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~ Abstract—This paper studies the accuracy of position estima- for assessing the positioning accuracy of heterogeneous robot
tion for groups of mobile robots performing Cooperative Local-  groups. During the design phase, informed decisions based on
ization (CL). We consider the case of teams comprised of possibly a6 relations can guide the selection of the appropriate size of

heterogeneous robots and provide analytical expressions for the th bot d th f thei f hievi
upper bound on their expected positioning uncertainty. This 1€ fobotgroup andthe accuracy of tn€ir Sensors for achieving

bound is determined as a function of the sensors’ noise covariance the desired level of localization precision. This, in effect,

and the eigenvalues of the Relative Position Measurement Graph will result in considerable gains in terms of design expenses,
(RPMG), i.e., the weighted directed graph which represents since employing costly and time consuming simulation and
the network of robot-to-robot exteroceptive measurements. The experimental trials for specifying the positioning accuracy of

RPMG is employed as a key element in this analysis and its -
properties are related to the localization performance of the robot groups, can be avoided altogether, or, at least deferred

team. It is shown that for a robot group of certain size, the until the end of the design phase for verification. Forming
maximum expected rate of uncertainty increase isndependent teams with the necessary number of robots and equipping them
of the accuracy and number of relative position measurements with the essential sensors will introduce additional savings

and depends only on the accuracy of the proprioceptive and ; i ;
orientation sensors on the robots. Additionally, the effects of by .r(.adulcmg the probability of failure due to unexpected
positioning errors.

changes in the topology of the RPMG are studied and it is shown

that at steady state, these reconfigurations deot inflict any loss In [11], [12], upper bounds on the localization uncertainty of
in localization precision. Experimental data, as well as simulation a homogeneous group d¥ robots were derived by directly
results that validate the theoretical analysis are presented. solving the continuous-time Riccati equation for the covari-

Index Terms— Multirobot Localization, Cooperative Localiza- ance of the errors in the position estimates. The results of that
tion, Relative Position Measurement Graph, Sensor Sharing, work constitute the first analytical assessment of the position-

Positioning Accuracy, Kalman filtering. ing accuracy of multirobot teams. However, the assumption of
homogeneitand the requirement thateryrobot continuously
I. INTRODUCTION measures the relative position alf other robots in the team,

N order f ltirobot t i dinate whil limit their applicability to small groups of identical robots.
order for a muitirobot team 1o coordinate While Navy, qjistic scenarios, limitations on computational resources

igating autonomously within an area, all robots must bgnd communication bandwidth, may prohibit the robots from

able 1o determine their positions with respect o a COmm(mamsmitting and processing all measurements available at

frame of reference. Frequently, robots need to Commun'C%R‘?ery time instant, and additionally, even teams comprised of

Itn cl)(rder to coolrdlntgte trl1e|r2effortt)§ d?rtmg the textt_acutlgn 0; Faentically built robots, may actually be heterogeneous, due
ask (e.g., exploration [1], [2], object transportation [3], | ]to the inherent variability during the manufacturing of their

structure assembly [5], [6], etc). By acquiring, transmittingSensors (cf. Section V)

and processing relative position measurements and pertiner“,] the p.resent Work. we relax these assumptions and
positioning ipformation, groups of robots can Ieverggg theé-liudy the time evolutio’n of the positioning uncertainty in
communlcgnon resources to perfommopgratlve. ITocallzgt|on heterogeneousobot teams, witharbitrary topology of the
(CL) and improve the accuracy of their position eStIm"’ueézelative Position Measurement Graph (RPMG). Specifically,

The topic of CL has recently attracted the interest of many : :
v -
researchers (e.g., [7]-[9]), primarily due to the ﬂexibilityI Section we derive upper bounds on theorst-case

: . . “as well as on theaveragecovariance matrix of the robots’
that sensor and actuator sharing provides when design

het bot © that icate th h wirel ition estimates. One of the main results of this paper is
ng@fﬁé”&%‘fs robot teams that communicate through wire , in the absence of absolute position measurements, the

. . rate of positioning uncertainty increase in the group of robots
Predicting the positioning performance of heterogeneo P g y group

b for th I f multirobot CL. in whi constant identical for all the robots, aniddependenof the
robot teams for the general case of multirobot CL, in whic Fology of the RPMG. The primary factor in determining this

the number, quality, and type of measurements may vary OY¥&te is the quality of the robots’ proprioceptive and orientation

time, remains an open problem to this date. The advent of f%rénsors, as well as the number of communicating robots. It is

mal tools that will enable engineers to predict the Iocalizatioghown that the rate of uncertainty increaserigallerthan the
performance of multirobot teams will significantly impact th(?

f desiani h ¢ lishi f\te the single best robot would attain, if it were localizing on
Process of designing suc teams_ or accomplishing a Specic (cf. Corollary 5), which indicates that the exchange of
mission. Our work aims at providingnalytical expressions

positioning information benefits all robots.
The authors are with the Dept. of Computer Science and Engineering of 1 '€ connectivity of the RPMG affects the constant (time-
the University of Minnesota. E-mailgmourikisstergio @cs.umn.edu. invariant) part of the covariance matrix that describes the



localization uncertainty of the group. A study of the propertiegthe robots’ position estimates at all times. This is in contrast
of the time evolution of the position covariance matrix iro the case of CL, as shown in Section IV.
Section V, shows that mporaryreduction in the number of A different collaborative multirobot localization scheme is
relative position measurements can only catieseporaryloss presented in [20], [21]. The authors have extended the Monte
of positioning accuracy. Moreover, the case in which absolu@arlo localization algorithm [22] to the case of two robots
position information, e.g., GPS measurements, is availableth@at both possess a map of the area. When these robots detect
some of the robots of the team, is studied (cf. Lemma 2). &ach other, the combination of their belief functions improves
this scenario, it is shown that even dghe robot has accessthe accuracy and convergence speed of global localization.
to absolute position measurements, the varianadlinobots’ The main limitation of this approach is that it can be applied
position errors remains bounded, and depends on the topolegyy within known indoor environments. In addition, since
of the RPMG. information interdependencies are being ignored every time
In the following section, we outline the existing approachdbe two robots meet, this method can lead to overly optimistic
to CL, and in Section Il we present the formulation of thgosition estimates. This issue is discussed in detail in [23]. At
multi-robot localization problem. In Sections IV and V, théhe cost of increased computational requirements, [24] treats
main theoretical results of this paper are derived, namdlye problem of not considering the correlation terms in Monte
bounds on the positioning uncertainty of CL, and their prog=arlo-based CL by introducing a dependency tree.
erties. In Section VI, experimental results that validate the In [25], [26] a Maximum Likelihood estimator is employed
theoretical analysis are presented, while extensive simulationprocess relative pose and odometric measurements recorded
results are analyzed in Section VII. Finally, in Section VIIby the robots, and a solution for the robots’ pose is derived
the conclusions of this work are drawn and future researbly invoking numerical optimization. In contrast to thHistch
directions are suggested. approach, aecursiveestimator design is more often employed
for CL, due to its lower computational complexity. In [27],
a Kalman filter-based implementation of CL is described,
where the effect of the orientation uncertainty in both the state
Previous work on multirobot CL has considered collalpropagation and the relative position measurements is ignored,
orative strategies primarily for improving pose tracking imesulting in a simplified distributed algorithm. In [9], [28] a
the absence of landmarks. A system where relative positidistributed Kalman filter pose estimator is presented. Every
measurements were used for CL was first reported in [#pbot collects sensor data regarding its motion continuously
A group of robots is divided into two separate teams withnd measures the relative pose of other robots intermittently.
alternating roles. At each time instant, one team is in motid®ositioning information is propagated through the team only
while the other one remains stationary and acts as a setdafing the update cycles, allowing the Kalman filter to be
landmarks. The teams then exchange roles and this procgssomposed into a number of smaller communicating filters,
continues until both reach their goal. Improvements over thime for each robot. In [23], it has been shown that when
system and optimal motion strategies are discussed in [1&very robot senses and communicates with its colleagues at all
[15]. Similarly, in [16], only one robot moves, while the restimes, every member of the group has less uncertainty about
of a group of small-sized robots forms an equilateral triangies position than the robot with the most accurate odometric
of localization beacons in order to update their pose estimatesnsors when localizing independently.
Another implementation of this type of CL is described in [2], To the best of our knowledge, there exist only few cases in
[8], [17], where a team of robots moves through the open spabe literature where analysis of the uncertainty propagation has
systematically mapping the environment. In [18], the authob®en considered in the context of CL. In [27], the improvement
present a CL technique based on virtual links between robats localization accuracy is computed, after only single
which remain within the field of view of their teammates. update step, with respect to the previous values of position
All the aforementioned approaches that rely on robots actingcertainty. In this case, the robots’ orientations are assumed
asportable landmark#ave the following limitations: (a) Only to be perfectly known and no expressions are derived for
one robot (or team) is allowed to move at any given timéhe propagation of the localization uncertainty with respect to
and (b) The two robots (or teams) must maintain line-ofime or the accuracy of the odometric and relative position
sight contact at all times. In addition to the use of robots aseasurements. In [29], the authors studied, in simulation,
portable landmarksstatic landmarksiave also been employedthe effect of different robot-tracker sensing modalities on
for facilitating the localization of robot teams, in the contexthe accuracy of CL. Statistical properties were derived from
of Cooperative Simultaneous Localization And Mapping (Csimulated results for groups of robots of increasing size, when
SLAM). Since this paper focuses on feature-less localizatioonly one robot moved at a time. A numerical optimization
we will not discuss this case further. For a thorough presempproach for determining the trajectories resulting in the
tation of the related literature, the interested reader is refernmihimum localization uncertainty for a group of robots has
to [19], where the Riccati recursion is employed for the studyeen proposed in [30]. In [11], [31] eompleteRPMG for
of the positioning accuracy of C-SLAM. The distinguishinga homogeneousobot group is assumed and upper bounds on
difference between the work presented here and that of [19}l& positioning uncertainty of the robots are computed. In [12],
that in the latter case a number of static landmarks are assuregperimental and simulation results are presented that validate
to be always visible, which results in bounded uncertainty féhe accuracy of these bounds.

