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Abstract— This paper studies the time evolution of the
covariance of the position estimates in single-robot Simul-
taneous Localization And Mapping (SLAM). A closed-form
expression is derived, that establishes a functional relation
between the noise parameters of the robot’s proprioceptive
and exteroceptive sensors, the number of features being
mapped, and the attainable accuracy of SLAM. Furthermore,
it is demonstrated how prior information about the spatial
density of landmarks can be utilized in order to compute a
tight upper bound on the expected covariance of the posi-
tioning errors. The derived closed-form expressions enable
the prediction of SLAM positioning performance, without
resorting to extensive simulations, and thus offer an analytical
tool for determining the sensor characteristics required to
achieve a desired degree of accuracy. Simulation experiments
are conducted, that corroborate the presented theoretical
analysis.

I. INTRODUCTION

Mobile robots that operate autonomously within an area
must be able to determine their position with respect to
a global frame of reference. In an ideal scenario, a robot
equipped with a GPS receiver would have direct access
to measurements of its absolute position. In a number
of situations this is not feasible since GPS signals are
not available everywhere (e.g., indoors), or, triangulation
techniques based on these may provide erroneous results
due to multiple reflections (e.g., in the vicinity of tall
structures and buildings). Cost, size, weight, and power
constraints may also prohibit reliance on GPS. These
limitations suggest that alternative means are required for
aiding odometry when mobile robots localize.

In certain cases, when details about the structure of the
area are available, a robot can localize by detecting pre-
viously mapped features. Relative position measurements
to known landmarks, received by exteroceptive sensors
such as a laser scanner or a camera, can be processed
in order to update the estimates for the position of the
robot. In most cases, however, compiling a detailed map of
the environment is a tedious and time consuming process,
and robots must localize while building a map of their
surroundings. This introduces the problem of Simultane-
ous Localization And Mapping (SLAM) that has recently
attracted the interest of many researchers. The number
of potential applications that require robots to perform
SLAM is immense and continuously grows as autonomous
vehicles are employed for tasks ranging from planetary
exploration and environmental monitoring, to construction
and transportation.

Recent research on SLAM has primarily focused on
developing algorithms that can be used in real-time im-
plementations. The proposed methods have often traded
accuracy, robustness, and realization simplicity for speed.
This is justified in practice since the quadratic, in the
number of mapped features, computational complexity of
SLAM prohibits robots from localizing within large-scale
environments. However, the theoretical analysis of position-
ing accuracy in SLAM remains an open issue to date, and
only few cases exist in the literature where the properties
of the time evolution of covariance in SLAM have been
studied (e.g., [1], [2], [3]).

This paper presents the first derivation of analytical
upper bounds on the SLAM positioning uncertainty for
a mobile robot navigating within a 2D environment pop-
ulated with point features. The closed-form expression of
Lemma 4.1 establishes a functional relation between the
noise parameters of the robot’s sensors and the accuracy
of SLAM. Furthermore, the result of Lemma 4.2 demon-
strates how prior information about the spatial density of
landmarks can be utilized in order to compute a tight upper
bound on the expected covariance of the positioning errors.
The proposed bounds constitute, to the best of our knowl-
edge, the only existing analytical tool for predicting the
attainable mapping precision as well as the accuracy of the
robot’s localization in a given SLAM application. Hence,
they facilitate the selection of the sensor parameters, in
order to satisfy task-imposed performance constraints.

In this work, SLAM is considered within the Stochastic
Mapping framework [4], [5]. We assume that a robot
moves continuously and randomly in a planar environment,
and at each time instant measures the relative position
(i.e., range and bearing) of N stationary landmarks. The
metric used to describe the localization uncertainty is the
covariance matrix associated with the errors in the position
estimates for the robot and the mapped features. In order
to facilitate the required derivations, an Extended Kalman
Filter (EKF) estimator is selected, since it provides a
well-studied mechanism for propagating and updating the
covariance matrix through time.

The remainder of the paper is structured as follows: In
the next section, the most prominent approaches to SLAM
are briefly outlined and a more detailed description of
existing work on the study of covariance in SLAM is
provided. In Section III, the problem formulation is intro-
duced. Section IV presents the main theoretical results of
the paper, synopsized in Lemmas 4.1 and 4.2. In Section V,



the validity of the analysis is illustrated with simulation
results, and finally, in Section VI the conclusions of this
work are drawn.

