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Abstract— In this paper we derive analytical upper bounds
on the covariance of the state estimates in SLAM. The analysis
is based on a novel formulation of the SLAM problem, which
enables the simultaneous estimation of the landmark coordinates
with respect to a robot-centered frame (relative map), as well as
with respect to a fixed global frame (absolute map). A study
of the properties of the covariance matrix in this formulation
yields analytical upper bounds for the uncertainty of both map
representations. Moreover, by employing results from Least
Squares estimation theory, theguaranteed accuracy of the robot
pose estimates is derived as a function of the accuracy of the
robot’s sensors and of the properties of the map. Contrary
to previous approaches, the method presented here makes no
assumptions about the availability of a sensor measuring the
absolute orientation of the robot. The theoretical analysis is
validated by simulation results and real-world experiments.

I. I NTRODUCTION

Recent interest in Simultaneous Localization and Mapping
(SLAM) has resulted in significant advances in the design of
estimation algorithms [1]–[5], data association techniques [6],
and sensor data processing [7], [8], which have enabled
localization with maps consisting of millions of landmarks
(e.g., [1]). However, a theoretical characterization of the
attainable localization accuracy in SLAM remains an open
problem to date. To the best of our knowledge, very few
approaches exist in the literature that focus onpredicting
the accuracy of the robot’s pose and of the map estimates,
given the capabilities of a robot’s sensor payload. As a result,
evaluating the suitability of a robot with a given set of sensors
for a particular SLAM application, largely remains a matter
of exhaustive simulations and experimentation.

In this paper, we focus on deriving upper bounds for the
covariance of the state estimates in SLAM, as a function
of the accuracy of the robot’s sensors and the size of the
map. The derived closed-form expressions providetheoretical
guaranteesfor the accuracy of SLAM, and can thus be em-
ployed during the design of a localization system, to determine
the necessary accuracy of the robot’s sensors. Contrary to
previous approaches [9], [10], in the treatment presented here
we do not assume that the robot is equipped with an absolute
orientation sensor, and thus the problem formulation is more
general. In order to derive analytical expressions for the upper
bounds on the localization uncertainty, we employ a novel
formulation of the SLAM problem, in which the landmark
coordinates with respect to (i) the robot, and (ii) a fixed
global frame, are jointly estimated. This enables us to compute
upper bounds on the covariance ofboth map representations
(cf. Section III), as well as on the uncertainty in the robot’s

pose (cf. Section IV). Before delving into the details of our
approach, in the following section we present an overview of
related work.

II. RELATED WORK

One of the first attempts to study the properties of the co-
variance matrix of the state estimates in SLAM was presented
in [11]. In that work, a Linear Time Invariant (LTI) SLAM
model is employed, in which both the robot and the landmarks
are constrained to lie in a one-dimensional space. For this
simple model, the solution to the Riccati differential equation,
which describes the time evolution of the covariance matrixof
the position estimates, is derived in closed form. This result
demonstrates some of the properties of the covariance matrix
in SLAM, but its practical importance is limited by the fact
that the analysis holds only for motion in 1D. The work of [11]
has been extended to the case of a team of multiple vehicles
performing SLAM [12] under the same set of assumptions
(i.e., LTI system model, and motion in 1D).

A different set of properties of the covariance matrix in
SLAM is studied in [13]–[15]. In particular, it is shown that
the covariance matrix of the landmarks’ position estimatesis
decreasing monotonically, as more observations are processed,
and after sufficient time, the map estimates become fully
correlated. Additionally, the authors derive alower bound
on the covariance matrix, by considering the case in which
the odometry measurements areperfect. Since no additional
uncertainty is introduced in the system during state propaga-
tion, this is the “best-case scenario”. The covariance of the
state estimates in this hypothetical system defines a lower
bound, which depends only on the initial uncertainty of the
robot’s pose. These results are also extended to the case of
cooperativeConcurrent Mapping and Localization in [16],
[17]. A limitation of the aforementioned approaches is thatthe
derived lower bounds areindependentof the accuracy of the
robot’s sensors, and thus cannot be employed forcomparing
the performance of robots with sensors of different quality.
Moreover, if the robot’s initial pose is perfectly known, which
is a common situation in SLAM, these bounds are equal to
zero, and are thus non-informative.