Il. RELATED WORK



We hereafter present the details of our approach for deriviagsumed as is the case in [43], [44]). At every time step,
analytical expressions for the localization performance ofsame (or all) robots record relative position measurements,
group of cooperating robots. Our problem formulation followand use this information to improve the position estimates for
that presented in our previous work [11], [12], extended to tla@l members of the group. During each EKF update cycle, all
general case oéirbitrary RPMGs andheterogeneougroups exteroceptive measurements, as well as the current position
of robots [32]. estimates of the robots, must be available to the estimator [28].

Therefore, it is assumed that a communication network exists
I1l. PROBLEM FORMULATION enabling all robots to transmit such information. These can

Consider a group ofV robots that employs an Extendedhen be fused either in a distributed scheme, or at a central
Kalman Filter (EKF) estimator to perform ClPropriocep- fusion center.
tive measurements (e.g., velocity) are integrated to propagatéd key element in this analysis is the Relative Position
the state estimates, whilexteroceptivemeasurements (e.g.,Measurement Graph (RPMG), which is defined as a graph
robot-to-robot relative position measurements) are processeaose vertices represent robots in the group and its directed
to update these estimates. In our formulation, we assumedges correspond to relative position measurements (Fig. 5).
that each robot has access to measurements of its absolutat is, if roboti measures the relative position of rolothe
orientation, and that an upper bound on the variance of thd3BMG contains a directed edge from verieto vertex;. In
measurements can be a priori determined. This is the caibgs work, we primarily consider the most challenging scenario
for example, when each robot is equipped with a headimghere the absolute positions of the robots cannot be measured
sensor of limited accuracy (e.g., a compass [33], [34] ora inferred. The case where global positioning information is
sun sensor [35], [36]) that directly measures its orientatioayailable to at least one of the robots in the group, is subsumed
or if the robots infer their orientation from measurements our formulation and is treated as a special one.
of the structure of the environment in their surroundings
(e_.g._, from the dire<_:tion of the Walls_ Whe_n this is known A Pposition propagation
priori) [37]. Alternatively, absolute orientation measurements ] ] ]
can be obtained by observing objects in the horizon [38], or We f|r§t st_udy the influx .of uncertainty to the system, due
equivalently, the vanishing points of sets of parallel lines [39]0 the noise in the odometric measurements of the robots. The

The variance of the absolute orientation measurements tHigcrete-time motion equations for theh robot of the team

each robot receives defines an upper bound on each rob8t8

orientation uncertainty. The availability of such a bound en- wik+1) = wi(k) + Vi(k)ot cos(di(k) 1)
ables us to decouple the task of position estimation from that .
of orientation estimation, for the purpose of determining upper yilk+1) yi(k) + Vi(k)ot sin(¢i (k) @
bounds on the performance of CL. Specifically, we formulatghereV; k) denotes the robot's translational velocity at tike

a state vector comprised of only the positions of i€obots, andst is the sampling period. In the Kalman filter framework,
and the orientation estimates are used as inputs to the Syst@a, estimates of the robot's position are propagated using

of which noise-corrupted observations are available. Clearfile measurements of the robot's velocity,. (k), and the
the resulting EKF-based estimator is a suboptimal one, sing&imates of the robot's orientatios; (x): '

the correlations that exist between the position and orientation R

estimates of the robots are discarded. Thus, by deriving an Tipore = Digy, T Vin, ()Gt cos(¢i(k))

upper boun_d on the go_variance of t_he estimate_s produced with e = Uig + Vins ()t sin(; (k)

this suboptimal, “position-only” estimator, we simultaneously

determine an upper bound on the covariance of the positigiearly, these equations are time varying and nonlinear due

estimates that would result from using a “full-state” EKRO the dependence on the robot's orientation. By linearizing

estimator. Egs. (1) and (2), the error propagation equation for the robot’s

We should note here that the condition for bounded orientgosition is readily derived:

tion uncertainty is satisfied in most cases in practice. If insteaI, ~ ] 7.

s 5

special care is not taken and the errors in the orientation esfi-~ “**!*

Tk+1|k

mates of the robots are allowed to grow unbounded, any EK ! Yirix R

based estimator of their position will eventually diverge [40]. [ dt cos(i(k))  —Vim, (k)0t sin(i(k)) } [ wy; (k) }

The significance of having small orientation errors for the dtsin(ps(k))  Vin, (k)6 cos(¢;(k)) Gi(k)
consistencyof the EKF has also been demonstrated in [41], <  p;,, = @i(k)pi,,, + Gi(k)W;(k) (3)
[42]. Thus, the requirement for bounded orientation errors is _ _ _ . .

notan artificially imposed assumption; it is essentiallpre- Wherepi(k) = [Ti(k) 7:(®)]" is the error in theith robot's
requisitefor performing EKF-based localization. In fact, if wePOSition estimate®; (k) = I is the state transition matrixor
can determine the maximum tolerable value of the orientatié@P0t % and Vi, (k) = Vi(k) — wy; (k) are the measurements
variance, so that the linearization errors are acceptably smalfthe translational velocity of the robot, contaminated by a

we can use this variance value in the derivations that follow. _ - .
Throughout this paper],, denotes then x n identity matrix, 1,,xn

ThrothQUt this paper, W.e con5|der that QI.I robots _mO\_f]%notes then x n matrix of ones, and,, x, denotes then x n matrix of
constantly in a random fashion (i.e., no specific formation iros.



white zero-mean noise process with known variang¢e In ~ T
~ % _ fod =T fod ~T
the previous expressions; (k) is the estimate of the robots = *) = L) - PP Bk . PN

orientation at timek. The errors in the orientation estimates, Lij(k) = { I, —CT(¢ (k))J Ap; (k) }
oi(k) = ¢i(k) — ¢; (k) are modeled by a white zero-mean noise
. ~20 . 0 -1 N, . (k)
process, whose variance; = E{¢; }, is bounded. J = { 1 0 } , Mij(k) = [ ~ }
The covariance function of the system noise affectingithe Pi(k)
robot is Apii(k) = pj(k) — pi(k)
Qi(k, k') = E{G;(l)Wi(k)Wi(k)" G (k)" }

The covariance for the measurement error is given by

- ~ (StZU‘Q/ 0 ~ T
= C(64(0)Qu, C(i(h) b “) = B{n.,nl }+ UiiCT(éi)J&)ij&)Z;JTc(éi)
where d,; is the Kronecker delta function, and(¢;(k)) is = 'R., +ZR&_ (10)

the 2 x 2 rotation matrix associated wit&i(k).
The state vector for the entire system is defined as thdnere time arguments have been dropped for simplicity of
stacked vector comprised of the positions of tNerobots, notation. This expression encapsulates all sources of noise and
ie., uncertainty that contribute to the measurement egofk).
Xk =[plf® piw - pLkk ]T More specifically, ‘R, (k) is the covariance of the noise
Hence, the state transition matrix for the entire system at times (k) in the recorded relative position measurementk)

i . " X
stepk is By, = Loy, and since the errors in the odometrice}nd R% (k) is the additional covariance term due to the error

measurements of the robots are uncorrelated, the covariafi¢é) in the orientation estimaig; (k) of the observing robat
matrix of the system noise is given by Assuming that each relative position measurement consists

of a range measuremepf; and a bearing measuremeh)y,

Qi(k,k) -+ Oy whose errorsy,,; andny,, are uncorrelated, the terfii?. , (k)
Q(k) = : : = Diag (Qi(k,k)) (5) can be expressed as [45]:
O2x2 -+ Qn(kk) 2

i A g 0 N
whereDiag(-) denotes a block diagonal matrix. The equation ‘Bz, (k) = C(0:;(k)) { 0 P2 (k)02 ] CT (b))  (11)
for propagating the covariance matrix of the state error is “ '
written as: whereo,, and oy, are the standard deviations of the white
P = Py + Qk) (6) zero-mean noise processes affecting the range and bearing
S = measurements of robetrespectively. Here, it is assumed that
where Pk+1|k = E{Xk+1|ng+1|k} and Pk|k = P Y

all relative position measurements performed by one robot

E{ XX} are the covariance of the error in the estimatgre corrupted by noise of equal variance. This assumption
of X(k+ 1) and X (k) respectively, after all measurements ups employed merely to simplify the presentation, since it

to time & have been processed. is not necessary in the derivations that follo@(6;;(k)) is
] the rotational matrix associated with the bearing angle of
B. Exteroceptive Measurement Model the relative position measurement, expressed in the robot’s

1) Relative Position Measurementét this point we con- coordinate frame.
sider the exteroceptive measurements that the robots procedsue to the existence of the common error component
to update their position estimates. The relative position meattributed tog; (k), the measurements that each robot performs
surement;; between robot and;j at time instant is defined are correlated. The matrix of correlation between the errors in
as the measurements; (k) and z;,(k) received by robot is

zij(k) = CT($i(k)) (ps(k) — pi(k)) + 1z, (K)
CT (k) Apy; (k) + 1z, (k) @)
wheren,; (k) is a white zero-mean noise process affecting the
measurement. By linearizing Eq. (7), the measurement erfte results of Egs. (10)-(12) allow for the evaluation of the

is obtained: 2M; x 2M; covariance matrixR;(k) of all the M; relative
position measurements gathered by robatteach time instant.

