optimal In this work, W,,P;SWZ = W,,P*WE (49)
we have presented a method that yields these optimal resu_Ps,
)

within the described problem formulation. simplify the notation, in the following derivations

we employ the substitutionsC = Zf\ilf,»ci and
c* = Zﬁl f#C;. In order to prove Eq. (49) we will
VIIl. CONCLUSIONS employ three intermediate results:

In this paper, we present a new approach to the resource-
constrained localization problem for formations of mobil&erivation of first result:Pre- and post-multiplying Eq. (45)
robots. We consider heterogeneous groups of robots equipp¥d! ' results in the equivalent matrix inequality:
with sensors that provide both relative and absolute informa- FI R Q. +J'CI = 0
tion. In our formulation theatesat which the measurements ¢ ¢ ¢ -
from individual sensors are utilized are the design variableEhus, at the optimal solution, we obtain
and these rates are determined by a trade-off between the _ _ _ _
localization information each sensor provides, and the cost F I 4 IR 4+ Qe - ICh T = A

of processing its measurements. The basis of our approgghere4 < 0. If we denoteQ’, = Q.— A, then it isQ’, > Q..

for determining the optimal sensing strategy is the transitigfhd we see thai*~! satisfies an ARE given by
from the discrete-time system model, whose study is analyt-

ically intractable, to acontinuous-timeone. The frequency FJ 4 JF+Q - J1C" I =0

at which each sensor input is processed specifies the adgUsan pe shown, that the solution of an algebraic Riccati
racy of the corresponding measurement in the Com'nuo%cq'uation is a monotonically increasing function @f. [30].

timg |_”nod_el. This relation enables us to formulatgeanvex Therefore, by comparison of the last ARE to the ARE in
optimization problenfor the measurement frequencies, WhergqF (47), we conclude that

the constraints on the communication, processing, and powe
resources of the team are naturally incorporated. Moreover, =Pl = T <Pt (50)
this problem can be cast as a semidefinite programming (SD
problem, whose unique global solution can be computed us'P
well-studied and very efficient minimization algorithms. '

The results of our work can be employed in practice for de- Wp,]**lwg - WpP;WZ (51)

termining the sensing frequencies for robot formations of agp o
size and shape comprised of robots with various types of sétgrivation of second resulfThe Karush-Kuhn-Tucker (KKT)

sors and sensing capabilities. The optimal sensing frequenc‘?@éi_mal‘i‘ty conditions [31] for probﬂlem (46) include the fol-
can be used not only for obtaining the best localization resull@Wing “complementary slackness” conditions:

but also fo.r determining the necessity of.certain sensors (e.g., trace(AT(J*~1 — P*)) = 0 (52)
sensors with zero frequency can be omitted) which can lead .

to significant cost savings. Suboptimal solutions, accompanied trace (A§ (JF.+F J = C* + J*QCJ*)> =0 (33)

ditionally, from the propertyJ*—! = P*, we derive the
t intermediate result:

by a measure of performance loss, are easy to compute based Nfr=0, i=1...M
on the properties of the semidefinite optimization problem, .l % o L

and can be employed in scenarios where the time to compute i (ff = fimar) =0, i =1... M
a solution is of critical importance. In our future work, it is . M .

our intention to capitalize on this methodology and expand v (2 Ii— ftotal) =0

our results to groups of robots that have no access to absolute
iti i ion wi & (e5Presi —€p) =0, i=1...N
position data. In this case the problem formulation will be i \€3i/7 €3i — €6 )
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as well as the “stationarity” condition: Using the result of Eqg. (58) to simplify this expression, and
V trace(W,PW ) + V trace (A} (J7' — P)) separating terms, yields
+ Vitrace (A3 (JF. + F1J - C +JQ.J)) frace ( (3" =P) JHA{JH)

— trace ( (I =P QI — ngl)Ag) (60)

