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Abstract—In this paper, we study the problem of localization exteroceptive measurements are employed to infer robot dis-
using relative-state estimates. It is shown, that when the same placement is that consecutive relative-state measurements are
exiocepe sensor messurement o ratessd e com-ochasicalyconeited T corlalon  roduced from
and backward in time) these estimates are correlated, and an the fgct that' t.he measurements recorded'at tlmer(epg.', the
analysis of the exact structure of the correlations is performed. relative positions of landmarks) are used in order to estimate the
This analysis is utilized in the design of data fusion algorithms, displacement during the time intervdls— 1, k] and [k, k + 1].
that correctly account for the existing correlations. We examine As a result, any errors in the measurements at time/saffect
two cases: i) pose propagation based exclusively on inferred i, gisplacement estimates, thereby rendering them correlated.

displacement measurements, and ii) the fusion of proprioceptive If th rements are treated bein ncorrelated :
sensor information with relative-state measurements. For the latter e measurements are treated as being uncorrelated (as is

case, an efficient EKF-based estimation algorithm is proposed, customarily done [9], [1], [3]) information is lost, and the
that extends the approach of [1]. Extensive simulation and estimates for the robot’'s state and covariance are not optimal.
experimental results are presented, that verify the validity of the This fact has been generally overlooked in the literature, and,
presented method. to the best of our knowledge, no prior work exists that directly
addresses this issue.

In this paper, we propose a direct approach to the processing

Accurate localization is a prerequisite for a robot to be ablgf correlated displacement measurements, that extends the
to interact with its environment in a meaningful way. Thetochastic Cloning<alman Filter (SC-KF) algorithm of [1].
most commonly available sensors for acquiring localizatidn particular, in Section Il we show how the correlation of
information are proprioceptive sensors, such as wheel encodeéte, measurements can be accounted for, when propagating
gyroscopes, and accelerometers, that provide information abthg covariance of the robot's pose in time, based only on
the robot’s motion. By integrating proprioceptive measurememnslative-state measurements. Additionally, in Section IV we
over time, it is possible to estimate the total displacemeptopose a formulation of the Extended Kalman Filter (EKF)
from a starting point, and this method of localization ior fusing proprioceptive and relative-state measurements, that
often called Dead Reckoning (DR) [2]. The limitation ofcorrectly treats correlation between consecutive measurements.
DR is that since no external reference signals are employ®lis is achieved byaugmentingthe state vector to include
for correction, estimation errors accumulate over time, anide measurement errorfor each exteroceptive measurement.
the pose estimates drift from their real values. In order tthe simulation and experimental results from the application
improve the accuracy of localization, most algorithms fuse thg this method demonstrate that correctly accounting for the
proprioceptive information with data from exteroceptive sensoggrrelations results in better state estimates, as well as in
(such as cameras [3], [4], laser range finders [5] sonars [Ghvariance estimates that reflect the true uncertainty in the
etc) that provide measurements of parameters of interest in tbbot's pose more accurately.
environment.

When an exteroceptive sensor measures the position of a
set of features with respect to the robot at two different time Once a displacement measurement is derived from an ex-
instants, then it is possible (under necessary observability ssroceptive sensor, in most cases it must be combined with
sumptions) to create anferredmeasurement of the robot’s dis-other position estimates derived from onboard proprioceptive
placement. Examples of algorithms that process exteroceptsensors. An appealing solution to this problem is to use the
data to infer motion include laser scan matching [5], [7], visiorprevious position estimates for converting the relative-pose
based motion estimation techniques using stereoscopic [3], [#leasurements to absolute positieseudo-measurementnd
and monocular [8] image sequences, and matching of somaat them as such [10]. However, this approach is correct
returns [6]. The inferredelative-statemeasurements that areonly when the orientation of the vehicle is precisely known.
produced can either be integrated over time to provide pdskreover, to guarantee consistency of the pose estimates,
estimates for the robot’s state at each time instant [4], or fusegk covariance matrix of the pseudo-measurements has to be
with proprioceptive sensory input, in order to benefit from botartificially inflated [11].
available sources of positioning information [1]. A difficulty that arises when processing relative-pose mea-