"Rio(k) =T (k) E{ny; (kyny (k) YT 7, ()
~ —~ —~T ~
=03, CT (i (k) J Ap;; (k) Apyp (k) T C(ds(k))  (12)

Zij(k) = zij(k) — Zij(k o . ;
%5 (%) AR This is a matrix whos& x 2 block diagonal elements equal
=~ Hij(k) X (k) + Lij(k)nij (k) iRij(k), § € Nag, € {1,...,N}\ {i}, whereNy, is the set
where of the indices of the robotg observed by robot. The off-
. diagonal block elements d@®; (k) are’R,¢(k), j,¢ € N, ,j #
_ T . J s Jy i
Hyjk) = C7(0i(k) Ho, (8) /. It can be shown that [45]:
02><2 . —IQ . 12 . 02><2
H, = —_ N — —
i i - ©) Ri(r) = EL R, 8, (13)



where By, =1, ® C(q%i), with ® denoting the Kronecker 2) Absolute position measurementdp to this point, only

matrix préduct, and relative position measurements have been considered. If any
o2 of the robots, e.g., robot, has access to absolute positioning
R, (k) = o3 Ly, — D;diag ( ’;) DI +o; D;D} information, such as GPS measurements or from a map of the
ij area, the corresponding submatrix elemenHaf,) is:
2 . T
+ O—¢71D111\471><M1D7' (14) H = 02y ... I ... 0Ogxo (18)
— an — —~
In this last expressionD; = Diag (JApij) is the block n

while R,,,, the covariance of the absolute position measure-

is interesting to note that the terd,, (k) is independenbf ment, is a constant provided by the specifications of the ab-
the robots’ orientations. ! solute positioning sensor. To account for the absolute position

The measurement matrix describing the relative positigjéasurements, the matrél, in Eq. (16) is augmented by
measurements performed by roboat each time step is a SIMPly appending the appropriate block ro#,,,, while R,

diagonal matrix with diagonal elemem‘E&)M, J € Ny It

matrix whose block rows arél; ;, j € Ny, i.e.: is allggmented by appending the matriges, on the diagonal,
ielding:
H;x =2*H,, (15) Y g
. o Diag (R, (k) 0
where H,,, is a constantmatrix with block rowsH,,, j € R, (k) = 0 Diag (Ro, ) (19)
Ny, (cf. EqQ. (9)). "
The measurement matrix for the entire systdik), is IV. THE RICCATI RECURSION

defined as the block matrix with block rowd; (k). Since the In the preceding section, the covariance propagation and

measurements perfor_med by different .rObOtS are in,depend%fbtdate equations for the position estimates of the robot team
the gssoqated covariance matri(x), is a block d|agonal have been derived. Combining these two equations, by sub-
maotlnx with e_IemefntﬁRi(k) ((,:f' Eq (13)). The covariance stituting the expression from Eq. (16) into Eq. (6), yields the
update equation of the EKF Is written as Riccati recursion, which describes the time evolution of the

Piiijk+1 = Prgipe covariance during CL. The resulting expression is:
T -1 —
— Py (k+ ST (R DHEGE+ DPre - py,, = Py — PyHY (H,PLHL + Ry(k +1)) "H.P,
with S(k + 1) = H(k + 1)P 41, H” (k + 1) + R(k + 1). Sub- + Qk+1) (20)

stitution from Egs. (13) and (15) and simple algebraic manipu-

lation leads to the orientation-dependent terms being cancellédere the substitutionBy, = P,y andPri1 = Priopyr
out, and yields the expression have been introduced to simplify the notation. The initial

value of this recursionPy, is equal to the initial covariance
Pipijert = Pryap — PropHOSo(k+ )" HoPrie  matrix of the team’s position estimates. It should be noted
(16)  that the above recursion is obtained under the assumption that
with S,(k+1) = HOP,HWHf + R, (k+1). In these equa- both odometric and exteroceptive measurements are processed
tions R, is a block diagonal matrix with elemenf3,, while at the same rate. However, this not always the case, since
H, is a matrix whose block rows arél,, (cf. Eq. (14)). odometric data are commonly available at a higher rate. To
Considering the structure of the measurement equations, leadgress this problem eontinuous-timeanalysis of the time-
to the observation that the matrid, can be written as evolution of the covariance has also been conducted [45].
H, = H,® 1, whereH, is theincidence matriof the RPMG
describing the relative position measurements that are recor@dedUpper Bound on Steady-State Covariance
at each time step. This indicates the close connection betwee\, note that the matriceQ(k + 1) and R, (k+1) in

the structure of the RPMG and the equations describing tBg (20) are time-varying, and thus a closed-form solution to
time evolution of the positioning uncertainty during CL (Seghe Riccati recursion foP, cannot be derived in the general

also_Secn_on IV-A.2 for a more thorough investigation of this;qe. However, by exploiting the monotonicity and concavity
relationship). Note that since the sum of the elements of e%l'bperties of the Riccati recursion, we are able to derive

row of H, is equal to zero, we can write upper boundgor the worst-case as well as for theexpected
Hlnxi = Onxi= covariance of the position estimates during CL. These are the
H, (1nxi © 1) = Oayxo = main re.s.ults of the paper,'and are prgsented in thg followmg.
Ho (1 ©h) — 0 17) Specifically, we are interested in characterizing the
(k) (Avx1 ®12) = Oanxa time-evolution of the uncertainty atteady-statei.e., after

Using this result it is trivial to show that the system is naosufficient time has elapsed for the transient phenomena in the
observable (intuitively, this means that any displacement sélution of Eq. (20) to subside. It can be shown [45] that the
the entire robot team with respect to the origin of the globalght-hand side of the Riccati recursion is a matrix-increasing
coordinate frame can not be detected). Additionally, it is cleunction of the covariance matric&(k + 1) and R, (k + 1),

that a basis of the unobservable subspace is formed by #sewell as of the state covariance maftx. These properties
columns of the matrid” = 1«1 ® I. This observation will allow us to prove the following lemma [45]:

be useful in the analysis of the following section.



Lemma 1:If R, and Q, are matrices such thd®, > solution to the resulting recursion, yields an upper bound on
R,(k+1)andQ, = Q(k + 1), for all £ > 0, then the solution the maximum possible uncertainty of the position estimates in
to the Riccati recursion CL, at any time instant after the deployment of the robot team.

“ , orT - -1 However, significant insight on the properties of the covariance
Py =Pk — PrH, (H"P}“HO + R“> HoPj + Qu (21) matrix can be gained by evaluating the solution of Eq. (21) at
with the initial conditionP§ = P, satisfiesP} > P, for all ~steady state. In order to compute the steady-state solution for
k> 0. P}, we first apply the matrix inversion lemma to obtain

-1

From this lemma we conclude that if we obtain upper k1 = Pi ~PiH, (HonHZJFRu) H Py + Qu
bounds for the covariance of the system and measurement =PV (]2N +HZR;1HOP}$)71 + Q. (24)
noise, we can formulate eonstant coefficienRiccati recur- o o o )
sion, whose solution is an upper bound on the covariance gte derivations are S|mp||f|(i<lj/2by de_f|1r/1|2ng theormalized
the position estimates in CL. This recursion describes the tifi@variance matrix a¥,, = Q. ""PjQ. ", thus yielding
evolution of the covariance of a deduFed Lin_ear Tin_1e Invariant P,.. =P, (Iy+ CuPnk)fl + Loy (25)

(LTI) system whose measurements’ covariancdaiger or
equal to the covariance of the measurements in the actualhere C, = }/QHZR;lHO ,11/2. Note that the only
nonlinear and time-varying, system. parameter in the above Riccati recursion is ma€iy, which

An upper bound forQ(k+1) is derived by noting contains the main parameters that characterize the localization
that since C(¢;) is an orthonormal matrix, the eigenval-performance of the robotic team. The eigenvalues of this
ues of Q;(k+1,k+1) are equal tost’sy, and dt*c7 V> matrix are in close relation with the type and number of
(cf. Eq. (4)). Assuming that the maximum velocity of roldot exteroceptive measurements recorded by the robots of the
is equal toV,ax, We denote team, and determine the properties of the upper bound on the

2 2 21,2 2 steady-state positioning uncertainty. In [45], it is shown that
@ = thax (6t v 0t Vma"%i) (22) Whenyat Ieastp one robgt of a teamyperfgrm]ing CL has access
This definition states thag; is the maximum eigenvalue ofto absolute positioning information, matr,, is nonsingular.
Qi(k+1,k+1), and therefore In contrast, when the robots of the team only record relative
. position measurements, this matrix is singular and has two
Qi+ 1,k+1) 2 gil> = Q(k +1) X Diag(gif2) = Qu eigenvalues equal to zero. These proofs are straightforward,

An upper bound foR,(k + 1) can be derived by consid- when the rank ofH, is considered. We hereafter present
ering the maximum distance,, at which relative position the uncertainty bounds for two distinct cases, based on the
measurements can be recorded by rabdthis distance can, availability of absolute positioning information:
for example, be determined by the maximum range of the
robots’ relative position sensors, or, by the size of the area inl) Observable Systenif at least one of the robots receives
which the robots operate. In Appendix | it is shown that: absolute position measurements then from a Control Theoretic
perspective the system is observable, and the covariance of the

Ro,(k+1) = (o5, + Miog, o+ 05,05) Tos, = rilau, position estimates for the robots remains bounded at steady
and thus an upper bound @, (k + 1) is computed as state [28]. An upper bound for the steady-state covariance of
Di CL in this case is determined by the asymptotic solution of

1ag (TZ'IQ]W,i) 0 . . . . . . . .

0 Diag (R, ) (23) fche R|ccat! recursion in Eq. (25). TI_1|s derivation is presr—.?nted

" in Appendix Il, and the final result is stated as a lemma:

We note at this point that the upper bounds derived in the
preceding expressions are valid only for the particular senson_emma 2: The steady-state covariance of the position es-
models employed in this paper. However, the approach is vajithates for a team of robots performing CL, when at least
for anysensor model, as long as it is possible to determine aghe robot has access to absolute positioning information is
propriate upper bounds on the measurement and system neiggnded above by the matrix
covariance matrices. For example, a holonomic kinematic
model could be employed instead of the non-holonomic model  p» —  Ql/?Udiag (1 + 1 + 1) Uu”Ql/? (26)
in Egs. (1)-(2), and the more accurate method of evaluating 2 4N
the covariance of the relative position measurements of Lefiere we have denoted the singular value decomposition of
and Bar-Shalom [47] could be employed in Eq. (11). C, asC, = Udiag()\;)UT.

