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Abstract— This paper studies the localization accuracy of a
team of mobile robots that perform Cooperative Localization.
We provide an analytical expression for the upper bound in
positioning accuracy as a function of a weighted connectivity
graph for the network of relative position measurements in
the robot group. This network has a time-varying topology
determined by the availability of relative position measurements
between pairs of robots. The weights of the connectivity graph
depend on (i) the odometric and orientation accuracy of each
robot, and (ii) the accuracy of the robot tracker on each member
of the team that measures its relative position with respect to
other robots in the group. The theoretical results are validated
by extensive simulations.

I. INTRODUCTION

The topic of Cooperative Localization has recently attracted
the interest of many researchers due to the greater versatility
that robotic teams provide. The key element enabling this
versatility is the sensor sharing that occurs between the robots.
The communication link that exists between them, enables in-
formation from the sensors of each robot to “diffuse” in a sense
to all the robots of the team. The additional information made
available to the robots by measuring their relative position
and/or orientation and communicating localization information
throughout the group, allows them to achieve higher levels of
localization accuracy ([1], [2]). External positioning informa-
tion from a GPS receiver or a map of the environment can
further increase the overall accuracy. In this work we primarily
consider the most challenging scenario where the absolute
positions of the robots cannot be measured or inferred. In this
case the uncertainty in the position estimates for all robots will
continuously increase. The case where absolute positioning
information is available to at least one of the robots in the
group, is subsumed in our formulation and is treated as a
special case.

The theoretical analysis of the positioning uncertainty prop-
agation during cooperative localization has been an open
problem to this date. In [3] the theoretical treatment for
determining upper bounds on the localization uncertainty
for a homogeneous group of N robots by directly solving
the continuous time Riccati equation for the covariance of
the errors in the position estimates has been presented. In
this work, the constraint that all robots measure the relative
positions of all other robots in the group had been imposed.
In the present work we lift this assumption and derive upper
bounds for the uncertainty of arbitrary measurement topologies
of the robotic team. Our motivation for this work stems from
the fact that as the number of robots increases, the number of

possible relative measurements increases as O(N2). Therefore
the requirements on CPU time and communication bandwidth
to transmit and process these measurements would make
the scenario of processing relative measurements between all
robots infeasible.

The availability of analytical expressions for the upper
bounds for the localization uncertainty for any robotic team
simplifies the task of designing a multirobot system. Task
imposed constraints on the acceptable level of uncertainty for
each robot can be employed to determine, during the design
phase, the number of robots and accuracy of their sensors,
and, once deployed, the measurement topology necessary to
guarantee the required level of accuracy.

Throughout the paper we assume that all robots move
randomly at the same time. Some (or all) of the robots of
the team measure the relative positions of some other robots
at each time step and use this information to improve the
position estimates for all robots. A key element in this analysis
is the Relative Position Measurement Graph (RPMG). This is
defined as the graph whose vertices represent the robots of
the group and its directed edges represent the measurements
(Fig. 3). That is, if robot i measures the relative position of
robot j, the RPMG contains a directed edge from vertex i
to vertex j. The main result of this paper is that the rate
of uncertainty increase in the group of robots is independent
of the topology of the RPMG. However the connectivity of
this graph affects the constant (time invariant) part of the
covariance matrix that describes the localization uncertainty
of the group, as well as, the time for the system to converge
at steady state.

In the following section we outline the related existing ap-
proaches to cooperative localization. In Section III we present
the formulation of the multi-robot localization problem and
derive the Riccati equation that describes the time evolution of
the maximum expected uncertainty in the position estimates.
Sections IV and V describe the solution of the Riccati equation
and derive the steady state localization uncertainty bounds for
each of the cases considered. In Section VI simulation results
are presented that validate the derived analytical expressions.
Finally, in Section VII the conclusions of this work are drawn
and future work directions are suggested.

II. RELATED WORK

Many robotic applications require that robots work in col-
laboration in order to perform a certain task. When a group
of robots needs to coordinate efficiently, precise localization is



of critical importance. In these cases multi-robot cooperation
for determining positioning estimates will result in improved
localization accuracy by compensating for errors in odometry
and/or a pose sensor.