In [9], upper bounds on the uncertainty of the position
estimates in SLAM, as closed-form functions of the accuracy
of the robot’s sensors, are derived. This is achieved by assum-
ing that the robot is equipped with anabsolute orientation
sensor (e.g., a compass). When such a sensor is available,
the maximum variance of the orientation errors is bounded,
and a position-only Extended Kalman Filter estimator can be



formulated. This work is extended to the case of Cooperative
SLAM in [10], under the assumption that every robot has an
absolute orientation sensor. Clearly, there exist cases where
such a requirement is not satisfied. We here extend the
results of our previous work to the case where no absolute
orientation measurements are available, resulting in a more
general formulation. As shown in Section IV, in SLAM it
is possible to derive an upper bound on the variance of the
robot’s orientation errors,without requiring that a compass or
similar sensor be available.

III. T HE UNCERTAINTY OF MAP ESTIMATION IN SLAM

In this section, we derive upper bounds for the covariance of
the landmarks’ position estimates in SLAM. In particular, we
compute upper bounds for the uncertainty of the landmarks’
positions when these are expressed with respect to i) a fixed
global frame (absolute map), and ii) the robot’s coordinate
frame (relative map).1 Our approach is based on formulating
an Extended Kalman Filter (EKF) estimator, in which the state
vector is comprised of both the relative map coordinates,and
the absolute map coordinates, but doesnot explicitly contain
the robot pose. The estimate for the robot pose, as well as its
covariance, can be inferred from the transformation between
the two map representations, as shown in the following section.

We point out that the computational complexity of this
formulation is higher than that of the standard EKF. However,
the sole purpose of employing such a formulation of SLAM
is to determine analytical upper bounds for the covariance of
the state estimates. As will be made clear in the following, in
the proposed EKF set-upall available measurements are used
once, and apart from linearization, no other approximations are
made. Therefore, the covariance of the absolute map computed
with this filter will be identical (except for small linearization
inaccuracies) to the covariance that is computed with the
“traditional” EKF SLAM algorithm [18], in which the state
vector contains the absolute map coordinates and the robot
pose.

A. Relative-map SLAM

We first study the case in which the state vector is comprised
only of the landmarks’ positions with respect to the robot
(relative map). Denoting the position of thei-th landmark with
respect to the robot at time stepℓ by Rpiℓ

, i = 1 . . . N , we
obtain the state propagation equation:

Rpik+1
= Rk+1pRk

+ C(−ωkδt)Rpik
(1)

where the rotation matrix expressing the rotation of the robot
frame between time-stepsk + 1 andk is:

C(−ωkδt) =

[
cos(ωkδt) sin(ωkδt)
− sin(ωkδt) cos(ωkδt)

]
(2)

1We note that the term “relative map” is used in this paper to describe
a robot-centred map. This is different than the notion of the relative map
employed, for example, in [13].

and Rk+1pRk
is the position of the robot at time-stepk,

expressed with respect to the robot frame at time-stepk + 1:

Rk+1pRk
= −C(−ωkδt)RkpRk+1

= −vkδtC(−ωkδt)e1 (3)

In the preceding expressions,vk andωk are the translational
and rotational velocity of the robot at time stepk, respectively,
δt is the sampling interval, ande1 = [1 0]T .