Having derived upper bounds f&(k + 1) andR,(k + 1),
mere substitution in Eq. (21) and numerical evaluation of the At this point we should note that the upper bound on

the steady-state uncertainty depends on the topology of the
2We note at this point that a similar result was derived, for the continuou, Y Y P pology

time case, by Nishimura in [46]. In that work, the author addresses t&PMG (affectlngCu) and the accuracy of the proprioceptive
issue of designing KF estimators féinear systems for which the initial and exteroceptive sensors of the robots, represente@ by
state covaria_nce matrix, as yvell as the_covariance of the measurementsaﬁ% R.,, which are “embedded” ii1C,,. However, the steady-
unknown. It is shown, that if the covariance values that are employed | . . o .

the KF are inflated estimates of the true covariance matrices, then the ﬁéﬁte uncertainty is independent of the initial covariance of
remains consistent. the robots, which comes as no surprise, since the system is

R,(k+1) 2R, =



observable. the remaining ones, and will largely determine the worst-case
positioning performance of the team. A striking observation
2) Unobservable Systemf none of the robots receivesis that ¢, the rate of increase of the maximum uncertainty,
absolute position measurements, the system is unobservaislendependentof both the topology of the RPMG and of
from a Control Theoretic perspective, and thus the steathe precision of the robots’ relative position measurements.
state uncertainty for the robots’ position estimates will be Bhis quantity depends solely on the number of robots in
monotonically increasing function of time. In this case, ththe team, and the accuracy of the robots’ Dead Reckoning
upper bound on the steady state covariance of the positi@R) capabilities (cf. Eq. (22)). An intuitive interpretation of
estimates is described by the following lemma, whose protifis result is that the primary factor determining the rate of
is presented in Appendix Il uncertainty increase is the rate at which uncertainty is injected
in the unobservable subspace of the system. Since the number,
Lemma 3:When none of the robots of the team has accessthe accuracy, of the relative position measurements does not
to absolute position measurements, the positioning uncertaiatter this subspace, we should expect no change in the rate of
of CL at steady state is bounded above by: uncertainty increase, as a result of changes in the information
contributed by the exteroceptive measurements.
Further insight into the properties of the covariance matrix
diag, (% +4/%+ %) 05X2] urQy? in CL can be gained by studying the effects of the RPMG

PL.(k) =k -grliyxn @ I2

+ Q1/2U . . ..
u topology on the eigenvalues &,,. For simplicity, we here

02y ¢ 02x2 ' .
} examine the case where all robots receive odometry mea-

+9rlnxn ® { “ g (27) surements of equal accuracy (i.;,= ¢, for i = 1...N).
v Employing the results of Eqgs. (9) and (23), the maftix can
where);, i =1...2N — 2 are the nonzero singular values othus be written as

C., £ = 2N — 2 is the dimension of the diagonal submatrix

appearing in the preceding expressign,is defined as Cu=q(H;Diag (ri ' In,) Ho) ® o =qL &1 (29)

1 N o1 As discussed earlief], is theincidence matri>of the RPMG,
v > m (28)  and thereforeH,Diag (ri_l/zIMi) is the incidence matrix of
=1 theweightedRPMG, where each edge is assigned weight pro-
and the parameters, 3, v, ¢ are defined as follows. Let portional to the accuracy of the corresponding measurement.
_ _ _1/o\— _ With this definition, we see that the matrikis theLaplacian
W = arQy ! (v + PoQy'?h(Cu) Q%) PoQy! matrix of the weighted RPMG [48], and the eigegvalues of
where C,, are given by (cf. Eq. (29))

h(Cy) = U diag </\2’+\/)Z+/\i> U’ Ak-1 = Aok = @Ac,, k=1, N (30)

where Ay, .,k = 1...N is the Laplacian spectrum of the
Thena = >, 0 qaWij (6 = X2, even Wij) is the sum of weighted RPMG.
all elements of W = [w,;;] with two odd (even) indices This interesting observation enables us to employ, for the
and v = >, 4 even Wij 1S the sum of all elements of analysis of the CL accuracy, results from Spectral Graph
W = [w;;] with an odd row index and an even column indexTheory (e.g., [48]-[50]), where the properties of the Laplacian
Due to symmetrys = ~. eigenvalues and their relations to the properties of graphs have
been extensively studied. In Eqg. (27), we observe that the

Several observations can be made with respect to the abseeond term, expressing the effects of the RPMG topology
result. We note that the upper bound comprises three terms, tinethe steady-state covariance, is a decreasing function of
first of which contributes with aonstant rateof uncertainty the eigenvalues of, (and thus of the Laplacian eigenvalues
increase that is equal @5t —!. The second term in Eq. (27) Az, ). Thus, to maximize the positioning accuracy, RPMG
is a constant term, whose value depends orighelogyof the topologies that result in large Laplacian eigenvalues should
RPMG and theaccuracyof the sensors on the robots. Finallybe sought. Moreover, in [45] it is shown that the smallest
the third term in Eq. (27) is a constant term that describes thgenvalue ofC, defines thetime-constantof the transient
effect of theinitial uncertaintyon the steady-state covariancebehavior of the covariance matrix. In a scenario where the
It also depends on the noise characteristics of the sensors ofittigal uncertainty of the robots is large, and fast convergence
robots, as well as the RPMG topology. The fact that the steadg-steady state is necessary, selecting an RPMG topology that
state bound depends on the initial uncertainty is a consequentimizes the smallest Laplacian eigenvalue can thus be a
of the fact that the system isot observable, and thereforeuseful strategy. Since determining optimal RPMG topologies is
initial errors in the estimates for the robots’ positions cannabt the primary focus of this paper, we will not expand further
be fully compensated for. on this issue here. However, the development of algorithms

It is clear that the most important term in Eq. (27) igor determining the optimal graph topology, given constraints
the one that corresponds to amnstant rateof uncertainty on the number of measurements, is an interesting avenue for
increase. After sufficient time, this term will always dominatéuture research.



B. Upper Bound on Expected Steady-state Covariance  definition of R,, (k + 1) in Eq. (14), it can be shown that the

The results of the preceding section enable us to determfgected value oR,, (k + 1) equals
the guaranteed accuracyf CL for a team of robots with _ 5 a2 , a? , a2
a given set of sensors, and a specified RPMG topologﬁi = <Um2 + 06, +U¢uﬁ
The bounds determined in Egs. (26) and (27) hold for any 4 h
scenario of the robots’ motion, as long as the maximufi'® "uS . _
distance between any pair of them remains smaller i#han R — { Diag (R;) . 0 } (34)
However, it is the case for many practical scenarios, that a 0 Diag (Ra,)
better characterization of the robots’ trajectories is known ising these results, upper bounds on the expected steady-state
advance. For example, we may be able to model the posecotariance of the position estimates in CL, for both the ob-
the robots by a known probability distribution function (pdflservable and unobservable case, can be derived. The solutions
in their operational area. In this case, the covariance matriesfSthe Riccati recursion in Eq. (31) for the two cases are
Q(k+1) andR,, (k+ 1) (Egs. (5) and (14)) are functions ofcompletely analogous to those presented in Lemmas 2 and 3,
random variables, whose mean value can be determined. With the sole difference that the quantiti€, and R, are
availability of additional knowledge in the form of a priorreplaced byQ and R, respectively (and therefore the matrix
distribution for the robots’ poses can be used in order ©, is also replaced b = Q'/?H’R~'H,Q'/?).
attain a tighter upper bound on tlexpectedcovariance of  Some interesting remarks can be made about the uncertainty

5 &°
> Iom, + 0y, §12M,i><2Mi

the position estimates in CL. increase rate in a robot team that has no access to absolute
Specifically, it can be shown [45] that the right hand sidgosition information. The upper bound on the expected rate
of Eg. (20) is a concave function of the matrix of increase is equal tgrdt—!, where
Pk 0 1 N 1
0 Ro(k+1) Pl D (35)
This property enables us to employ Jensen’s inequality ( [51\)\)/ . ] =1 ]
to prove, by induction, the following lemma [45]: ‘e once again underline the fact that the maximum expected

rate of uncertainty increase iisdependentf the initial uncer-
Lemma 4:1f R = E{R,(k+1)} andQ = E{Q(k+1)} tainty Py, the accuracy of the relative position measurements,

are the expected values of the measurement and system n@fié the topology of the RPMG. Moreover, we can compare

covariance matrices respectively, then the solution to tffdis value with the rate at which uncertainty increases when
following Riccati recursion each robot localizes independently, using DR. In that case,

_ _ _ I R _ the covariance matrix for all robots’ estimates evolves in time
Py =Py — PyH, (H,P:H; +R) H.Py+Q (31) according to Eq. (6), and therefore the average rate of increase

with initial condition P, = Py, satisfiesP,, = E{P;} for in uncertainty for robot is:

all k > 0. 1 1 i
B{= (P, -P)} = B{gemn} =25
In other_words, evaluating the average values of the covari- E{Pml} _ E{Pik} + a5 (36)
ance matriceR,(k + 1) andQ(k + 1) enables us to formulate

a constant coefficienRiccati recursion, whose solution isFrom the definition ofgr (Eq. (35)), it becomes clear that
an upper bound on thexpectedcovariance of the position it will be smaller than the smallest of thg’'s (notice that
estimates in CL. Clearly, once the valuBsand Q have been the definition ofgr is analogous to the expression for the
determined, the derivations are analogous to the ones preseitotal resistance of resistors in parallel). This implies that it
in the preceding section. suffices to equip onlgnerobot in the team with proprioceptive
The average value of the system noise covariance matrixsensors of high accuracy, in order to achieve a desired rate
easily computed by averaging over all values of orientatiarf uncertainty increaseAll the robots of the group will
of the robots. Assuming a uniform distribution of the robots®xperience a reduction in the rate at which their uncertainty
orientation, from Eq. (4) we obtain: increases and this improvement is more significant for robots
o2 402 V2 with sensors of poor quality. Moreover, the maximum expected
=2 Vi i mip @, (32) rate of uncertainty increase igentical for all robots of the
2 team, regardless of the accuracy of each robot’'s odometry, and
it decreases as the number of robats, increases.
Q = E{Q(k+1)} = Diag (g:I2) (33) Corollary 5: The maximum expected rate of positioning
uncertainty increase of all the robots of a heterogeneous team
)}J%rforming CL is thesame equal togrét—!, where

