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Performance Analysis of
Multirobot Cooperative Localization

Anastasios I. Mourikis and Stergios I. Roumeliotis

Abstract— This paper studies the accuracy of position estima-
tion for groups of mobile robots performing Cooperative Local-
ization (CL). We consider the case of teams comprised of possibly
heterogeneous robots and provide analytical expressions for the
upper bound on their expected positioning uncertainty. This
bound is determined as a function of the sensors’ noise covariance
and the eigenvalues of the Relative Position Measurement Graph
(RPMG), i.e., the weighted directed graph which represents
the network of robot-to-robot exteroceptive measurements. The
RPMG is employed as a key element in this analysis and its
properties are related to the localization performance of the
team. It is shown that for a robot group of certain size, the
maximum expected rate of uncertainty increase isindependent
of the accuracy and number of relative position measurements
and depends only on the accuracy of the proprioceptive and
orientation sensors on the robots. Additionally, the effects of
changes in the topology of the RPMG are studied and it is shown
that at steady state, these reconfigurations donot inflict any loss
in localization precision. Experimental data, as well as simulation
results that validate the theoretical analysis are presented.

Index Terms— Multirobot Localization, Cooperative Localiza-
tion, Relative Position Measurement Graph, Sensor Sharing,
Positioning Accuracy, Kalman filtering.

I. I NTRODUCTION

I N order for a multirobot team to coordinate while nav-
igating autonomously within an area, all robots must be

able to determine their positions with respect to a common
frame of reference. Frequently, robots need to communicate
in order to coordinate their efforts during the execution of a
task (e.g., exploration [1], [2], object transportation [3], [4],
structure assembly [5], [6], etc). By acquiring, transmitting,
and processing relative position measurements and pertinent
positioning information, groups of robots can leverage their
communication resources to performCooperative Localization
(CL) and improve the accuracy of their position estimates.
The topic of CL has recently attracted the interest of many
researchers (e.g., [7]–[9]), primarily due to the flexibility
that sensor and actuator sharing provides when designing
heterogeneous robot teams that communicate through wireless
networks [10].

Predicting the positioning performance of heterogeneous
robot teams for the general case of multirobot CL, in which
the number, quality, and type of measurements may vary over
time, remains an open problem to this date. The advent of for-
mal tools that will enable engineers to predict the localization
performance of multirobot teams will significantly impact the
process of designing such teams for accomplishing a specific
mission. Our work aims at providinganalytical expressions
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for assessing the positioning accuracy of heterogeneous robot
groups. During the design phase, informed decisions based on
these relations can guide the selection of the appropriate size of
the robot group and the accuracy of their sensors for achieving
the desired level of localization precision. This, in effect,
will result in considerable gains in terms of design expenses,
since employing costly and time consuming simulation and
experimental trials for specifying the positioning accuracy of
robot groups, can be avoided altogether, or, at least deferred
until the end of the design phase for verification. Forming
teams with the necessary number of robots and equipping them
with the essential sensors will introduce additional savings
by reducing the probability of failure due to unexpected
positioning errors.

In [11], [12], upper bounds on the localization uncertainty of
a homogeneous group ofN robots were derived by directly
solving the continuous-time Riccati equation for the covari-
ance of the errors in the position estimates. The results of that
work constitute the first analytical assessment of the position-
ing accuracy of multirobot teams. However, the assumption of
homogeneityand the requirement thateveryrobot continuously
measures the relative position ofall other robots in the team,
limit their applicability to small groups of identical robots.
In realistic scenarios, limitations on computational resources
and communication bandwidth, may prohibit the robots from
transmitting and processing all measurements available at
every time instant, and additionally, even teams comprised of
identically built robots, may actually be heterogeneous, due
to the inherent variability during the manufacturing of their
sensors (cf. Section VI).

In the present work, we relax these assumptions and
study the time evolution of the positioning uncertainty in
heterogeneousrobot teams, witharbitrary topology of the
Relative Position Measurement Graph (RPMG). Specifically,
in Section IV we derive upper bounds on theworst-case,
as well as on theaveragecovariance matrix of the robots’
position estimates. One of the main results of this paper is
that, in the absence of absolute position measurements, the
rate of positioning uncertainty increase in the group of robots
is constant, identical for all the robots, andindependentof the
topology of the RPMG. The primary factor in determining this
rate is the quality of the robots’ proprioceptive and orientation
sensors, as well as the number of communicating robots. It is
shown that the rate of uncertainty increase issmaller than the
rate the single best robot would attain, if it were localizing on
its own (cf. Corollary 5), which indicates that the exchange of
positioning information benefits all robots.

The connectivity of the RPMG affects the constant (time-
invariant) part of the covariance matrix that describes the
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localization uncertainty of the group. A study of the properties
of the time evolution of the position covariance matrix in
Section V, shows that atemporaryreduction in the number of
relative position measurements can only causetemporaryloss
of positioning accuracy. Moreover, the case in which absolute
position information, e.g., GPS measurements, is available to
some of the robots of the team, is studied (cf. Lemma 2). In
this scenario, it is shown that even ifone robot has access
to absolute position measurements, the variance inall robots’
position errors remains bounded, and depends on the topology
of the RPMG.

In the following section, we outline the existing approaches
to CL, and in Section III we present the formulation of the
multi-robot localization problem. In Sections IV and V, the
main theoretical results of this paper are derived, namely
bounds on the positioning uncertainty of CL, and their prop-
erties. In Section VI, experimental results that validate the
theoretical analysis are presented, while extensive simulation
results are analyzed in Section VII. Finally, in Section VIII
the conclusions of this work are drawn and future research
directions are suggested.

II. RELATED WORK

Previous work on multirobot CL has considered collab-
orative strategies primarily for improving pose tracking in
the absence of landmarks. A system where relative position
measurements were used for CL was first reported in [7].
A group of robots is divided into two separate teams with
alternating roles. At each time instant, one team is in motion
while the other one remains stationary and acts as a set of
landmarks. The teams then exchange roles and this process
continues until both reach their goal. Improvements over this
system and optimal motion strategies are discussed in [13]–
[15]. Similarly, in [16], only one robot moves, while the rest
of a group of small-sized robots forms an equilateral triangle
of localization beacons in order to update their pose estimates.
Another implementation of this type of CL is described in [2],
[8], [17], where a team of robots moves through the open space
systematically mapping the environment. In [18], the authors
present a CL technique based on virtual links between robots
which remain within the field of view of their teammates.

All the aforementioned approaches that rely on robots acting
asportable landmarkshave the following limitations: (a) Only
one robot (or team) is allowed to move at any given time,
and (b) The two robots (or teams) must maintain line-of-
sight contact at all times. In addition to the use of robots as
portable landmarks,static landmarkshave also been employed
for facilitating the localization of robot teams, in the context
of Cooperative Simultaneous Localization And Mapping (C-
SLAM). Since this paper focuses on feature-less localization,
we will not discuss this case further. For a thorough presen-
tation of the related literature, the interested reader is referred
to [19], where the Riccati recursion is employed for the study
of the positioning accuracy of C-SLAM. The distinguishing
difference between the work presented here and that of [19] is
that in the latter case a number of static landmarks are assumed
to be always visible, which results in bounded uncertainty for

the robots’ position estimates at all times. This is in contrast
to the case of CL, as shown in Section IV.

A different collaborative multirobot localization scheme is
presented in [20], [21]. The authors have extended the Monte
Carlo localization algorithm [22] to the case of two robots
that both possess a map of the area. When these robots detect
each other, the combination of their belief functions improves
the accuracy and convergence speed of global localization.
The main limitation of this approach is that it can be applied
only within known indoor environments. In addition, since
information interdependencies are being ignored every time
the two robots meet, this method can lead to overly optimistic
position estimates. This issue is discussed in detail in [23]. At
the cost of increased computational requirements, [24] treats
the problem of not considering the correlation terms in Monte
Carlo-based CL by introducing a dependency tree.

In [25], [26] a Maximum Likelihood estimator is employed
to process relative pose and odometric measurements recorded
by the robots, and a solution for the robots’ pose is derived
by invoking numerical optimization. In contrast to thisbatch
approach, arecursiveestimator design is more often employed
for CL, due to its lower computational complexity. In [27],
a Kalman filter-based implementation of CL is described,
where the effect of the orientation uncertainty in both the state
propagation and the relative position measurements is ignored,
resulting in a simplified distributed algorithm. In [9], [28] a
distributed Kalman filter pose estimator is presented. Every
robot collects sensor data regarding its motion continuously
and measures the relative pose of other robots intermittently.
Positioning information is propagated through the team only
during the update cycles, allowing the Kalman filter to be
decomposed into a number of smaller communicating filters,
one for each robot. In [23], it has been shown that when
every robot senses and communicates with its colleagues at all
times, every member of the group has less uncertainty about
its position than the robot with the most accurate odometric
sensors when localizing independently.