Using the measurements of the robot’s translational and
rotational velocities,vmk

and ωmk
, respectively, the position

estimate of thei-th landmark is propagated according to:

Rp̂ik+1
= Rk+1 p̂Rk

+ C(−ωmk
δt)Rp̂ik

= C(−ωmk
δt)
(
−vmk

δte1 + Rp̂ik

)
(4)

By linearizing Eq (3), we obtain the error propagation equation
for the relative position of thei-th landmark:

Rp̃ik+1
= C(−ωmk

δt)Rp̃ik
− δtC(−ωmk

δt)e1ṽk

+ δtJ×
Rp̂ik+1

ω̃k (5)

In the last expression, the symbol˜ denotes the error in the
estimate of the respective quantity, and

J× =

[
0 1
−1 0

]
(6)

If we create a state vector,RX, comprised of the relative
positions of the landmarks with respect to the robot, then the
error propagation equation for this state vector is:

RX̃k+1 = RΦk
RX̃k + RGknod (7)

wherenod =
[
ṽk ω̃k

]T
is the noise of the robot’s odometry

measurements, assumed to be zero-mean, white Gaussian, with
covariance matrixQ = diag(σ2

v , σ2
ω). The state transition

matrix is given by2

RΦk = IN ⊗ C(−ωmk
δt) (8)

andRGk is a 2N × 2 block matrix, whosei-th element is

Gik
= δt

[
−C(−ωmk

δt)e1 J×
Rp̂ik+1

]
(9)

The covariance propagation equation for the uncertainty ofthe
relative mapis

RPk+1|k = RΦk
RPk|k

RΦT
k + RQk (10)

where we have denotedRQk = RGkQRGT
k , and RPk+1|k

andRPk|k are the covariance of the error in the state estimate
of RX(k + 1) and RX(k) respectively, after measurements up
to time k have been processed.

2In the remainder of this paper,In denotes then × n identity matrix,
1n×m denotes then×m matrix of ones,0n×m denotes then×m matrix
of zeros, and⊗ denotes the Kronecker product.



B. The Dual-Map Filter

In order to introduce the absolute landmark coordinates in
the state vector, we begin with the observation that, without
loss of generality, the global coordinate frame can be selected
at the initial position of the robot. Thus, at the first time step,
the absolute and relative mapscoincide, i.e., GX = RX0,
whereGX is a vector that contains the coordinates of theN

landmarks with respect to the fixed global frame. If at the first
time step, we augment the state vector to include two identical
copies of the stateRX0, and we thereafter propagate only one
of the copies, while properly accounting for the correlations
between the two, then at every time step an estimate for both
the relative, and the absolute landmark coordinates will be
available.

The augmented state vector isX = [RXT GXT ]T , and the
error-state propagation equation is given by

X̃k+1 =

[
RΦk 02N×2N

02N×2N I2N

]
X̃k +

[
I2N

02N×2N

]
RGknod

= ΦkX̃k + G RGknod (11)

while the covariance propagation equation is given by

Pk+1|k = ΦkPk|kΦ
T
k + G RQkG

T (12)

Immediately after state duplication, and before the robot
starts moving, the two copies of the state carry exactly the
same information, and are thus fully correlated. As a result,
the initial covariance matrix for the augmented state vector is
given by:

P0|0 =

[
RP0|0

RP0|0
RP0|0

RP0|0

]
(13)

At every time step, the robot performs a direct observation
of the relative positionsof all landmarks, and therefore the
measurement vector at each time step is described by

z(k) = HXk + n(k), with H =
[
I2N 02N×2N

]
(14)

wheren(k) is a Gaussian, zero-mean, white noise vector. The
measurements of different landmarks are independent, and
therefore the covariance matrix ofn(k) will be a generally
time-varying, block-diagonal matrix:

Rk = Diag(Rik
) (15)

whereRik
is the2× 2 covariance matrix of the measurement

of the i-th landmark. Using these definitions, we can write the
covariance update equation of the EKF as:

Pk+1|k+1 = Pk+1|k − Pk+1|kH
T S−1

k+1HPk+1|k (16)

with Sk+1 = HPk+1|kH
T + Rk+1.

At this point, a clarification regarding the structure of the
measurement equation (cf. Eq. (14)) is due. At first, the
fact that the measurement equation does not directly involve
the absolute position estimates of the landmarks may appear
somewhat peculiar. Note, however, that the close relation ex-
isting between the absolute and relative maps is expressed via
the correlations in the augmented system covariance matrix.