Previous work on multiple robots has considered collab-
orative strategies when lack of landmarks made localization
impossible. An example of a system designed for cooperative
localization was first reported in [1]. A group of robots
is divided into two teams in order to perform cooperative
positioning. At each instant, one team is in motion while the
other team remains stationary and acts as a landmark. The
teams then exchange roles and the process continues until both
teams have reached their target [4]. Similarly, in [5], only
one robot moves, while the rest of the team of small-sized
robots forms an equilateral triangle of localization beacons in
order to update their pose estimates. Another implementation
of cooperative localization is described in [6]. In this work
a team of robots moves through the free space systematically
mapping the environment. All previous approaches have the
following limitations: (a) Only one robot (or team) is allowed
to move at any given time, and (b) The two robots (or teams)
must maintain visual (or sonar) contact at all times.

A different collaborative multirobot localization schema is
presented in [7], [8]. The authors have extended the Monte
Carlo localization algorithm [9] to the case of two robots
when a map of the area is available to both of them. When
these robots detect each other, the combination of their belief
functions facilitates their global localization task. The main
limitation of this approach is that it can be applied only within
known indoor environments. In addition, since information
interdependencies are being ignored every time the two robots
meet, this method can lead to overly optimistic position
estimates. This issue is discussed in detail in [10]. An approach
that treats the issue of ignoring correlation terms, at the
cost of increased computational requirements by introducing
a dependency tree is presented in [11].

A Kalman filter based implementation of a cooperative
navigation schema is described in [12]. In this case the effect
of the orientation uncertainty in both the state propagation
and the relative position measurements is ignored resulting
in a simplified distributed algorithm. In [2], [13] a Kalman
filter pose estimator is presented for a group of simultane-
ously moving robots. Each of the robots collects sensor data
regarding its own motion and shares this information with
the rest of the team during the update cycles. The Kalman
filter is decomposed into a number of smaller communicating
filters, one for every robot, processing sensor data collected
by its host robot. It has been shown [10] that when every
robot senses and communicates with its colleagues at all
times, every member of the group has less uncertainty about
its position than the robot with the best (single) localization
results. Finally, in [14] and [15] an alternative to the Kalman
filter approach is presented. A Maximum Likelihood estimator
is used to process relative pose and odometric measurements
recorded by the robots and a solution is derived by invoking
numerical optimization.

To the best of our knowledge, there exist only few cases
in the literature where analysis of the uncertainty propagation
has been considered in the context of cooperative localization.
In [12] the improvement in localization accuracy is computed
after only a single update step with respect to the previous
values of position uncertainty. In this case the robot orienta-
tions are assumed to be perfectly known and no expressions are
derived for the propagation of the localization uncertainty with
respect to time or the accuracy of the odometric and relative
position measurements. In [16] the authors studied in simula-
tion the effect of different robot tracker sensing modalities in
the accuracy of cooperative localization. Statistical properties
were derived from simulated results for groups of robots of
increasing size N when only one robot moved at a time. In [3]
a complete RPMG (Fig. 3(a)) and a homogeneous robot group
is assumed and analytical expressions for the upper bounds of
the localization uncertainty of the robots are derived.

We hereafter present the details of our method for deriving
bounds for the localization uncertainty of a group of coop-
erating robots. Our problem formulation derives from that
presented in our previous work [3], extended to the case of
arbitrary RPMGs and heterogeneous groups of robots.

III. PROBLEM FORMULATION

A group of N robots uses proprioceptive measurements
(e.g., velocity) to propagate its state (position) estimates and
exteroceptive measurements to update those estimates, using
the Extended Kalman Filter (EKF). If the exteroceptive es-
timates only consist of relative position measurements, then
from a Control Theoretic perspective the system is unobserv-
able and the uncertainty of those estimates will monotonically
increase. If additionally, the robots receive absolute positioning
measurements (e.g., from a GPS receiver) the system becomes
observable and at steady state the covariance of the state
estimate will converge to a constant value. The basis of our
approach for deriving bounds for the localization uncertainty
is the use of the Riccati equation to describe the evolution
of uncertainty over time. For a continuous time system, the
Riccati equation that describes the propagation/update of the
state estimates’ covariance P is:

Ṗ = FP + PFT + GcQcG
T
c − PHT R−1HP (1)

where F is the state transition matrix, the term GcQcG
T
c

accounts for the covariance of the measurements used for
propagation, and the term HT R−1H represents the infor-
mation input to the system by the measurements used for
updates. For robots moving in 2-D, the kinematic equations
are nonlinear and the matrices involved in the above equations
are time varying. Thus we cannot solve directly for P (t).
However, we can obtain upper bounds for the uncertainty of
the position estimates of the robots, if, instead of using these
time-varying matrices in the solution of the Riccati, we employ
their maximum expected values.

In our formulation, we assume that each robot is equipped
with a sensor (such as a compass or a sun sensor) of limited
accuracy that provides absolute orientation measurements.