To the best of our knowledge, there exist only few cases in
the literature where analysis of the uncertainty propagation has
been considered in the context of CL. In [27], the improvement
in localization accuracy is computed, after only asingle
update step, with respect to the previous values of position
uncertainty. In this case, the robots’ orientations are assumed
to be perfectly known and no expressions are derived for
the propagation of the localization uncertainty with respect to
time or the accuracy of the odometric and relative position
measurements. In [29], the authors studied, in simulation,
the effect of different robot-tracker sensing modalities on
the accuracy of CL. Statistical properties were derived from
simulated results for groups of robots of increasing size, when
only one robot moved at a time. A numerical optimization
approach for determining the trajectories resulting in the
minimum localization uncertainty for a group of robots has
been proposed in [30]. In [11], [31] acompleteRPMG for
a homogeneousrobot group is assumed and upper bounds on
the positioning uncertainty of the robots are computed. In [12],
experimental and simulation results are presented that validate
the accuracy of these bounds.
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We hereafter present the details of our approach for deriving
analytical expressions for the localization performance of a
group of cooperating robots. Our problem formulation follows
that presented in our previous work [11], [12], extended to the
general case ofarbitrary RPMGs andheterogeneousgroups
of robots [32].

III. PROBLEM FORMULATION

Consider a group ofN robots that employs an Extended
Kalman Filter (EKF) estimator to perform CL.Propriocep-
tive measurements (e.g., velocity) are integrated to propagate
the state estimates, whileexteroceptivemeasurements (e.g.,
robot-to-robot relative position measurements) are processed
to update these estimates. In our formulation, we assume
that each robot has access to measurements of its absolute
orientation, and that an upper bound on the variance of these
measurements can be a priori determined. This is the case,
for example, when each robot is equipped with a heading
sensor of limited accuracy (e.g., a compass [33], [34] or a
sun sensor [35], [36]) that directly measures its orientation,
or if the robots infer their orientation from measurements
of the structure of the environment in their surroundings
(e.g., from the direction of the walls when this is known a
priori) [37]. Alternatively, absolute orientation measurements
can be obtained by observing objects in the horizon [38], or
equivalently, the vanishing points of sets of parallel lines [39].

The variance of the absolute orientation measurements that
each robot receives defines an upper bound on each robot’s
orientation uncertainty. The availability of such a bound en-
ables us to decouple the task of position estimation from that
of orientation estimation, for the purpose of determining upper
bounds on the performance of CL. Specifically, we formulate
a state vector comprised of only the positions of theN robots,
and the orientation estimates are used as inputs to the system,
of which noise-corrupted observations are available. Clearly,
the resulting EKF-based estimator is a suboptimal one, since
the correlations that exist between the position and orientation
estimates of the robots are discarded. Thus, by deriving an
upper bound on the covariance of the estimates produced with
this suboptimal, “position-only” estimator, we simultaneously
determine an upper bound on the covariance of the position
estimates that would result from using a “full-state” EKF
estimator.

We should note here that the condition for bounded orienta-
tion uncertainty is satisfied in most cases in practice. If instead,
special care is not taken and the errors in the orientation esti-
mates of the robots are allowed to grow unbounded, any EKF-
based estimator of their position will eventually diverge [40].
The significance of having small orientation errors for the
consistencyof the EKF has also been demonstrated in [41],
[42]. Thus, the requirement for bounded orientation errors is
not an artificially imposed assumption; it is essentially apre-
requisitefor performing EKF-based localization. In fact, if we
can determine the maximum tolerable value of the orientation
variance, so that the linearization errors are acceptably small,
we can use this variance value in the derivations that follow.

Throughout this paper, we consider that all robots move
constantly in a random fashion (i.e., no specific formation is

assumed as is the case in [43], [44]). At every time step,
some (or all) robots record relative position measurements,
and use this information to improve the position estimates for
all members of the group. During each EKF update cycle, all
exteroceptive measurements, as well as the current position
estimates of the robots, must be available to the estimator [28].
Therefore, it is assumed that a communication network exists
enabling all robots to transmit such information. These can
then be fused either in a distributed scheme, or at a central
fusion center.

A key element in this analysis is the Relative Position
Measurement Graph (RPMG), which is defined as a graph
whose vertices represent robots in the group and its directed
edges correspond to relative position measurements (Fig. 5).
That is, if roboti measures the relative position of robotj, the
RPMG contains a directed edge from vertexi to vertexj. In
this work, we primarily consider the most challenging scenario
where the absolute positions of the robots cannot be measured
or inferred. The case where global positioning information is
available to at least one of the robots in the group, is subsumed
in our formulation and is treated as a special one.

A. Position propagation

We first study the influx of uncertainty to the system, due
to the noise in the odometric measurements of the robots. The
discrete-time motion equations for thei-th robot of the team
are

xi(k + 1) = xi(k) + Vi(k)δt cos(φi(k)) (1)

yi(k + 1) = yi(k) + Vi(k)δt sin(φi(k)) (2)

whereVi(k) denotes the robot’s translational velocity at timek
andδt is the sampling period. In the Kalman filter framework,
the estimates of the robot’s position are propagated using
the measurements of the robot’s velocity,Vmi (k), and the
estimates of the robot’s orientation,φ̂i(k):

x̂ik+1|k = x̂ik|k + Vmi (k)δt cos(φ̂i(k))

ŷik+1|k = ŷik|k + Vmi (k)δt sin(φ̂i(k))

Clearly, these equations are time varying and nonlinear due
to the dependence on the robot’s orientation. By linearizing
Eqs. (1) and (2), the error propagation equation for the robot’s
position is readily derived:
[

x̃ik+1|k
ỹik+1|k

]
= I2

[
x̃ik|k
ỹik|k

]

+
[

δt cos(φ̂i(k)) −Vmi (k)δt sin(φ̂i(k))
δt sin(φ̂i(k)) Vmi (k)δt cos(φ̂i(k))

] [
wVi (k)

φ̃i(k)

]

⇔ p̃ik+1|k = Φi(k)p̃ik|k + Gi(k)Wi(k) (3)

where p̃i(k) = [x̃i(k) ỹi(k)]T is the error in theith robot’s
position estimate,Φi(k) = I2 is the state transition matrix1 for
robot i, and Vmi (k) = Vi(k) − wVi (k) are the measurements
of the translational velocity of the robot, contaminated by a

1Throughout this paper,In denotes then × n identity matrix, 1m×n

denotes them× n matrix of ones, and0m×n denotes them× n matrix of
zeros.
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white zero-mean noise process with known varianceσ2
Vi

. In
the previous expressions,̂φi(k) is the estimate of the robot’s
orientation at timek. The errors in the orientation estimates,
φ̃i(k) = φi(k)− φ̂i(k) are modeled by a white zero-mean noise

process, whose variance,σ2
φi

= E{φ̃i

2}, is bounded.
The covariance function of the system noise affecting theith

robot is

Qi(k, k′) = E{Gi(k)Wi(k)Wi(k
′)T Gi(k

′)T }
= C(φ̂i(k))

[
δt2σ2

Vi
0

0 δt2σ2
φi

V 2
mi

]
C(φ̂i(k))T δkk′

= C(φ̂i(k))QdiC(φ̂i(k))T δkk′ (4)

where δkk′ is the Kronecker delta function, andC(φ̂i(k)) is
the 2× 2 rotation matrix associated witĥφi(k).

The state vector for the entire system is defined as the
stacked vector comprised of the positions of theN robots,
i.e.,

X(k) =
[

pT
1 (k) pT

2 (k) · · · pT
N (k)

]T

Hence, the state transition matrix for the entire system at time
step k is Φk = I2N , and since the errors in the odometric
measurements of the robots are uncorrelated, the covariance
matrix of the system noise is given by

Q(k) =




Q1(k, k) · · · 02×2

...
. . .

...
02×2 · · · QN (k, k)


 = Diag (Qi(k, k)) (5)

whereDiag(·) denotes a block diagonal matrix. The equation
for propagating the covariance matrix of the state error is
written as:

Pk+1|k = Pk|k + Q(k) (6)

where Pk+1|k = E{X̃k+1|kX̃T
k+1|k} and Pk|k =

E{X̃k|kX̃T
k|k} are the covariance of the error in the estimate

of X(k + 1) andX(k) respectively, after all measurements up
to time k have been processed.