A characteristic which is common in most cases whegrements is the existence of correlations between consecutive
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measurement errors (cf. Section 1ll). A simplistic approach fthese are, for example, the measurements of the position of
this problem would be to discard correlations, by separatitendmarks with respect to the robot, or the range measurements
the measurements recorded at each robot pose in two noh-a laser range finder. By processing these measurements
overlapping sets; one is used to estimate motion forward (for example, by performing laser scan matching), an estimate,
time, while the second is used to estimate displacement baeky; ., for the change in the robot pose between time-steps
ward in time. This solution, however, would be far from optiandk + 1 is computed, which is described by a function (either
mal, as it would result in less accurate displacement estimatelesed-form or implicit):

An indirect solution is to avoid the introduction of correlations

altogether, bynot using the exteroceptive measurements to infer /it = Sk (2 Zr) @)
displacement directly. In this formulation, the robot’s pose andnearization of this last expression enables us to relate the
the position of the environmental features are estimatiedly, error in the displacement estimatg, ;.;, to the errors in the
thus introducing the well-known Simultaneous Localization angkteroceptive measurements:

Mapping (SLAM) problem, which has been extensively studied _ k _ bl

in the robotics community (e.g., [12], [13], [14]). If an exact Zekrr = g2+ Zen )
solution to SLAM was possible, the resulting pose estimalggre, we assume that the errors in the exteroceptive mea-
would be optimal, since all the positioning information igyrementsz;, and Z;..1, are zero-mean and independent, an
used, and all the inter-dependencies between the robot and48&mption which holds in most practical cases, when proper
feature states are accounted for. However, the major limitatigBnsor characterization is performed. In Eq. (7%)/1«+1 and

of SLAM is that its computational complexity and memory, ;1 . . .
. . . ; J, are the Jacobians of the functi , with
requirements increase quadratically with the number of featurreéfg’““ Ry i1 (2, 2 41)

. ) A . ect toz;, and , respectively, i.e.,
in the environment. This implies that, if a robot operates over P k ket P Y
extended periods of time, the amount of resources that need J,’j/kﬂ =Vl and  JAL =V & e

o k/k+1
to be allocated for localization tend to become unacceptab&/ . . .
large, if real-time performance is necessary. nce the displacement estimatg ., between time-steps

In this paper, we propose an algorithm for fusing proprf"—mkor 1 has been computed, the pose estimate for the robot

oceptive information with relative-state measurements, whiéh t'lme stepk +1 is gvaluated by'comblnllng the previous pose
extends the SC-KF algorithm [1], to be applicable to the cafgtimate and t_he d|splac_ement information, by an appropriate,
of correlated relative-state measurements. In our aIgorithn’i’,enerally nonlinear function:
the exterpceptive measurements are considered iq pairs of )?kH - g()?kyzk’/k-u) (3)
consecutive measurements, that are first processed in order to. o ) _ _
create an inferred relative-state measurement, and then fuB¥dinearizing this equation, the pose errors at time stepl
with the proprioceptive measurements. The sole objective of th@h be related to the error in the previous state estimate and
algorithm is the estimation of the robot's state, and therefot@at in the displacement measurement:
we donot estimate the states of features in the environment. Xp1 =~ BpXp+ TaZisess (4)
Our motivation for this arises from the fact that in applica-
tions where building a map is not necessary, the overheabere ®; and 'y represent the Jacobians of the state prop-
of performing SLAM may not be justified. In cases wher@gation functiong(Xy, z/x41), With respect to the previous
real-time performance is required (e.g., autonomous aircr@ftse, and the relative pose measurement, respectively. During
landing), the proposed algorithm is able to optimally fus@calization, it is necessary to provide a measure of the quality
the, potentially correlated, relative-state measurements, wththe pose estimates, since the uncertainty in the robot's pose
the minimum computational overhead. Before presenting ttiBould be taken into consideration for motion planning and
algorithm, in the following section we analyze the structureavigation. For a Gaussian distribution, a sufficient indicator
of the correlations that exist between consecutive displacemehtincertainty is the covariance matrix of the pose errors:
measurements, and demonstrate how these should be treated i . 5 oT