E{Qi(k+1,k+1)}

and thus

In order to evaluate the expected value Bf (k + 1), we
assume that the positions of the robots are modeled b
uniform? pdf, inside a rectangular area of side Using the 1 N oq 1
- (7)o <ming @)
3The uniform distribution was employed in the calculation Rf since qr i=1 qi 4

it was deemed an appropriate model for the positions of the robots in . . I h h f . . f
experiments presented in Section VI. However, the analysis holds for ahj!IS rate Issmaller than the rate of uncertainty increase o

given pdf. the robot with the best DR performance, if it were to localize



independently. is restored, the team’s positioning performance will have
sustainedno degradation Furthermore, Lemma 6 indicates
Before presenting the experimental and simulation results thiat a dense topology for the RPMG during the initial phase of
corroborate the theoretical analysis, in the following sectidhe deployment of a robot team has a long-term effect on the
we study some important properties of the derived upplacalization performance of the team. Specifically, if during the
bounds. initial deployment, the robots leverage their communication
and computational resources to support a dense RPMG, this
will improve their positioning accuracy at the beginning of CL.
Later on, and as the robots focus on mission-specific and other
In the preceding analysis, it is assumed that the topolo@phe-critical tasks, they will have to rely on sparser RPMGs
of the graph describing the relative position measuremenis resources dictate. However, when at a subsequent time
between robots does not change. However, this may be difficiétant the RPMG resumes its initial, dense topology, the above
to implement in a realistic scenario. For example, due to the lemma guarantees that the maximum expected uncertainty will
bots’ motion or because of obstacles in the environment, som&identical to the one that would arise if the dense RPMG
robots may not be able to measure their relative positiongpology was retained throughout the run of the robots.
Additionally, robot teams often need to allocate computational
and communication resources to mission-specific tasks and
this may force them to reduce the number of measurements
they process for localization purposes. Consequently, it is ofA series of experiments were conducted for validating
considerable interest to study the effects of changes in tthe preceding theoretical analysis. Our experimental setup is
topology of the RPMG on the localization accuracy of thehown in Fig. 1(a). A team of four Pioneer | robots moves
team. in a rectangular area, within which the positions of the robots
Consider the following scenario: At the initial stage ofre being tracked by an overhead camera. For this purpose,
the deployment of a robotic team, the RPMG has a denseetangular targets are mounted on top of the robots and the
topology 77, e.g., the complete graph shown in Fig. 5(a)ision system is calibrated in order to provide measurements
and retains this topology until some time instant when it of the pose of the robots in a global coordinate frame. The
assumes a sparser topolo@y, e.g., the ring graph shown instandard deviation of the noise in these measurements is ap-
Fig. 5(b). This sparse topology may even beeampty graph proximately0.5° for orientation and.cm, along each axis, for
i.e., the case in which the robots localize independently, bagaakition. The robots were commanded to move at a constant
only on DR. Subsequent topology changes are assumedvédocity of V' = 0.1m/sec while avoiding collision with the
occur at time instants;,s = 1...n — 1, and finally, at time boundaries of the arena as well as with their teammates.
instantt,,, the RPMG returns to its initial, dense topology, Although four identical robots were used, calibration of their
Assuming that the time interval§,_;,¢;) are of sufficient odometric sensors showed that the accuracy of the wheel en-
duration for the transient phenomena in the time evolutiamoder measurementsnstidentical for all robots. Specifically,
of uncertainty to subside, the following lemma, whose prodifie measurement errors are well-modeled as Gaussian zero-
can be found in Appendix lll, applies. mean white noise processes and the standard deviation of the
velocity measurements ranges frem_, = 0.038V/, for the
Lemma 6: After a sequence of RPMG reconfigurations anthost accurate odometer o, . = 0.069V, for the robot
once the RPMG resumes its initial topology, the maximumvith the highest noise levels. Similarly, the standard deviations
expected positioning uncertainty of the robots at steady stafiethe rotational velocity measurements have values between
is identicalto the one the robot team would have if no RPMG,, ., = 0.0078rad/sec and,,_ . = 0.02rad/sec for the four
reconfigurations had taken place. robots. We observe that as a result of the variability of sensor
characteristics, attributed to manufacturing imperfections, the
This implies that during time intervals when the RPM@xperiments involve a heterogeneous robot team, although this
topology is a sparse one, the “additional uncertainty” isad not been planned for. This shows the practical significance
introduced in directions of the state space that belong in théraising the assumption of a homogeneous robot team, which
observable subspace. Thus, when the topology resumeshisl been imposed in previous work [12].
initial dense form, this additional uncertainty vanishes. Each of the robots is equipped with a laser range finder,
This is a significant result due to its important implicationghat is used for measuring absolute orientation. This is done
Consider the scenario where the robots of a team, duringoyw exploiting the perpendicularity of the surfaces surrounding
phase of their mission, are forced to receive and processha arena and employing a simple line-fitting technique. The
small number of measurements, or even resort to mere Dfandard deviation of the errors in the orientation measure-
due to communication or sensor failures, or because CPunts is approximatel§.5° for all robots.
and bandwidth resources are required by other tasks of higheRelative position measurements are produced synthetically
priority. During this interval, a reduced amount of positioningising the differences in the positions of the robots, as these are
information is available to the robots (sparse RPMG topologygcorded by the overhead camera, expressed in the measuring
and as a result the performance of CL will temporarilyobot's coordinate frame, with the addition of noise. This
deteriorate. However, once the initial, dense RPMG topolodgcilitates the study of the effects of varying the accuracy

V. RPMG RECONFIGURATIONS

VI. EXPERIMENTAL RESULTS
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Fig. 1. (a) Calibrated image of robots with targets mounted on top of them. (b) True and estimated trajectories for robot 1. For presentation clarity only part
of the trajectory, corresponding to the firsiOsec, is plotted. The size of the arena is approximaebyx 4.5m.
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Fig. 2. Time evolution of the true covariance of the position estimates (solid bounding lines), and theoretically computed values (dashed black lines).

of the relative position measurements and allows for contrdiearly in Fig. 2, where the time evolution of the covariance
of the topology of the RPMG. For the experimental resulis shown. Fig. 2(a) corresponds to the case in which the
shown in this section, a complete RPMG topology is formefdur robots localize independently, and compares the expected
and the relative position measurements (distance and bearicoyariance values computed by Eg. (36) (dashed lines), with
are corrupted by zero-mean white Gaussian noise procesthes covariance values computed by the filter (solid lines).
with standard deviatior, = 0.05m andos = 0.0349rad. On the other hand, Fig. 2(b) corresponds to the CL case
Position estimation was run off-line and all measuremendsid presents the covariance computed by the EKF (solid
were downsampled to the rate of 1Hz, so as to achieliees) as well as the theoretically derived upper bound for
synchronization. the expected covariance (dashed lines) and the upper bound

In Fig. 1(b), the true trajectory (solid line) for one offor the worst-case covariance (dash-dotted lines). It is evident
the robots, as measured by the overhead camera, is cahat the derived upper bound is indeed larger than the actual
pared to the trajectory estimated using DR (solid line witbovariance of the position estimates. Moreover, we note that
dots) and CL (dashed line). The significant improvement itespite the fact that we deal with a heterogeneous team, the
positioning performance, resulting from the use of relativeositioning uncertainty increases at samnerate for all robots.
position information, is apparent and is demonstrated more
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Errors (m)

(a) Robot 1 - DR (b) Robot 2 - DR (c) Robot 3 - DR (d) Robot 4 - DR

Errors and 30 bounds Ertors and 30 bounds Ermors and 30 bounds Errors and 30 bounds

(e) Robot 1 - CL (f) Robot 2 - CL (g) Robot 3 - CL (h) Robot 4 - CL

Fig. 3. Top row: errors (solid blue lines) in the position estimates for the robots when they perform DR. Bottom row: position errors during CL. The solid
bounding lines represent the3c values of the actual covariance, computed by the EKF, while the dash-dotted bounding lines repressht tredues
computed employing the theoretical upper bound for the expected covariance.

This rate is significantly smaller compared to that of the robteéam comprising 9 robots is considered in these simulations.
with the most accurate sensors localizing when relying on DRote, however, that as the previous section demonstrates,
(in this case Robot 2 as shown in Fig 2(a)). This observatitilomogeneity is not a prerequisite of our approach. The robots
agrees with the theoretical result of Corollary 5. are restricted to move in an area of radius 20m, and their

In Fig. 3, the errors in the position estimates of the robot@locity is assumed to be constant, equalio= 0.25m/sec.
are plotted and compared against th&gs values of the posi- The orientation of the robots, while they move, changes
tion estimates’ covariance. The solid lines representitBe randomly using samples drawn from a uniform distribution
values associated with the covariance computed by the EK¥F width 20° about zero degrees.

while the dashed ones represent th8o values computed  The parameters of the noise that corrupts the proprioceptive
using Eq. (36) for the case of DR, and the upper bound @feasurements of the simulated robots are identical to those
the expected covariance for the case of CL. In these plotseasured on a iRobot PackBot robet,( = 0.0125m/sec

the substantial improvement in positioning accuracy, achieved _  o384rad/sec). The absolute orientation of each robot
when the robots are recording and processing relative positigis measured by a simulated compass with= 0.0524rad.
measurements, is illustrated. However, the most important cafe ropot tracker sensor returned range and bearing measure-
clusion drawn from these figures is that the derived analyticants corrupted by zero-mean white noise with= 0.01m
expressions can be employed in order to accurgielictthe  anq 5, — 0.0349rad. The above values are compatible with
localization performance of a robot team. Thés enveloping gise parameters observed in laboratory experiments [17]. All
lines, evaluated using the derived analytical expressions, defiRgasurements were available at 1Hz.

