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Abstract— In this paper, we study the problem of localization
using relative-state estimates. It is shown, that when the same
exteroceptive sensor measurement is processed for the compu-
tation of two consecutive displacement estimates (both forward
and backward in time) these estimates are correlated, and an
analysis of the exact structure of the correlations is performed.
This analysis is utilized in the design of data fusion algorithms,
that correctly account for the existing correlations. We examine
two cases: i) pose propagation based exclusively on inferred
displacement measurements, and ii) the fusion of proprioceptive
sensor information with relative-state measurements. For the latter
case, an efficient EKF-based estimation algorithm is proposed,
that extends the approach of [1]. Extensive simulation and
experimental results are presented, that verify the validity of the
presented method.

I. I NTRODUCTION

Accurate localization is a prerequisite for a robot to be able
to interact with its environment in a meaningful way. The
most commonly available sensors for acquiring localization
information are proprioceptive sensors, such as wheel encoders,
gyroscopes, and accelerometers, that provide information about
the robot’s motion. By integrating proprioceptive measurements
over time, it is possible to estimate the total displacement
from a starting point, and this method of localization is
often called Dead Reckoning (DR) [2]. The limitation of
DR is that since no external reference signals are employed
for correction, estimation errors accumulate over time, and
the pose estimates drift from their real values. In order to
improve the accuracy of localization, most algorithms fuse the
proprioceptive information with data from exteroceptive sensors
(such as cameras [3], [4], laser range finders [5] sonars [6],
etc) that provide measurements of parameters of interest in the
environment.

When an exteroceptive sensor measures the position of a
set of features with respect to the robot at two different time
instants, then it is possible (under necessary observability as-
sumptions) to create aninferredmeasurement of the robot’s dis-
placement. Examples of algorithms that process exteroceptive
data to infer motion include laser scan matching [5], [7], vision-
based motion estimation techniques using stereoscopic [3], [4],
and monocular [8] image sequences, and matching of sonar
returns [6]. The inferredrelative-statemeasurements that are
produced can either be integrated over time to provide pose
estimates for the robot’s state at each time instant [4], or fused
with proprioceptive sensory input, in order to benefit from both
available sources of positioning information [1].

A characteristic which is common in most cases where

exteroceptive measurements are employed to infer robot dis-
placement is that consecutive relative-state measurements are
stochasticallycorrelated. The correlation is introduced from
the fact that the measurements recorded at time-stepk (e.g., the
relative positions of landmarks) are used in order to estimate the
displacement during the time intervals[k−1, k] and [k, k +1].
As a result, any errors in the measurements at time stepk affect
both displacement estimates, thereby rendering them correlated.
If the measurements are treated as being uncorrelated (as is
customarily done [9], [1], [3]) information is lost, and the
estimates for the robot’s state and covariance are not optimal.
This fact has been generally overlooked in the literature, and,
to the best of our knowledge, no prior work exists that directly
addresses this issue.

In this paper, we propose a direct approach to the processing
of correlated displacement measurements, that extends the
Stochastic CloningKalman Filter (SC-KF) algorithm of [1].
In particular, in Section III we show how the correlation of
the measurements can be accounted for, when propagating
the covariance of the robot’s pose in time, based only on
relative-state measurements. Additionally, in Section IV we
propose a formulation of the Extended Kalman Filter (EKF)
for fusing proprioceptive and relative-state measurements, that
correctly treats correlation between consecutive measurements.
This is achieved byaugmentingthe state vector to include
the measurement errorsfor each exteroceptive measurement.
The simulation and experimental results from the application
of this method demonstrate that correctly accounting for the
correlations results in better state estimates, as well as in
covariance estimates that reflect the true uncertainty in the
robot’s pose more accurately.

II. RELATED WORK

Once a displacement measurement is derived from an ex-
teroceptive sensor, in most cases it must be combined with
other position estimates derived from onboard proprioceptive
sensors. An appealing solution to this problem is to use the
previous position estimates for converting the relative-pose
measurements to absolute positionpseudo-measurements, and
treat them as such [10]. However, this approach is correct
only when the orientation of the vehicle is precisely known.
Moreover, to guarantee consistency of the pose estimates,
the covariance matrix of the pseudo-measurements has to be
artificially inflated [11].

