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Abstract— This paper presents a new method to optimally com- 4
bine motion measurements provided by proprioceptive sensors, Q.
with relative-state estimates inferred from feature-based match- oo
ing. Two key challenges arise in such pose tracking problems: (i)
the displacement estimates relate the state of the robot at two "High level"
different time instants, and (ii) the same exteroceptive measure- 2r / comner features 1
ments are often used for computing consecutive displacement (D
estimates, a process which renders the errors in these correlated. o |
We present a novel Stochastic Cloning-Kalman Filtering (SC-KF) )
estimation algorithm that successfully addresses these challenges, € -
while still allowing for efficient calculation of the filter gains > or (K
and covariances. The proposed algorithm is not intended to
compete with Simultaneous Localization and Mapping (SLAM) -1t R 1
approaches. Instead it can be merged with any EKF-based SLAM ' -

algorithm to increase its precision. In this respect, the SC-KF Ll . \ |
provides a robust framework for leveraging additional motion

information extracted from dense point features that most SLAM o “Low level”
algorithms do not treat as landmarks. Extensive experimental -3f point features

and simulation results are presented to verify the validity of the = - . : 2 : : . -
proposed method and to demonstrate that its performance is

superior to that of alternative position tracking approaches. x(m)

Index Terms— Stochastic Cloning, robot localization, relative- Fig. 1. Example of a planar laser scan and types of features observed. An

pose measurements, displacement estimates, state augmentatiorf’.‘lgomhm has been employed to detect corners (intersections of line segments)
Ih a laser scan. The extracted corner features can be used for performing

SLAM, while all the remaining, “low-level”, feature points, can be utilized
|. INTRODUCTION in the SC-KF framework to improve the pose tracking accuracy.

Accurate localization is a prerequisite for a robot to mean-
ingfully interact with its environment. The most commonlyelative-statemeasurements that are derived from these can
available sensors for acquiring localization information afge integrated over time to provide pose estimates [3], or
proprioceptivesensors, such as wheel encoders, gyroscopesmbined with proprioceptive sensory input in order to benefit
and accelerometers that provide information about the robd‘em both available sources of positioning information [9],
motion. In Dead Reckoning (DR) [1], a robot’s pose can bdO0]. This paper focuses on how to optimally implement the
tracked from a starting point by integrating proprioceptiviatter approach using an extended Kalman filter (EKF) [11].
measurements over time. The limitation of DR is, howeveThis paper does not consider the case in which the feature
that since no external reference signals are employed foeasurements are used for SLAM. However, as discussed in
correction, estimation errors accumulate over time, and tBection VI, our approach is complementary to SLAM, and can
pose estimates drift from their real values. In order to improy® employed to increase its accuracy (cf. Fig. 1).
localization accuracy, most algorithms fuse the proprioceptiveTwo challenges arise when fusing proprioceptive and
measurements with data froexteroceptivesensors, such asrelative-posé measurements in an EKF. Firstly, each displace-
cameras [2], [3], laser range finders [4], sonars [5], etc.  ment measurement relates the robot’s state at two different

When an exteroceptive sensor provides information abairhe instants (i.e., the current time and previous time when
the position of features with respect to the robot at twexteroceptive measurements were recorded). However, the ba-
different time instants, it is possible (under necessary obic theory underlying the EKF requires that the measurements
servability conditions) to create anferred measurement of used for the state update be independent of any previous filter
the robot's displacement. Examples of algorithms that procestates. Thus, the “standard” formulation of the EKF, in which
exteroceptive data to infer motion include laser scan matdhe filter's state comprises only the current state of the robot, is
ing [4], [6], [7], vision-based motion estimation techniqueslearly not adequate for treating relative-state measurements.
using stereoscopic [2], [3], and monocular [8] image se- A second challenge arises from the fact that when exte-
guences, and matching of sonar returns [5]. The inferred

IThroughout this paper, the terms “displacement measurement” and
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Minneapolis, MN 55455. Email{ mourikis stergio§ @cs.umn.edutDivision ~ ment of the robot’s motion that is inferred from exteroceptive measurements.
of Engineering and Applied Science, California Institute of Technologyepending on the type and number of available features, either all, or a subset,
Pasadena, CA 91125. Email: jwb@robotics.caltech.edu. of the degrees of freedom of motion may be determined (cf. Section VII-A.2).