: - , - w1 = E{ Xk X}
the propagation of the pose estimates’ uncertainty. T -

= @pB®; + e Ryl

IIl. COVARIANCE PROPAGATION BASED ON ~ - ~
+ ORE{X3Z ) 13T + DB {Zhk Xi 107 (5)

DISPLACEMENT MEASUREMENTS

In this section, we consider the case in which the pogéiere R, denotes the covariance matrix of the displace-
estimate of a robdt X, is propagated in time using onlyment estimates. If the measurement noige; 1, and state er-
displacement estimates, that are acquired by processing exteoo-X, are uncorrelated, the last two terms in Eq. (5) are equal
ceptive measurements. Lej and z;; denote the vectors of to zero matrices, and the covariance propagation expression
exteroceptive measurements at time-ste@gd k + 1, respec- becomes identical to the well-known covariance propagation
tively, whose covariance matrices are denotekasnd R;1. expression of the Extended Kalman Filter [15]. Although this

1Throughout this paper, the “hat” symbdl, is used to denote the estimatedIS & common assumpt-lon in the Iltgrature (e.g., [1]. [9]), we
value of a quantity, While' the “tilde” symbéT,, is used to signify the error now demor_]Strate that it doemt hold in general, an,d the last
between the actual value of a quantity and its estimate,.es,z — %. two terms in Eq. (5) areot equal to zero. In particular, by



linearizing the state propagation equation at time-sgtepve the independence of the measurements [15]. To address the
obtain (cf. Eq. (4)): first challenge, we adopt the approach proposed in [1], that
_ _ T requires theaugmentationof the EKF (error) state vectbr
E{’Zk/kHXkT} :E{’zvk/,ﬁl ((I)k_le_1+Fk_1Ek_1/k) } to include two copies of the robot’s error state (cloning).
_ The first copy represents the pose error at the time instant
= E{Zh/h1 X130t + E{Ze/i12i_15}T%-1  when the latest exteroceptive measurement was recorded, while
= E{gk/kﬂz,ffl/k}rgfl (6) the second copy represents the error in the robot's current
_ state. Consequently, the robot states that are related by each
At this point we note that the error terti;_, depends on displacement estimate are represented explicitly in the filter
the measurement errors of all exteroceptive measurementsstate.
to, and including, time-step — 1, while the error ternt;, /., The second challenge is addressed by further augmenting
depends on the measurement errors at time-stesd k + 1 the state vector to include thegrors of the latest exteroceptive
(cf. Eq. (2)). As a result, the errorX_; and z,,,,; are measurement. Thus, if the most recent exteroceptive measure-
independent, and therefore, by applying the zero-mean assument was recorded at time-stép the filter's state vector at
tion for the errorz; ., we obtainE{zk/kHX,f_l} = 0. In time-stepk + i is given by
order to evaluate the terﬂ{%‘k/k+12;{1/k}, which expresses 5 _ _ T
the correlation between the consecutive displacement estimates, KXitilk = {Xﬂk Xivin Eﬂ 9)

we employ Eq. (2), and the independence of exteroceptiée including th ¢ in the stat ¢ ¢
measurement errors at different time-steps, to obtain: y including the measurement error in the state vector o
the system, the dependency of the relative-state measure-

E{ZiiZiant = T EEE Y mentszy, 1 ON the exteroceptive measurementsis trans-
_ J;’f/kHRka_Tl/k @) formed into a dependency on tbarrent state of the filterand

the problem can now be treated in the standard EKF framework.
This result implies that consecutive displacement estimates #rghould be noted, that since the error in the intermediate
not independent. However, the statistical correlation betweeafeasurement is the source of the correlation between the
themis computable in closed form, and can be accounted fourrent and previous displacement estimates (cf. Eq. (7)), this
in the propagation of the state covariance matrix. Substitutifg the “minimum length” vector that we need to append to
from Egs. (6) and (7) into Eq. (5), we obtain the final exthe state vector, in order to sufficiently describe the existing
pression for propagating the pose covariance based on infergieppendencies. In the following sections, we present in detail

displacement measurements: the propagation and update phases of the filter.
Pey1 = 5@ + TiRy/pi1l'f 4+ Diyr + DI, (8) A. State propagation
with Consider the case where the filter's state covariance matrix,
D1 = (I)krk_lJ:_l/kRkJI’:/g+lF£ immediately after the exteroceptive measuremgnhas been