A difficulty that arises when processing relative-pose mea-
surements is the existence of correlations between consecutive



measurement errors (cf. Section III). A simplistic approach to
this problem would be to discard correlations, by separating
the measurements recorded at each robot pose in two non-
overlapping sets; one is used to estimate motion forward in
time, while the second is used to estimate displacement back-
ward in time. This solution, however, would be far from opti-
mal, as it would result in less accurate displacement estimates.
An indirect solution is to avoid the introduction of correlations
altogether, bynotusing the exteroceptive measurements to infer
displacement directly. In this formulation, the robot’s pose and
the position of the environmental features are estimatedjointly,
thus introducing the well-known Simultaneous Localization and
Mapping (SLAM) problem, which has been extensively studied
in the robotics community (e.g., [12], [13], [14]). If an exact
solution to SLAM was possible, the resulting pose estimates
would be optimal, since all the positioning information is
used, and all the inter-dependencies between the robot and the
feature states are accounted for. However, the major limitation
of SLAM is that its computational complexity and memory
requirements increase quadratically with the number of features
in the environment. This implies that, if a robot operates over
extended periods of time, the amount of resources that need
to be allocated for localization tend to become unacceptably
large, if real-time performance is necessary.

In this paper, we propose an algorithm for fusing propri-
oceptive information with relative-state measurements, which
extends the SC-KF algorithm [1], to be applicable to the case
of correlated relative-state measurements. In our algorithm,
the exteroceptive measurements are considered in pairs of
consecutive measurements, that are first processed in order to
create an inferred relative-state measurement, and then fused
with the proprioceptive measurements. The sole objective of the
algorithm is the estimation of the robot’s state, and therefore
we do not estimate the states of features in the environment.
Our motivation for this arises from the fact that in applica-
tions where building a map is not necessary, the overhead
of performing SLAM may not be justified. In cases where
real-time performance is required (e.g., autonomous aircraft
landing), the proposed algorithm is able to optimally fuse
the, potentially correlated, relative-state measurements, with
the minimum computational overhead. Before presenting this
algorithm, in the following section we analyze the structure
of the correlations that exist between consecutive displacement
measurements, and demonstrate how these should be treated in
the propagation of the pose estimates’ uncertainty.

III. C OVARIANCE PROPAGATION BASED ON

DISPLACEMENT MEASUREMENTS

In this section, we consider the case in which the pose
estimate of a robot1, X̂k, is propagated in time using only
displacement estimates, that are acquired by processing extero-
ceptive measurements. Letzk and zk+1 denote the vectors of
exteroceptive measurements at time-stepsk andk + 1, respec-
tively, whose covariance matrices are denoted asRk andRk+1.

1Throughout this paper, the “hat” symbol,b , is used to denote the estimated
value of a quantity, while the “tilde” symbol,e , is used to signify the error
between the actual value of a quantity and its estimate, i.e.,ex = x− bx.

These are, for example, the measurements of the position of
landmarks with respect to the robot, or the range measurements
of a laser range finder. By processing these measurements
(for example, by performing laser scan matching), an estimate,
zk/k+1, for the change in the robot pose between time-stepsk
andk+1 is computed, which is described by a function (either
closed-form or implicit):

zk/k+1 = ξk/k+1(zk, zk+1) (1)

Linearization of this last expression enables us to relate the
error in the displacement estimate,z̃k/k+1, to the errors in the
exteroceptive measurements:

z̃k/k+1 ' Jk
k/k+1z̃k + Jk+1

k/k+1z̃k+1 (2)

Here, we assume that the errors in the exteroceptive mea-
surements,̃zk and z̃k+1, are zero-mean and independent, an
assumption which holds in most practical cases, when proper
sensor characterization is performed. In Eq. (2)Jk

k/k+1 and

Jk+1
k/k+1 are the Jacobians of the functionξk/k+1(zk, zk+1) with

respect tozk andzk+1, respectively, i.e.,

Jk
k/k+1 = ∇zk

ξk/k+1 and Jk+1
k/k+1 = ∇zk+1ξk/k+1

Once the displacement estimatezk/k+1 between time-stepsk
andk + 1 has been computed, the pose estimate for the robot
at time stepk +1 is evaluated by combining the previous pose
estimate and the displacement information, by an appropriate,
generally nonlinear function:

X̂k+1 = g(X̂k, zk/k+1) (3)

By linearizing this equation, the pose errors at time stepk + 1
can be related to the error in the previous state estimate and
that in the displacement measurement:

X̃k+1 ' ΦkX̃k + Γkz̃k/k+1 (4)

where Φk and Γk represent the Jacobians of the state prop-
agation function,g(X̂k, zk/k+1), with respect to the previous
pose, and the relative pose measurement, respectively. During
localization, it is necessary to provide a measure of the quality
of the pose estimates, since the uncertainty in the robot’s pose
should be taken into consideration for motion planning and
navigation. For a Gaussian distribution, a sufficient indicator
of uncertainty is the covariance matrix of the pose errors:

Pk+1 = E{X̃k+1X̃
T
k+1}

= ΦkPkΦT
k + ΓkRk/k+1ΓT

k

+ ΦkE{X̃kz̃T
k/k+1}ΓT

k + ΓkE{z̃k/k+1X̃
T
k }ΦT

k (5)

whereRk/k+1 denotes the covariance matrix of the displace-
ment estimates. If the measurement noise,z̃k/k+1, and state er-
ror, X̃k, are uncorrelated, the last two terms in Eq. (5) are equal
to zero matrices, and the covariance propagation expression
becomes identical to the well-known covariance propagation
expression of the Extended Kalman Filter [15]. Although this
is a common assumption in the literature (e.g., [1], [9]), we
now demonstrate that it doesnot hold in general, and the last
two terms in Eq. (5) arenot equal to zero. In particular, by



linearizing the state propagation equation at time-stepk, we
obtain (cf. Eq. (4)):

E{z̃k/k+1X̃
T
k } = E

{
z̃k/k+1

(
Φk−1X̃k−1 + Γk−1z̃k−1/k

)T
}

= E{z̃k/k+1X̃
T
k−1}ΦT

k−1 + E{z̃k/k+1z̃
T
k−1/k}ΓT

k−1

= E{z̃k/k+1z̃
T
k−1/k}ΓT

k−1 (6)

At this point we note that the error term̃Xk−1 depends on
the measurement errors of all exteroceptive measurements up
to, and including, time-stepk− 1, while the error term̃zk/k+1

depends on the measurement errors at time-stepsk andk + 1
(cf. Eq. (2)). As a result, the errors̃Xk−1 and z̃k/k+1 are
independent, and therefore, by applying the zero-mean assump-
tion for the errorz̃k/k+1 we obtainE{z̃k/k+1X̃

T
k−1} = 0. In

order to evaluate the termE{z̃k/k+1z̃
T
k−1/k}, which expresses

the correlation between the consecutive displacement estimates,
we employ Eq. (2), and the independence of exteroceptive
measurement errors at different time-steps, to obtain:

E{z̃k/k+1z̃
T
k−1/k} = Jk

k/k+1E{z̃kz̃T
k }Jk T

k−1/k

= Jk
k/k+1RkJk T

k−1/k (7)

This result implies that consecutive displacement estimates are
not independent. However, the statistical correlation between
them is computable in closed form, and can be accounted for
in the propagation of the state covariance matrix. Substituting
from Eqs. (6) and (7) into Eq. (5), we obtain the final ex-
pression for propagating the pose covariance based on inferred
displacement measurements:

Pk+1 = ΦkPkΦT
k + ΓkRk/k+1ΓT

k + Dk+1 + DT
k+1 (8)

with
Dk+1 = ΦkΓk−1J

k
k−1/kRkJk T

k/k+1Γ
T
k

The experimental results presented in Section V-B demonstrate,
that by employing this expression for propagating the robot’s
pose covariance matrix, we are able to compute covariance
estimates that accurately represent the robot’s uncertainty.

IV. F ILTERING WITH CORRELATED RELATIVE-STATE

MEASUREMENTS

In this section, we consider the situation in which relative-
state measurements are fused with proprioceptive sensory in-
formation to estimate the robot’s pose. Since the propriocep-
tive and exteroceptive measurements are received from two
independent sources of information, fusing them will always
result in superior estimation accuracy, compared to the accuracy
attainable when the robot’s pose is propagated based solely on
one of the two types of measurements.

Two challenges arise when fusing relative-state and propri-
oceptive measurements: firstly, since each displacement mea-
surement relates the robot’s state at twodifferent time instants,
the “standard” formulation of the EKF, in which the filter’s state
comprises only the current state of the robot, is not adequate.
Secondly, as shown in the preceding section (cf. Eq. (7)), the
consecutive displacement measurements are correlated, and this
violates one of the basic assumptions of the EKF, that of

the independence of the measurements [15]. To address the
first challenge, we adopt the approach proposed in [1], that
requires theaugmentationof the EKF (error) state vector2

to include two copies of the robot’s error state (cloning).
The first copy represents the pose error at the time instant
when the latest exteroceptive measurement was recorded, while
the second copy represents the error in the robot’s current
state. Consequently, the robot states that are related by each
displacement estimate are represented explicitly in the filter
state.