B. Exteroceptive Measurement Model

1) Relative Position Measurements:At this point we con-
sider the exteroceptive measurements that the robots process
to update their position estimates. The relative position mea-
surementzij between roboti andj at time instantk is defined
as

zij(k) = CT (φi(k)) (pj(k)− pi(k)) + nzij (k)

= CT (φi(k))∆pij(k) + nzij (k) (7)

wherenzij (k) is a white zero-mean noise process affecting the
measurement. By linearizing Eq. (7), the measurement error
is obtained:

z̃ij(k) = zij(k)− ẑij(k)

' Hij(k)X̃(k) + Γij(k)nij(k)

where

Hij(k) = CT (φ̂i(k))Hoij (8)

Hoij =
[

02×2 .. −I2︸︷︷︸
i

.. I2︸︷︷︸
j

.. 02×2
]
(9)

X̃(k) =
[
p̃T
1 (k) .. p̃T

i (k) .. p̃T
j (k) .. p̃T

N (k)
]T

Γij(k) =
[

I2 −CT (φ̂i(k))J∆̂pij(k)

]

J =
[

0 −1
1 0

]
, nij(k) =

[
nzij

(k)

φ̃i(k)

]

∆̂pij(k) = p̂j(k)− p̂i(k)

The covariance for the measurement error is given by

iRij(k) = Γij(k)E{nij(k)nT
ij(k)}ΓT

ij(k)

= E{nzij n
T
zij
}+ σ2

φi
CT (φ̂i)J∆̂pij∆̂p

T

ijJ
T C(φ̂i)

= iRzij + iRφ̃ij
(10)

where time arguments have been dropped for simplicity of
notation. This expression encapsulates all sources of noise and
uncertainty that contribute to the measurement errorz̃ij(k).
More specifically, iRzij

(k) is the covariance of the noise
nzij

(k) in the recorded relative position measurementzij(k)

andiRφ̃ij
(k) is the additional covariance term due to the error

φ̃i(k) in the orientation estimatêφi(k) of the observing roboti.
Assuming that each relative position measurement consists

of a range measurementρij and a bearing measurementθij ,
whose errorsnρij andnθij are uncorrelated, the termiRzij (k)

can be expressed as [45]:

iRzij (k) = C(θ̂ij(k))
[

σ2
ρi

0
0 ρ̂2

ij(k)σ2
θi

]
CT (θ̂ij(k)) (11)

where σρi and σθi are the standard deviations of the white
zero-mean noise processes affecting the range and bearing
measurements of roboti respectively. Here, it is assumed that
all relative position measurements performed by one robot
are corrupted by noise of equal variance. This assumption
is employed merely to simplify the presentation, since it
is not necessary in the derivations that follow.C(θ̂ij(k)) is
the rotational matrix associated with the bearing angle of
the relative position measurement, expressed in the robot’s
coordinate frame.

Due to the existence of the common error component
attributed toφ̃i(k), the measurements that each robot performs
are correlated. The matrix of correlation between the errors in
the measurementszij(k) andzi`(k) received by roboti is

iRj`(k) =Γij(k)E{nij(k)nT
i`(k)}ΓT

i`(k)

=σ2
φi

CT (φ̂i(k))J∆̂pij(k)∆̂p
T

i`(k)JT C(φ̂i(k)) (12)

The results of Eqs. (10)-(12) allow for the evaluation of the
2Mi × 2Mi covariance matrixRi(k) of all the Mi relative
position measurements gathered by roboti at each time instant.
This is a matrix whose2 × 2 block diagonal elements equal
iRij(k), j ∈ NMi ⊂ {1, . . . , N} \ {i}, whereNMi is the set
of the indices of the robotsj observed by roboti. The off-
diagonal block elements ofRi(k) areiRj`(k), j, ` ∈ NMi , j 6=
`. It can be shown that [45]:

Ri(k) = ΞT
φ̂i

Roi (k)Ξφ̂i
(13)
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whereΞφ̂i
= IMi ⊗ C(φ̂i), with ⊗ denoting the Kronecker

matrix product, and

Roi
(k) = σ2

ρi
I2Mi

−Di diag

(
σ2

ρi

ρ̂2
ij

)
DT

i + σ2
θi

DiD
T
i

+ σ2
φi

Di1Mi×Mi
DT

i (14)

In this last expression,Di = Diag
(
J∆̂pij

)
is the block

diagonal matrix with diagonal elementsJ∆̂pij , j ∈ NMi
. It

is interesting to note that the termRoi
(k) is independentof

the robots’ orientations.
The measurement matrix describing the relative position

measurements performed by roboti at each time step is a
matrix whose block rows areHij , j ∈ NMi

, i.e.:

Hi(k) = ΞT
φ̂i

Hoi (15)

whereHoi
is a constantmatrix with block rowsHoij

, j ∈
NMi (cf. Eq. (9)).

The measurement matrix for the entire system,H(k), is
defined as the block matrix with block rowsHi(k). Since the
measurements performed by different robots are independent,
the associated covariance matrix,R(k), is a block diagonal
matrix with elementsRi(k) (cf. Eq. (13)). The covariance
update equation of the EKF is written as

Pk+1|k+1 = Pk+1|k
−Pk+1|kHT (k + 1)S−1(k + 1)H(k + 1)Pk+1|k

with S(k + 1) = H(k + 1)Pk+1|kHT (k + 1) +R(k + 1). Sub-
stitution from Eqs. (13) and (15) and simple algebraic manipu-
lation leads to the orientation-dependent terms being cancelled
out, and yields the expression

Pk+1|k+1 = Pk+1|k −Pk+1|kHT
o So(k + 1)−1HoPk+1|k

(16)

with So(k + 1) = HoPk+1|kHT
o + Ro(k + 1). In these equa-

tions Ro is a block diagonal matrix with elementsRoi while
Ho is a matrix whose block rows areHoi (cf. Eq. (14)).
Considering the structure of the measurement equations, leads
to the observation that the matrixHo can be written as
Ho = Ho⊗I2 whereHo is theincidence matrixof the RPMG
describing the relative position measurements that are recorded
at each time step. This indicates the close connection between
the structure of the RPMG and the equations describing the
time evolution of the positioning uncertainty during CL (see
also Section IV-A.2 for a more thorough investigation of this
relationship). Note that since the sum of the elements of each
row of Ho is equal to zero, we can write

Ho1N×1 = 0N×1 ⇒
Ho (1N×1 ⊗ I2) = 02N×2 ⇒

H(k) (1N×1 ⊗ I2) = 02N×2 (17)

Using this result it is trivial to show that the system is not
observable (intuitively, this means that any displacement of
the entire robot team with respect to the origin of the global
coordinate frame can not be detected). Additionally, it is clear
that a basis of the unobservable subspace is formed by the
columns of the matrixV = 1N×1 ⊗ I2. This observation will
be useful in the analysis of the following section.

2) Absolute position measurements:Up to this point, only
relative position measurements have been considered. If any
of the robots, e.g., robotn, has access to absolute positioning
information, such as GPS measurements or from a map of the
area, the corresponding submatrix element ofH(k) is:

Han =
[

02×2 . . . I2︸︷︷︸
n

. . . 02×2

]
(18)

while Ran , the covariance of the absolute position measure-
ment, is a constant provided by the specifications of the ab-
solute positioning sensor. To account for the absolute position
measurements, the matrixHo in Eq. (16) is augmented by
simply appending the appropriate block rowsHan

, while Ro

is augmented by appending the matricesRan
on the diagonal,

yielding:

Ro(k) =
[

Diag (Roi
(k)) 0

0 Diag (Ran
)

]
(19)

IV. T HE RICCATI RECURSION

In the preceding section, the covariance propagation and
update equations for the position estimates of the robot team
have been derived. Combining these two equations, by sub-
stituting the expression from Eq. (16) into Eq. (6), yields the
Riccati recursion, which describes the time evolution of the
covariance during CL. The resulting expression is:

Pk+1 = Pk −PkHT
o

(
HoPkHT

o + Ro(k + 1)
)−1

HoPk

+ Q(k + 1) (20)

where the substitutionsPk = Pk+1|k andPk+1 = Pk+2|k+1

have been introduced to simplify the notation. The initial
value of this recursion,P0, is equal to the initial covariance
matrix of the team’s position estimates. It should be noted
that the above recursion is obtained under the assumption that
both odometric and exteroceptive measurements are processed
at the same rate. However, this not always the case, since
odometric data are commonly available at a higher rate. To
address this problem acontinuous-timeanalysis of the time-
evolution of the covariance has also been conducted [45].

A. Upper Bound on Steady-State Covariance

We note that the matricesQ(k + 1) and Ro(k + 1) in
Eq. (20) are time-varying, and thus a closed-form solution to
the Riccati recursion forPk cannot be derived in the general
case. However, by exploiting the monotonicity and concavity
properties of the Riccati recursion, we are able to derive
upper boundsfor the worst-case, as well as for theexpected
covariance of the position estimates during CL. These are the
main results of the paper, and are presented in the following.