II. RELATED WORK

Most of the existing approaches to SLAM have been
inspired by the seminal papers of Moutarlier and Chatila [5]
and of Smith, Self, and Cheeseman [4], [6] that intro-
duced the notion of the Stochastic Map. This work has
emphasized the importance of properly accounting for the
correlations between the state estimates of the robot’s
and landmarks’ positions, and laid down a complete and
rigorous theoretical framework for the study of the SLAM
problem.

The main limitation of maintaining all the cross-
correlation elements of the covariance matrix in EKF-
based SLAM is that it results in algorithms which have
complexity quadratic in the number of features. This leads
to a prohibitively large computational load in cases when
online estimation of a large map is necessary. This problem
has recently received growing attention and there have been
numerous attempts to produce scalable SLAM algorithms,
without significant loss of accuracy. For example, particle
filtering [7], [8], use of local submaps [9], [10], covariance
intersection techniques [11], and approximations to the ex-
tended information filter [12] are only few of the proposed
approaches. A second computational bottleneck in SLAM
arises from the need to perform robust data association,
for large numbers of landmarks and observations, in the
presence of uncertainty. An excellent overview of existing
techniques can be found in [7]. In this paper, we do not
address any of the aforementioned implementation issues.
We assume perfect data association and seek to characterize
the theoretically attainable estimation accuracy in SLAM,
by providing bounds for the covariance of the position
estimates.

At this point, we present previous work that aims at
describing the time evolution of the covariance in SLAM.
In [2], the authors consider the one-dimensional problem,
in which the robot and landmarks are all situated along a
single coordinate axis. In this case, both the state propaga-
tion and measurement models are linear time-invariant. Un-
der the additional assumptions that (i) the initial covariance
of each of the features on the map is equal to the covariance
of the measurement associated with it, and (ii) the robot
has perfect initial knowledge of its position, a closed form
solution for the time evolution of the covariance is derived.
A limitation of this approach is that the realistic case of
infinite initial uncertainty for the features (i.e., unknown
initial map) is not treated. Furthermore, these results are
only valid for motion in 1D which is of limited practical
importance.

The covariance convergence properties of SLAM have
also been studied in [1], [13], [14]. The authors assume
linear time-invariant models for both the propagation and
measurement equations and provide proofs for the fol-
lowing statements: (i) The covariance of the landmarks’
position estimates decreases monotonically, and (ii) At

steady state, the landmark position estimates become fully
correlated. Additionally, a lower bound for the steady state
uncertainty is derived by considering the restrictive case of
the robot remaining static while recording measurements
of the landmarks’ positions. However, the proposed lower
bound cannot be employed for determining the performance
of SLAM in the case of a robot in motion exploring an
unknown area. In such a scenario, the global coordinate
frame can be arbitrarily defined, thus the robot has perfect
knowledge of its initial position, and the described lower
bound reduces to zero.

The approach presented in [1] is extended to the
case of cooperative Concurrent Mapping and Localization
in [3], [15]. By employing similar assumptions, of linear
propagation and measurement models, it is shown that
at steady state, all of the vehicle and feature position
estimates become fully correlated. Finally, when no loss of
information occurs in the system, (i.e., the robots receive
noise-free odometry measurements), lower bounds for the
covariance of all vehicles and features are derived in a
manner similar to [1].

The main contribution of the work presented in this
paper is a characterization of the accuracy of the position
estimates in SLAM. This is achieved by deriving analyt-
ical expressions for the maximum value of the estimates’
covariance at any time instant after the commencement
of the exploration task (cf. Eq. (25)). Furthermore, by
obtaining the limit value of the derived expression after
sufficient time, the maximum asymptotic (steady state)
position uncertainty is derived (cf. Lemma. 4.1). Finally,
a method for incorporating prior information about the
spatial distribution of the features in the environment is pre-
sented that yields an improved description of the estimation
performance (cf. Lemma. 4.2). What distinguishes these
results from previous ones is that the analysis is based on
the actual (non-linear) system and measurement equations
for a robot navigating in 2D.