The second challenge is addressed by further augmenting
the state vector to include theerrors of the latest exteroceptive
measurement. Thus, if the most recent exteroceptive measure-
ment was recorded at time-stepk, the filter’s state vector at
time-stepk + i is given by3

X̆k+i|k =
[
X̃T

k|k X̃T
k+i|k z̃T

k

]T

(9)

By including the measurement error in the state vector of
the system, the dependency of the relative-state measure-
mentszk/k+1 on the exteroceptive measurementszk is trans-
formed into a dependency on thecurrent state of the filter, and
the problem can now be treated in the standard EKF framework.
It should be noted, that since the error in the intermediate
measurement is the source of the correlation between the
current and previous displacement estimates (cf. Eq. (7)), this
is the “minimum length” vector that we need to append to
the state vector, in order to sufficiently describe the existing
dependencies. In the following sections, we present in detail
the propagation and update phases of the filter.

A. State propagation

Consider the case where the filter’s state covariance matrix,
immediately after the exteroceptive measurementzk has been
processed, is given by:

P̆k|k =




Pk|k Pk|k PXkzk

Pk|k Pk|k PXkzk

PT
Xkzk

PT
Xkzk

Rk


 (10)

wherePk|k is the covariance of the actual robot pose at time-
step k, Rk is the covariance matrix of the error̃zk, and
PXkzk

= E{X̃kz̃T
k } is the cross-correlation between the robot’s

state and the measurement error at time-stepk (the derivation of
a closed-form expression forPXkzk

is presented in Section IV-
B). We note that cloning the robot’s state creates two random
variables that convey the same information, and hence are fully
correlated [1]. This explains the structure of the covariance
matrix in Eq. (10).

Between two consecutive updates, the proprioceptive mea-
surements are employed to propagate the filter’s state and its
covariance. Let the proprioceptive measurement at time-step
k be denoted asvk, and its noise covariance matrix asQk.

2Since the EKF is employed for estimation, the state vector comprises of the
errors in the estimated quantities, rather than the estimates. Therefore, cloning
has to be applied to both the error states, and the actual estimates.

3In the remainder of the paper the subscript`|j denotes the estimated value
of a quantity at time step̀, after exteroceptive measurements up to time-stepj,
and proprioceptive measurements up to time-step`− 1, have been processed.



The estimate for the robot’s pose is propagated in time by the,
generally non-linear, equation:

X̂k+1|k = f(X̂k|k, vk) (11)

Linearization of the last expression yields the error propagation
equation for the (evolving) robot state:

X̃k+1|k ' FkX̃k|k + Gkṽk (12)

where Fk and Gk are the Jacobians off(X̂k+1|k, vk) with
respect toX̂k|k and vk, respectively. Since the cloned state,
as well as the estimates for the measurement errorz̃k do
not change with the incorporation of a new proprioceptive
measurement, the error propagation equation for the entire state
vector is given by

X̆k+1|k = F̆kX̆k|k + Ğkṽk (13)

with F̆k =




I 0 0
0 Fk 0
0 0 I


 and Ğk =




0
Gk

0


 (14)

thus the covariance matrix of the propagated filter state is:

P̆k+1|k = F̆kP̆k|kF̆T
k + ĞkQkĞT

k (15)

It is straightforward to show by induction that ifm propagation
steps take place between two consecutive relative-state updates
the covariance matrix̆Pk+m|k is determined as

P̆k+m|k =




Pk|k FT
k/k+mPk|k PXkzk

Fk/k+mPk|k Pk+m|k Fk/k+mPXkzk

PT
Xkzk

PT
Xkzk

FT
k/k+m Rk




(16)

whereFk/k+m =
∏m−1

i=0 Fk+i, andPk+m|k is the propagated
covariance of the robot state at time-stepk+m. The last expres-
sion indicates that exploiting the structure of the propagation
equations allows for the covariance matrix of the filter to be
propagated with minimal computation. In an implementation
where efficiency is of utmost importance, the productFk/k+m

can be accumulated, and the matrix multiplications necessary
to compute theP̆k+m|k can be delayed, and carried out only
when a new exteroceptive measurement has to be processed.