roceptive measurements are used to infer displacement, csighificant errors when the rate of the displacement mea-
secutive relative-state measurements will oftercbeelated surements is low. A different solution, proposed in [10], is
To understand the source of such correlations, consider, foruse the previous robot position estimates for converting
example, the scenario in which a camera is employed tlze relative pose measurements to absolute position pseudo-
measure the pixel coordinates of the projections of the sammeasurements. However, since these pseudo-absolute mea-
landmarks at times,_q, ¢ and tx1. The errors in the surements are correlated with the state, their covariance matrix
measurements at tintg affect the displacement estimates fohas to be artificially inflated to guarantee consistency, thus
bothtime intervals|t,_1, tx] and[tx, tx+1], thereby rendering resulting in suboptimal estimation (cf. Section VII-A).

them correlated. Assuming that the measurements are uncot€ontrary to the precedin@d-hoc methods for process-
related (as is customarily done [2], [7], [10]), violates a basiag displacement measurements, several existing approaches
assumption of EKF theory, leading to sub-optimal or incorreemploy these measurements to impose constraints between
estimates for the robot’s state and covariance. This fact hamsecutive robot poses. Algorithms that only use displace-
been generally overlooked in the literature, and to the bestraént measurements for propagating the robot’s state estimate
our knowledge, no prior work exists that directly addressese often described as sensor-based odometry methods [2],
this issue. [4]. In these algorithms, only the last two robot poses (the

In this paper we propose a direct approach to the problemarrent and previous one) are ever considered. While our
of combining relative-pose measurements with proprioceptigéochastic cloning approach (which was first introduced in [9])
measurements in order to improve the accuracy of DR. Qalso relies only upon the last two robot poses, tracking is
methodology augments the state vector of the Kalman filtachieved byfusing the displacement measurements with
to address the two aforementioned challenges. In particulprpprioceptive information. Therefore, our method can be seen
to properly account for the dependencies on the robot’s statgan “enhanced” form of odometry. On the other hand, several
estimates at different time instants, we augment the Kalmeristing approaches maintain a state vector comprised of a
filter state to include two instances (oclénes) of the state history of robot poses, and use the displacement measurements
estimate—hence the nan8tochastic Cloning Kalman Filter to impose constraints between pairs of these poses. In [13],
(SC-KF) [9]. Moreover, in order to appropriately treat thehe robot’s orientation errors are assumed to be temporally
correlations between consecutive displacement estimates, umeorrelated, which transforms the problem of optimizing the
further augment the state to include the most recent exterstwork of robot poses into a linear one, where only the robot
ceptive measurements [11]. With these state augmentationsphsitions are estimated. In [14]-[16] the full 3D robot pose of
displacement measurements can be expressed as functiorsnchutonomous underwater vehicle is estimated, while in [7],
the current filter state, and thus an EKF framework can Ij&7] displacement constraints are employed for estimating the
employed. pose history of a robot in 2D.

The following section reviews existing approaches for All of the approaches discussed so far dot properly
processing relative-state measurements, while Section aficount for the correlations that exist between consecutive
presents the structure of the correlations between consecuthigplacement estimates, as they are assumed to be independent.
measurements, and investigates their effect on displacemdtowever, as shown in Section lll, this assumption does not
only propagation of the robot state. Section IV describes generally hold. One could avoid such correlations by using
detail the SC-KF algorithm. Section V presents extensiog@ch feature measurement in the computation of only one
of the SC-KF methodology, while Section VI discusses idisplacement estimate [14]. For example, half the measure-
relation to SLAM. In Section VII, it is shown that the attainednents at each time step can be used to estimate the previous
position tracking accuracy is superior to that of existingisplacement, and the other half to estimate the next one. The
approaches. Finally, the conclusions of this work are present@wback of this methodology is that incorporating only part
in Section VIII. of the available exteroceptive measurements when computing
each relative-pose estimate results in less accurate displace-
ment estimates. In our work, all available measurements are
used to compute the relative-pose measurements at every

Displacement measurements can be treated as averagetivee step, and the correlations introduced by this process are
locity measurements during the corresponding time intervabplicitly identified and accounted for.

These average velocities can then be combined with velocitySolutions to the well-known Simultaneous Localization and
measurements obtained from the robot’s proprioceptive séviapping (SLAM) problem (cf. Section VI) “circumvent”
sors to improve their accuracy. However, this approach tise problem of treating the displacement measurements by
only applicable if the relative-state measurements are madeluding the features’ positions in the state vector, and jointly
at a rate equal or higher to that of the proprioceptive sensoestimating the robot’'s and features’ state. While SLAM offers
which is rarely the case in practice. Alternatively, the robotsigh localization accuracy, the computational complexity as-
velocity estimate could be included in the state vector, and theciated with the estimation of the positions of a large number
average velocity estimates could then be used as instantanegfifeatures may be prohibitive for some real-time applications
velocity pseudo-measurements in the EKF update step [1@.9., autonomous aircraft landing). Thus there exists a need
The shortcoming of this method is that treating arerage for methods that enabléirect processing of the displacement
velocity measurement as amstantaneouone can introduce measurements, at a lower computational cost.