This is required in the derivations that follow for determining
bounds on the orientation uncertainty for each robot. If such
a sensor is not available, our approach still holds under the
condition that an upper bound for the orientation uncertainty is
determined by alternative means, e.g. by estimating orientation
from the structure of the environment around the robot [17],
[18] or, by deriving an estimate for the maximum orientation
uncertainty from odometry over a certain period of time for
each robot [19].

We now describe the kinematic model we use for the robots.
For a mobile robot moving on flat terrain, the continuous time
kinematic equations are given by

x(k + 1) = x(k) + V (k)δt cos(φ(k)) (2)
y(k + 1) = y(k) + V (k)δt sin(φ(k)) (3)
φ(k + 1) = φ(k) + ω(k)δt (4)

where V (k) and ω(k) are the linear and rotational velocity
of the robot at time k. Using measurements from the robot’s
proprioceptive sensors, we can write the following set of
equations for propagating the estimate of the robot’s pose:

x̂(k + 1|k) = x̂(k|k) + Vm(k)δt cos(φ̂(k|k))
ŷ(k + 1|k) = ŷ(k|k) + Vm(k)δt sin(φ̂(k|k))
φ̂(k + 1|k) = φ̂(k|k) + ωm(k)δt

where

Vm(k) = V (k)− wV (k), ωm(k) = ω(k)− wω(k)

are the measurements of the linear and rotational velocity
of the robot respectively, contaminated by independent white
zero-mean Gaussian noise processes with known variances:

σ2
V = E{w2

V }, σ2
ω = E{w2

ω}

The robot also receives absolute orientation measurements

z(k + 1) = φ(k + 1) + nφ(k + 1)

with nφ(k + 1) a zero-mean white Gaussian noise process
with known variance σ2

φ = E{n2
φ}. These measurements are

processed during the EKF update cycles.
A two-layer estimator for the robot’s pose is employed. At

the first layer of estimation, we use the odometric measure-
ments of the rotational velocity, combined with the absolute
orientation measurements, in order to estimate the robot’s
orientation. These estimates are then fed to a second estimator,
that provides estimates for the robot’s position. It is evident that
this estimator is suboptimal, since correlation terms between
orientation and position estimates are ignored, however, it
facilitates the derivation of a closed form solution for the
positioning uncertainty of the robots at steady state. 1

1Due to space limitations many of the details of the following derivations
have been omitted. The interested reader is referred to [20] for a thorough
description of the intermediate steps.

A. Orientation Estimation

A Kalman filter is employed for estimating the orientation
of each robot. In this case Eq. (1) is one dimensional, with
P = σ2

φo
(scalar), F = 0, Gc = −1, Qc = σ2

ω, R = σ2
φ,

and H = 1. At steady state, the covariance of the orientation
estimate will converge to a constant value. Using limt→∞ Ṗ =
0, the Riccati can be written as

0 = σ2
ω −

1
σ2

φ

(σ2
φo

)2 ⇒ σ2
φo

= σφσω

The last expression provides the steady state uncertainty in the
estimate for the robot’s orientation, σ2

φo
= E{(φ− φ̂)2}.

B. Position propagation

The position of the robot is propagated using odometric
measurements and the estimates for the robot’s orientation, φ̂,
provided by the first layer of estimation. By linearizing Eqs.
(2), (3), the position error propagation equations for the robot
can be written as[

x̃(k + 1)
ỹ(k + 1)

]
=

[
1 0
0 1

] [
x̃(k)
ỹ(k)

]
+

+
[

δt cos(φ̂(k)) −Vm(k)δt sin(φ̂(k))
δt sin(φ̂(k)) Vm(k)δt cos(φ̂(k))

] [
wV (k)
φ̃(k)

]
⇔ X̃(k + 1) = Φ(k)X̃(k) + G(k)W (k) (5)

where Φ(k) = I , is the 2× 2 identity matrix,

Qc(k) = E{W (k)WT (k)} =
[

σ2
V 0
0 σ2

φo

]
(6)

and we define

Qd(k) =
1
δt

G(k)Qc(k)GT (k) (7)

In this last relation, the scaling factor δt−1 ensures that the
uncertainty influx in the system due to the odometric measure-
ments is appropriately scaled with the sampling frequency of
these measurements [21].