Specifically, we are interested in characterizing the
time-evolution of the uncertainty atsteady-state, i.e., after
sufficient time has elapsed for the transient phenomena in the
solution of Eq. (20) to subside. It can be shown [45] that the
right-hand side of the Riccati recursion is a matrix-increasing
function of the covariance matricesQ(k + 1) andRo(k + 1),
as well as of the state covariance matrixPk. These properties
allow us to prove the following lemma [45]:
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Lemma 1: If Ru and Qu are matrices such thatRu º
Ro(k + 1) andQu º Q(k + 1), for all k ≥ 0, then the solution
to the Riccati recursion

Pu
k+1 = Pu

k −Pu
kH

T
o

(
HoPu

kH
T
o + Ru

)−1
HoPu

k + Qu (21)

with the initial conditionPu
0 = P0, satisfiesPu

k º Pk for all
k ≥ 0.

From this lemma we conclude that if we obtain upper
bounds for the covariance of the system and measurement
noise, we can formulate aconstant coefficientRiccati recur-
sion, whose solution is an upper bound on the covariance of
the position estimates in CL. This recursion describes the time
evolution of the covariance of a deduced Linear Time Invariant
(LTI) system whose measurements’ covariance islarger or
equal to the covariance of the measurements in the actual,
nonlinear and time-varying, system.2

An upper bound for Q(k + 1) is derived by noting
that since C(φ̂i) is an orthonormal matrix, the eigenval-
ues of Qi(k + 1, k + 1) are equal toδt2σ2

Vi
and δt2σ2

φi
V 2

mi

(cf. Eq. (4)). Assuming that the maximum velocity of roboti
is equal toVmax, we denote

qi = max
(
δt2σ2

Vi
, δt2V 2

maxσ
2
φi

)
(22)

This definition states thatqi is the maximum eigenvalue of
Qi(k + 1, k + 1), and therefore

Qi(k + 1, k + 1) ¹ qiI2 ⇒ Q(k + 1) ¹ Diag(qiI2) = Qu

An upper bound forRo(k + 1) can be derived by consid-
ering the maximum distance,ρo, at which relative position
measurements can be recorded by roboti. This distance can,
for example, be determined by the maximum range of the
robots’ relative position sensors, or, by the size of the area in
which the robots operate. In Appendix I it is shown that:

Roi(k + 1) ¹ (
σ2

ρi
+ Miσ

2
φi

ρ2
o + σ2

θi
ρ2

o

)
I2Mi = riI2Mi

and thus an upper bound onRo(k + 1) is computed as

Ro(k + 1) ¹ Ru =
[

Diag (riI2Mi) 0
0 Diag (Ran)

]
(23)

We note at this point that the upper bounds derived in the
preceding expressions are valid only for the particular sensor
models employed in this paper. However, the approach is valid
for anysensor model, as long as it is possible to determine ap-
propriate upper bounds on the measurement and system noise
covariance matrices. For example, a holonomic kinematic
model could be employed instead of the non-holonomic model
in Eqs. (1)-(2), and the more accurate method of evaluating
the covariance of the relative position measurements of Lerro
and Bar-Shalom [47] could be employed in Eq. (11).

Having derived upper bounds forQ(k + 1) andRo(k + 1),
mere substitution in Eq. (21) and numerical evaluation of the

2We note at this point that a similar result was derived, for the continuous-
time case, by Nishimura in [46]. In that work, the author addresses the
issue of designing KF estimators forlinear systems for which the initial
state covariance matrix, as well as the covariance of the measurements, is
unknown. It is shown, that if the covariance values that are employed in
the KF are inflated estimates of the true covariance matrices, then the filter
remains consistent.

solution to the resulting recursion, yields an upper bound on
the maximum possible uncertainty of the position estimates in
CL, at any time instant after the deployment of the robot team.
However, significant insight on the properties of the covariance
matrix can be gained by evaluating the solution of Eq. (21) at
steady state. In order to compute the steady-state solution for
Pu

k , we first apply the matrix inversion lemma to obtain

Pu
k+1 = Pu

k −Pu
kH

T
o

(
HoPu

kH
T
o + Ru

)−1
HoPu

k + Qu

= Pu
k

(
I2N + HT

o R−1
u HoPu

k

)−1
+ Qu (24)

The derivations are simplified by defining thenormalized
covariance matrix asPnk

= Q−1/2
u Pu

kQ
−1/2
u , thus yielding

Pnk+1 = Pnk
(I2N + CuPnk

)−1 + I2N (25)

where Cu = Q1/2
u HT

o R−1
u HoQ

1/2
u . Note that the only

parameter in the above Riccati recursion is matrixCu, which
contains the main parameters that characterize the localization
performance of the robotic team. The eigenvalues of this
matrix are in close relation with the type and number of
exteroceptive measurements recorded by the robots of the
team, and determine the properties of the upper bound on the
steady-state positioning uncertainty. In [45], it is shown that
when at least one robot of a team performing CL has access
to absolute positioning information, matrixCu is nonsingular.
In contrast, when the robots of the team only record relative
position measurements, this matrix is singular and has two
eigenvalues equal to zero. These proofs are straightforward,
when the rank ofHo is considered. We hereafter present
the uncertainty bounds for two distinct cases, based on the
availability of absolute positioning information:

1) Observable System:If at least one of the robots receives
absolute position measurements then from a Control Theoretic
perspective the system is observable, and the covariance of the
position estimates for the robots remains bounded at steady
state [28]. An upper bound for the steady-state covariance of
CL in this case is determined by the asymptotic solution of
the Riccati recursion in Eq. (25). This derivation is presented
in Appendix II, and the final result is stated as a lemma:

Lemma 2:The steady-state covariance of the position es-
timates for a team of robots performing CL, when at least
one robot has access to absolute positioning information is
bounded above by the matrix

Pu
ss = Q1/2

u Udiag
(

1
2

+
√

1
4

+
1
λi

)
UT Q1/2

u (26)

where we have denoted the singular value decomposition of
Cu asCu = U diag(λi)UT .

At this point we should note that the upper bound on
the steady-state uncertainty depends on the topology of the
RPMG (affectingCu) and the accuracy of the proprioceptive
and exteroceptive sensors of the robots, represented byQu

andRu, which are “embedded” inCu. However, the steady-
state uncertainty is independent of the initial covariance of
the robots, which comes as no surprise, since the system is
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observable.

2) Unobservable System:If none of the robots receives
absolute position measurements, the system is unobservable,
from a Control Theoretic perspective, and thus the steady
state uncertainty for the robots’ position estimates will be a
monotonically increasing function of time. In this case, the
upper bound on the steady state covariance of the position
estimates is described by the following lemma, whose proof
is presented in Appendix II:

Lemma 3:When none of the robots of the team has access
to absolute position measurements, the positioning uncertainty
of CL at steady state is bounded above by:

Pu
ss(k) = k · qT 1N×N ⊗ I2

+ Q1/2
u U

[
diagξ

(
1
2 +

√
1
4 + 1

λi

)
0ξ×2

02×ξ 02×2

]
UT Q1/2

u

+ qT 1N×N ⊗
[

α β
γ δ

]
(27)

whereλi, i = 1 . . . 2N −2 are the nonzero singular values of
Cu, ξ = 2N − 2 is the dimension of the diagonal submatrix
appearing in the preceding expression,qT is defined as

1
qT

=
N∑

i=1

1
qi

(28)

and the parametersα, β, γ, δ are defined as follows. Let

W = qT Q−1
u (I2N + P0Q−1/2

u h(Cu)Q−1/2
u )−1P0Q−1

u

where

h(Cu) = Udiag

(
λi

2
+

√
λ2

i

4
+ λi

)
UT

Then α =
∑

i,j odd wij (δ =
∑

i,j even wij) is the sum of
all elements ofW = [wij ] with two odd (even) indices
and γ =

∑
i odd,j even wij is the sum of all elements of

W = [wij ] with an odd row index and an even column index.
Due to symmetry,β = γ.

Several observations can be made with respect to the above
result. We note that the upper bound comprises three terms, the
first of which contributes with aconstant rateof uncertainty
increase that is equal toqT δt−1. The second term in Eq. (27)
is a constant term, whose value depends on thetopologyof the
RPMG and theaccuracyof the sensors on the robots. Finally,
the third term in Eq. (27) is a constant term that describes the
effect of theinitial uncertaintyon the steady-state covariance.
It also depends on the noise characteristics of the sensors of the
robots, as well as the RPMG topology. The fact that the steady-
state bound depends on the initial uncertainty is a consequence
of the fact that the system isnot observable, and therefore
initial errors in the estimates for the robots’ positions cannot
be fully compensated for.

It is clear that the most important term in Eq. (27) is
the one that corresponds to aconstant rateof uncertainty
increase. After sufficient time, this term will always dominate

the remaining ones, and will largely determine the worst-case
positioning performance of the team. A striking observation
is that qT , the rate of increase of the maximum uncertainty,
is independentof both the topology of the RPMG and of
the precision of the robots’ relative position measurements.
This quantity depends solely on the number of robots in
the team, and the accuracy of the robots’ Dead Reckoning
(DR) capabilities (cf. Eq. (22)). An intuitive interpretation of
this result is that the primary factor determining the rate of
uncertainty increase is the rate at which uncertainty is injected
in the unobservable subspace of the system. Since the number,
or the accuracy, of the relative position measurements does not
alter this subspace, we should expect no change in the rate of
uncertainty increase, as a result of changes in the information
contributed by the exteroceptive measurements.