III. PROBLEM FORMULATION

Consider a mobile robot moving on a planar surface,
while observing N landmarks in the environment. The
robot uses proprioceptive measurements (e.g., from an
odometric or inertial sensor) to propagate its state estimates
and exteroceptive measurements (e.g., from a laser range
finder) to measure the relative positions of the map features
with respect to itself. These measurements are fused using
an Extended Kalman Filter (EKF) in order to produce
estimates of the position of the robot and the landmarks. In
our formulation, it is assumed that an upper bound for the
variance of the errors in the robot’s orientation estimates
can be determined a priori. This allows us to decouple
the task of position estimation from that of orientation
estimation and facilitates the derivation of a closed-form
expression for an upper bound on the positioning uncer-
tainty.

The robot’s orientation uncertainty is bounded when,
for example, absolute orientation measurements from a



compass or a sun sensor are available, or when perpen-
dicularity of the walls in an indoor environment is used
to infer orientation. In cases where neither approach is
possible, our analysis still holds under the condition that a
conservative upper bound for the orientation uncertainty is
determined by alternative means, e.g., by estimating the
maximum orientation error accumulated, over a certain
period of time, due to the integration of noise in the
odometric measurements [16]. It should be noted that the
requirement for bounded orientation error covariance is
not too restrictive: In the EKF framework, the nonlinear
state propagation and measurement equations are linearized
around the estimates of the robot’s orientation. If the errors
in these estimates are allowed to increase unbounded, the
linearization will unavoidably become erroneous, and the
estimates will diverge. Thus, in the vast majority of prac-
tical situations, provisions are made in order to constrain
the robot’s orientation uncertainty within given limits.

The metric that is employed to describe the attainable
estimation accuracy in SLAM is the covariance matrix of
the position errors, P (t). The time evolution of this matrix
is described by the following Riccati Differential Equation
(RDE):

Ṗ (t) = F (t)P (t) + P (t)FT (t) + G(t)Q(t)GT (t)
− P (t)HT (t)R−1(t)H(t)P (t) (1)

where F (t) is the state transition matrix, the quantity
G(t)Q(t)GT (t) accounts for the influx of uncertainty due
to the noise in the odometric measurements used for
propagation, and the term HT (t)R−1(t)H(t) represents
the information input to the system by the exteroceptive
(relative position) measurements.

The kinematic equations of a robot moving in 2D are
nonlinear and thus the matrices involved in the RDE are
time-varying. In this case, a general closed-form solution
for P (t) does not exist. We therefore resort to deriving an
upper bound for P (t). The basis of our approach is the fact
that the solution of the RDE in Eq. (1) is a monotonically
increasing function of the input data matrix [17]:

E(t) =
[

G(t)Q(t)GT (t) −F (t)
−FT (t) −HT (t)R−1(t)H(t)

]
(2)

This implies, that by solving a different RDE, for which the
input data matrix, Eo(t), satisfies Eo(t) º E(t), we can
derive an upper bound for the covariance of the position
estimates. A rigorous proof of this statement can be found
in [18]. In the following subsections, the exact form of
the matrices appearing in Eq. (1), along with appropriate
bounds for them, are derived. These results will enable us
to formulate a simpler differential equation, whose solution
exists in closed form, and is the sought upper bound for
the uncertainty in SLAM.

A. Position propagation

The continuous-time kinematic equations for a robot
moving in 2D are

ẋR(t) = V (t) cos(φ(t)) (3)

ẏR(t) = V (t) sin(φ(t)) (4)
φ̇(t) = ω(t) (5)

where V (t) and ω(t) are the linear and rotational velocity
of the robot at time t. Since in our formulation position
estimation is decoupled from orientation estimation, the
robot’s state comprises only of its x and y coordinates,
while orientation is considered an input, of which only
noisy measurements, i.e., the orientation estimates φ̂(t),
are available. Clearly, the motion model is nonlinear in the
orientation and time-varying. Linearization of Eqs. (3) and
(4) yields the position error propagation equations for the
robot:1
[ ˙̃xR(t)

˙̃yR(t)

]
=

[
cos(φ̂(t)) −Vm(t) sin(φ̂(t))
sin(φ̂(t)) Vm(t) cos(φ̂(t))

] [
wV (t)
φ̃(t)

]

⇔ ˙̃
XR(t) = FR(t)X̃R(t) + GR(t)W (t) (6)

where FR(t) = 02×2, Vm(t) are the robot’s velocity mea-
surements, corrupted by a white Gaussian noise process
wV (t), with power σ2