B. State update

We now assume that a new exteroceptive measurement,
zk+m, is recorded at time-stepk + m, and is processed along
with zk to produce a relative-state measurement,zk/k+m =
ξk/k+m(zk, zk+m), relating the robot posesXk andXk+m. It
should be pointed out thatzk/k+m is not required to provide
information about all the degrees of freedom of the pose change
between timesk andk+m. This allows for processing relative-
state measurements in cases where the complete displacement
cannot be determined (e.g., when estimating pose change based
on point-feature correspondences with a single camera, the
scale is unobservable [8]). Thus, the relative-state measurement
is equal to a general function of the robot poses at time-steps
k andk + m, with the addition of error:

zk/k+m = h(Xk, Xk+m) + z̃k/k+m (17)

The expected value ofzk/k+m is computed based on the
estimates for the state at timesk and k + m, as ẑk/k+m =
h(X̂k|k, X̂k+m|k), and therefore the innovation is given by:

r = zk/k+m − ẑk/k+m

'
[
Hk Hk+m Jk

k/k+m

]



X̃k|k
X̃k+m|k

z̃k


 + Jk+m

k/k+mz̃k+m

= H̆k+mX̆k+m/k + Jk+m
k/k+mz̃k+m (18)

where Hk (Hk+m) is the Jacobian ofh(Xk, Xk+m) with
respect toXk (Xk+m), andJk

k/k+m (Jk+m
k/k+m) is the Jacobian

of zk/k+m = ξk/k+m(zk, zk+m) with respect tozk (zk+m).

The result of Eq. (18) demonstrates that by incorporating the
measurement errors,̃zk, in the state vector, the only component
of the innovation that is not dependent on the state is the
measurement noise,̃zk+m, which is independentof all other
error terms in Eq. (18). Thus, the Kalman filter equations can
be applied to update the state. The covariance of the residual
is equal to

S̆ = H̆k+mP̆k+m|kH̆T
k+m + Jk+m

k/k+mRk+mJk+m T
k/k+m (19)

while the Kalman gain is computed as:

K̆ = P̆k+m|kH̆T
k+mS̆−1 =

[
KT

k KT
k+m KT

zk

]T
(20)

We note that although the measurementzk+m can be used to
update the estimates for the robot’s pose at time stepk and
for the measurement error̃zk, our goal is to update only the
current state of the robot (i.e., the state at time stepk+m) and
its covariance. Therefore, only the corresponding block element
Kk+m of the Kalman gain matrix needs to be computed. The
equation for updating the current robot state is:

X̂k+m|k+m = X̂k+m|k + Kk+mr (21)

While the covariance matrix of the updated robot state is:

Pk+m|k+m = Pk+m|k −Kk+mS̆KT
k+m (22)

The final step in the process of updating the filter state is
to evaluate the new augmented covariance matrix, that will
be required for processing the next relative-state measure-
ment. Immediately afterzk/k+m is processed, the clone of
the previous state error,̃Xk|k, and the previous measurement
error, z̃k, are discarded. The robot’s state at the current time-
step,Xk+m|k+m, is cloned, and the exteroceptive measurement
errors, z̃k+m, are appended to the new filter state. Thus, the
filter error-state vector becomes

X̆k+m|k+m =
[
X̃T

k+m|k+m X̃T
k+m|k+m z̃T

k+m

]T

(23)

To compute the new filter covariance matrix̆Pk+m|k+m, the
correlation between the robot’s error state,X̃k+m|k+m, and the
measurement error vector,̃zk+m, has to be determined. From
Eq. (21) we obtain:

X̃k+m|k+m = X̃k+m|k −Kk+mr (24)



and employing the result of Eq. (18) yields:

PXk+mzk+m
= E{

(
X̃k+m|k −Kk+mr

)
z̃T
k+m}

= −Kk+mE{rz̃T
k+m}

= −Kk+mJk+m
k/k+mRk+m (25)

In this derivation, the statistical independence of the errorz̃k+m

to the errors in the statĕXk+m|k has been employed. Using this
result, the covariance matrix of the augmented state at time
k + m has the same structure as the matrix in Eq. (10) (for
indicesk + m instead ofk).