These correlations ensure that, during each EKF update step,
the absolute map estimates as well as their covariance are
appropriately corrected.

By combining the covariance propagation and update equa-
tions (Eqs. (12) and (16)), we form the Riccati recursion that
describes the time evolution of the covariance matrix in the
augmented system. This is given by:

Pk+1 = Φk

(
Pk − PkH

T S−1
k HPk

)
ΦT

k + GRQkG
T (17)

where we have introduced the substitutionsPk = Pk+1|k and
Pk+1 = Pk+2|k+1 to simplify the notation.

In this paper, we consider the case where the landmark
positions areunknownprior to the first observation, and the
robot has perfect initial knowledge of its pose, which is
the most common setting for SLAM. Immediately after the
first set of robot-to-landmark measurements, the uncertainty
of the relative map is equal to the covariance matrix of
these measurements, i.e.,RP0|0 = R0. The initial value of
the Riccati recursion is the covariance matrix for the dual-
map filter that arises after duplicating the initial state and
performing one propagation step. Thus it is equal to:

P0 =

[
R0 + RQ0 R0

R0 R0

]
(18)

C. Upper bounds on the Asymptotic Covariance

Having determined the Riccati recursion (Eq. (17)) and
its initial value (Eq. (18)), we are now able to derive an
upper bound for its solution, and thus an upper bound on
the covariance of the map in SLAM. For this purpose, we
employ the following lemma:

Lemma 3.1:If Ru andQu are constant matrices such that
Ru � Rk andQu � RQk, for all k ≥ 1, then the solution to
the Riccati recursion

Pu
k+1 = Φk

(
Pu

k − Pu
kH

T
(
HPu

kH
T + Ru

)−1
HPu

k

)
ΦT

k

+ GQuG
T (19)

with an initial conditionPu
0 such thatPu

0 � P0, satisfies
Pu

k � Pk for all k ≥ 0.

The proof of this lemma is based on induction, and employs
the fact that the right hand side of the Riccati recursion is a
matrix-increasing function of the argumentsRk andRQk. Due
to space limitations, the details of the proof are omitted, and
the interested reader is referred to [19] for the details of the
proof.

We now show how upper bounds on the matricesRQk, Rk,
andP0 can be derived. From Eqs. (9) and (11) we obtain:

trace RQk = trace
(
RGkQRGT

k

)
= Nσ2

vδt2 + σ2
ωδt2

N∑

i=1

ρ2
i

whereρi is the distance of thei-th landmark to the robot. Thus,
if ρo is the maximum possible distance between the robot



and any landmark (determined, for example, by the robot’s
maximum sensing range), the following inequality holds:

trace RQk ≤ Nσ2
vδt2 + Nσ2

ωρ2
oδt

2 = q

We therefore obtain an upper bound forRQk, as:

RQk � qI2N = Qu (20)

We should note at this point that this isnot the lowest
upper bound that can be derived forRQk. By considering the
effect of the errors in the translational and rotational velocity
measurements separately, a tighter bound can be obtained.
The resulting matrix is non-diagonal in this case, however,
and this complicates the ensuing analysis. All the pertinent
quantities can still be derived in closed form, but the resulting
expressions are considerably more cumbersome. We have thus
opted not to present the tighter, but more complex bounds in
this paper, in the interest of clarity. These results can be found
in [19].

An upper bound on the measurement covariance matrix,
Rk, can be derived by considering the characteristics of the
particular sensor used for the relative position measurements.
If the covariance matrix of the measurement of each individual
landmark can be bounded above byRik

� rI2, then we obtain

Rk � rI2N = Ru

Regarding the initial value of the recursion in Eq. (19), it is
easy to see that the following matrix satisfies the condition
Pu

0 � P0:

Pu
0 =

[
(q + r)I2N rI2N

rI2N rI2N

]
(21)

An additional difficulty in solving for the steady-state value
of the Riccati recursion in Eq. (19) is that the state transition
matrix,Φk, is time-varying. Considering, however, the special
structure of the matrices that appear in this recursion, the
following lemma can be proven [19]:

Lemma 3.2:Let the solution, Pu
k , to the recursion in

Eq. (19) be partitioned in2N × 2N blocks as

Pu
k =

[
RPu

k PRGk

PT
RGk

GPu
k

]
(22)

Additionally, let P̄k be the solution to the recursion

P̄k+1 = P̄k − P̄kH
T
(
HP̄kH

T + Ru

)−1
HP̄k + GQuG

T

(23)

with initial condition P̄0 = Pu
0 , and letP̄k be partitioned as

P̄k =

[
RP̄k P̄RGk

P̄T
RGk

GP̄k

]
(24)

Then for anyk ≥ 0, the following relations hold:

RP̄k = RPu
k , GP̄k = GPu

k , and PRGk
= CkP̄RGk

whereCk =
∏k

i=1
RΦk.

This lemma demonstrates that to derive an upper bound on
the steady-state covariance of the absolute and relative maps

in SLAM, it suffices to determine the steady-state solution of
the Riccati in Eq. (23). This recursion is simpler than that of
Eq. (19), since it is aconstant coefficientRiccati recursion.
In order to determine theasymptoticsolution of Eq. (23),
we employ the following lemma, which has been adapted
from [20]:

Lemma 3.3:SupposeP̄u(0)
k is the solution to the discrete-

time Riccati recursion in Eq. (23) with initial valuePu
0 =

04N×4N . Then the solution with the initial condition given in
Eq. (21) is determined by the identity

P̄u
k − P̄

u(0)
k = Tk

(
I4N + P̄0Jk

)−1
P̄0T

T
k

whereTk is given by

Tk = (I4N − KpH)k (I4N + PJk)

In these expressions,P is any solution to the Discrete Alge-
braic Riccati Equation (DARE):

P = P − PHT (HPHT + Ru)−1HP + GQuG
T

andKp = PHT
(
HPHT + Ru

)−1
. Jk denotes the solution

to thedual Riccati recursion:

Jk+1 = Jk − JkG(GT JkG + Q−1
u )−1GT Jk + HT R−1

u H

with zero initial condition,J0 = 04N×4N .

Lemma 3.3 simplifies the evaluation of the steady-state value
of P̄k, since the solution to the Riccati recursion with zero
initial condition is easily derived. When the initial value of the
covariance is zero, then the submatrix ofP̄k that corresponds
to the covariance of the absolute map willremainzero for all
k ≥ 0, since no influx of uncertainty occurs in the absolute
landmark coordinates. This observation results in significant
simplification of the necessary derivations, which are presented
in detail in [19].

Applying Lemmas 3.3 and 3.2, and evaluating the limit of
the resulting expressions ask → ∞, allows us to obtain the
following upper bound for the asymptotic covariance matrix
of the augmented-state filter:

P∞ �




(
q
2 +

√
q2

4 + qr

)
I2N 02N×2N

02N×2N

(
− q

2 +
√

q2

4 + qr

)
I2N




This expression provides an upper bound for the covariance
of the augmented state vector after every EKFpropagation
step. To derive a bound for the covariance immediately after
the updatestep of the EKF, we note that during propagation,
the absolute map covariance remains unchanged, while the
uncertainty of the relative map is increased according to
Eq. (10). Using this observation, we can show that an upper
bound on the steady-state covariance matrix of the relative
map, immediately after every update step, is given by

RP̄∞ =

(
−

q

2
+

√
q2

4
+ qr

)
I2N = rmapI2N (25)



while the asymptotic uncertainty of the absolute positionsof
the landmarks in SLAM is bounded above by the matrix

GP̄∞ =

(
−

q

2
+

√
q2

4
+ qr

)
I2N = rmapI2N (26)

These results provide bounds for the accuracy of the map in
SLAM, which are evaluated in closed form, and depend on
the accuracy of the robot’s sensors, as well as on the size
of the area being mapped. Interestingly, theboundson both
the relative and absolute map areequal, when the covariance
matrix after the update phase of the EKF is considered.
However, it should be clear that theactualcovariance matrices
of the two map representations arenot identical at steady state.
In the next section, we show how these results can be used
for obtaining bounds on the covariance of the robot’s pose
estimates in SLAM.