Il. RELATED APPROACHES



In this paper, we propose an algorithm for optimally fusingacobian matriceg,’j’,thrm and J*t™ takes the form

k,k+m
the potentially correlated relative displacement estimates with )
ith feature used

proprioceptive measurements. The SC-KF considers extero- Vi,
ceptive measurements in pairs of consecutive measurement§/y. i m), = Yi>r to compute Zgkim ®3)
that are first processed to create an inferred relative-pose 0, else

measurement, and then fused with the proprioceptive me];a-, .
surements. The sole objective of the SC-KF is to estima [1= 1".'Mk andt = kka.r.m' Thus for some applications,
the robot’s state, and therefore the states of features usedt Jacob lans may be significantly sparse. .
deriving the displacement measurements are not estimate .urgo_al IS to computg the_ correlation between the displace-
Hence the proposed algorithm can optimally fuse relativElENt estimates for the time intervals, ti] and|tx, ty+m).

o X - o .
pose measurements with the minimum computational overhé’&G'Ch is defined aSE.{Z’C*“’Zkaker}' For this purpose we
ploy (2), and the independence of exteroceptive measure-

(Section IV-D). The proposed method can be used either a§} ¢ t diff i ¢ 10 obtain:
stand-alone localization algorithm, or combined with sLAaMnent errors at different ime-steps, 1o obtain.

in order to increase its localization accuracy (cf. Section VI). E{Zk—t k2t kimt = Jr_ o E{ZRZ Y IE k?jrm
k kT
= kaé,kRka,ker 4)

Note that exteroceptive measurements typically consist of
lll. RELATIVE-POSEMEASUREMENT CORRELATIONS observations of a number of features detected in the robot's
vicinity (e.g., distance and bearing to points on a wall, or

Before presenting the SC-KF algorithm, we first study th&€ image coordinates of visual features). In such cases,
structure of the correlations between consecutive displacemilf measurements of the individual features are mutually
estimates. Let;, andz;,.,., denote the vectors of exteroceptivdndependent, and therefore the covariance matjixis block
measurements at timegs andt, ..., respectively, whose noisediagonal. In light of (3), whenf, is block diagonal, expres-
covariance matrices ar®; and Rj,,. These are measure-Sion (4) is equal to zero only itlifferent features are used
ments, for example, of range and bearing from a laser ra,.?eestimate displacement in consecutive time intervals (i.e.,
finder, or of bearing from a camera. By processing thelienOn-overlapping subsets of, are matched with;_, and
measurements (e.g., via laser scan matching), an estimate;n. respectively). Clearly, this is not the case in general,
21 wsm, for the change in the robot pose between timgs and thus consecutive displacement estimates are in most cases
and t;4,, is computed as a function (either closed-form dfOt independent.
implicit) of z, and zx4 !

A. State Propagation Based Exclusively on Displacement
Measurements

Linearization of (1) relates the error in the displacement esti-We now show how the preceding analysis can be employed
mate, 2y, m, t0 €ITors in the exteroceptive measureménts:;, e simple setting where the robot state estimates are
Zhkim J;Cf’kergk + J:};ngk+m + Npgrm (2) propagated using displacem.ent measurements only. This ig an
) ) ) o important special case, which has been extensively studied
where the noise termy, ;. ,.,, arises from inaccuracies in thejn the literature (examples include visual odometry [2], [3],
displacement estimation algorithm (e.g., errors due to featyser-based odometry [4], etc). Once the displacement estimate
matching [6]). We assume that the exteroceptive measuremggfweernr;, andt;., has been computed (cf. (1)), an estimate
errors, z; and zj.1,, and the noise termyy. i, are Zero- for the robot's pose aty.; is obtained by combining the

mean and independent, an assumption which holds in mggéyious pose estimate and the displacement measurement:
practical cases if proper sensor characterization is performed.