) . ) processed, is given by:
The experimental results presented in Section V-B demonstrate,

that by employing this expression for propagating the robot’s
pose covariance matrix, we are able to compute covariance
estimates that accurately represent the robot's uncertainty.

y Por  Pur Pxyz,
Pyr = f;qk PTk|k Px, 2, (10)
PXka P_szk Rk

IV. EILTERING WITH CORRELATED RELATIVE-STATE where Py, is the covariance of the actual robot pose at time-
MEASUREMENTS step k, Rj is the covariance matrix of the erraf;, and

. . . L : . Px, ., = E{X’ﬂ,{} is the cross-correlation between the robot’s
In this section, we consider thg S”“a“of‘ n W.h'Ch relatlvesItate and the measurement error at time-&tépe derivation of
state measurements are fused with proprioceptive sensory

a tlosed-form expression far is presented in Section IV-
formation to estimate the robot’s pose. Since the proprioc P Xizi 1S P

) X . ). We note that cloning the robot’s state creates two random

tive and exterocepive measurements are recelved. from t iables that convey the same information, and hence are fully
mdepgndent sources of_mforma'uon, fusing them wil alway(,sorrelated [1]. This explains the structure of the covariance

result in superior estimation accuracy, compared to the accuracy, . in Eq. (10)

attainable when the robot’s pose is propagated based solely OBetween t.wo c;)nsecutive updates, the proprioceptive mea-
one of the two types of measurements. surements are employed to propagate the filter’'s state and its

Two challenges arise when fusing relative-state and propfl- . . ; .
ocentive meas%rementS' firstl sin(?e cach dis Iacemerl?t rE{:ovanance. Let the proprioceptive measurement at time-step
P - Y, . SPla £%e denoted agy, and its noise covariance matrix &.
surement relates the robot’s state at whfferenttime instants,
the “standard” formulation of the EKF, in which the filter’s state 2sjnce the EKF is employed for estimation, the state vector comprises of the
comprises only the current state of the robot, is not adequateorsin the estimated quantities, rather than the estimates. Therefore, cloning
Secondly, as shown in the preceding section (Cf. Eq. (7)), th@ to be appll_ed to both the error states, anq the actual estlr_nates.
ive displ t measurements are correlated. an In the (emalryder of the paper the subfscﬂptdenotes the estlmayed value
consecutive displacemen ’ do?@ﬁuantlty at time step, after exteroceptive measurements up to time-gtep

violates one of the basic assumptions of the EKF, that efd proprioceptive measurements up to time-¢tepl, have been processed.



The estimate for the robot’s pose is propagated in time by thEhe expected value oty .., is computed based on the

generally non-linear, equation: estiAmateE for the state at timésand k + m, as Zj/p4m =
)?k+1|k _ f()A(kuka) (11) h( Xk, Xr+m|i), and therefore the innovation is given by:
Linearization of the last expression yields the error propagation ~  “k/k+m — P/t m B
equation for the (evolving) robot state: N NXklk <
)N(k—i-llk ~ ka(k\k + Groy 12) = [Hk Hitm  Tipism ngkm\k + /bt mPhtm
where F}, and G, are the Jacobians of()?k+1|k,vk) with = ﬁ[k+m)“(k+m/k + J:m:mgHm (18)

respect to)A(k‘k and vy, respectively. Since the cloned state, , ) )
as well as the estimates for the measurement efrodo Wnere Hi (Hiim) is the iaCOb'a”kE‘ZLL(X&’XHm) with
not change with the incorporation of a new proprioceptivieSPECt 10Xk (Xi4m), andJi, ., (Ji,Y,,) is the Jacobian
measurement, the error propagation equation for the entire s@téx/k+m = Sk/k+m(2k; zk4m) With respect tozy, (zj4m).