Further insight into the properties of the covariance matrix
in CL can be gained by studying the effects of the RPMG
topology on the eigenvalues ofCu. For simplicity, we here
examine the case where all robots receive odometry mea-
surements of equal accuracy (i.e.,qi = q, for i = 1 . . . N ).
Employing the results of Eqs. (9) and (23), the matrixCu can
thus be written as

Cu = q
(
HT

o Diag
(
r−1
i IMi

)
Ho

)⊗ I2 = q L ⊗ I2 (29)

As discussed earlier,Ho is theincidence matrixof the RPMG,
and therefore,HoDiag

(
r
−1/2
i IMi

)
is the incidence matrix of

theweightedRPMG, where each edge is assigned weight pro-
portional to the accuracy of the corresponding measurement.
With this definition, we see that the matrixL is theLaplacian
matrix of the weighted RPMG [48], and the eigenvalues of
Cu are given by (cf. Eq. (29))

λ2k−1 = λ2k = qλLk
, k = 1, . . . , N (30)

where λLk
, k = 1 . . . N is the Laplacian spectrum of the

weighted RPMG.
This interesting observation enables us to employ, for the

analysis of the CL accuracy, results from Spectral Graph
Theory (e.g., [48]–[50]), where the properties of the Laplacian
eigenvalues and their relations to the properties of graphs have
been extensively studied. In Eq. (27), we observe that the
second term, expressing the effects of the RPMG topology
on the steady-state covariance, is a decreasing function of
the eigenvalues ofCu (and thus of the Laplacian eigenvalues
λLk

). Thus, to maximize the positioning accuracy, RPMG
topologies that result in large Laplacian eigenvalues should
be sought. Moreover, in [45] it is shown that the smallest
eigenvalue ofCu defines thetime-constantof the transient
behavior of the covariance matrix. In a scenario where the
initial uncertainty of the robots is large, and fast convergence
to steady state is necessary, selecting an RPMG topology that
maximizes the smallest Laplacian eigenvalue can thus be a
useful strategy. Since determining optimal RPMG topologies is
not the primary focus of this paper, we will not expand further
on this issue here. However, the development of algorithms
for determining the optimal graph topology, given constraints
on the number of measurements, is an interesting avenue for
future research.
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B. Upper Bound on Expected Steady-state Covariance

The results of the preceding section enable us to determine
the guaranteed accuracyof CL for a team of robots with
a given set of sensors, and a specified RPMG topology.
The bounds determined in Eqs. (26) and (27) hold for any
scenario of the robots’ motion, as long as the maximum
distance between any pair of them remains smaller thanρo.
However, it is the case for many practical scenarios, that a
better characterization of the robots’ trajectories is known in
advance. For example, we may be able to model the pose of
the robots by a known probability distribution function (pdf)
in their operational area. In this case, the covariance matrices
Q(k + 1) andRoi

(k + 1) (Eqs. (5) and (14)) are functions of
random variables, whose mean value can be determined. The
availability of additional knowledge in the form of a prior
distribution for the robots’ poses can be used in order to
attain a tighter upper bound on theexpectedcovariance of
the position estimates in CL.

Specifically, it can be shown [45] that the right hand side
of Eq. (20) is a concave function of the matrix[

Pk 0
0 Ro(k + 1)

]

This property enables us to employ Jensen’s inequality ( [51])
to prove, by induction, the following lemma [45]:

Lemma 4: If R̄ = E{Ro(k + 1)} and Q̄ = E{Q(k + 1)}
are the expected values of the measurement and system noise
covariance matrices respectively, then the solution to the
following Riccati recursion

P̄k+1 = P̄k − P̄kHT
o

(
HoP̄kHT

o + R̄
)−1

HoP̄k + Q̄ (31)

with initial condition P̄0 = P0, satisfiesP̄k º E{Pk} for
all k ≥ 0.

In other words, evaluating the average values of the covari-
ance matricesRo(k + 1) andQ(k + 1) enables us to formulate
a constant coefficientRiccati recursion, whose solution is
an upper bound on theexpectedcovariance of the position
estimates in CL. Clearly, once the valuesR̄ andQ̄ have been
determined, the derivations are analogous to the ones presented
in the preceding section.

The average value of the system noise covariance matrix is
easily computed by averaging over all values of orientation
of the robots. Assuming a uniform distribution of the robots’
orientation, from Eq. (4) we obtain:

E{Qi(k + 1, k + 1)} = δt2
σ2

Vi
+ σ2

φi
V 2

mi

2
I2 = q̄iI2 (32)

and thus

Q̄ = E{Q(k + 1)} = Diag (q̄iI2) (33)

In order to evaluate the expected value ofRo(k + 1), we
assume that the positions of the robots are modeled by a
uniform3 pdf, inside a rectangular area of sideα. Using the

3The uniform distribution was employed in the calculation ofR̄, since
it was deemed an appropriate model for the positions of the robots in the
experiments presented in Section VI. However, the analysis holds for any
given pdf.

definition of Roi
(k + 1) in Eq. (14), it can be shown that the

expected value ofRoi
(k + 1) equals

R̄i =
(

σ2
ρi

α2

2
+ σ2

θi

α2

6
+ σ2

φi

α2

12

)
I2Mi

+ σ2
φi

α2

12
12Mi×2Mi

and thus

R̄ =
[

Diag
(
R̄i

)
0

0 Diag (Rai)

]
(34)

Using these results, upper bounds on the expected steady-state
covariance of the position estimates in CL, for both the ob-
servable and unobservable case, can be derived. The solutions
of the Riccati recursion in Eq. (31) for the two cases are
completely analogous to those presented in Lemmas 2 and 3,
with the sole difference that the quantitiesQu and Ru are
replaced byQ̄ and R̄, respectively (and therefore the matrix
Cu is also replaced bȳC = Q̄1/2HT

o R̄−1HoQ̄1/2).
Some interesting remarks can be made about the uncertainty

increase rate in a robot team that has no access to absolute
position information. The upper bound on the expected rate
of increase is equal tōqT δt−1, where

1
q̄T

=
N∑

i=1

1
q̄i

(35)

We once again underline the fact that the maximum expected
rate of uncertainty increase isindependentof the initial uncer-
tainty P0, the accuracy of the relative position measurements,
and the topology of the RPMG. Moreover, we can compare
this value with the rate at which uncertainty increases when
each robot localizes independently, using DR. In that case,
the covariance matrix for all robots’ estimates evolves in time
according to Eq. (6), and therefore the average rate of increase
in uncertainty for roboti is:

E
{ 1

δt

(
Pik+1 − Pik

)}
= E

{ 1
δt

Qi(k, k)
}

=
q̄i

δt
I2 ⇒

E
{

Pik+1

}
= E

{
Pik

}
+ q̄iI2 (36)

From the definition ofq̄T (Eq. (35)), it becomes clear that
it will be smaller than the smallest of thēqi’s (notice that
the definition of q̄T is analogous to the expression for the
total resistance of resistors in parallel). This implies that it
suffices to equip onlyonerobot in the team with proprioceptive
sensors of high accuracy, in order to achieve a desired rate
of uncertainty increase.All the robots of the group will
experience a reduction in the rate at which their uncertainty
increases and this improvement is more significant for robots
with sensors of poor quality. Moreover, the maximum expected
rate of uncertainty increase isidentical for all robots of the
team, regardless of the accuracy of each robot’s odometry, and
it decreases as the number of robots,N , increases.

Corollary 5: The maximum expected rate of positioning
uncertainty increase of all the robots of a heterogeneous team
performing CL is thesame, equal toq̄T δt−1, where

1
q̄T

=
N∑

i=1

1
q̄i
≥ max

(
1
q̄i

)
⇒ q̄T ≤ min q̄i (37)

This rate issmaller than the rate of uncertainty increase of
the robot with the best DR performance, if it were to localize
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independently.

Before presenting the experimental and simulation results that
corroborate the theoretical analysis, in the following section
we study some important properties of the derived upper
bounds.

V. RPMG RECONFIGURATIONS

In the preceding analysis, it is assumed that the topology
of the graph describing the relative position measurements
between robots does not change. However, this may be difficult
to implement in a realistic scenario. For example, due to the ro-
bots’ motion or because of obstacles in the environment, some
robots may not be able to measure their relative positions.
Additionally, robot teams often need to allocate computational
and communication resources to mission-specific tasks and
this may force them to reduce the number of measurements
they process for localization purposes. Consequently, it is of
considerable interest to study the effects of changes in the
topology of the RPMG on the localization accuracy of the
team.