As evident from Eq. (7), the covariance Qd(k) of all sources
of uncertainty and noise during propagation is a time-varying
matrix. The values of the elements of this matrix depend on
the measured velocity Vm(k) of the robot and the estimate
of its orientation φ̂(k). In order to derive upper bounds for
the covariance in the position estimates, we solve the Riccati
equation, Eq. (1), using the expected value of GcQcG

T
c . By

averaging over all possible values of orientation and assuming
a constant velocity for the robot, the mean value for the
covariance in Eq. (7) is obtained:

Q̄d(k) = qδtI2×2, Q̄c(t) = qI2×2, with q =
σ2

V + σ2
φo

V 2

2
(8)

where I2×2 is the 2× 2 identity matrix.
When no relative positioning information is available, the

covariance for the position of the robot is propagated using
only odometric information. This is described by the Riccati
equation Ṗ = Q̄c = qI2×2, that yields

P (t) = P (0) + qtI2×2 (9)



where P (0) is the initial positioning uncertainty of the robot.
As it is evident, the covariance (uncertainty) for the position of
a single robot increases, on the average, linearly with time at
a rate of q determined in Eq. (8) that depends on the accuracy
of the absolute orientation measurements (σφ) and the robot’s
odometry (σV , σω, V ).

C. Relative Position Measurement Model

At this point instead of one robot, we consider the case
of a group of robots where each of them (i) estimates its
orientation by fusing rotational velocity measurements with
absolute orientation measurements, (ii) propagates its position
using the previous orientation estimates and linear velocity
measurements, and (iii) measures the relative position zij of
some (or all) other robots in the team:

zij = CT (φi) (~pj − ~pi) + nzij
(10)

where ~pi is the position vector of the ith robot, i.e. ~pi =
[xi yi]

T expressed with respect to the global frame of refer-
ence, C(φi) is the rotational matrix representing the orienta-
tion of the observing robot, and nzij is the noise affecting the
measurement, assumed to be white zero-mean Gaussian. By
linearizing Eq. (10), the measurement error is obtained:

z̃ij(k + 1) = zij(k + 1)− ẑij(k + 1)

= Hij(k + 1)X̃(k + 1) + Γ(k + 1)nij(k + 1)

where

Hij(k + 1) = CT (φ̂i(k + 1)) oHij

oHij =
[

02×2 .. −I2×2︸ ︷︷ ︸
i

.. I2×2︸︷︷︸
j

.. 02×2
]

X̃(k + 1) =
[

p̃1 . . . p̃i . . . p̃j . . . p̃N

]T

Γ(k + 1) =
[

I2×2 −CT (φ̂i(k + 1))J∆̂pij(k + 1)

]
J =

[
0 −1
1 0

]
, nij(k + 1) =

[
nzij (k + 1)

φ̃i(k + 1)

]
∆̂pij(k + 1) = p̂j(k + 1)− p̂i(k + 1)

The covariance for the measurement error is given by

Rij(k + 1) = Γ(k + 1)E{nij(k + 1)nT
ij(k + 1)}ΓT

(k + 1)

= Rzij
(k + 1) + Rφ̃ij

(k + 1) (11)

This expression encapsulates all sources of noise and un-
certainty that contribute to the measurement error z̃ij(k + 1).
More specifically, Rzij

(k + 1) is the covariance of the noise
nzij (k + 1) in the recorded relative position measurement
zij(k + 1) and Rφ̃ij

(k + 1) is the additional covariance term
due to the error φ̃ij(k + 1) in the orientation estimate φ̂i(k + 1)

of the observing robot i. From Eq. (11), we can infer that this
covariance matrix is a time-varying function of the position
and orientation of the robots. In order to obtain an upper bound
for the localization uncertainty, in [20] we derive the following
expression for the maximum expected value of Rij :

oR̄ij =
(
or̄zij

+ or̄φi

)
I2×2 (12)

with or̄zij
=

σ2
ρij

+ρ2
oσ2

θij

2 and or̄φi
=

ρ2
oσ2

φoi

2 . It is assumed
that the relative position measurement between two robots
consists of a distance and a bearing measurement, whose
errors are white zero-mean Gaussian and uncorrelated. In the
last relation, σρij

and σθij
are the standard deviations of the

distance and bearing measurements performed by robot i on
robot j respectively, ρo is the maximum distance between any
two robots in the group, and σ2

φoi is the steady state uncertainty
in the orientation estimate for robot i.