V , and φ̃(t) is the error in the robot’s
orientation estimate, modeled as a white Gaussian noise
process with power σ2

φ.
The landmarks are modeled as static points in 2D space,

and thus the state and error propagation equations are:
ẊLi(t) = 02×1 and ˙̃

XLi(t) = 02×1, respectively, for
i = 1..N . The state vector for the entire system, X , is
defined as the stacked vector of the position of the robot
and landmarks. Therefore the state transition matrix for the
entire system is F = 0(2N+2)×(2N+2), while the system
noise covariance matrix is:

G(t)Q(t)GT
(t) =

[
GR(t)QR(t)GT

R(t) 02×2N

02N×2 02N×2N

]
(7)

where, for QR(t) = E{W (t)WT (t)} and using the expres-
sions in Eq. (6), it is:

GR(t)QR(t)GT
R(t) = C(φ̂(t))

[
σ2

V 0
0 σ2

φV 2
m(t)

]
CT (φ̂(t))

with C(φ̂(t)) =
[

cos φ̂(t) − sin φ̂(t)

sin φ̂(t) cos φ̂(t)

]
denoting the

rotational matrix associated with φ̂(t). From the proper-
ties of rotational matrices, it follows that the eigenval-
ues of GR(t)QR(t)GT

R(t) are σ2
V and σ2

φV 2
m, and thus

GR(t)QR(t)GT
R(t) ¹ max(σ2

V , σ2
φV 2

m)I2×2. Consequently,
we can write

G(t)Q(t)GT
(t) ¹ Qo =

[
qI2×2 02×2N

02N×2 02N×2N

]
= qQn (8)

where

q = max(σ2
V , σ2

φV 2
m) ' max(σ2

V , σ2
φV 2) (9)

1Due to space limitations many of the details of the derivations have
been omitted. The interested reader is referred to [18] for a thorough
description of the intermediate steps. Throughout this paper 0m×n

denotes the m×n matrix of zeros, 1m×n denotes the m×n matrix of
ones, and In×n denotes the n× n identity matrix.



B. Relative Position Measurement Model

At every time instant, the robot measures the relative
position of each of the N landmarks in the environment.
The measurement equation for the relative position of the
ith landmark is given by:

zi(t) = CT (φ(t)) (XLi
(t)−XR(t)) + nzi

(t) (10)

where nzi (t) is the noise affecting this measurement. By
linearizing Eq. (10), the measurement error equation is
obtained:

z̃i(t) = zi(t)− ẑi(t) ' Hi(t)X̃(t) + Γi(t)ni(t)

where

Hi(t) = CT (φ̂(t)) Hoi
(11)

Hoi =
[ −I2×2 02×2 .. I2×2︸︷︷︸

i

.. 02×2

]

X̃ =
[

X̃T
R X̃T

L1
. . . X̃T

Li
. . . X̃T

LN

]T

Γi(t) =
[

I2×2 −CT (φ̂(t))J∆̂pi(t)

]

J =
[

0 −1
1 0

]
, ni(t) =

[
nzi (t)

φ̃(t)

]

∆̂pi(t) = X̂Li (t)− X̂R(t)

The covariance of the measurement error is given by:

Rii(t) = Γi(t)E{ni(t)n
T
i (t)}ΓT

i (t)

= Rzi (t) + Rφi (t) (12)

This expression encapsulates all sources of noise and un-
certainty that contribute to the measurement error, i.e., the
covariance Rzi (t) of the noise nzi (t) in the recorded relative
position measurement, and the additional covariance term
Rφi (t) due to the error φ̃i(t) in the orientation estimate of
the robot.

Assuming that each exteroceptive measurement consists
of a range measurement ρi and a bearing measurement θi,
whose errors nρi and nθi are uncorrelated, the term Rzi (t)

can be expressed as [18]:

Rzi (t) = C(θi(t))
[

σ2
ρ 0
0 ρ̂2

i (t)σ2
θ

]
CT (θi(t)) (13)

where σρ and σθ are the standard deviations of the white
zero-mean Gaussian noise processes affecting the range and
bearing measurements, and C(θi(t)) is the rotational matrix
associated with the bearing angle of the relative position
measurement, expressed in the robot’s coordinate frame.