Consider the following scenario: At the initial stage of
the deployment of a robotic team, the RPMG has a dense
topology T1, e.g., the complete graph shown in Fig. 5(a),
and retains this topology until some time instantt1, when it
assumes a sparser topologyT2, e.g., the ring graph shown in
Fig. 5(b). This sparse topology may even be anempty graph,
i.e., the case in which the robots localize independently, based
only on DR. Subsequent topology changes are assumed to
occur at time instantsti, i = 1 . . . n − 1, and finally, at time
instanttn, the RPMG returns to its initial, dense topology,T1.
Assuming that the time intervals(ti−1, ti) are of sufficient
duration for the transient phenomena in the time evolution
of uncertainty to subside, the following lemma, whose proof
can be found in Appendix III, applies.

Lemma 6:After a sequence of RPMG reconfigurations and
once the RPMG resumes its initial topology, the maximum
expected positioning uncertainty of the robots at steady state
is identical to the one the robot team would have if no RPMG
reconfigurations had taken place.

This implies that during time intervals when the RPMG
topology is a sparse one, the “additional uncertainty” is
introduced in directions of the state space that belong in the
observable subspace. Thus, when the topology resumes its
initial dense form, this additional uncertainty vanishes.

This is a significant result due to its important implications.
Consider the scenario where the robots of a team, during a
phase of their mission, are forced to receive and process a
small number of measurements, or even resort to mere DR,
due to communication or sensor failures, or because CPU
and bandwidth resources are required by other tasks of higher
priority. During this interval, a reduced amount of positioning
information is available to the robots (sparse RPMG topology)
and as a result the performance of CL will temporarily
deteriorate. However, once the initial, dense RPMG topology

is restored, the team’s positioning performance will have
sustainedno degradation. Furthermore, Lemma 6 indicates
that a dense topology for the RPMG during the initial phase of
the deployment of a robot team has a long-term effect on the
localization performance of the team. Specifically, if during the
initial deployment, the robots leverage their communication
and computational resources to support a dense RPMG, this
will improve their positioning accuracy at the beginning of CL.
Later on, and as the robots focus on mission-specific and other
time-critical tasks, they will have to rely on sparser RPMGs
as resources dictate. However, when at a subsequent time
instant the RPMG resumes its initial, dense topology, the above
lemma guarantees that the maximum expected uncertainty will
be identical to the one that would arise if the dense RPMG
topology was retained throughout the run of the robots.

VI. EXPERIMENTAL RESULTS

A series of experiments were conducted for validating
the preceding theoretical analysis. Our experimental setup is
shown in Fig. 1(a). A team of four Pioneer I robots moves
in a rectangular area, within which the positions of the robots
are being tracked by an overhead camera. For this purpose,
rectangular targets are mounted on top of the robots and the
vision system is calibrated in order to provide measurements
of the pose of the robots in a global coordinate frame. The
standard deviation of the noise in these measurements is ap-
proximately0.5o for orientation and1cm, along each axis, for
position. The robots were commanded to move at a constant
velocity of V = 0.1m/sec while avoiding collision with the
boundaries of the arena as well as with their teammates.

Although four identical robots were used, calibration of their
odometric sensors showed that the accuracy of the wheel en-
coder measurements isnot identical for all robots. Specifically,
the measurement errors are well-modeled as Gaussian zero-
mean white noise processes and the standard deviation of the
velocity measurements ranges fromσVmin = 0.038V , for the
most accurate odometer toσVmax = 0.069V , for the robot
with the highest noise levels. Similarly, the standard deviations
of the rotational velocity measurements have values between
σωmin = 0.0078rad/sec andσωmax = 0.02rad/sec for the four
robots. We observe that as a result of the variability of sensor
characteristics, attributed to manufacturing imperfections, the
experiments involve a heterogeneous robot team, although this
had not been planned for. This shows the practical significance
of raising the assumption of a homogeneous robot team, which
had been imposed in previous work [12].

Each of the robots is equipped with a laser range finder,
that is used for measuring absolute orientation. This is done
by exploiting the perpendicularity of the surfaces surrounding
the arena and employing a simple line-fitting technique. The
standard deviation of the errors in the orientation measure-
ments is approximately0.5o for all robots.

Relative position measurements are produced synthetically
using the differences in the positions of the robots, as these are
recorded by the overhead camera, expressed in the measuring
robot’s coordinate frame, with the addition of noise. This
facilitates the study of the effects of varying the accuracy
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Fig. 1. (a) Calibrated image of robots with targets mounted on top of them. (b) True and estimated trajectories for robot 1. For presentation clarity only part
of the trajectory, corresponding to the first450sec, is plotted. The size of the arena is approximately2.5× 4.5m.
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(b) Cooperative Localization (CL)

Fig. 2. Time evolution of the true covariance of the position estimates (solid bounding lines), and theoretically computed values (dashed black lines).

of the relative position measurements and allows for control
of the topology of the RPMG. For the experimental results
shown in this section, a complete RPMG topology is formed
and the relative position measurements (distance and bearing)
are corrupted by zero-mean white Gaussian noise processes
with standard deviationσρ = 0.05m and σθ = 0.0349rad.
Position estimation was run off-line and all measurements
were downsampled to the rate of 1Hz, so as to achieve
synchronization.

In Fig. 1(b), the true trajectory (solid line) for one of
the robots, as measured by the overhead camera, is com-
pared to the trajectory estimated using DR (solid line with
dots) and CL (dashed line). The significant improvement in
positioning performance, resulting from the use of relative
position information, is apparent and is demonstrated more

clearly in Fig. 2, where the time evolution of the covariance
is shown. Fig. 2(a) corresponds to the case in which the
four robots localize independently, and compares the expected
covariance values computed by Eq. (36) (dashed lines), with
the covariance values computed by the filter (solid lines).
On the other hand, Fig. 2(b) corresponds to the CL case
and presents the covariance computed by the EKF (solid
lines) as well as the theoretically derived upper bound for
the expected covariance (dashed lines) and the upper bound
for the worst-case covariance (dash-dotted lines). It is evident
that the derived upper bound is indeed larger than the actual
covariance of the position estimates. Moreover, we note that
despite the fact that we deal with a heterogeneous team, the
positioning uncertainty increases at thesamerate for all robots.
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(a) Robot 1 - DR
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(b) Robot 2 - DR
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(c) Robot 3 - DR
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(d) Robot 4 - DR
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(e) Robot 1 - CL
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(f) Robot 2 - CL
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(g) Robot 3 - CL
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Fig. 3. Top row: errors (solid blue lines) in the position estimates for the robots when they perform DR. Bottom row: position errors during CL. The solid
bounding lines represent the±3σ values of the actual covariance, computed by the EKF, while the dash-dotted bounding lines represent the±3σ values
computed employing the theoretical upper bound for the expected covariance.

This rate is significantly smaller compared to that of the robot
with the most accurate sensors localizing when relying on DR
(in this case Robot 2 as shown in Fig 2(a)). This observation
agrees with the theoretical result of Corollary 5.

In Fig. 3, the errors in the position estimates of the robots
are plotted and compared against the±3σ values of the posi-
tion estimates’ covariance. The solid lines represent the±3σ
values associated with the covariance computed by the EKF,
while the dashed ones represent the±3σ values computed
using Eq. (36) for the case of DR, and the upper bound on
the expected covariance for the case of CL. In these plots,
the substantial improvement in positioning accuracy, achieved
when the robots are recording and processing relative position
measurements, is illustrated. However, the most important con-
clusion drawn from these figures is that the derived analytical
expressions can be employed in order to accuratelypredict the
localization performance of a robot team. The±3σ enveloping
lines, evaluated using the derived analytical expressions, define
a confidence region that closely describes the magnitude of the
position errors. This justifies the use of the covariance matrix
as a performance metric and demonstrates that for a robot
team with known sensor noise characteristics, it is possible to
characterize its positioning accuracy, without having to resort
to extensive simulations, or experimentation.

VII. S IMULATION RESULTS

In this section, we present simulation results that demon-
strate the effect of RPMG reconfigurations and corroborate
the corresponding theoretical analysis. In order to isolate
the effects of different RPMG topologies, a homogeneous

team comprising 9 robots is considered in these simulations.
Note, however, that as the previous section demonstrates,
homogeneity is not a prerequisite of our approach. The robots
are restricted to move in an area of radiusr = 20m, and their
velocity is assumed to be constant, equal toVi = 0.25m/sec.
The orientation of the robots, while they move, changes
randomly using samples drawn from a uniform distribution
of width 20o about zero degrees.