a confidence region that closely describes the magnitude of thef Fig. 4. the ti luti f th itioni taint
position errors. This justifies the use of the covariance matri N Fg. 4, (he ime evolution of the positioning uncertainty
the robot team is shown. Initially, up to= 200sec, the

as a performance metric and demonstrates that for a roBot s d i q lati it t d
team with known sensor noise characteristics, it is possibler ots do not record any refative position measurements an

characterize its positioning accuracy, without having to resﬁOpa%atte tf:elrt pOSIt_IO_I’l estllmtates us!?g DR.tA QOOSG?’ d
to extensive simulations, or experimentation. e robots start receiving relative position measurements an

the topology of the RPMG becomes a complete one (Fig. 5(a)).
The significant reduction in the rate of uncertainty increase,
achieved by using relative positioning information, is demon-
In this section, we present simulation results that demostrated in this transition. At = 400sec, the RPMG assumes
strate the effect of RPMG reconfigurations and corroborage ring topology (Fig. 5(b)). We note that the uncertainty
the corresponding theoretical analysis. In order to isolatedergoes a transient phase, during which it increases at a
the effects of different RPMG topologies, a homogeneotmgher rate and then, once steady state is reached, the rate of

VII. SIMULATION RESULTS
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increase idgdentical to the rate associated with the complete

graph. This corroborates the result of Eq. (27) and shows that v
the dominant factor in determining the rate of localizaton °®| ™ ! e v ePs |
uncertainty increase is the quality of the proprioceptive an /

orientation sensors of the robots. € ]

%)

At t = 600sec, a hypothetical failure of the communications
network occurs, and in the time interval betwesisec and §
800sec only two robots are able to measure their relativé
positions (Fig. 5(c)). This case can be viewed as a degeneraﬁe
one, where the 7 robots localize based solely on DR, while thg
other 2 robots form a smaller team. As expected, the rate of **| LT
uncertainty increase is higher when the team consists of only -

0.02

0.015

2 robots, instead of 9, but lower when compared to DR. 00057

At t = 800sec, the RPMG resumes the complete graph
topology (Fig. 5(a)). It is evident that the average uncer- % 200 200 500 800 1000 1200 1400
tainty in the position estimates during the time intervals Time (sec)

(200, 400)sec and(800, 1000)sec is described by thgame _ . . .
linear function of time. This occurs despite the Prior tW@ushed staignt ine has boen supormposed on e fawe 1o faciiate the
reconfigurations of the topology of the RPMG that occurresbmparison between the values of the covariances for different topologies of
at ¢ = 400sec andt = 600sec. This result is in accordancehe RMPG.
with the theoretical analysis of Section V.

At t = 1000sec, the RPMG assumes a non-canonical topol-
ogy, i.e., random graph (Fig. 5(d)). This scenario is perhaff0ts” sensors, and (iii) the topology of the RPMG. When
the most important one for real applications, since robots wiff€ Precision of the position estimates of a team is required
usually measure the relative positions of neighboring robdfs Meet specifications imposed by a certain task, the derived
that are within their field of view. Due to the robots’ motion€XPressions can be employed to facilitate the selection of the
the topology of the RPMG can change randomly. We obser{FeqUiVEd pgrameters of the rpbpt group. The pr'esented theoret-
that the positioning uncertainty increases at a rate identicallfg! @nalysis allows the prediction of the magnitude of the CL
that of Phases | and Il of the graph’s topology, as predicted BySition errors when the topology of the RPMG changes or
our theoretical analysis. It is also apparent that the uncertaifff/€n the size of the robot team varies over time (e.g., when
for each robot converges to a set of lines with the same sigiP0ts are located out of measurement/communication range
(rate of uncertainty increase), but different constant offset. THi§ they fail temporarily or permanently). Furthermore, the case
is due to the effect of the different degree of connectivity it Which absolute positioning information (e.g., from a GPS
the RPMG of each robot. Connection-rich robots have dird&ceiver, or from a pre-compiled map) is available to at least
access to positioning information from more robots and th@Qg€ ©f the team members, is naturally incorporated in this
attain lower positioning uncertainty. framework.. '_rhus, this wg_rk Qﬁers a poyygrful tool that _aIIows

Finally, at ¢ = 1200sec, only one of the robots startgor determining t.he posmo_nlng capab!lltles of a multi-robot
receiving GPS measurements while the RPMG retains tHgstem egrly qn In the desngq stage, W'th(_)Ut the nged to rgsort
topology of Fig. 5(d). The GPS measurements are corrupeieXtensive simulations, or time-consuming experimentation.
by noise with a standard deviation of: ps = 0.05m in each Significant properties of the time evolution of the position-
axis. It is evident that the availability of absolute positiofd uncertainty have been presented. It was shown that even
measurements tany robot drastically reduces the localizatiorif onerobot has access to absolute position measurements, the
uncertainty forall the robots in the group. Furthermore, th@0sitioning uncertainty o&ll the robots in the group remains
system becomes observable and the uncertainty is boungé§nded and converges to a constant value. In contrast, for
for all the members of the team. As in the previous phas%'robot team whose members only register relative position
the uncertainty for the position of each robot converges fgeasurements, Lemma 3 maintains that at steady state the

a value (constant in this case) that depends on its degrednsfease rate of the maximum uncertaintyinsiependenof
connectivity. both the accuracy of the robot tracker device and the topology

of the RPMG. Aside from the number of robots comprising
the team, the single most important factor that determines
the uncertainty of the position estimates is the accuracy of
This paper presents an in depth study of the localizatidfe proprioceptive sensors and orientation estimates of the
performance of heterogeneous robotic teams with arbitraigbots. In the particular case of a heterogeneous robot group,
and potentially dynamic Relative Position Measurement Grapte localization accuracy of the robot equipped with thest
(RPMG) topologies. Aunctional relationhas been establishedprecisesensors is the one that has the greatest impact on the
between the maximum expected positioning uncertainty duriggerall accuracy.
Cooperative Localization (CL) and design parameters suchThese observations are of great practical importance since
as: (i) the size of the robot group, (i) the accuracy of théhey ensure that for a robot group of certain size,ibeber

VIII. CONCLUSIONS
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performance of the robotic team are examined.

APPENDIXI

In this appendix, we derive an upper bound Ry, (k),
by considering each of the terms in Eq. (14) independently.
The term that expresses the effect of noise in the range
measurements is

ST

N\

(S

0'2.
Ri(k) = 0'2112]% — D, diag <ﬁ2p(}g)) DZT = UziIQ]\/[,L (38)

ij

(@) Graph | (b) Graph I wherg the maf[rix inequality _foIIows fro_m the fgct that _the
negative term in the expression f&; (k) is a positive semi-
definite matrix. The covariance term due to the noise in the

. \ bearing measurement is
Ro(k) = 0 D; D}
2 . ~2
=02D 2. . h
70188 (p” [Sin(Gij)COS(Hz‘j) cos?(0;;)

= UgiDiag (ﬁ?jlg)
= 05 p2law, (39)

sin®(0;5) sin(6;;) cos(éij)} )

wherep, is the maximum possible distance between any two
o robots. Finally, the covariance term expressing the error in the
orientation of the measuring robot is

(c) Graph Il (d) Graph IV
Ry(k) = 05, Dilag s, DY
Fig. 5. The four different relative position measurement graph (RPMG) = Ué.Di (M;Ip,) DiT = MiU;vDiD?

topologies considered in the simulations. Each arrow represents a relative
position measurement, with the robot (node) where the arrow starts being grg derivations analogous to those employed to yield an upper

observing robot. bound for Ry (k), it can be shown that
Rs(k) = MiaiipilgMi (40)

of relative position measurements affects only the constatémbining this result with those of Egs. (38), (39), we can
term of the covariance while the rate of uncertainty increaggite R, (k) = Ry (k) + Ro(k) + Rs(k) < 7:l2ns,, Where
remains the same. Furthermore, it was shown that if the ' '

. _ 2 2 2 2 2
robots are forced to temporarily reduce the number of recorded ri =0, + Moy, p, + 0p, 0, (41)
relative position measurements (due to external factors such
as visibility constraints, or because of resource allocation to APPENDIXII

time-critical tasks), then when the RPMG resumes its prior In this appendix, we show how to derive the steady-state
topology, no loss of localization performancis inflicted. solution of the Riccati recursion in Eq. (25). We denote the
These properties can be extremely useful when designing 8D of matrix C, as C, = Udiag()\;)UT = UAUT, and
botic teams for specific applications, or when considering tadkfiningP,,,,, = UTP,,, U yields the recursion

lanning and/or motion strategy for robot groups operating in
E\dverseg environments. ¥ IOt oP ’ Prnisr = Py (v + AP, ) "+ Ly (42)

An interesting direction for future research is the study avhen the system is observable, at steady state we have
the underlying relationship between the CL performance af},.., ., = Pnn, = Pun., and we thus need to solve the
the Laplacian eigenvalues of the RPMG. Initial results indicateatrix equation
that employing concepts from Spectral Graph Theory can -1
facilitate the description of the properties of the time evolution Prno =Pun., (o + APnn) " + oy
of positioning uncertainty, in terms of the characteristics dh this expression, all the diagonal elementsiofire positive,
the RPMG. This analysis is especially important for robotisince C,, is a positive definite matrix [45]. Assuming a
teams of large size, in which the asymptotic properties dfagonal form forP,,,_, we can easily derive the solution
the Laplacian eigenvalues of the graph become dominant. 1 T
We are currently investigating the existence of optimal graph P, = diag ( Y e )
topologies that, given constraints on the available resources, 2 4N
provide optimal positioning performance [44]. To this end;lowever, the fact that we are dealing with an observable
the effect of graph characteristics, such as diameter, averagstem, means that the asymptotic solution to the Riccati
path length, and clustering coefficient, on the positioningcursion is unique [52]. Thus, the above derived solution is
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unique, and from it, the expression in Eq. (26) follows directlwhere
from the relationP? = Q\/*UP,,,, UTQ)/". ) ) .
When none of the robots has access to absolute posit®ff’ (k+1) = (IzN - PH] (HOPHOT + Ru) Ho)
measurements, the system is unobservable, and the asymptotic
solution to the Riccati recursion in Eq. (25) (or, equivalently,
in Eq. (42)) is not as straightforward, since the solution now L ) )
depends on the initial value of the covariance matrix. WhdR these expressiorB is any solution to the Discrete Alge-
the system is unobservable, mat, is of rank2N — 2, and braic Riccati Equation (DARE)
therefore two of its singular values equal zero [45]. L _\ 1 Ie  Ogxo] vor
We first address the case in which the initial covariance ¥ =P (IZN + CuP) +U [Owg 02“] U

matrix is zero. We observe that the right-hand side of Eq. (42?1

is a diagonal matrix in this case, and by a simple inductioan dJ, denotes the solution to thdual Riccati recursion with

argument, we can show that the solution to this recursiéf © initial condition:

retains a diagonal form for alk > 0. Addressing each of the Joo1=Jp+Cy —J,U { I ngﬂ u’J,
diagonal elements individually, we observe that for the first O2x¢  O2x2