Note that due to the noise term attributed to the error in
the orientation estimates of the measuring robot, the relative
position measurements performed by one robot are not uncor-
related with eachother. In [20] it is shown that the maximum
average value for the correlation term associated with the
errors z̃ij and z̃ik is

oR̄ijk =
1
2

or̄φi
I2×2 (13)

Employing the maximum average value for the covariance
of the measurements, we compute the minumum avarage
information available to the estimator:

HT R−1H = Σi HT
i R−1

i Hi = Σi
oHT

i
oR̄−1

i
oHi

where oHi is a matrix whose block rows are oHij , and R̄i is
the average covariance matrix for the measuremets performed
by each robot. The diagonal block elements of this matrix are
given by Eq. (12), while the off-diagonal block elements are
given by Eq. (13).

Up to this point, only relative position measurements have
been considered. If any of the robots, e.g., robot i, has access to
absolute positioning information, such as GPS measurements
or from a map of the area, the corresponding submatrix
element of H is:

Hi0 =
[

02×2 . . . I2×2 . . . 02×2

]
while Ri0 is provided by the absolute positioning sensor.

IV. EVALUATION OF THE RICCATI EQUATION

In this section we formulate the Riccati equation for the
state covariance of the robot team and outline the steps that
yield an analytical solution to it. The state vector for the entire
robot team is defined as the stacked vector containing the
position vectors of all N robots, i.e. a vector of dimension
2N . Since the proprioceptive measurements of the N robots
are uncorrelated, the matrix GT

c QcGc for the Riccati equation
is

GT
c QcGc = Diag(Q̄ci) = Diag(qiI2×2) (14)

where Diag(Q̄ci) is a block diagonal matrix, with elements
the expected covariance matrices for the proprioceptive mea-
surements of the robots, described by Eq. (8). For simplicity
of notation, matrix Diag(Q̄ci

) will be denoted as Q in the
following.

From the kinematic model of the robots described by
Eq. (5), the system propagation matrix, in continuous time,
is F = 02N×2N . Substituting in Eq. (1), we have:

Ṗ = Q− PHT R−1HP (15)



For the solution of this matrix differential equation the stan-
dard methodology involving the decomposition of P (t) into
two matrices, and forming the Hamiltonian matrix is employed
[22]. The main steps of the solution are described in what
follows.

In order to facilitate the derivations, we define as Pn the
normalized covariance:

Pn = Q−1/2PQ−1/2, P = Q1/2PnQ1/2 (16)

Substitution in Eq. (15) yields

Ṗn = I2N×2N − PnCPn (17)

where C = Q1/2HT R−1HQ1/2. The solution is obtained by
setting Pn(t) = An(t)B−1

n (t). Substitution in Eq. (17) results
in a system of matrix differential equations, whose solution is[

Bn(t)
An(t)

]
= eHt

[
Bn(0)
An(0)

]
(18)

where the matrix H is the Hamiltonian of the system,

H =
[

02N×2N C
I2N×2N 02N×2N

]
(19)

The initial values for An(t) and Bn(t) are selected so that the
identity Pn(0) = An(0)B−1

n (0) holds, i.e. An(0) = Pn(0)
and Bn(0) = I . In order to derive an expression for the matrix
exponential of Eq. (18), Taylor expansion of the exponential
function, as well as the Singular Value Decomposition (SVD)
of matrix C are employed. The SVD yields C = UΛUT

where U is an orthonormal matrix containing the singular
vectors of C and Λ is a diagonal matrix whose diagonal
elements are the singular values of C. By noting that C =
(R−1/2HQ1/2)T (R−1/2HQ1/2), we can write Λ = diag(λ2

i ),
where λi are the singular values of (R−1/2HQ1/2). Manipu-
lation of each submatrix element of eHt independently yields:

e
Ht

=
1

2

 U diag
(

eλit + e−λit
)

UT U diag
(

λi(e
λit − e−λit)

)
UT

U diag
(

eλit−e−λit

λi

)
UT U diag

(
eλit + e−λit

)
UT


At this point a comment regarding the eigenvalues of matrix

C is due. It is shown in [20] that when at least one of the
robots has access to absolute positioning information, matrix
C is always nonsingular. In contrast, when all the robots in the
team only record relative position measurements, this matrix
is singular and has two eigenvalues equal to zero. Hence, in
this case the notation used in the last expression presents
a problem, since the eigenvalues appear in the denominator
in the diagonal submatrix eHt(2, 1). Note that the quantities
being divided by the zero eigenvalues are also equal to zero
(e0t − e−0t = 0) and therefore the above quantity is actually
undefined. However, in [20] it is proven formally that the
quantity under consideration exists and is given by

eHt(2, 1) = U

[
diag2N−2

(
eλit−e−λit

2λi

)
02×(2N−2)