The parameters of the noise that corrupts the proprioceptive
measurements of the simulated robots are identical to those
measured on a iRobot PackBot robot (σV = 0.0125m/sec,
σω = 0.0384rad/sec). The absolute orientation of each robot
was measured by a simulated compass withσφ = 0.0524rad.
The robot tracker sensor returned range and bearing measure-
ments corrupted by zero-mean white noise withσρ = 0.01m
and σθ = 0.0349rad. The above values are compatible with
noise parameters observed in laboratory experiments [17]. All
measurements were available at 1Hz.

In Fig. 4, the time evolution of the positioning uncertainty
of the robot team is shown. Initially, up tot = 200sec, the
robots do not record any relative position measurements and
propagate their position estimates using DR. Att = 200sec,
the robots start receiving relative position measurements and
the topology of the RPMG becomes a complete one (Fig. 5(a)).
The significant reduction in the rate of uncertainty increase,
achieved by using relative positioning information, is demon-
strated in this transition. Att = 400sec, the RPMG assumes
a ring topology (Fig. 5(b)). We note that the uncertainty
undergoes a transient phase, during which it increases at a
higher rate and then, once steady state is reached, the rate of
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increase isidentical to the rate associated with the complete
graph. This corroborates the result of Eq. (27) and shows that
the dominant factor in determining the rate of localization
uncertainty increase is the quality of the proprioceptive and
orientation sensors of the robots.

At t = 600sec, a hypothetical failure of the communication
network occurs, and in the time interval between600sec and
800sec only two robots are able to measure their relative
positions (Fig. 5(c)). This case can be viewed as a degenerate
one, where the 7 robots localize based solely on DR, while the
other 2 robots form a smaller team. As expected, the rate of
uncertainty increase is higher when the team consists of only
2 robots, instead of 9, but lower when compared to DR.

At t = 800sec, the RPMG resumes the complete graph
topology (Fig. 5(a)). It is evident that the average uncer-
tainty in the position estimates during the time intervals
(200, 400)sec and(800, 1000)sec is described by thesame
linear function of time. This occurs despite the prior two
reconfigurations of the topology of the RPMG that occurred
at t = 400sec andt = 600sec. This result is in accordance
with the theoretical analysis of Section V.

At t = 1000sec, the RPMG assumes a non-canonical topol-
ogy, i.e., random graph (Fig. 5(d)). This scenario is perhaps
the most important one for real applications, since robots will
usually measure the relative positions of neighboring robots
that are within their field of view. Due to the robots’ motion,
the topology of the RPMG can change randomly. We observe
that the positioning uncertainty increases at a rate identical to
that of Phases I and II of the graph’s topology, as predicted by
our theoretical analysis. It is also apparent that the uncertainty
for each robot converges to a set of lines with the same slope
(rate of uncertainty increase), but different constant offset. This
is due to the effect of the different degree of connectivity in
the RPMG of each robot. Connection-rich robots have direct
access to positioning information from more robots and thus
attain lower positioning uncertainty.

Finally, at t = 1200sec, only one of the robots starts
receiving GPS measurements while the RPMG retains the
topology of Fig. 5(d). The GPS measurements are corrupted
by noise with a standard deviation ofσGPS = 0.05m in each
axis. It is evident that the availability of absolute position
measurements toany robot drastically reduces the localization
uncertainty forall the robots in the group. Furthermore, the
system becomes observable and the uncertainty is bounded
for all the members of the team. As in the previous phase,
the uncertainty for the position of each robot converges to
a value (constant in this case) that depends on its degree of
connectivity.

VIII. C ONCLUSIONS

This paper presents an in depth study of the localization
performance of heterogeneous robotic teams with arbitrary
and potentially dynamic Relative Position Measurement Graph
(RPMG) topologies. Afunctional relationhas been established
between the maximum expected positioning uncertainty during
Cooperative Localization (CL) and design parameters such
as: (i) the size of the robot group, (ii) the accuracy of the
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Fig. 4. Uncertainty evolution for a RPMG with changing topology. The
dashed straight line has been superimposed on the figure to facilitate the
comparison between the values of the covariances for different topologies of
the RMPG.

robots’ sensors, and (iii) the topology of the RPMG. When
the precision of the position estimates of a team is required
to meet specifications imposed by a certain task, the derived
expressions can be employed to facilitate the selection of the
required parameters of the robot group. The presented theoret-
ical analysis allows the prediction of the magnitude of the CL
position errors when the topology of the RPMG changes or
when the size of the robot team varies over time (e.g., when
robots are located out of measurement/communication range
or they fail temporarily or permanently). Furthermore, the case
in which absolute positioning information (e.g., from a GPS
receiver, or from a pre-compiled map) is available to at least
one of the team members, is naturally incorporated in this
framework. Thus, this work offers a powerful tool that allows
for determining the positioning capabilities of a multi-robot
system early on in the design stage, without the need to resort
to extensive simulations, or time-consuming experimentation.

Significant properties of the time evolution of the position-
ing uncertainty have been presented. It was shown that even
if onerobot has access to absolute position measurements, the
positioning uncertainty ofall the robots in the group remains
bounded and converges to a constant value. In contrast, for
a robot team whose members only register relative position
measurements, Lemma 3 maintains that at steady state the
increase rate of the maximum uncertainty isindependentof
both the accuracy of the robot tracker device and the topology
of the RPMG. Aside from the number of robots comprising
the team, the single most important factor that determines
the uncertainty of the position estimates is the accuracy of
the proprioceptive sensors and orientation estimates of the
robots. In the particular case of a heterogeneous robot group,
the localization accuracy of the robot equipped with themost
precisesensors is the one that has the greatest impact on the
overall accuracy.

These observations are of great practical importance since
they ensure that for a robot group of certain size, thenumber
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(a) Graph I (b) Graph II

(c) Graph III (d) Graph IV

Fig. 5. The four different relative position measurement graph (RPMG)
topologies considered in the simulations. Each arrow represents a relative
position measurement, with the robot (node) where the arrow starts being the
observing robot.

of relative position measurements affects only the constant
term of the covariance while the rate of uncertainty increase
remains the same. Furthermore, it was shown that if the
robots are forced to temporarily reduce the number of recorded
relative position measurements (due to external factors such
as visibility constraints, or because of resource allocation to
time-critical tasks), then when the RPMG resumes its prior
topology, no loss of localization performanceis inflicted.
These properties can be extremely useful when designing ro-
botic teams for specific applications, or when considering task
planning and/or motion strategy for robot groups operating in
adverse environments.

An interesting direction for future research is the study of
the underlying relationship between the CL performance and
the Laplacian eigenvalues of the RPMG. Initial results indicate
that employing concepts from Spectral Graph Theory can
facilitate the description of the properties of the time evolution
of positioning uncertainty, in terms of the characteristics of
the RPMG. This analysis is especially important for robotic
teams of large size, in which the asymptotic properties of
the Laplacian eigenvalues of the graph become dominant.
We are currently investigating the existence of optimal graph
topologies that, given constraints on the available resources,
provide optimal positioning performance [44]. To this end,
the effect of graph characteristics, such as diameter, average
path length, and clustering coefficient, on the positioning

performance of the robotic team are examined.

APPENDIX I

In this appendix, we derive an upper bound forRoi (k),
by considering each of the terms in Eq. (14) independently.
The term that expresses the effect of noise in the range
measurements is

R1(k) = σ2
ρi

I2Mi
−Di diag

(
σ2

ρi

ρ̂2
ij(k)

)
DT

i ¹ σ2
ρi

I2Mi (38)

where the matrix inequality follows from the fact that the
negative term in the expression forR1(k) is a positive semi-
definite matrix. The covariance term due to the noise in the
bearing measurement is

R2(k) = σ2
θi

DiD
T
i

= σ2
θi
Diag

(
ρ̂2

ij

[
sin2(θ̂ij) sin(θij) cos(θ̂ij)

sin(θ̂ij) cos(θ̂ij) cos2(θ̂ij)

])

¹ σ2
θi
Diag

(
ρ̂2

ijI2

)

¹ σ2
θi

ρ2
oI2Mi

(39)

whereρo is the maximum possible distance between any two
robots. Finally, the covariance term expressing the error in the
orientation of the measuring robot is

R3(k) = σ2
φi

Di1Mi×MiD
T
i

¹ σ2
φi

Di (MiIMi) DT
i = Miσ

2
φi

DiD
T
i

By derivations analogous to those employed to yield an upper
bound forR2(k), it can be shown that

R3(k) ¹ Miσ
2
φi

ρ2
oI2Mi (40)

Combining this result with those of Eqs. (38), (39), we can
write Roi (k) = R1(k) + R2(k) + R3(k) ¹ riI2Mi , where

ri = σ2
ρi

+ Miσ
2
φi

ρ2
o + σ2

θi
ρ2

o (41)

APPENDIX II

In this appendix, we show how to derive the steady-state
solution of the Riccati recursion in Eq. (25). We denote the
SVD of matrix Cu as Cu = Udiag(λi)UT = UΛUT , and
definingPnnk

= UT Pnk
U yields the recursion

Pnnk+1 = Pnnk
(I2N + ΛPnnk

)−1 + I2N (42)

When the system is observable, at steady state we have
Pnnk+1 = Pnnk

= Pnn∞ , and we thus need to solve the
matrix equation

Pnn∞ = Pnn∞ (I2N + ΛPnn∞)−1 + I2N

In this expression, all the diagonal elements ofΛ are positive,
since Cu is a positive definite matrix [45]. Assuming a
diagonal form forPnn∞ , we can easily derive the solution

Pnn∞ = diag
(

1
2

+
√

1
4

+
1
λi

)

However, the fact that we are dealing with an observable
system, means that the asymptotic solution to the Riccati
recursion is unique [52]. Thus, the above derived solution is
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unique, and from it, the expression in Eq. (26) follows directly
from the relationPu

k = Q1/2
u UPnnk

UT Q1/2
u .