The existence of errors in the orientation estimates of the
robot introduces an additional component to the measure-
ment error of the relative position of each landmark. This
causes the measurements of all landmarks to be correlated.
It can be shown [18] that the additional covariance term for
each measurement is equal to:

Rφi (t) = σ2
φCT (φ̂)J∆̂pi∆̂p

T

i JT C(φ̂) (14)

while the correlation matrix between the errors in the
measurements zi(t) and zj(t) is

Rij(t) = Γi(t)E{ni(t)n
T
j (t)}ΓT

j (t)

= σ2
φCT (φ̂)J∆̂pi∆̂p

T

j JT C(φ̂) (15)

Using these results, we can evaluate the covariance matrix
R(t) for all measurements gathered by the robot at each
time instant. This is a matrix whose Rii(t) and Rij(t),
i, j = 1 . . . N , block elements are defined in Eqs. (12)
and (15), respectively. Hence, the information contributed
by the exteroceptive measurements is HT (t)R−1(t)H(t),
where H is the corresponding measurement matrix, i.e., a
matrix whose block rows are Hi(t), j = 1..N (cf. Eq. (11)).

By considering the special structure of the matrices H(t)

and R(t), it can be shown [18] that

HT
(t)R−1

(t)H(t) = HT
o R−1

o (t)Ho

where

Ho = [−1N×1 IN×N ]⊗ I2×2 (16)

and

R−1
o (t) =

1
σ2

ρ

D1 diag
(

1
ρ̂2

i

)
DT

1 +
1
σ2

θ

D2 diag
(

1
ρ̂4

i

)
DT

2

− 1
σ2

η

D2 diag
(

1
ρ̂2

i

)
1N×N diag

(
1
ρ̂2

i

)
D2 (17)

In these expressions ⊗ denotes the Kronecker matrix
product, D1 is a 2N ×N block diagonal matrix whose ith
block diagonal element is the 2× 1 vector ∆̂pi(t), D2 is a
2N × N block diagonal matrix whose ith block diagonal
element is J∆̂pi(t), and σ2

η = σ4
θ

σ2
φ

+ Nσ2
θ .

In the derivation of an upper bound on the uncertainty
of the position estimates for the robot and landmarks, we
will employ a lower bound of the matrix HT

o R−1
o (t)Ho.

In [18] it is shown that

Ro(t) ¹ (
σ2

ρ + ρ2
oσ

2
θ + Nρ2

oσ
2
φ

)
I2N×2N = rI2N×2N (18)

where ρo is the maximum possible distance between the
robot and any landmark, and thus

HT
o R−1

o (t)Ho º 1
r
HT

o Ho (19)

C. Transition from the discrete to the continuous-time
model

In the preceding sections, the continuous-time motion
and measurement models have been presented. Their use
greatly simplifies the ensuing analysis since it allows for the
use of the differential, rather than difference, Riccati equa-
tion to describe the time evolution of uncertainty. However,
in a real implementation, measurements are available at
discrete time instants and are corrupted by discrete-time
noise processes, whose variances are determined by the
characteristics of the sensors. Given the properties of the
noise in the actual, discrete-time system, we can construct
an equivalent continuous-time system model, by selecting
the parameters of the noise in continuous-time so that the
influx of uncertainty over a given time interval for both



systems is identical [19]. If all measurements are available
every δt seconds and the standard deviations of the velocity
and orientation errors in discrete time are σVd

and σφd
,

respectively, then selecting

σV =
√

δtσVd
, and σφ =

√
δtσφd

(20)

yields an equivalent continuous-time model [18]. Similarly,
if the covariance matrix of the exteroceptive measurements
in discrete time is R, the equivalent continuous-time mea-
surements’ covariance matrix function is Rδt · δ(t − τ),
where δ(t − τ) is the Dirac delta function. The time step
duration, δt, can be seen as a normalizing factor to ensure
that the information influx in the system is appropriately
scaled with the sampling frequency of the measurements.