2N — 2 elements, which correspond to the nonzero singular
values, we obtain the equations

k+1

X

(I2N + f)JkJrl)

We note that the zero-initial condition solution to Eq. (44)
is straightforward to derive from Eg. (43) and the definition
Py (4,1) = Pony (4,7) (1 + APy, (i,i) " +1 of P,. Additionally it is easy to show that this solution also
constitutes a solution to the DARE. The detailed derivation of
the final expression is quite lengthy, and cannot be included
P, (i,1) =Py, (4,1) + 1 here due to limited space. The interested reader is referred
to [45] for a thorough description of the intermediate steps.

while for the last two elements we obtain

Therefore, the asymptotic solution f#,,,,, is given by

i APPENDIX III
P, = [ diag, (% + \/ﬂ) 0an—2)x2 ] (43)

O (2v—2) kI, We here prove Lemma 6. Due to space limitations, we
provide a proof only for the scenario in which the sequence
Employing the relationP} = 71/ QUPnnkUTQt/ % and the of reconfigurations involves exactly one intermediate topology,
last result, we obtain the first two terms in Eq. (27). For thiduring which the RPMG is an empty graph. A generalization
derivation, the basis vectors of the nullspace of the matri@ the case of any sequence of reconfigurations, involving
C. are needed. Recall that in Section IlI-B the nullspacabitrary RPMG topologies, is straightforward and is presented
of H, was shown to be spanned by the column vectors wf [45].
V = 1y«1 ® I, and thus we can easily see that a basis of The following proof is for the upper bound on the expected
the nullspace ofC, = QY/*HTR;'H,Q./? is defined by uncertainty, but a similar result holds for the worst-case bounds
the columns ofVc = g—lQ;1/2v, whereg is a normalizing ©On the covariance. For this derivation we employ Eq. (27)
factor to ensure unit norm. Using this result, the derivation #there we have substituted the quantiti®s and C, by Q
the first two terms in Eq. (27) now merely involves algebrai@gndC, respectively. It can be shown [45] that Eq. (27) can be

manipulation. written, in terms of the normalized covariance matk, (k) =
In order to derive the last term of that equation, whicR/*P(k)Q~"/2, as

depends on the initial uncertainty, we first define the matrix — _ _ [ dia X _

~ . A . g f()‘z) 0 2

P, = P,, — kVcVE. This matrix has the property that it P.(k)=U { f)jxg ) kljj- o o’ (45)

asymptotically approaches a constant value, depending on the ) _
initial covariance matrix. Substitution in Eq. (25) and simpl&here;, i =1...¢ are the nonzero singular values ©f
algebraic manipulation results in the recursion 1 1

- 1
f(/\i)—§+ Z—i_;\j’

and ¥ is a 2 x 2 matrix that encapsulates the effect of the

where¢ = 2N — 2 is the number of nonzero eigenvalues ofitial uncertainty:
C.. The solution of this recursion is derived employing the v — vT(I 5 SN
ur = +P,(0)h(C P,(0O)V 46
following lemma (adapted from [52]): (n (0)A(C)) 0) (46)
Lemma 7:Supposef’,(€0) is the solution to the Riccati In the last expressio®, (0) is the normalized covariance
recursion in Eq. (44) with zero initial condition. Then theat time ¢, = 0, and V' is the 2N x 2 matrix comprising
solution to this recursion when the initial covariance matri$€ singular vectors o€ corresponding to the zero singular
is an arbitrary positive semidefinite matrl, is defined by Vvalues. The RPMG has the topolo@y for the time interval
the relation (to,t1). The normalized covariance matrix at timeis given

by:

5 _ diag (f(A)) Og¢x2 =T
P, (t1) =Ua Once tido 4+ g Uy (47)

. - N I: 0
Pu.1 =Py, (Im + Cqu) +U [0255 ngj U7” (44)
X X

. . _ -1
Ppy1 — Pl(c(21 = &P (k+1) (IQN + PoJk+1)
x Pod®(k+1)"
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where U4 = VT (Ioy + Po(0)h(Ca))  P,(0). In these

expressions, the subscrigt has been appended to quantities

that depend on the topolod¥y,. In [45], it is shown thatV

is independentf the RPMG topology and thus no subscript
is necessary to identify it. Assuming that during the time
interval (t1,t2) the robots perform DR, then the average ratd?
of covariance increase during this time interval is equal to

Q (cf. Eq. (36)), and it is easy to show that at timgethe
normalized covariance is given by:

_ & [diage (f(Mas)) + Atiole O¢x2 =T
Pu(t) = Ua 025¢ tolo + Uy Ui
(48)

whereAt o =t —t1. In order to compute (through Egs. (45)
and (46)) an upper bound on the uncertainty during Phase (8]

when the RPMG resumes topolo@y, the exactvalue of the

covariance at timé, is needed. However, since we seek an

upper bound for the covariance, we can use the fact¥hest
a matrix-increasing function in the argumdpy,, i.e., [45]

P =-P,=V =V (49)

Consequently, since Eq. (48) describes an upper bound on
Q /2E{P(t,)}Q~'/?, the following expression is an upper [g]

bound on the normalized covariance at time ¢, (at steady
state):

=, T diage (f(Aai)) Ocxo T
Prat)=Ua 02x¢ (t —to) I + T/, Ua
where

U, = VT (Ioy +Po(t2)h(Ca)) " Pulta)V

Substitution from Eq. (48) into the last expression and simple
algebraic manipulation with the use of the Matrix Inversio

Lemma [45] yields:
Uy = V4 +taly (50)
Thus,

=, = diage (f(Aai)) O¢x2 =T
PnA(k) =Ugy 02><£ tly + U4 UA (51)

Clearly, the maximum expected steady-state covariance during
Phase 3 is identical to the maximum expected covariance tH&1

would result from direct use of Eq. (47), i.éf,no RPMG
reconfigurationshad taken place.

ACKNOWLEDGMENTS

This work was supported by the University of Minnesota
(GIA Award, DTC), the Jet Propulsion Laboratory (Granfig
No. 1248696, 1251073), and the National Science Foundation
(ITR, Grant No. EIA-0324864). The authors would like to
thank the reviewers for their numerous constructive Suggesy]
tions that greatly helped improve the quality of the manuscript.

15

REFERENCES

W. Burgard, D. Fox, M. Moors, R. Simmons, and S. Thrun, “Collabora-
tive multi-robot exploration,” inProceedings of the IEEE International
Conference on Robotics and Automati®an Francisco, CA, Apr. 24-28
2000, pp. 476-481.

] 1. M. Rekleitis, G. Dudek, and E. Milios, “Multi-robot collaboration for

robust exploration,’Annals of Mathematics and Atrtificial Intelligence
vol. 31, no. 1-4, pp. 7-40, 2001.

A. Yamashita, M. Fukuchi, J. Ota, T. Arai, and H. Asama, “Motion
planning for cooperative transportation of a large object by multiple
mobile robots in a 3D environment,” iRroceedings of the 2000 IEEE
International Conference on Robotics and AutomatiSan Francisco,
CA, Apr. 24-28 2000, pp. 3144-51.

T. L. Huntsberger, A. Trebi-Ollennu, H. Aghazarian, P. S. Schenker,
P. Pirjanian, and H. D. Nayar, “Distributed control of multi-robot
systems engaged in tightly coupled tasksjtonomous Robatsol. 17,

no. 1, pp. 79-92, July 2004.

J. Wawerla, G. S. Sukhatme, and M. J. Mataric, “Collective construction
with multiple robots,” in Proceedings of the 2002 IEEE/RSJ Inter-
national Conference on Robotics and Intelligent Systebasisanne,
Switzerland, Sep. 30 - Oct. 4 2002, pp. 2696 — 2701.

C. A. C. Parker, H. Zhang, and C. R. Kube, “Blind buldozing: Multiple
robot nest construction,” iRroceedings of the 2003 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systebas Vegas, NV,
Oct. 27-31 2003, pp. 2010-15.

R. Kurazume, S. Nagata, and S. Hirose, “Cooperative positioning with
multiple robots,” inProceedings of the IEEE International Conference
in Robotics and AutomatigrLos Alamitos, CA, May 8-13 1994, pp.
1250-1257.

I. M. Rekleitis, G. Dudek, and E. Milios, “Multi-robot exploration of
an unknown environment, efficiently reducing the odometry error,” in
Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI'97) Nagoya, Japan, Aug. 23-29 1997, pp. 1340—
1345.

S. I. Roumeliotis and G. A. Bekey, “Collective localization: A distributed
kalman filter approach to localization of groups of mobile robots,”
in Proceeding of the IEEE International Conference on Robotics and
Automation San Francisco, CA, Apr. 24-28 2000, pp. 2958-2965.

T. Arai, E. Pagello, and L. E. Parker, “Editorial: Advances in multi-robot
systems,1EEE Transactions on Robotics and Automatieal. 18, no. 5,

pp. 655-661, Oct. 2002.

S. I. Roumeliotis and |. M. Rekleitis, “Analysis of multirobot local-
ization uncertainty propagation,” iRroceedings of the 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systémas Vegas,
NV, Oct. 27-31 2003, pp. 1763-1770.

——, “Propagation of uncertainty in cooperative multirobot localization:
Analysis and experimental result®¥utonomous Robatsol. 17, no. 1,

pp. 41-54, July 2004.

R. Kurazume, S. Hirose, S. Nagata, and N. Sashida, “Study on coopera-
tive positioning system (basic principle and measurement experiment),”
in Proceedings of the IEEE International Conference in Robotics and
Automation Minneapolis, MN, Apr. 22-28 1996, pp. 1421-1426.