At this point, we note that the right-hand side of this

M N equation is a nonnegative quantity, since the matrices
+ Vu* (Z fi— ftotal) +) Ve (e5Pesi —€y) =0 (I* = P71 Q.(J* — P:; ) and A3 are symmetric positive
i=1 i=1 semidefinite. We now show that the left hand side of Eq. (60)
(54) is nonpositive. Using the expression of Eqg. (55), as well as

whereA;, Ay € S3N, and ), i, v, & > 0 are the variables the propertyJ* < P} (cf. Eq. (50)), we obtain

of the dual problem, and the supersctiphdicates the value of _ *  pr—1) pr—1A*7r—1

a variable at the optimal solution. In the Eq. (54) differentiation o = tace((J - Esf )*J i\f *)_1 ,

is with respect to the primal variableB, J, f;, and the = trace (W1 (I* =P JIW)) <0

derivatives are computed at the optimal solution. ApplyinGombining this last result and the fact that the right-hand side

the derivative with respect t®, and evaluating at the optimalof Eq. (60) is a nonnegative quantity, we conclude that both

M M
- Z VA fi + Z Vi (fi = fimax)
i=1 i=1

point, yields: sides must be equal to zero. Consequently,
N W/TJ*fl (J* _ P*—l) J*flwl - 0=
= r i x T p ss D
0= prp - A1 + ; 57 €3;€3;, = W;TJ*_1W; _ W;)TJ*_lpzs_lJ*_IW; - 0 (61)
T al T O We now consider the following matrix:
AT =W, W, + degieg’i = A=W, W, (55) P* _JIW
i=1 E — X 4

_W/TJ*—l WlTJ*—lw/
where W/ is a diagonal matrix, whose diagonal elements b P P o
corresponding to the robots’ positions are equal to 1, while th®PIYing the lemma of Appendlé I, we see thaTt tThe minimum
elements corresponding to the robots’ orientation are equal@ué of the quadratic produ¢t™ v |E[u” v7]" over all

x i—1.. . N. vectors[u? 1T is equal to
We now employ the KKT complementary slackness condi- o7 (W;TJ*—1W; — W;TJ*—lnglJ*—lvv;) v

tion with respect to the dual variable, (Eq. (52)), to obtain: Using the result of Eq. (61) we conclude that the minimum

trace(AJ(P* = J*71) = 0= value of the quadratic produgt” +T|E[u” +T]" equals
trace(W;T(P* — J**l)W;) = 0= zero, and thu& is positive semidefinite. Therefore
WP - I Y)W, = 0 (56) W, W]EW, W,]" = 0=
This result follows from the fact that for any symmetric W, P W) - W, J*"'W] = 0
(positive or negative) semidefinite matri, prgswg = Wp,]*—lwg (62)
trace(A) =0=A=0 where we have used the fact tHat,; W, = W,,. Eq. (62) is

Pre- and post-multiplying Eq. (56) by, — W7, and the third intermediate result.

using the fact thatW,W; = W,, we obtain the second
intermediate result:

W,P*W] =W, J* "W (57)

Proof of Eq.(49). Substituting from Eq. (57) in Egs. (51)
and (62) we obtain

W,P*W] =~ W,P; W/
Derivation of third result:Applying Eq. (54) for the derivative
with respect taJ, and evaluating at the optimal solution, yields * *

P g P y W,PLW! = W, P*W

1 1 T —
—JTATTT A FO A+ ASFe + A307Qe + QeJTA3 = 0 pegpectively. The desired result of Eq. (49) follows directly

(58)  from the last two relations.
We now pre-multiply Eq. (47) byA;P*. 1, post-multiply by

P*; !, and apply the trace operator, to obtain the identity APPENDIX I
trace (A3 (P} 'F. + FIP: ' — C* + P 'Q.PL 1)) =0 It can be easily shown that it - 0, and D is symmetric,

i ] ] then for any vectoy of appropriate dimensions, the minimum
Subtracting this equation from the second complementagy

slackness condition (Eqg. (53)), and rearranging terms, we find 1574 Bl
o L o]

- 1 with respect toz is equal toy” (D — BTA™'B)y and is
A3J7Qc + QP A2)) =0 (59) attained forr = —A~!By.

trace ( (I* =P (MF. +FIAS+



(1]

2

[3

[4

5

6

[7

(8]

(9]

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES [23]
Z. Wang, Y. Hirata, and K. Kosuge, “Control a rigid caging formation
for cooperative object transportation by multiple mobile robotsPiac.  [24]
of the IEEE International Conference on Robotics and Automahiew
Orleans, LA, 2004, pp. 1580-1585.