vector is given by

Xk+1|k — Fka\k + G (13) The result of Eq.£18_) demonstrates that by incorporating the
measurement errorsy, in the state vector, the only component
5 I 0 0 5 0 of the innovation that is not dependent on the state is the
with Fp, = |0 Fr 0| and Gy = |Gi (14) measurement noisé;..,,, which is independenbf all other
0 0 I 0 error terms in Eq. (18). Thus, the Kalman filter equations can
thus the covariance matrix of the propagated filter state is: P& appllu?[d to update the state. The covariance of the residual
5 oL y ) is equal to
Prp1pk = FrPui FE + GLQRGE (15) 5 3 y 5 . .
_ _ | | _ _ _ _ S = Hk+mPk+m\kle+m+J}i€;€+mRk+mJ1§ﬁ+$(lg)
It is straightforward to show by induction thatsif propagation . o _
steps take place between two consecutive relative-state updfpde the Kalman gain is computed as:
; . ) X 5 y . o -
the covariance matrix¥’, , ,,|;, is determined as K = Pk+m|kaT+mS 1_ [K]Z“ K}Z’+m KZTJ (20)
T
. Pl fk/k+mpklk Pxyz We note that although the measurement,, can be used to
Prtmik = fk/k;mpmk TPk+mk Frjk+mPx 2, update the estimates for the robot’s pose at time &temd
Py, zn Pszk}—k/k+m Ry, for the measurement erray,, our goal is to update only the

(16) current state of the robot (i.e., the state at time $tepn) and
its covariance. Therefore, only the corresponding block element

_ m—1 i .
Where.]:’f/’”’]?th_ Hib:Ot fk;““ ??d Ditmik 'S_I:[Ee lpr(:pagated Ky 1m of the Kalman gain matrix needs to be computed. The
covariance of the robot state at time-stepm. The last expres- equation for updating the current robot state is:

sion indicates that exploiting the structure of the propagation R R
equations allows for the covariance matrix of the filter to be Kivmlk+m = Xptmlk T Kiym? (22)
propagated with minimal computation. In an implementati
where efficiency is of utmost importance, the prod@gty, .,
can be accumulated, and the matrix multiplications necessary ) Kk+m5'KkT+m (22)
to compute theP;, ., can be delayed, and carried out onl

when a new exteroceptive measurement has to be processﬁ&!e final step in the process of updating the filter state is
to evaluate the new augmented covariance matrix, that will

B. State update be required for processing the next relative-state measure-

We now assume that a new exteroceptive measuremdPENt: Immediately after; .., is processed, the clone of
Zk+m, IS recorded at time-step+ m, and is processed alongth€ previous state errof(y ., and the previous measurement
with 2z, to produce a relative-state measuremeqty.,, = ©7Oh 2k, are discarded. The robot's state at the current time-
€k /krm 2k, Z6+m), relating the robot poseX), and Xj . It step,X,i+m|k+m, is cloned, and the exteroceptive measurement
should be pointed out thag, ;. is not required to provide eITOrS, 24 m, are appended to the new filter state. Thus, the
information about all the degrees of freedom of the pose charf§i€r error-state vector becomes
between time¢ andk+m. This allows for processing relative- g [ Pes
state measurements in cases where the complete displacement “+m/k+m ktm|k+m

cannot be determined (e.g., when estimating pose change baﬁ?%ompute the new filter covariance mat¥, ot the
on point-feature correspondences with a single camera, the ; , = i
cor{elatlon between the robot’s error stak§, |+, and the

scale is unobservable [8]). Thus, the relative-state measuremeén e i
; . - measurement error vectof,,, has to be determined. From
is equal to a general function of the robot poses at time-st

S .
k and k + m, with the addition of error: eé)q' (21) we Sbtam. _
Zefham = M Xk, Xkvm) + Zk/km (17) Xitmlktm = Xiymlk — Kktm? (24)

0\thile the covariance matrix of the updated robot state is:

~ T
Xg+m\k+m zf?—‘rm (23)



and employing the result of Eq. (18) yields: does not provide sufficient information to initialize a feature’s
position estimate with bounded uncertainty, complicated feature

v =T
Pxpmoasm = B (Xk+m|k - Kk+m7”> Zhrm} initialization schemes need to be implemented [16], [17]. In
= —Kiim E{7’51€T+m} contrast, in the proposed method feat.ure |n|t|al|zat|or1 is not
ke, gktm R (25) required, since themeasurement errorsvhich are not explicitly
- ktm L fkpmtthtm estimated, are included in the augmented state vector.
In this derivation, the statistical independence of the €Fgar,, Furthermore, since in the SC-KF formulation, omigirs of

to the errors in the Statgk+m|k has been employed. Using thisconsecutive sets of exteroceptive measurements are considered,
result, the covariance matrix of the augmented state at titf® data association problem is simplified. In SLAM, corre-

k 4+ m has the same structure as the matrix in Eq. (10) (fépondence search has to be performed ithmap features
indicesk + m instead ofk). in the robot’s vicinity. Thus, the computational overhead is

considerably higher [18]. To facilitate robust data association,
it is common practice to employ a feature detection algorithm