R. Kurazume and S. Hirose, “Study on cooperative positioning system:
optimum moving strategies for CPS-1II.” iRroceedings of the IEEE
International Conference in Robotics and Automatioeuven, Belgium,
May 16-20 1998, pp. 2896-2903.

——, “An experimental study of a cooperative positioning system,”
Autonomous Robatsol. 8, no. 1, pp. 43-52, Jan. 2000.

R. Grabowski, L. E. Navarro-Serment, C. J. J. Paredis, and P. K. Khosla,
“Heterogeneous teams of modular robots for mapping and exploration,”
Autonomous Robatsol. 8, no. 3, pp. 293-308, 2000.

I. M. Rekleitis, G. Dudek, and E. Milios, “Probabilistic cooperative
localization and mapping in practice,” iRroceedings of the IEEE
International Conference on Robotics and Automatidaipei, Taiwan,
Sep. 14-19 2003, pp. 1907-1912.

A. Rynn, W. A. Malik, and S. Lee, “Sensor based localization for
multiple mobile robots using virtual links,” irProceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
Las Vegas, NV, Oct. 2003, pp. 1771-76.

A. I. Mourikis and S. I. Roumeliotis, “Performance bounds for coop-
erative simultaneous localization and mapping (C-SLAM),Proc. of
Robotics: Science and Systems Confere@eenbridge, MA, June 8-11
2005, pp. 281-288.

D. Fox, W. Burgard, H. Kruppa, and S. Thrun., “Collaborative multi-
robot localization,” inIn Proceedings of the 23rd Annual German



[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31

[32]

(33]

(34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

Conference on Atrtificial Intelligence (KIBonn, Germany, Sep. 13-15
1999, pp. 255-266.

D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic ap{42]
proach to collaborative multi-robot localization®utonomous Robats

vol. 8, no. 3, pp. 325-344, Jun. 2000, special Issue on Heterogeneous
Multirobot Systems. [43]
S. Thrun, D. Fox, and W. Burgard, “Monte carlo localization with
mixture proposal distribution,” inProceedings of the AAAI National

Conference on Artificial IntelligencéAustin, TX, 2000, pp. 859-865. [44]
S. I.  Roumeliotis, “Distributed Multi-Robot Localization,”
California  Institute  of Technology, Tech. Rep., 2002,
http://robotics.caltech.edubtergios/tectreports/trcollective.pdf. [45]

A. Howard, M. J. Mataric, and G. Sukhatme, “Putting the 'i’ in 'team’:

an ego-centric approach to cooperative localizationPinceedings of

the |IEEE International Conference on Robotics and Automaffaipei,
Taiwan, Sep. 14-19 2003, pp. 868-874. [46]
A. Howard, M. J. Mataric, and G. S. Sukhatme, “Localization for mobile
robot teams using maximum likelihood estimation,” roceedings

of the IEEE/RSJ International Conference on Intelligent Robots arjd7]
SystemsLauzanne, Switzerland, Sep.30-Oct.4 2002, pp. 434-59.

F. Dellaert, F. Alegre, and E. B. Martinson, “Intrinsic localization
and mapping with 2 applications: Diffusion mapping and marco polf#8]
localization,” in Proceedings of the IEEE International Conference on
Robotics and Automatigrmaipei, Taiwan, Sep. 14-19 2003, pp. 2344-{49]
49.

A. C. Sanderson, “A distributed algorithm for cooperative navigatiof60]
among multiple mobile robotsAdvanced Roboti¢s/ol. 12, no. 4, pp.
335-349, 1998.

S. |. Roumeliotis and G. A. Bekey, “Distributed multirobot localization,”
IEEE Transactions on Robotics and Automatieol. 18, no. 5, pp. 781- [52]
795, Oct. 2002.

I. M. Rekleitis, G. Dudek, and E. Milios, “Multi-robot cooperative
localization: A study of trade-offs between efficiency and accuracy,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and System&ausanne, Switzerland, Sep.30-Oct.4 2002, pp.
2690-2695.

N. Trawny, “Optimized motion strategies for cooperative localization of
mobile robots,” Master’s thesis, Universitaet Stuttgart, 2003.

I. M. Rekleitis and S. |I. Roumeliotis, “Analytical expressions for posi-
tioning uncertainty propagation in networks of robots,”Rroceedings
of the 11th IEEE Mediterranean Conference on Control and Automatio
Rhodes, Greece, June 17-20 2003.

A. I. Mourikis and S. |. Roumeliotis, “Analysis of Positioning Uncer-
tainty in Reconfigurable Networks of Heterogeneous Mobile Robots
in Proceedings of the 2004 IEEE International Conference on Roboti
and AutomationNew Orleans, LA, USA, Apr. 26 - May 1 2004, pp.
572-579.

A. Georgiev and P. K. Allen, “Localization methods for a mobile robo
in urban environmentsJEEE Transactions on Roboticsgol. 20, no. 5,
pp. 851-864, October 2004.

T. Duckett, S. Marsland, and J. Shapiro, “Simultaneous localization and
mapping - a new algorithm for a compass-equipped mobile robot,” in
Proceedings of IJCAI-2001 Workshop on Reasoning with Uncertainty in
Robotics Seatle, WA, Aug. 4 - 5 2001.

R. Volpe, “Mars rover navigation results using sun sensor heading
determination,” inProceedings of the 1999 IEEE/RSJ International
Conference on Robotics and Intelligent Systelysngju, Korea, Oct.
17-21 1999, pp. 469-467.

A. Georgiev and P. K. Allen, “Design and analysis of a sun sens
for planetary rover absolute heading detectid&EE Transactions on
Robotics and Automatiorvol. 17, no. 6, pp. 939-947, Dec. 2001.

S. Pfister, S. Roumeliotis, and J. Burdick, “Weighted line fitting algo
rithms for mobile robot map building and efficient data representatio
in Proceedings of the IEEE International Conference on Robotics al
Automation Taipei, Taiwan, Sep. 14-19 2003, pp. 1304-1311.

N. Trawny and S. |. Roumeliotis, “A unified framework for nearby and
distant landmarks in bearing-only SLAM,” iRroceedings of the 2006
IEEE International Conference on Robotics and Automati@riando,

(51]

16

2001 IEEE International Conference on Robotics and Automation
Seoul, Korea, May 2001, pp. 4238-4243.

J. A. Castellanos, J. Neira, and J. D. Tards, “Limits to the consistency of
EKF-based SLAM,” in5th IFAC Symposium on Intelligent Autonomous
Vehicles Lisbon, Portugal, July 2004.

P. Tabuada, G. J. Pappas, and P. Lima, “Feasible formations of multi-
agent systems,” irProceedings of the American Control Conference
June 25-27 2001, pp. 56-61.

A. I. Mourikis and S. I. Roumeliotis, “Optimal sensor scheduling for
resource-constrained localization of mobile robot formationEEE
Transactions on Robotic2005, (conditionally accepted).

, “Analysis of positioning uncertainty in reconfigurable net-
works of heterogeneous mobile robots,” Dept. of Computer Sci-
ence and Engineering, University of Minnesota, Tech. Rep., 2003,
www.cs.umn.edutmourikis/TRmulti.pdf.

T. Nishimura, “Error bounds of continuous Kalman filters and the
applciation to orbit determination problemdEEE Transactions on
Aerospace and Electronic Systerasl. 12, pp. 267-275, June 1967.

D. Lerro and Y. Bar-Shalom, “Tracking with debiased consistent con-
verted measurements versus EKIEEE Transactions on Aerospace and
Electronic Systemsol. 29, pp. 1015-22, July 1993.

B. Mohar, “The laplacian spectrum of graph§taph Theory, Combi-
natorics, and Applicationsvol. 2, pp. 871-898, 1991.

F. R. K. Chung,Spectral Graph Theory American Mathematical
Society, 1997.

S. Friedland and R. Nabben, “On cheeger-type inequalities for weighted
graphs,”J. Graph Theoryvol. 41, pp. 1-17, 2002.

S. Boyd and L. Vandenbergh&onvex Optimization
University Press, 2004.

B. Hassibi, “Indefinite metric spaces in estimation, control and adaptive
filtering,” Ph.D. dissertation, Stanford University, August 1996.

Cambridge

Anastasios |. Mourikis Anastasios Mourikis re-
ceived the Diploma of Electrical and Computer En-
gineering with honors from the University of Patras,
Greece in 2003. He is currently a PhD candidate
at the Department of Computer Science and Engi-
neering (CSE) at the University of Minnesota. His
research interests lie in the areas of Localization
in Single- and Multi-robot systems, Vision-aided
Inertial Navigation, Simultaneous Localization and
Mapping, and Structure from Motion. He is the
recipient of the 2005 Excellence in Research Award

Fellowship from the CSE Department of the University of Minnesota.

Stergios |. Roumeliotis Stergios Roumeliotis re-
ceived his Diploma in Electrical Engineering from
the National Technical University of Athens, Greece,
in 1995, and the M.S. and Ph.D. degrees in Elec-
trical Engineering from the University of Southern
California, CA in 1997 and 2000 respectively. From
2000 to 2002 he was a postdoctoral fellow at the Cal-
ifornia Institute of Technology, CA. Since 2002 he
has been an Assistant Professor at the Department of
Computer Science and Engineering at the University
of Minnesota. He is the recipient of the McKnight

FL, May 2006, (to appear). Land-Grant Professorship award, and the NASA Tech Briefs award. His

M. Bosse, R. Rikoski, J. Leonard, and S. Teller, “Vanishing points an@ésearch interests include inertial navigation of aerial and ground autonomous
3d lines from omnidirectional video,” iRroceedings of the International vehicles, fault detection and identification, and sensor networks. Recently
Conference on Image Processjrigochester, NY, September 2002, pp.his research has focused on distributed estimation under communication
513-516. and processing constraints and active sensing for reconfigurable networks of
P. S. MaybeckStochastic Models, Estimation, and Conjreér. Mathe- mobile sensors.

matics in Science and Engineering. Academic Press, 1979, vol. 141-2.

S. Julier and J. K. Uhlmann, “A counter example to the theory of

simulataneous localization and map building,” Rtoceedings of the