T. Balch and R. C. Arkin, “Behavior-based formation control for multi-
robot teams,1EEE Transactions on Robotics and Automafieal. 14,
no. 6, pp. 926-939, 1998.

A. Broggi, M. Bertozzi, A. Fascioli, C. G. L. Bianco, and A. Piazzi, [26]
“Visual perception of obstacles and vehicles for platooningEE
Transactions on Intelligent Transportation Systewal. 1, no. 3, pp.
164-176, 2000.

S. Venkataramanan and A. Dogan, “Nonlinear control for reconfiguratic[m]
of UAV formation,” in Proc. of the AIAA Guidance, Navigation, and
Control ConferenceAustin, TX, 2003. [28]
J. Adams, A. Robertson, K. Zimmerman, and J. How, “Technologies
for spacecraft formation flying,” ifProc. ION-GPS 961996, pp. 1321— [29
1330. (30
S. I. Roumeliotis and G. A. Bekey, “Distributed multirobot localization,”
IEEE Transactions on Robotics and Automativol. 18, no. 5, pp. 781—
795, 2002.

A. Das, J. Spletzer, V. Kumar, and C. Taylor, “Ad hoc networks fo
localization and control,” inProc. of the 41st IEEE Conference on
Decision and ContrglLas Vegas, NV, 2002, pp. 2978— 2983.

D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic approaclf33
to collaborative multi-robot localization,Autonomous Robatsol. 8, ]
no. 3, pp. 325344, 2000, special Issue on Heterogeneous Multirobot
Systems.

J. Spletzer, A. Das, R. Fierro, C. Taylor, V. Kumar, and J. Ostrowski,
“Cooperative localization and control for multi-robot manipulation,” in
Proc. of IEEE/RSJ International Conference on Intelligent Robots and
SystemsWailea, HI, 2001, pp. 631 — 636.

A. Das, R. Fierro, V. Kumar, J. Ostrowski, J. Spletzer, and C. Taylor,
“A vision-based formation control frameworklEEE Transactions on
Robotics and Automatigmvol. 18, no. 5, pp. 813 — 825, 2002.

F. Zhang, B. Grocholsky, and V. Kumar, “Formations for localization

of robot networks,” inProc. of the IEEE International Conference on
Robotics and AutomatiomNew Orleans, LA, 2004, pp. 3369-3374.

Y. S. Hidaka, A. I. Mourikis, and S. I. Roumeliotis, “Optimal formations

for cooperative localization of mobile robots,” iRroc. of the IEEE
International Conference on Robotics and Automat®arcelona, Spain,
2005, pp. 4137-4142.

R. Kurazume and S. Hirose, “Study on cooperative positioning systel
optimum moving strategies for CPS-IIl.” iRroc. of the IEEE Interna-
tional Conference in Robotics and Automatideuven, Belgium, 1998,

pp. 2896-2903.

(25]

(31]

[32]

15

V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, “On a stochastic
sensor selection algorithm with applications in sensor scheduling and
sensor coverageAutomatica vol. 42, 2006.

A. I. Mourikis and S. |. Roumeliotis, “Analysis of Positioning Uncer-
tainty in Reconfigurable Networks of Heterogeneous Mobile Robots,”
in Proc. of the 2004 IEEE International Conference on Robotics and
Automation New Orleans, LA, 2004, pp. 572-579.

——, “Performance analysis of multirobot cooperative localization,”
IEEE Transactions on Robotic8006, to appear.

G. Anousaki and K. J. Kyriakopoulos, “A dead-reckoning scheme for
skid-steered vehicles in outdoor environments,”Hroc. of the IEEE
International Conference on Robotics and Automatitiew Orleans,
LA, 2004, pp. 580-585.

S. Thrun, W. Burgard, and D. FoRrobabilistic Robotics MIT Press,
2005.

P. S. MaybeckStochastic Models, Estimation, and ControAcademic
Press, 1979, vol. 141-1.

] W. L. Brogan,Modern Control Theory Prentice Hall, 1991.