From the preceding presentation it becomes apparent th@t processes the raw sensor data to extract “high-level”
the augmentation of the covariance matrix, that is employedfigiatures (e.g., landmarks such as corners, junctions, straight-line
order to correctly treat the correlations between the consecutd@ments, distinctive image features). Themly these features
relative-state measurements, inflicts an overhead in termsa@é employed for SLAM.
computation and memory requirements, which may becomegxtracting high-level features results in more robust and
cumbersome if the dimension of the measurement vector cgmputationally tractable algorithms (e.g., laser scans consist
time-stepk, My, is larger than the dimension of the robot'sf hundreds of points, but only a few corner features are usually
state, V. If the correlations are ignored, as in [1], the size Qfresent in each scan). This approach, however, effectively
the state vector in the filter equals double the size of the roba§iscards informatiorcontained in the “low-level” sensor data.
state, and the computational complexity, as well as the mem@ynsequently, the resulting estimates for the robot's pose are
requirements of the filter a@(N?). In the algorithm proposed supoptimal, compared to the estimates that would be obtained if
in this paper, the most computationally expensive operatiof)| available information was utilized. Maintaining and process-
for My > N, is the evaluation of the covariance matrix of théng the entire history of raw sensor input (e.g., [19]) can
residual (Eq. (19)). SiNC&}..,, i is of dimensiore N + My, the  clearly lead to excellent localization performance, but with the
computational complexity of obtainingj is generallyO((2N+  currently available computing capabilities of robots, this task
M;)?) =~ O(N? + M?). However, in most cases, the vector otannot be performed in real-time. One advantage of the SC-KF
exteroceptive measurements commonly comprises a relativafyproach is that it can utilize all information that exists in two
small number of features, detected in the robot’s vicinity, e.@onsecutiveexteroceptive measurements (i.e., most laser points
the relative positions of landmarks, the image coordinates iaftwo scans can be used to estimate displacement by laser scan
visual features, or the range measurements at specific angtestching).
In such cases, the measurements of the individual features arat this point, it should be made clear that the positioning ac-
mutually independentand therefore the covariance matriceguracy obtained when onfyairs of exteroceptive measurements
Ry and Ry, are block diagonal. By exploiting the structureare considered is inferior to that of SLAM, as loop closing
of Pyim, in this situation, the computational complexity ofoccurs. Essentially, the SC-KF approach offers an “enhanced”
evaluating Eq. (19) become&8(N? + M;). Moreover, when form of Dead Reckoning, in the sense that the uncertainty
the matricesR?;, and Ry, are block diagonal, the covarianceof the robot's state monotonically increases over time. The
matrix Py, iS sparse, which reduces the storage requireate of increase, though, is significantly lower compared to
ments of the algorithm t&@(N? + Mj,). that attained when only proprioceptive measurements are used.

These complexity figures should be compared to the comowever, we note that in the SC-KF approach the state vector
plexity of performing SLAM, which, as discussed in Section I, is not required to contain only the robot's pose. If high-
is an alternative solution to the problem of processing correlategel, stable features (landmarks) are available, that can be used
relative-state measurements. The complexity of performifgr SLAM, their positions can be included in the state vector
SLAM in the classic EKF formulation is quadratic in thex,. Therefore, the SC-KF method for processing relative-
total number of features included in the state vector. In mostate measurements can be expanded and integrated with the
cases this number is orders of magnitude larger comparedsioAM framework. This would further improve the attainable
the number of features detected in each location. Even if Rgalization accuracy within areas with lengthy loops. Since
approximate SLAM algorithm is used (e.g., [13], [14]), thehis modification is beyond the scope of this work, in the
largest proportion of the robot's computational resources alowing section we present experimental results applying the
devoted to maintaining a constantly enlarging map. This m&C-KF methodology for the case where only relative-state and
not be necessary, when only the robot’s pose estimates argy@prioceptive measurements are considered.
interest for a given application.