IV. T HE ACCURACY OF POSE ESTIMATION INSLAM

Although the robot pose (position and orientation) is not
explicitly contained in the state vector of the formulationthat
we presented in the preceding section, an estimate for this
pose is implicitly defined from the estimates of the relative
map,RX, and the absolute map,GX. Specifically, the relation
between the representation of thei-th landmark in the global
frame, Gpi, and in the robot frame at time stepk, Rkpi, is
given by:

Gpi = GpRk
+ C(φk)Rkpi (27)

where GpRk
and φk are the position and orientation of

the robot with respect to the global frame at time stepk,
respectively. Thus, given the augmented state vector at time-
stepk, Xk = [RXT GXT ]T , and its covariance,Pk, we are
able to determine the robot pose,

θk =
[
GpT

Rk
φk

]T

and its covariance,Pθθ, by solving the Least Squares mini-
mization problem:

min
θk

ε
T
k W−1

k εk (28)

whereεk is the vector of errors that we seek to minimize, i.e.,
the 2N × 1 vector whosei-th block is equal to

εi = GpRk
+ C(φk)Rkpi −

Gpi (29)

andWk is the covariance matrix of the vectorεk. Employing
linearization of Eq. (29), we obtain

Wk = HXk
PkH

T
Xk

(30)

whereHXk
is the Jacobian of the error vectorεk with respect

to the state vectorXk, given by

HXk
=
[
IN ⊗ C(φk) I2N

]
(31)

The covariance matrix of the least-squares estimate forθk is:

Pθθ =
(
HT

θk
W−1

k Hθk

)−1

=
(
HT

θk

(
HXk

PkH
T
Xk

)−1
Hθk

)−1

(32)

whereHθk
is the Jacobian matrix of the error vectorek with

respect toθk. This is a2N ×3 block matrix, whosei-th block
element is equal to

Hi =
[
I2 p̆ik

]
, with p̆ik

= − J×C(φk)Rkpi (33)

We point out that the solution of the Least Squares problem in
Eq. (28) and the covariance of this solution, given by Eq. (32),
yield the sameresults for the robot’s pose, as the “standard”
EKF formulation for SLAM, when at least 2 landmarks are
available. This is because in both cases,all the available
measurements are used, and no approximations are made
(apart from linearization). Thus, we can use the expressionof
Eq. (32), to study the properties of the robot’s pose covariance
in EKF-based SLAM.

In the following, we focus on deriving upper bounds on the
steady-state value of the matrixPθθ. Note that sincePk �
Pu

k , an upper bound for the covariance of the robot pose at
time-stepk is given by (cf. Eq. (32)):

Pu
θθ =

(
HT

θk

(
HXk

Pu
kH

T
Xk

)−1
Hθk

)−1

(34)

Substitution of the asymptotic results from Eqs. (25) and (26),
and of the values of the JacobiansHθk

and HXk
from

Eqs. (31) and (33), yields the following asymptotic value for
Pu

θθ
:

Pu
θθ = 2rmap

[
NI2

∑N

i=1 p̆i∑N

i=1 p̆T
i

∑N

i=1

(
p̆T

i p̆i

)
]−1

=

[
PPP PPφ

PT
Pφ Pφφ

]

(35)

Employing inversion of the partitioned matrix in Eq. (35)
we obtain the following expression forPφφ:

Pφφ =
2rmap

∑N

i=1

(
p̆T

i p̆i

)
− 1

N

(∑N

i=1 p̆T
i

)(∑N

i=1 p̆i

) (36)

Noting that for anyi, j, the propertyp̆T
i p̆j = RpT

i
Rpj holds,

and after simple algebraic manipulation, we can re-write the
expression forPφφ as [19]:

Pφφ =
4Nrmap∑N

i=1

∑N

j=1 ρ2
ij

(37)

whereρij is the distance between landmarksi andj. Thus, if
the pairwise distances of the landmarks are known, an upper
bound on the robot’s orientation variance is determined by
the preceding expression. Furthermore, if some propertiesof
the placement of the landmarks in space is known, using this
expression we can determine bounds that are independent of
the actual landmark positions. For example, if the minimum
allowable distance between any two landmarks is equal to
ρLLmin

, then

Pφφ ≤
4rmap

(N − 1)ρ2
LLmin

(38)
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Fig. 1. (a) The diagonal elements of the covariance of the landmark position estimates, computed by the standard EKF SLAM algorithm, and by the dual-map
filter presented in Section III. (b) The diagonal elements of the robot pose covariance, computed by the standard EKF SLAM algorithm, and by the method
described in Section IV. To preserve the clarity of the figure, only the first 100sec are shown.

For the upper bound on the covariance matrix of the robot’s
position estimates, we obtain from Eq. (35):

PPP = 2rmap


NI2 −

(∑N

i=1 p̆i

)(∑N

i=1 p̆T
i

)

∑N

i=1

(
p̆T

i p̆i

)




−1

which, by application of the matrix inversion lemma, yields:
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To derive an upper bound forPPP , we examine the trace of the
second term,T2, in the last expression. After some algebraic
manipulation, it can be shown that

trace(T2) =
4rmap

∑N
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)
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and thus

PPP �
2rmap

N
I2 + trace(T2)I2 =

1

N
Pφφ

N∑

i=1

ρ2
i I2

Finally, we observe that if the maximum distance between the
robot and any landmark is equal toρo, the covariance of the
robot’s position estimate is bounded above by

PPP � ρ2
oPφφI2 (39)

This result, along with those of Eqs. (37)-(38), which de-
termine upper bounds on the robot’s orientation uncertainty,
and that of Eq. (26), which yields the upper bound of the

covariance matrix of the global landmark coordinates, are the
most important results of this paper. They enable us to compute
theguaranteed accuracyof the state estimates in SLAM, as an
analytical functionof the accuracy of the robot’s sensors, and
the properties of the landmarks’ configuration. Hence, these
expressions can be employed to determine whether a candidate
robot system design satisfies the accuracy requirements of a
given SLAM application,without the need for simulations, or
experimentation.

For example, consider a scenario in which a service robot
(e.g., autonomous lawn-mower, autonomous vacuum-cleaner)
is operating in an area of approximately known size, and
localizes by performing SLAM. Clearly, the state vector
should contain as few landmarks as possible, to minimize
the computational requirements of the localization algorithm.
Moreover, the robot’s sensors should be as inexpensive (and
thus, as inaccurate) as possible, in order to minimize pro-
duction costs. By employing the results of this paper during
the design phase, the trade-offs between cost, complexity,and
localization accuracy can be studied, and informed decisions
can be reached. Moreover, during the robot’s operation, the
selection of landmarks to include in the state vector can be
guided by the results of Eqs. (37)-(38), to ensuretheoretical
guaranteesfor the robot’s pose accuracy. It thus becomes
clear that the availability of closed-form expressions that
characterize the accuracy of the state estimates in SLAM is a
powerful tool, which can be employed both in the design phase
and during the operation of robotic systems. In the following
section, we present results from real-world experiments, which
demonstrate the validity of the preceding theoretical analysis.