C. Discussion

From the preceding presentation it becomes apparent that
the augmentation of the covariance matrix, that is employed in
order to correctly treat the correlations between the consecutive
relative-state measurements, inflicts an overhead in terms of
computation and memory requirements, which may become
cumbersome if the dimension of the measurement vector at
time-stepk, Mk, is larger than the dimension of the robot’s
state,N . If the correlations are ignored, as in [1], the size of
the state vector in the filter equals double the size of the robot’s
state, and the computational complexity, as well as the memory
requirements of the filter areO(N2). In the algorithm proposed
in this paper, the most computationally expensive operation,
for Mk À N , is the evaluation of the covariance matrix of the
residual (Eq. (19)). SincĕPk+m|k is of dimension2N+Mk, the
computational complexity of obtaininğS is generallyO((2N +
Mk)2) ≈ O(N2 + M2

k ). However, in most cases, the vector of
exteroceptive measurements commonly comprises a relatively
small number of features, detected in the robot’s vicinity, e.g.,
the relative positions of landmarks, the image coordinates of
visual features, or the range measurements at specific angles.
In such cases, the measurements of the individual features are
mutually independent, and therefore the covariance matrices
Rk andRk+m are block diagonal. By exploiting the structure
of P̆k+m|k in this situation, the computational complexity of
evaluating Eq. (19) becomesO(N2 + Mk). Moreover, when
the matricesRk andRk+m are block diagonal, the covariance
matrix P̆k+m|k is sparse, which reduces the storage require-
ments of the algorithm toO(N2 + Mk).

These complexity figures should be compared to the com-
plexity of performing SLAM, which, as discussed in Section II,
is an alternative solution to the problem of processing correlated
relative-state measurements. The complexity of performing
SLAM in the classic EKF formulation is quadratic in the
total number of features included in the state vector. In most
cases this number is orders of magnitude larger compared to
the number of features detected in each location. Even if an
approximate SLAM algorithm is used (e.g., [13], [14]), the
largest proportion of the robot’s computational resources are
devoted to maintaining a constantly enlarging map. This may
not be necessary, when only the robot’s pose estimates are of
interest for a given application.

Additionally, SLAM requires that the states of the features
be completely observable, in order for these to be included
in the state vector. In cases where a single measurement

does not provide sufficient information to initialize a feature’s
position estimate with bounded uncertainty, complicated feature
initialization schemes need to be implemented [16], [17]. In
contrast, in the proposed method feature initialization is not
required, since themeasurement errors, which are not explicitly
estimated, are included in the augmented state vector.

Furthermore, since in the SC-KF formulation, onlypairs of
consecutive sets of exteroceptive measurements are considered,
the data association problem is simplified. In SLAM, corre-
spondence search has to be performed withall map features
in the robot’s vicinity. Thus, the computational overhead is
considerably higher [18]. To facilitate robust data association,
it is common practice to employ a feature detection algorithm
that processes the raw sensor data to extract “high-level”
features (e.g., landmarks such as corners, junctions, straight-line
segments, distinctive image features). Then,only these features
are employed for SLAM.

Extracting high-level features results in more robust and
computationally tractable algorithms (e.g., laser scans consist
of hundreds of points, but only a few corner features are usually
present in each scan). This approach, however, effectively
discards informationcontained in the “low-level” sensor data.
Consequently, the resulting estimates for the robot’s pose are
suboptimal, compared to the estimates that would be obtained if
all available information was utilized. Maintaining and process-
ing the entire history of raw sensor input (e.g., [19]) can
clearly lead to excellent localization performance, but with the
currently available computing capabilities of robots, this task
cannot be performed in real-time. One advantage of the SC-KF
approach is that it can utilize all information that exists in two
consecutiveexteroceptive measurements (i.e., most laser points
in two scans can be used to estimate displacement by laser scan
matching).

At this point, it should be made clear that the positioning ac-
curacy obtained when onlypairsof exteroceptive measurements
are considered is inferior to that of SLAM, asno loop closing
occurs. Essentially, the SC-KF approach offers an “enhanced”
form of Dead Reckoning, in the sense that the uncertainty
of the robot’s state monotonically increases over time. The
rate of increase, though, is significantly lower compared to
that attained when only proprioceptive measurements are used.
However, we note that in the SC-KF approach the state vector
Xk is not required to contain only the robot’s pose. If high-
level, stable features (landmarks) are available, that can be used
for SLAM, their positions can be included in the state vector
Xk. Therefore, the SC-KF method for processing relative-
state measurements can be expanded and integrated with the
SLAM framework. This would further improve the attainable
localization accuracy within areas with lengthy loops. Since
this modification is beyond the scope of this work, in the
following section we present experimental results applying the
SC-KF methodology for the case where only relative-state and
proprioceptive measurements are considered.