IV. MAXIMUM COVARIANCE OF THE SLAM POSITION
ESTIMATES

In this section we formulate a RDE whose solution is
the upper bound on the covariance of the SLAM position
estimates. The input data matrix for the system under
consideration is (cf. Eq. (2)):

E(t) =
[

G(t)Q(t)GT (t) 0(2N+2)×(2N+2)

0(2N+2)×(2N+2) −HT
o R−1

o (t)Ho

]
(21)

where the matrices appearing in the last expression are
defined in Eqs. (7), (16) and (17). Using the bounds for
the quantities G(t)Q(t)GT (t) and HT

o R−1
o (t)Ho, derived

in the previous sections (Eqs. (8) and (19), respectively),
we can write

E(t) ¹
[

Qo 0(2N+2)×(2N+2)

0(2N+2)×(2N+2) − 1
rH

T
o Ho

]
(22)

Hence, following the discussion in Section III, we deduce
that the solution of the following RDE is an upper bound
on the covariance of the position estimates in SLAM:

˙̄P(t) = Qo − 1
r
P̄(t)HT

o HoP̄(t)

= qQn − 1
r
P̄(t)HT

o HoP̄(t) (23)

In [18], the solution of this differential equation for the
most general case, in which the initial covariance matrix is
any positive semi-definite matrix, is derived. However, in
SLAM, it is usually assumed that the robot starts operating
in a totally unknown area, and thus it can arbitrarily define
the origin of the global coordinate frame. In this case,
the initial uncertainty about the position of the robot is
zero, while the uncertainty about the landmarks’ positions
is infinite. In what follows, we will solve Eq. (23) for the
corresponding initial condition:

P̄(0) = P(0) =
[

02×2 02×2N

02N×2 PLL

]
(24)

where PLL is an arbitrary positive definite matrix. In order
to model the total lack of initial knowledge about the land-
marks’ positions, we will then let PLL = µI2N×2N , µ →
∞.

The constant-coefficient RDE in Eq. (23), whose solu-
tion is the maximum possible uncertainty in SLAM, can

be solved by decomposing P̄(t) into the product of two
matrices and forming the Hamiltonian matrix [20]. The
resulting expression is [18]:

P̄(t) = qU−T QnLK−1U−1

+ qU−T K−1P0(K + U−1CU−T LP0)−1U−1

= P̄1(t) + P̄2(t) (25)

where P0 = 1
qU

T P̄(0)U,

C =
q

r

[
NI2×2 −JT

−J I2N×2N

]
, U =

[
I2×2 02×2N

− 1
N J I2N×2N

]

with J = 1N×1 ⊗ I2×2,

K =
[

eλt+e−λt

2 I2×2 02×2N

02N×2 I2N×2N

]

L =
[

eλt−e−λt

2λ I2×2 02×2N

02N×2 t I2N×2N

]

and λ =
√

Nq
r . At this point, we should note that the

first of the two terms, in Eq. (25), comprising P̄(t) is
independent of the initial uncertainty, while the second one
captures the effect of the initial condition.

The expression in Eq. (25) can be used to determine an
upper bound on the covariance of the position estimates at
any time instant during the run of the SLAM algorithm. It
is well known [1] that the covariance of the landmarks
monotonically decreases and asymptotically assumes a
steady state value. By evaluating the limit of P̄(t) after
sufficient time, i.e., as t → ∞, we can obtain an upper
bound for the steady state covariance Pss of the map
features and the robot. Substituting for the values of U,
Qn, K, L, and applying the limiting operation, the steady
state value of P̄1(t) is easily found to be:

P̄1ss = lim
t→∞

P̄1(t) =
√

qr

N

[
I2×2 02×2N

02N×2 02N×2N

]
(26)

The computation of the steady state value of P̄2(t) is
significantly more cumbersome, and cannot be included in
this paper due to space limitations. We only present the
final expression here, and the interested reader is referred
to [18] for the details of the proof.

When the initial covariance is given by Eq. (24), the
steady state value of P̄2(t) is:

P̄2ss = lim
t→∞

P̄2(t) = 1(N+1)×(N+1) ⊗M

where the 2× 2 matrix M is given by

M =

(
JT P−1

LLJ +

√
N

qr
I2×2

)−1

(27)

We now apply this result, which was derived for an
arbitrary initial landmark covariance matrix PLL, to the
following two cases of interest.