0(2N−2)×2 tI2×2

]
UT

where diag2N−2 denotes a (2N − 2) × (2N − 2) diagonal
submatrix. This expression is quite cumbersome and its use
would make the resulting formulas unappealing and difficult
to understand. We will therefore continue to use the initial, less

strict notation in the following, bearing in mind that its true
meaning is given by this last expression. Substitution of eHt in
Eq. (18) and subsequent substitution in Pn(t) = An(t)B−1

n (t)
yields the closed form solution for the normalized localization
uncertainty of the robots:

Pn(t) = U(K(t) + L(t)P0)(L(t) + ΛK(t)P0)−1UT (20)

Where we have denoted

K(t) = diag
(

eλit − e−λit

λi

)
, L(t) = diag

(
eλit + e−λit

)
and

P0 = UT Pn(0)U

V. UNCERTAINTY BOUNDS AT STEADY STATE

The main results of this paper are presented in this section.
The localization uncertainty of the robots at steady state is
determined by computing the limit of Eq. (20) at steady
state, i.e. after sufficient time. The special case of zero initial
uncertainty is treated first:

1) Special Case - Zero Initial Covariance: When the un-
certainty of the initial positions of the robots is zero, Eq. (20)
reduces to

Pn(t) = U diag
(

eλit − e−λit

λi(eλit + e−λit)

)
UT (21)

The limit of this quantity as t →∞ depends on the eigenval-
ues λi of matrix C and thus on the type of measurements that
the robots receive.

(a) When at least one of the robots receives absolute position
measurements, such as GPS, all eigenvalues of C are positive
and the uncertainty converges to a constant value at steady
state. By simple calculation of the limit limt→∞ Pn(t) in
Eq. (21) and substitution of this result for the normalized
covariance in P = Q1/2PnQ1/2, the maximum expected
localization uncertainty of the robots at steady state is found
to be:

Pss(t) = Q1/2U diag
(

1
λi

)
UT Q1/2 = Q1/2

√
C−1Q1/2 (22)

where
√

C−1 = UΛ−1/2UT is the matrix square root of C−1.
(b) When none of the robots has access to absolute position

measurements, there exist two eigenvalues equal to zero and
the normalized covariance can be written as:

Pn(t) = U

[
diag2N−2

(
eλit−e−λit

λi(eλit+e−λit)

)
0(2N−2)×2

02×(2N−2) t I2×2

]
UT

The maximum expected uncertainty at steady state is given by

P (t) = Q1/2U

[
diag2N−2

(
1
λi

)
0(2N−2)×2

02×(2N−2) 02×2

]
UT Q1/2

+ t
(
Q1/2U2N−1U

T
2N−1Q

1/2 + Q1/2U2NUT
2NQ1/2

)
where U2N−1 and U2N are the two eigenvectors of C
corresponding to the zero eigenvalues. It is shown in [20] that
the quantity Q1/2U2N−1U

T
2N−1Q

1/2 + Q1/2U2NUT
2NQ1/2

is independent of the topology of the RPMG. Also, it is
straightforward to verify that the first term of the above



equation converges to a constant term as the system
approaches steady state. These observations lead to the
following lemma:

Lemma 1: For a heterogeneous team of N mobile robots
performing Cooperative Localization, if the initial covariance
of their position estimates is zero, the rate of increase of the
maximum expected localization uncertainty of the robots at
steady state is

Ṗss(i, i) = qT t

where 1
qT

=
∑N

i=1
1
qi

and qi is defined for each robot by
Eq. (8). Thus the rate of increase of uncertainty for all the
robots is equal to qT and independent of the topology of the
RPMG, as long as the graph is connected.
We next present the result for the case of nonzero initial
covariance and defer further discussion of this important result
for Section VI.

2) General Case - Nonzero Initial Covariance: It is often
the case that the initial knowledge of the position of the robots
is imprecise. In such cases the initial covariance matrix is
assumed to be an arbitrary positive semi-definite matrix and
the normalized uncertainty is shown in [20] to be equal to

Pn(t) = U(KL−1 + 4L−1P0(I + ΛKL−1P0)−1L−1)UT (23)

where time arguments have been dropped for simplicity of
notation.

(a) If at least one of the robots receives absolute position
measurements, all the eigenvalues of C are positive and as
shown in [20] the steady state uncertainty is:

Pss(t) = Q1/2U diag
(

1
λi

)
UT Q1/2 = Q1/2

√
C−1Q1/2

This result is identical with the result for the special case
of P (0) = 0 (Section V-1a). Notice that at steady state the
uncertainty depends on the topology of the RPMG (affecting
C) and the covariance of the proprioceptive and exteroceptive
measurements, represented by Q and R (which is “embedded”
in C).