V. EXPERIMENTAL RESULTS

For the experiments, a Pioneer II robot equipped with a
laser rangefinder has been used. The robot’s pose comprises
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Fig. 1. The estimated trajectory of the robot using the SC-KF-WC algorithm
(solid line), the SC-KF-NC algorithm (dashed line), and odometry only (solid
line with circles).

its position and orientation in the global frame:

Xk =
[
Gxk

Gyk
Gφk

]T =
[
GpT

k
Gφk

]T
(26)

We first present results from the application of the SC-KF and
then study the case where the robot’s state is propagated based
on displacement estimates exclusively (i.e., no proprioceptive
measurements are processed).

A. Stochastic Cloning Kalman Filter

In this experiment, odometry measurements are fused with
displacement estimates that are obtained by laser scan matching
with the method presented in [7]. The robot traversed a trajec-
tory of approximately 165m, while recording 378 laser scans.
We here compare the performance of the SC-KF algorithm
presented in this paper, that correctly accounts for temporal
correlations in the displacement measurements, to that of [1],
where correlations are ignored. The two algorithms are referred
to as SC-KF-WC (with correlations) and SC-KF-NC (no cor-
relations), respectively.

The estimated robot trajectories resulting from the applica-
tion of the two algorithms, as well as the trajectory based on
odometry only, are shown in Fig. 1. Additionally, in Fig. 2,
we present the time evolution of the covariance estimates
for the robot pose. We observe that correctly accounting for
the correlations between consecutive displacement estimates in
the SC-KF, results in smaller covariance values. Even though
ground truth for the entire trajectory is not known, the final
robot pose is known to coincide with the initial one. The errors
in the final robot pose are equal tõX = [0.5m 0.44m −
0.11o]T (0.4% of the trajectory length) for the SC-KF-WC,
X̃ = [0.61m 0.65m − 0.13o]T (0.54% of the trajectory
length) for the SC-KF-NC, and̃X = [32.4m 5.95m −69.9o]T

(19.9% of the trajectory length) for Dead Reckoning based
on odometry. From these error values, as well as from visual
inspection of the trajectory estimates in Fig. 1, we conclude

that both the SC-KF-WC and the SC-KF-NC yield very similar
results.

1) Impact of correlations:Clearly, the lack of ground truth
data along the entire trajectory for the real-world experiment
does not allow for a detailed comparison of the performance
of the SC-KF-WC and SC-KF-NC algorithms; both appear
to attain comparable estimation accuracy. In order to perform
a more thorough assessment of the impact of the measure-
ment correlations on the position accuracy and the uncertainty
estimates, simulation experiments have also been conducted.
The primary objective of these experiments is to study the
behavior of the estimation errors as compared to the computed
covariance values, when the correlations between consecutive
measurements are accounted for, vs. when they are ignored.

For the simulation results shown here, a robot moves in a
circular trajectory of radius4m, while observing a wall that
lies 6m from the center of its trajectory. The relative-pose mea-
surements in this case are created by performing line-matching,
instead of point matching between consecutive scans [20].
Since only one line is available, the motion of the robot along
the line direction is unobservable. To avoid numerical instability
in the filter, the displacement measurementszk/k+m, computed
by line-matching are projected onto the observable subspace,
thus creating a relative-state measurement of dimension 2.

In Fig. 3, the robot pose errors (solid lines) are shown, along
with the corresponding99, 8% percentile of their distribution
(dashed lines with circles). The left column shows the results
for the SC-KF-WC algorithm presented in Section IV, while
the right one for the SC-KF-NC algorithm. As evident from
Fig. 3, the covariance estimates of the SC-KF-NC are not com-
mensurate with the corresponding errors. When the temporal
correlations of the measurements are properly treated, as is the
case for the SC-KF-WC, substantially more accurate covariance
estimates, that reflect the true uncertainty of the robot’s state,
are computed. Moreover, evaluation of the rms value of the
pose errors shows that the errors for the SC-KF-WC algorithm,
which accounts for the correlations, are 25% smaller compared
to those of the SC-KF-NC.