V. EXPERIMENTAL RESULTS

Before describing the setup of our real-world experiments,
we illustrate, with numerical results, that the dual map formu-



lation employed in our analysis is equivalent to the “standard”
EKF SLAM formulation, in which the state vector comprises
the robot pose and the landmark positions. For this purpose,we
consider a SLAM scenario in which a robot moves randomly
in a square area of side 4m, and observes four landmarks
randomly placed in the area. Both the “standard” EKF-based
SLAM algorithm, and the one described in Section III, process
the same data, and the results for the covariance of the global
landmark coordinates are shown in Fig. 1(a). In this plot
we observe that the numerical results obtained with both
filters are almost identical, with only small differences due
to linearization and numerical errors. Moreover, in Fig. 1(b)
we plot the diagonal elements of the robot’s pose covariance
matrix, computed both by the standard EKF SLAM, and using
Eq. (32). Once again, we observe that the two methods yield
almost identical results, thus indicating that by studyingthe
properties of the covariance in our formulation, we can draw
conclusions for the covariance in the standard EKF-based
SLAM algorithm.3

In our real-world experiments, a Pioneer 3 robot equipped
with two opposite-facing SICK LMS200 laser scanners, which
provide a 360o field of view, was employed (cf. Fig. 2(a)).
During the experiment presented in this paper, the robot moves
randomly while performing SLAM in an area of approximate
dimensions 10m×4m. The laser scans are processed for de-
tecting four prominent corners in the area, which are used as
landmarks. For detecting each corner, line-fitting is employed
to compute the equations of adjacent wall lines, and the inter-
section of these lines is determined. The maximum standard
deviation of each of the robot-to-landmark measurements was
experimentally found to be equal to approximately 0.15m,
which yields an upper boundR � 0.0225I2m2. The robot
receives translational velocity measurements with standard de-
viation σv = 0.01m/sec, and rotational velocity measurements
with σω = 5×10−3rad/sec. The estimated robot trajectory, as
well as the landmark positions, are shown in Fig. 2(b). In the
same figure, a sample laser scan is superimposed (after being
transformed to the global frame), to illustrate the geometry of
the area where the robot operates.

In Fig. 3, the standard deviation of the estimation errors
(solid lines), as this is computed by the filter, is compared to
the standard deviation computed with the theoretically derived
bounds (dashed lines). For the robot orientation, the boundin
Eq. (38) is employed in this case. From the plots in Fig. 3,
we conclude that the analytical bounds that we have derived
can be employed in order topredict the localization accuracy
of SLAM without having to resort to extensive simulations,
or experimentation.

We should point out that in this particular case, where the
robot moves randomly in space, the actual standard deviations
are approximately 2-3 times smaller than the corresponding
upper bounds. If the robot’s trajectory was such that the robot-

3We should note that the estimates for the robot’s pose and for the
landmarks’ positions computed by the two methods are also practically
identical, and the dual-map filter is consistent. The corresponding plots are
not be included, due to limited space.

to-landmark distances were always close to their maximum
values, the bounds would have been significantly tighter. This
fact has been verified in numerous simulation studies of
“adverse” SLAM setups. Finally, it is worth mentioning that
due to occlusions and data association failures, the landmarks
were not detected in every laser scan. On the average, the
landmarks were successfully detected 94% of the time. Despite
these fluctuations in the number of observed landmarks, the
theoretical bounds still provide a quite accurate characteriza-
tion of the uncertainty in SLAM.

VI. CONCLUSIONS

In this paper, we have derived upper bounds on the covari-
ance of the state estimates in SLAM, asanalytical functions
of the accuracy of the robot’s sensors, and of the properties
of the map (e.g., number of landmarks, maximum distance to
landmarks). These bounds determine theguaranteed accuracy
that will be attained by a robot with a given set of sensors,
performing SLAM. Therefore, they can be used during the
design of a localization system, to guide the selection of im-
portant parameters that affect the system’s performance, cost,
and algorithmic complexity. The derived analytical expressions
simplify the process of verifying whether a particular design
meets the accuracy requirements of a given application, min-
imizing the need for tedious and time-consuming simulation
studies, or exhaustive experimentation. In our future work, we
plan to extend these results to cases in which the robot does
not operate within the same area for its entire mission. In such
cases, the number of visible landmarks dynamically changes
over time, and important issues such as loop-closure arise.
In this case, the length of the loops of the environment is a
crucial factor, which determines the accuracy of the robot’s
localization. We believe that the theoretical analysis presented
in this paper can serve as a basis for the study of more complex
SLAM scenarios.
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