G. Freiling and V. lonescu, “Monotonicity and convexity properties of
matrix Riccati equations,IMA Journal of Mathematical Control and
Information no. 18, pp. 61-72, 2001.

S. Boyd and L. Vandenbergh&onvex Optimization
University Press, 2004.

A. I. Mourikis and S. |. Roumeliotis, “Optimal sensing strategies for
mobile robot formations: Resource-constrained localizationPrivc. of
Robotics: Science and Systerambridge, MA, 2005, pp. 281-288.

H. G. Tanner, G. J. Pappas, and V. Kumar, “Leader-to-formation stabil-
ity,” IEEE Transactions on Robotics and Automatigal. 20, no. 3, pp.
433-455, 2004.

Cambridge

Anastasios |. Mourikis Anastasios Mourikis re-
ceived the Diploma of Electrical and Computer En-
gineering with honors from the University of Patras,
Greece in 2003. He is currently a PhD candidate
at the Department of Computer Science and Engi-
neering (CSE) at the University of Minnesota. His
research interests lie in the areas of Localization
in Single- and Multi-robot systems, Vision-aided
Inertial Navigation, Simultaneous Localization and
Mapping, and Structure from Motion. He is the
recipient of the 2005 Excellence in Research Award

C. Kwok, D. Fox, and M. Meila, “Real time particle filters,” iddvances  Fellowship from the CSE Department of the University of Minnesota.

in Neural Information Processing Systems 15 (NIPX)03, pp. 1057—
1064.

L. Meier, J. Peschon, and R. M. Dressler, “Optimal control of measure-
ment subsystemsJEEE Transactions on Automatic Controlol. 12,

no. 5, pp. 528-536, 1967.

T. H. Chung, V. Gupta, B. Hassibi, J. W. Burdick, and R. M. Murray,
“Scheduling for Distributed Sensor Networks with Single Sensor Mea-
surement Per Time Step,” Proc. of the IEEE International Conference
on Robotics and AutomatipiNew Orleans, LA, 2004, pp. 187-192.
D. Avintzour and S. Rogers, “Optimal measurement scheduling fq
prediction and estimationJEEE Transactions on Acoustics, Speech
and Signal Processing/ol. 38, no. 10, pp. 2017-2023, 1990.

H. Lee, K. Teo, and A. E. Lim, “Sensor scheduling in continuous time
Automatica no. 37, pp. 2017-2023, 2001.

E. Skafidas and A. Nerode, “Optimal measurement scheduling in ling
quadratic gaussian control problems,"Rroc. of the IEEE International
Conference on Control Applicationgrieste, Italy, 1998, pp. 1225 —
1229.

A. V. Savkin, R. J. Evans, and E. Skafidas, “The problem of Optimiland-Grant Professor

sensor scheduling3ystems and Control Lettergol. 43, pp. 149-157,
2001.

J. S. Baras and A. Bensoussan, “Optimal sensor scheduling in nonlin
filtering of diffusion processes3IAM Journal of Control and Optimiza-
tion, vol. 27, no. 4, pp. 786-813, 1989.

V. Gupta, T. Chung, B. Hassibi, and R. M. Murray, “Sensor schedu
ing algorithms requiring limited computation,” iRroc. of the IEEE
International Conference on Acoustics, Speech and Signal Processing
Montreal, Canada, 2004, pp. 825-828.

Stergios |. Roumeliotis Stergios Roumeliotis re-
ceived his Diploma in Electrical Engineering from
the National Technical University of Athens, Greece,
in 1995, and the M.S. and Ph.D. degrees in Elec-
trical Engineering from the University of Southern
California, CA in 1997 and 2000 respectively. From
2000 to 2002 he was a postdoctoral fellow at the Cal-
ifornia Institute of Technology, CA. Since 2002 he
has been an Assistant Professor at the Department of
Computer Science and Engineering at the University
of Minnesota. He is the recipient of the McKnight
ship award, and the NASA Tech Briefs award. His

research interests include inertial navigation of aerial and ground autonomous
vehicles, fault detection and identification, and sensor networks. Recently
fifd research has focused on distributed estimation under communication
and processing constraints and active sensing for reconfigurable networks of
\”pobile Sensors.