When none of the robots has access to absolute position
measurements, the system is unobservable, and the asymptotic
solution to the Riccati recursion in Eq. (25) (or, equivalently,
in Eq. (42)) is not as straightforward, since the solution now
depends on the initial value of the covariance matrix. When
the system is unobservable, matrixCu is of rank2N −2, and
therefore two of its singular values equal zero [45].

We first address the case in which the initial covariance
matrix is zero. We observe that the right-hand side of Eq. (42)
is a diagonal matrix in this case, and by a simple induction
argument, we can show that the solution to this recursion
retains a diagonal form for allk ≥ 0. Addressing each of the
diagonal elements individually, we observe that for the first
2N − 2 elements, which correspond to the nonzero singular
values, we obtain the equations

Pnnk+1(i, i) = Pnnk
(i, i) (1 + λiPnnk

(i, i))−1 + 1

while for the last two elements we obtain

Pnnk+1(i, i) = Pnnk
(i, i) + 1

Therefore, the asymptotic solution forPnnk
is given by

Pnnk
=

[
diagξ

(
1
2 +

√
1
4 + 1

λi

)
0(2N−2)×2

02×(2N−2) kI2

]
(43)

Employing the relationPu
k = Q1/2

u UPnnk
UT Q1/2

u and the
last result, we obtain the first two terms in Eq. (27). For this
derivation, the basis vectors of the nullspace of the matrix
Cu are needed. Recall that in Section III-B the nullspace
of Ho was shown to be spanned by the column vectors of
V = 1N×1 ⊗ I2, and thus we can easily see that a basis of
the nullspace ofCu = Q1/2

u HT
o R−1

u HoQ
1/2
u is defined by

the columns ofVC = g−1Q−1/2
u V , whereg is a normalizing

factor to ensure unit norm. Using this result, the derivation of
the first two terms in Eq. (27) now merely involves algebraic
manipulation.

In order to derive the last term of that equation, which
depends on the initial uncertainty, we first define the matrix
P̃k = Pnk

− kVCV T
C . This matrix has the property that it

asymptotically approaches a constant value, depending on the
initial covariance matrix. Substitution in Eq. (25) and simple
algebraic manipulation results in the recursion

P̃k+1 = P̃k

(
I2N + CuP̃k

)−1

+ U
[

Iξ 0ξ×2

02×ξ 02×2

]
UT (44)

whereξ = 2N − 2 is the number of nonzero eigenvalues of
Cu. The solution of this recursion is derived employing the
following lemma (adapted from [52]):

Lemma 7:SupposeP̃(0)
k is the solution to the Riccati

recursion in Eq. (44) with zero initial condition. Then the
solution to this recursion when the initial covariance matrix
is an arbitrary positive semidefinite matrix̃P0 is defined by
the relation

P̃k+1 − P̃(0)
k+1 = Φ(0)

p (k + 1)
(
I2N + P̃0Jk+1

)−1

× P̃0Φ(0)
p (k + 1)T

where

Φ(0)
p (k + 1) =

(
I2N − P̃HT

o

(
HoP̃HT

o + Ru

)−1

Ho

)k+1

×
(
I2N + P̃Jk+1

)

In these expressions̃P is any solution to the Discrete Alge-
braic Riccati Equation (DARE)

P̃ = P̃
(
I2N + CuP̃

)−1

+ U
[

Iξ 0ξ×2

02×ξ 02×2

]
UT

andJk denotes the solution to thedual Riccati recursion with
zero initial condition:

Jk+1 = Jk + Cu − JkU
[

Iξ 0ξ×2

02×ξ 02×2

]
UT Jk

We note that the zero-initial condition solution to Eq. (44)
is straightforward to derive from Eq. (43) and the definition
of P̃k. Additionally it is easy to show that this solution also
constitutes a solution to the DARE. The detailed derivation of
the final expression is quite lengthy, and cannot be included
here due to limited space. The interested reader is referred
to [45] for a thorough description of the intermediate steps.

APPENDIX III

We here prove Lemma 6. Due to space limitations, we
provide a proof only for the scenario in which the sequence
of reconfigurations involves exactly one intermediate topology,
during which the RPMG is an empty graph. A generalization
to the case of any sequence of reconfigurations, involving
arbitrary RPMG topologies, is straightforward and is presented
in [45].

The following proof is for the upper bound on the expected
uncertainty, but a similar result holds for the worst-case bounds
on the covariance. For this derivation we employ Eq. (27)
where we have substituted the quantitiesQu and Cu by Q̄
andC̄, respectively. It can be shown [45] that Eq. (27) can be
written, in terms of the normalized covariance matrix,P̄n(k) =
Q̄−1/2P̄(k)Q̄−1/2, as

P̄n(k) = Ū
[

diagξ

(
f(λ̄i)

)
0ξ×2

02×ξ kI2 + Ψ

]
ŪT (45)

whereλ̄i, i = 1 . . . ξ are the nonzero singular values ofC̄,

f(λ̄i) =
1
2

+
√

1
4

+
1
λ̄i

,

and Ψ is a 2 × 2 matrix that encapsulates the effect of the
initial uncertainty:

Ψ = V T
(
I2N + P̄n(0)h(C̄)

)−1
P̄n(0)V (46)

In the last expressionPn(0) is the normalized covariance
at time t0 = 0, and V is the 2N × 2 matrix comprising
the singular vectors of̄C corresponding to the zero singular
values. The RPMG has the topologyTA for the time interval
(t0, t1). The normalized covariance matrix at timet1 is given
by:

P̄n(t1) = ŪA

[
diagξ

(
f(λ̄i)

)
0ξ×2

02×ξ t1I2 + ΨA

]
ŪT

A (47)
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where ΨA = V T
(
I2N + P̄n(0)h(C̄A)

)−1
P̄n(0). In these

expressions, the subscriptA has been appended to quantities
that depend on the topologyTA. In [45], it is shown thatV
is independentof the RPMG topology and thus no subscript
is necessary to identify it. Assuming that during the time
interval (t1, t2) the robots perform DR, then the average rate
of covariance increase during this time interval is equal to
Q̄ (cf. Eq. (36)), and it is easy to show that at timet2 the
normalized covariance is given by:

P̄n(t2) = ŪA

[
diagξ

(
f(λ̄Ai)

)
+ ∆t12Iξ 0ξ×2

02×ξ t2I2 + ΨA

]
ŪT

A

(48)
where∆t12 = t2− t1. In order to compute (through Eqs. (45)
and (46)) an upper bound on the uncertainty during Phase 3,
when the RPMG resumes topologyTA, theexactvalue of the
covariance at timet2 is needed. However, since we seek an
upper bound for the covariance, we can use the fact thatΨ is
a matrix-increasing function in the argumentP̄n, i.e., [45]

P̄′n º P̄n ⇒ Ψ′ º Ψ (49)

Consequently, since Eq. (48) describes an upper bound on
Q−1/2E{P(t2)}Q−1/2, the following expression is an upper
bound on the normalized covariance at timet > t2 (at steady
state):

P̄′nA
(k) = ŪA

[
diagξ

(
f(λ̄Ai)

)
0ξ×2

02×ξ (t− t2)I2 + Ψ′A

]
ŪT

A

where

Ψ′A = V T
(
I2N + P̄n(t2)h(C̄A)

)−1
P̄n(t2)V

Substitution from Eq. (48) into the last expression and simple
algebraic manipulation with the use of the Matrix Inversion
Lemma [45] yields:

Ψ′A = ΨA + t2I2 (50)

Thus,

P̄′nA
(k) = ŪA

[
diagξ

(
f(λ̄Ai)

)
0ξ×2

02×ξ tI2 + ΨA

]
ŪT

A (51)

Clearly, the maximum expected steady-state covariance during
Phase 3 is identical to the maximum expected covariance that
would result from direct use of Eq. (47), i.e.,if no RPMG
reconfigurationshad taken place.
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