A. Unknown Landmark Distribution

In order to compute the maximum steady state
covariance in SLAM, when the positions of the landmarks
are initially unknown, we set PLL = µI2N×2N and
let µ → ∞. In this case, it is trivial to show that
limµ→∞M =

√
qr
N I2×2, and therefore we can state the

following lemma:

Lemma 4.1: The maximum steady state covariance ma-
trix in SLAM, when the robot builds a map of an initially
unknown area containing N landmarks is

P̄ss =
√

qr

N

[
2 11×N

1N×1 1N×N

]
⊗ I2×2 (28)

where q and r are defined in Eqs. (9) and (18), respectively.

It is clear that in deriving this upper bound no as-
sumption on the distribution of the landmarks in space
was introduced, except for the realistic requirement of lim-
ited maximum distance between the robot and landmarks.
This value can be computed, for example, based on the
maximum sensing range of the device used for measuring
the landmarks’ relative positions. Hence, the worst-case
positioning accuracy in SLAM can be computed as a
functional relationship of the characteristics of the robot’s
sensors, and the number of landmarks. It is clear that the
steady state positioning accuracy improves with increasing
map size, as well as with increasing accuracy of the robot’s
sensing devices.

B. Known Spatial Density of Landmarks

The expression in Eq. (28) provides an upper bound on
the worst-case performance of SLAM, under any possible
placement of the landmarks in space. However, when the
features of the environment to be treated as landmarks
are selected (e.g., visual features, prominent geometric
features), it is beneficial to choose them so that they
are abundant in the environment and evenly distributed
throughout it. This way, a more detailed map of an area
can be created. In such cases, the density of landmarks
in the environment can be a priori modeled, for example,
by a uniform probability density function (pdf), and this
information can be exploited in order to compute a tighter
upper bound for the expected steady state covariance of the
position estimates. Specifically, the time instant right after
the first update (due to observations of the positions of
the landmarks) and before the robot moves, the covariance
matrix has the form of Eq. (24) with PLL = Ro(0)
[18]. Substituting from Eq. (17) into Eq. (27) and applying
simple algebraic manipulations, results in the following
closed form expression for the matrix M :

M =
1

det A
A, with A =

[
α β
β γ

]
(29)

and

α =
N∑

i=1

∆̂xi

2

σ2
ρρ̂2

i

+
N∑

i=1

∆̂yi

2

σ2
θ ρ̂4

i

−
(

N∑

i=1

∆̂yi

σηρ̂2
i

)2

+

√
Nq

r

β =
N∑

i=1

∆̂xi

σηρ̂2
i
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i=1

∆̂yi

σηρ̂2
i

−
N∑
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σ2
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−
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σ2
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γ =
N∑
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+
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i

σ2
θ ρ̂4

i

−
(

N∑
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σηρ̂2
i

)2

+

√
Nq

r

At this point, we note that Pss ¹ P̄ss ⇒ E{Pss} ¹
E{P̄ss}, where the quantity E{P̄ss} depends on the
mean value of matrix M . Using the previous closed-form
expression for M , the computation of E{M} for a given
pdf of the landmarks’ positions can be trivially performed
through Monte Carlo simulations. We now state the
following lemma:

Lemma 4.2: The maximum expected steady state covari-
ance of the position estimates in SLAM, when the spatial
density of landmarks is described by a known pdf, is given
by

E{Pss} ¹
[ √

qr
N I2×2 02×2N

02N×2 02N×2N

]
+ 1(N+1)×(N+1) ⊗ M̄

where M̄ = E{M} can be computed using Eq. (29).

The simulation results presented in the next section
demonstrate that the availability of additional information
(i.e., known spatial density of landmarks), results in a
substantially tighter bound.

V. SIMULATION RESULTS

A series of experiments in simulation were conducted for
validating the preceding theoretical analysis. The simulated
robot moves in an arena of dimensions 10×10m, in which
point landmarks are located. The velocity of the robot is
kept constant, at V = 0.3m/s, while its orientation changes
randomly, using samples drawn from a uniform distri-
bution. In order to account for practical considerations,
we impose a minimum distance constraint for the range
between the robot and the landmarks, so that the robot
does not move closer than 20cm to any of the landmarks.
The standard deviation of the velocity measurement noise
is σV = 0.05V , while the standard deviation of the errors
in the orientation estimates is σφ = 2o. The values selected
for the standard deviations of the exteroceptive (range and
bearing) measurements of the robot are σθ = 2o and
σρ = 0.05m, respectively.