B. State Propagation based on Displacement Estimates

In this Section, we present results for the case in which the
robot’s pose is estimated usingonly displacement estimates
computed from laser scan matching. In Fig. 4, we plot the
estimated robot trajectory, along with the map of the area,
constructed by overlaying all the scan points, transformed using
the estimates of the robot pose (we stress that the map is only
plotted for visualization purposes, and isnot estimated by the
algorithm). For this experiment we used the same dataset used
for the experiments in the previous section. In Fig. 5, the co-
variance estimates for the robot’s pose, computed using Eq. (8),
are presented (solid lines) and compared to those computed
when the correlations between the consecutive displacement
estimates are ignored (dashed lines). As expected, the pose
covariance is larger when only displacement measurements are
used, compared to the case where odometry measurements
are fused with displacement measurements (cf. Fig. 2). From
Fig. 5 we observe that accounting for the correlations results



0 50 100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C
ov

ar
ia

nc
e 

al
on

g 
x−

ax
is

 (
m

2 )

Time (sec)

SC−KF−WC
SC−KF−NC

(a)

0 50 100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

0.05

0.06

C
ov

ar
ia

nc
e 

al
on

g 
y−

ax
is

 (
m

2 )

Time (sec)

SC−KF−WC
SC−KF−NC

(b)

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

O
re

ia
nt

at
io

n 
co

va
ria

nc
e 

(d
eg

re
es

2 )

Time (sec)

SC−KF−WC
SC−KF−NC

(c)

Fig. 2. The time evolution of the diagonal elements of the covariance matrix of the robot’s pose. Note the difference in the vertical axes’ scale. The intense
fluctuations in the robot’s orientation covariance arise due to the very high accuracy of the relative orientation measurements, compared to the low accuracy of
the odometry-based orientation estimates. (a) covariance along the x-axis (b) covariance along the y-axis (c) orientation covariance.
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Fig. 3. The robot pose errors (solid lines) vs. the corresponding99, 8%
percentile of their distribution, (dashed lines with circles). The left column
shows the results for the SC-KF-WC algorithm proposed in this paper, while
the right one demonstrates the results for the SC-KF-NC algorithm. The
“dark zones” in the last figures are the result of an intense sawtooth pattern
in the robot’s orientation variance. These fluctuations arise due to the very
high accuracy of the relative orientation measurements, compared to the low
accuracy of the odometry-based orientation estimates. (a - b) Errors along the
x-axis (c - d) Errors along they-axis (e - f) Orientation errors.

Fig. 4. The estimated trajectory of the robot based only on laser scan matching.
The map is presented for visualization purposes only, by transforming all the
laser points using the estimated robot pose.

in significantlysmallervalues for the covariance of the robot’s
pose estimates. Based on numerous experiments and simulation
tests, it appears that this is a common result, which indicates
that the correlation between consecutive displacement estimates
tends to benegative.

An intuitive explanation for this observation can be given by
means of a simple example, for motion on a straight line: as
shown in Section III, the correlation of consecutive displace-
ment estimates is attributed to the fact that the measurement
errors at time stepk affect the displacement estimates for
both time intervals[k − 1, k] and [k, k + 1]. Consider a robot
moving along a straight-line path towards a feature, while
measuring its distance to it at every time step. If at time-step
k the error in the distance measurement is equal toεk > 0,
this error will contribute towardsunderestimatingthe robot’s
displacement during the interval[k − 1, k], but will contribute
towards overestimatingthe displacement during the interval
[k, k+1]. Therefore the errorεk hasoppositeeffects on the two
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Fig. 5. The estimated covariance of the robot’s pose using when the correlation between consecutive measurements is properly accounted for (solid lines) vs.
the covariance estimated when the correlations are ignored (dashed lines). (a) Errors along thex-axis (b) Errors along they-axis (c) Orientation errors.

displacement estimates, rendering them negatively correlated.

VI. CONCLUSIONS

In this paper, we have studied the problem of localiza-
tion using relative-state measurements that are inferred from
exteroceptive information. It has been shown, that when the
same exteroceptive sensor measurements are employed for the
computation of two consecutive displacement estimates (both
forward and backward in time), these estimates are correlated.
An analysis of the exact structure of the correlations has
enabled us to derive an accurate formula for propagating
the covariance of the pose estimates, which is applicable in
scenarios when the exteroceptive measurements are the only
available source of positioning information. To address the
case in which proprioceptive sensor data are also available,
we have proposed an efficient EKF-based estimation algorithm,
that correctly accounts for the correlations attributed to the
relative-state measurements. The experimental results demon-
strate that the performance of the algorithm is superior to
that of previous approaches [1], while the overhead imposed
by the additional complexity is minimal. The method yields
more accurate estimates, and most significantly, it provides a
more precise description of the uncertainty in the robot’s state
estimates, thus facilitating motion planning and navigation.
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