(b) When none of the robots receives absolute position
measurements, it is shown in [20] that there exist two singular
values of C equal to zero. In this case the derivation of
the final expression for the steady state uncertainty is quite
lengthy and cannot be included here, due to limited space. The
interested reader is referred to [20] for the details of the proof.

Lemma 2: The maximum expected steady state localization
uncertainty of a group of mobile robots performing coopera-
tive localization is given by:

Pss(t) = Q1/2U

[
diag2N−2

(
1
λi

)
0(2N−2)×2

02×(2N−2) 02×2

]
UT Q1/2

+qT


α β α β · · ·
γ δ γ δ · · ·
α β α β · · ·
γ δ γ δ · · ·
...

...
...

...
. . .

 + t qT


1 0 1 0 · · ·
0 1 0 1 · · ·
1 0 1 0 · · ·
0 1 0 1 · · ·
...

...
...

...
. . .

 (24)

where 1
qT

=
∑N

i=1
1
qi

and the parameters α, β, γ, δ

are defined as follows: Let W = qT Q−1P (0)(I2N×2N +
Q−1/2

√
CQ−1/2P (0))−1Q−1. Then α =

∑
i,j odd wij will

be the sum of all elements of W = [wij ] whose indices are
both odd, δ =

∑
i,j even wij will be the sum of all elements

with two even indices, and γ =
∑

i odd,j even wij will be sum
of all elements with an odd row index and an even column
index. Due to symmetry, β = γ.

The first term of the above equation is a constant term,
whose value depends on the topology of the RPMG and the
characteristics of the sensors of the robots. The second term
is a constant term depending on the initial uncertainty, as well
as the characteristics of the robots and the RPMG topology.
Finally, the last term contributes with a constant rate of
uncertainty increase that is proportional to qT . At this point we
should note that the rate of uncertainty increase is independent
of the initial uncertainty P (0), the accuracy of the relative
position measurements, and the topology of the RPMG. From
the definition of qT , it becomes clear that it will be smaller
than the smallest of the qi’s (notice that the definition of qT is
analogous to the expression for the total resistance of resistors
in parallel). This implies that it suffices to equip only one robot
in the team with proprioceptive sensors of high accuracy, in
order to achieve a desired rate of uncertainty increase. All the
robots of the group will experience a reduction in the rate
at which their uncertainty increases and this improvement is
more significant for robots with sensors of poor quality. We
further discuss the significance of Eq. (24) in the next section,
where the results of our simulations are presented.

VI. SIMULATION RESULTS

A series of experiments in simulation were conducted,
with the aim of validating the preceding theoretical analysis.
Robotic teams of different sizes and several topologies of the
RPMG are considered and the covariance values predicted
by our theoretical analysis are compared to the experimental
results. For the simulations the same two-layer approach to the
estimation of the robot’s pose is employed that was used in
the derivation of the theoretical bounds. For our experiments,
the robots are restricted to move in an area of radius r = 20m,
thus the maximum allowable distance between any two robots
is ρo = 40m. The velocity of all robots is assumed to be
constant, equal to Vi = 0.25m/sec. Note, however, that our
analysis does not require all the robots to move at the same
speed. The orientation of the robots, while they move, changes
randomly using samples drawn from a uniform distribution.

The parameters of the noise that corrupts the proprioceptive
measurements of the simulated robots are identical to those
measured on a iRobot PackBot robot (σV = 0.0125m/sec,
σω = 0.0384rad/sec). The absolute orientation of each robot
was measured by a simulated compass with σφ = 0.0524rad.
The robot tracker sensor returned range and bearing measure-
ments corrupted by zero-mean white Gaussian noise with σρ =
0.01m and σθ = 0.0349rad. The above values are compatible
with noise parameters observed in laboratory experiments [23].
All measurements were available at 1Hz.



In order to demonstrate the validity of the derived formulas
for the steady state localization uncertainty of the robots, in
Fig. 1 we plot the true value vs. the theoretical bound for the
covariance along the x-axis of a robot performing cooperative
localization. For this specific experiment, a team of 2 robots
was simulated and the parameters for the proprioceptive sen-
sors of the robots were chosen so that the second robot has
5 times less accurate measurements compared to the first one
(i.e, for this robot σV2 = 0.0625m/sec, σω2 = 0.192rad/sec).
As evident, the true covariance consistently remains below
the maximum expected value predicted. This behavior for the
localization uncertainty is a typical example of the results of
our simulation experiments.