In Fig 1(b), the theoretical upper bound (red lines with
circles) for the steady state covariance of the robot (dashed
line) and the landmarks (solid line) is compared against
the “true” covariance of the position estimates, as this
is computed by the EKF. This figure corresponds to a
scenario in which the robot starts its motion at one corner
of the arena, while all the landmarks form a cluster at the
opposite corner (cf. Fig 1(a)). In this simulation, the map
comprises of N = 10 landmarks. It is clear that the worst-
case performance bound for the steady state covariance,
computed by Eq. (28) in Lemma 4.1, is indeed larger than
the covariance of the position estimates. At this point, we
should note that the scenario depicted in Fig. 1(a) is a
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Fig. 1. (a) The trajectory of the robot and landmark locations for an adverse scenario. Landmark positions are denoted by asterisks and the initial
position of the robot is marked with an X. (b) True value and theoretical upper bound for the covariance of the robot and landmarks for the scenario
depicted in (a). The average covariance along the two coordinate axes is plotted for the robot, while for the landmarks averaging is performed along
both axes and over all landmarks.
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Fig. 2. (a) A typical example of the arena with uniformly distributed landmarks. Landmark positions are denoted by asterisks and the initial position of
the robot is marked with an X. (b) Average true covariance vs. theoretical bounds (from Lemmas 4.1 and 4.2) for SLAM with 10 uniformly distributed
landmarks.

particularly adverse one, since, due to the placement of the
landmarks, the exteroceptive measurements provide only a
small amount of positioning information during the crucial
first few updates.

Although the bound of Lemma 4.1 accounts for the
worst-case of SLAM accuracy, it does not yield a suffi-
cient performance description for cases in which the map
features are more evenly distributed in space. In order
to demonstrate this, in Fig. 2(b) the average value of
the robot’s and landmarks’ covariance over 20 runs of
SLAM is plotted (black lines), and compared against the
bounds computed using Lemma 4.1 (lines with circles)
and Lemma 4.2 (lines with asterisks). In generating this
plot, the locations of the 10 landmarks were selected using
samples from a uniform distribution for each run of the
algorithm (cf. Fig. 2(a)). We observe that the worst-case
performance bound of Eq. (28) is a quite loose one. When
instead, the available information about the distribution
of the landmarks is exploited, i.e., by employing the
expressions from Lemma 4.2, a better characterization of
the expected accuracy of the position estimates is achieved.

No. of Landmarks 1 5 10 20 50
Worst Case 7.3 17.78 23.59 35.83 66.58

Known Distribution 3.62 3.07 2.34 1.99 1.56

TABLE I
RATIO BETWEEN THE AVERAGE STEADY STATE LANDMARK

COVARIANCE AND THE CORRESPONDING UPPER BOUNDS.

In Table I, the ratio of the presented bounds for the
landmarks’ covariance, compared to the average landmark
covariance for various map sizes is shown. Each entry
represents the sample mean of the corresponding ratio,
computed from 20 simulation experiments in which the
landmark positions are uniformly-distributed random vari-
ables. These numerical values reveal that the gain from
utilizing information about the landmarks’ spatial distribu-
tion becomes more significant for large maps.

VI. CONCLUSIONS

In this paper we have presented a method for predict-
ing the positioning performance in SLAM, without the



need to resort to extensive simulations or experimentation.
This was achieved through a theoretical study of the
time evolution of the position estimates’ covariance, that
allowed for the derivation of an analytical upper bound
for the positioning uncertainty. The closed-form expression
of Lemma 4.1 establishes a functional relation between
the noise parameters of the robot’s sensors, the number
of features being mapped, and the accuracy of SLAM.
Moreover, in Lemma 4.2 it is shown that when prior
information, in the form of a model for the density of
landmarks in the area, is available, we can determine a
tighter upper bound for the expected value of the steady
state covariance of the errors for both the robot and the map
features. Thus, a powerful design tool is made available that
enables the prediction of the performance of a robot in a
mapping application. This can be employed to determine
the required accuracy of the robot’s sensors, in order
to meet task-dependent specifications. Certainly, the most
restrictive assumption employed in the current work is that
the robot can see all landmarks simultaneously. Although
this is not possible in most real-world applications, the
presented analysis can serve as a basis for extensions to
more realistic scenarios, where only subsets of the map
are visible at each time instant.
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