Additionally, SLAM requires that the states of the features V. EXPERIMENTAL RESULTS
be completely observable, in order for these to be includedFor the experiments, a Pioneer Il robot equipped with a
in the state vector. In cases where a single measuremkaser rangefinder has been used. The robot’s pose comprises

C. Discussion



T SeKEwe that both the SC-KF-WC and the SC-KF-NC vyield very similar
-6~ Odometry results.

1) Impact of correlations:Clearly, the lack of ground truth
data along the entire trajectory for the real-world experiment
does not allow for a detailed comparison of the performance
of the SC-KF-WC and SC-KF-NC algorithms; both appear
to attain comparable estimation accuracy. In order to perform
a more thorough assessment of the impact of the measure-
ment correlations on the position accuracy and the uncertainty
estimates, simulation experiments have also been conducted.
The primary objective of these experiments is to study the
behavior of the estimation errors as compared to the computed
covariance values, when the correlations between consecutive

i measurements are accounted for, vs. when they are ignored.

i For the simulation results shown here, a robot moves in a
-10 0 10 20 30 40 so  circular trajectory of radiustm, while observing a wall that

x(m) lies 6m from the center of its trajectory. The relative-pose mea-

Fig. 1. The estimated trajectory of the robot using the SC-KF-WC algori'[h_§1urer‘nemS n '[hIS case a_re created by performm_g Ime-matchlng,
(solid line), the SC-KF-NC algorithm (dashed line), and odometry only (solitnstead of point matching between consecutive scans [20].

line with circles). Since only one line is available, the motion of the robot along
the line direction is unobservable. To avoid numerical instability
its position and orientation in the global frame: in the filter, the displacement measurements, , ,,, computed
- - by line-matching are projected onto the observable subspace,
Xy = [Cu %y Y¢r]” = [“pI “ér] (26) thus creating a relative-state measurement of dimension 2.

' I i In Fig. 3, the robot pose errors (solid lines) are shown, along
We first present results from the application of the SC-KF and la the corresponding, 8% percentile of their distribution

. |
then study the case where the robot’s state is propagated b (—5 X . .
on displacement estimates exclusively (i.e., no propriocepti ashed lines with circles). The left column shows the results

or the SC-KF-WC algorithm presented in Section IV, while
measurements are processed). the right one for the SC-KF-NC algorithm. As evident from
Fig. 3, the covariance estimates of the SC-KF-NC are not com-
) ] mensurate with the corresponding errors. When the temporal
In this experiment, odometry measurements are fused WiByrelations of the measurements are properly treated, as is the
displacement estimates that are obtained by laser scan matclige for the SC-KF-WC, substantially more accurate covariance
with the method presented in [7]. The robot traversed a trajegstimates, that reflect the true uncertainty of the robot's state,
tory of approximately 165m, while recording 378 laser scangre computed. Moreover, evaluation of the rms value of the
We here compare the performance of the SC-KF algorithgase errors shows that the errors for the SC-KF-WC algorithm,

presented in this paper, that correctly accounts for tempojghich accounts for the correlations, are 25% smaller compared
correlations in the displacement measurements, to that of [{,those of the SC-KFE-NC.