At this point we focus our attention on the effect of the
network topology on localization accuracy. In order to preserve
the clarity of the figures, we hereafter consider a homogeneous
team of robots (i.e. a team whose robots are equipped with
sensors of equal accuracy). Note however, that homogeneity is
not a prerequisite of our approach, as Fig. 1 demonstrates.

In Fig. 2 the localization uncertainty evolution is presented
for a team of 9 robots with changing RPMG topology. Initially
up to t = 200sec, the robots do not record any relative position
measurements and propagate their position estimates using
Dead Reckoning (DR). At t = 200sec the robots start receiving
relative position measurements and the topology of the RPMG
is a complete one (Fig. 3(a)). The significant improvement
in the rate of uncertainty increase that is achieved by using
relative positioning information is demonstrated in this tran-
sition. At t = 400sec the RPMG assumes a ring topology
(Fig. 3(b)). We note that the uncertainty undergoes a transient
phase, during which it increases at a higher rate and then,
once steady state is reached, the rate of increase is identical
to the rate associated with the complete graph. This validates
the result of Eq. (24) and shows that the dominant factor in
determining the rate of localization uncertainty increase is the
quality of the proprioceptive sensors of the robots.

At t = 600sec a supposed failure of the communication
network occurs, and in the time interval between 600sec and
800sec only two robots are able to measure their relative
position, (Fig. 3(c)). This case can be viewed as a degenerate
case, where the 7 robots localize based solely on Dead
Reckoning, while the other two robots form a smaller team.
We can observe that the rate of increase of the covariance is
larger when the team consists of only 2 robots, instead of 9.

At t = 800sec the RPMG assumes a non-canonical topol-
ogy, i.e., random graph (Fig. 3(d)). This case is perhaps the
most important for real applications, since robots will usually
measure the distances of their neighbors and due to the robots’
motion, the topology of the RPMG can change randomly. In
this case, the uncertainty increases at a rate identical to that
of cases I and II of the graph’s topology, as predicted by our
theoretical analysis. It is also apparent that the uncertainty for
each robot converges to a set of lines with the same slope (rate
of uncertainty increase), but different constant offset. This is
due to the effect of the different degree of connectivity in
the RPMG of each robot. Connection-rich robots have direct

Fig. 1. True covariance vs. theoretical bound for a heterogeneous team of 2
robots.

Fig. 2. Uncertainty evolution for a RPMG with changing topology.

access to positioning information from more robots and thus
attain lower positioning uncertainty.

At t = 1000sec only one of the robots starts receiving
GPS measurements while the RPMG retains the topology of
(Fig. 3(d)) The GPS measurements are corrupted by noise with
a standard deviation of σGPS = 0.05m in each axis. It is
evident that the availability of absolute position measurements
to any robot drastically reduces the localization uncertainty for
all the robots in the group. Furthermore, the system becomes
observable and the uncertainty is bounded for all robots in the
group. As in the previous case, the constant value to which the
uncertainty for each robot converges, depends on its degree of
connectivity.

VII. CONCLUSIONS

The problem of positioning uncertainty build-up for hetero-
geneous robotic teams of arbitrary and potentially dynamic
relative measurement topologies has been studied. We have
derived closed form expressions for the maximum expected



(a) Graph I (b) Graph II

(c) Graph III (d) Graph IV

Fig. 3. The four different measurement graph topologies considered in the
simulations. Each arrow represents a relative position measurement, with the
robot (node) where the arrow starts being the observing robot.

localization uncertainty that can be employed, early on during
the design phase, for determining the positioning capabilities
of a multi-robot system. For a robot team whose members
only register relative position measurements, Lemma 2 main-
tains that the rate of uncertainty growth at steady state is
independent of both the accuracy of the robot tracker de-
vice and the topology of the Relative Position Measurement
Graph (RPMG). Besides the number of robots comprising
the team, the single most important factor that determines
the uncertainty of position estimates is the accuracy of the
proprioceptive and orientation sensors of the robots. In the
particular case of a heterogeneous robot group, the accuracy
of the best equipped robot is the one that has the greatest
impact on overall accuracy. These conclusions are of great
practical importance for implementation purposes, since they
ensure that the use of a minimum number of relative position
measurements, when computational and communication re-
sources are limited, only inflicts a small penalty on localization
performance (constant offset), while sustaining the same rate
of uncertainty increase. Finally, when any of the robots has
access to absolute positioning measurements, such as GPS, the
positioning uncertainty of all the robots in the group remains
bounded and converges to a constant value.
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