where correlations are ignored. The two algorithms are referred
to as SC-KF-WC (with correlations) and SC-KF-NC (no corB. State Propagation based on Displacement Estimates
relations), respectively. In this Section, we present results for the case in which the
The estimated robot trajectories resulting from the applicesbot’s pose is estimated usimmnly displacement estimates
tion of the two algorithms, as well as the trajectory based @omputed from laser scan matching. In Fig. 4, we plot the
odometry only, are shown in Fig. 1. Additionally, in Fig. 2estimated robot trajectory, along with the map of the area,
we present the time evolution of the covariance estimatesnstructed by overlaying all the scan points, transformed using
for the robot pose. We observe that correctly accounting ftite estimates of the robot pose (we stress that the map is only
the correlations between consecutive displacement estimateplatted for visualization purposes, andrist estimated by the
the SC-KF, results in smaller covariance values. Even thouglyorithm). For this experiment we used the same dataset used
ground truth for the entire trajectory is not known, the fingbr the experiments in the previous section. In Fig. 5, the co-
robot pose is known to coincide with the initial one. The errosgariance estimates for the robot’'s pose, computed using Eq. (8),
in the final robot pose are equal ® = [0.5m 0.44m — are presented (solid lines) and compared to those computed
0~.11°]T (0.4% of the trajectory length) for the SC-KF-WCwhen the correlations between the consecutive displacement
X = [0.6lm 0.65m — O.1§°]T (0.54% of the trajectory estimates are ignored (dashed lines). As expected, the pose
length) for the SC-KF-NC, and = [32.4m 5.95m —69.9°]7 covariance is larger when only displacement measurements are
(19.9% of the trajectory length) for Dead Reckoning basedsed, compared to the case where odometry measurements
on odometry. From these error values, as well as from visume fused with displacement measurements (cf. Fig. 2). From
inspection of the trajectory estimates in Fig. 1, we concludég. 5 we observe that accounting for the correlations results

A. Stochastic Cloning Kalman Filter



0.08[ 0.06

— SC-KF-WC — SC-KF-WC ™,
- - SC-KF-NC - - SC-KF-NC y My,
. /
007 ¢ {
! 0,05
'
008

e

5 °
g tEl
5
g
w -

5

5
3
8

Oreiantation covariance (degreesz)

Covariance along x-axis (m'
Covariance along y-axis (mz)
2

8

0.01
001

L

| . . , . . . , . , . .
o 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 0 ) 250 300 350 400 450 500
Time (sec) Time (sec) Time (sec)

@) (b) ©

Fig. 2. The time evolution of the diagonal elements of the covariance matrix of the robot’s pose. Note the difference in the vertical axes’ scale. The intense
fluctuations in the robot’s orientation covariance arise due to the very high accuracy of the relative orientation measurements, compared to the low accuracy o
the odometry-based orientation estimates. (a) covariance along the x-axis (b) covariance along the y-axis (c) orientation covariance.
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Fig. 4. The estimated trajectory of the robot based only on laser scan matching.
S R S The map is presented for visualization purposes only, by transforming all the
fime 9 Time 9 laser points using the estimated robot pose.
(c) (d)
N N in significantly smallervalues for the covariance of the robot’s
L T R pose estimates. Based on numerous experiments and simulation
N’WWWIYW ! 4WWWMM 3 M tests, it appears that this is a common result, which indicates
S AR (g I i 5 . . . .
: i A that the correlation between consecutive displacement estimates
° ° tends to benegative
; | An intuitive explanation for this observation can be given by
. e T w—= = means of a simple example, for motion on a straight line: as
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© ) shown in Section Ill, the correlation of consecutive displace-
ment estimates is attributed to the fact that the measurement
Fig. 3. The robot pose errors (solid lines) vs. the corresponding% €rfors at time step: affect the displacement estimates for
percentile of their distribution, (dashed lines with circles). The left columpoth time interva|g{k -1, k;] and [k’ k+ 1]. Consider a robot

shows the results for the SC-KF-WC algorithm proposed in this paper, whi ; ikt ;
the right one demonstrates the results for the SC-KF-NC algorithm. Tgﬁovmg along a stralght line path towards a feature, while

“dark zones” in the last figures are the result of an intense sawtooth pattéRasuring its distance to it at every time step. If at time-step
in the robot's orientation variance. These fluctuations arise due to the vérythe error in the distance measurement is equad;to> 0,

high accuracy of the relative orientation measurements, compared to the s error will contribute towards;mderestimatinghe robot's
accuracy of the odometry-based orientation estimates. (a - b) Errors along

1€ X . . .
z-axis (c - d) Errors along thg-axis (e - f) Orientation errors. isplacement during the intervat — 1, k], but will contribute
towards overestimatingthe displacement during the interval

[k, k+1]. Therefore the errog;, hasoppositeeffects on the two
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Fig. 5. The estimated covariance of the robot’s pose using when the correlation between consecutive measurements is properly accounted for (solid lines) vs
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