Zkk4+m = f(zkvzk—&-m) (1)

In (2), Jf 1., and JETT - are the Jacobians of the function Xiyr = 9( Xk, 2k kp1) - ®)
¢ with respect toz; and zy+r, respectively, i.e., By linearizing this equation, the pose errors fat; can
JE jom = Vo, & and Jﬁfm =V.onk be related to the errors in the previous state estimate and
’ ’ displacement measurement:

Generally, not all feature measurements in the veejor I O %s 4 T 6
are used to estimate displacement. For example, in laser scan Rl = Prdk T LEZk ket (6)

matching there usually exists only partial overlap between cohere &, andI', represent the Jacobians of the state prop-
secutive scans and therefore not all laser returns are matchgghtion functiong()?k, Zr.rs1), With respect to the previous
As aresult, ifM; denotes the number of feature measuremerggse and the relative pose measurement, respectively:
in zI' = [(z)7...(2)%, ], the i-th component of the

) = v)?kg> Iy = vzk,k+1g : (7)

_ . ~The covariance matrix of the pose estimates is propagated by:
2The “hat” symbol;”, is used to denote the estimated value of a quantity,

while the “tilde” symbol,™ , is used to signify the error between the actual Piyq = E{)Zk+1)?g 1}
value of a quantity and its estimate. The relationship between a variaple, T + T
its estimate, and the errof, is 7 = = — 7. =&, PP, + 'y Ry 411y,



+ O B{ X0 T + ThBE{Zh 1 X }@F (8)  We attribute this result to the fact that the correlation between
. . . consecutive relative-pose estimates tends todgative An in-

whe;e R’;z’““t denztes the noise ccl)_va_rlance of tht? d's_plat(;]?ditive explanation for this observation can be given by means
ment estimates. common simplifying assumption in St a simple example, for 1-dimensional motion. Consider a

literature (e.g., [2], [7]) is that the measurement N0, 11, robot moving on a straight line, and recording measurements,

and state errorXy, are uncorrelated, and thus the last t‘N%k, of the distance to a single feature on the same line. If

terms in (8) are set to zero. However, this assumption doglstime tr the error in the distance measurement is equal to

not generally hold when correlations exist between consecutive

) . ) ) o e > 0, this error will contribute towardsinderestimatinghe
displacement estimates. In particular, by linearizing the sta{g, .o displacement during the intervah,_, ¢, but wil
propagation equation df,, we obtain (cf. (6)): ’

contribute towardsverestimatinghe displacement during the
~ > ~ > - T interval [ty, tx+1]. Therefore, the errof;, has opposite effects
Ty _ s bk+1 ’ k
E{Zh k1 Xy t = E{Z’“’““ (q)k*le*l + F’“lz"?*lﬁ’“) } on the two displacement estimates, rendering them negatively

= v ~ ~ correlated.
= E{Z a1 Xim1 3941 + E{Zrrr1 21,4 . L . . .
_ i3 T T 9 In this 1D example, it is interesting to examine the time
= E{Zkm 12 ot T - ©) evolution of the covariance when the correlations are properly

Note that the error ternX;_; depends on the measuremenireated. Note that the robot's disp_lacer_nent can be computed
errors of all exteroceptive measurements up to and includifty the difference of two consecutive distance measurements,
time t,_1, while the error terngy, ., depends on the mea--€+ 2kk+1 = 2v — zk41. If the covariance of the individual
surement errors at times, and t,.; (cf. (2)). As a result, distance measurements is equaltp= Ry, = o, then the

the errorsX,_; and %44 are independent. Therefore, bycovariance oty .1 is equal toRy, .41 = 20, Moreover, for
applying the zero-mean assumption for the effpg.; we this example it is easy ]Eo see that 2II the Jacobians in (10) are
obtain {3,411 X7, } = 0. Employing the result of (4) and constant, and given by, =1, Jy_y; = —1, & =T, =
substituting (9) in (8), we obtain the following expression fof k-1 = 1. Substituting these values in (10), we obtain the
the propagation of the pose covariance in the case of inferfQ{OWing equation for covariance propagation in this case:

displacement measurements: Poy1 = P+ Rpppr — Ry — Ry = B, . (11)
Poy1 = ©pB®f + Ty Ry s T} We thus see that the covariance of the robot’s position estimate
+ @kfk_ljf_lykRkJ,’j e Ih remainsconstantduring propagation when the correlations are
+ l“kJ,ﬁkHRkaj’ka,l@f (10) properly treated. This occurs because the error in the measure-

ment z;, effectively “cancels out”. On the other hand, if the
In Algorithm 1, the steps necessary for propagating the robotsrrelations between consecutive displacement measurements
state estimate and its covariance using displacement measdre-ignored, we obtain
ments are outlined. 9
Pey1 = Py+ Rgpyr = Pp+207. (12)

Algorithm 1 Pose Estimation Based on Relative-Pose Meﬁi this case the position covariance increases linearly,
surements
Initialization :

« Initialize the robot covariance matrix when the firs{BV

exteroceptive measurement is received

a result
that does not reflect the evolution of the true state uncertainty.
In the context of this 1D example, we next study the time
olution of the covariance when features come in and out
of the robot’s field of view (FOV). Assume that a uniform

_ ) distribution of features, with density, exists on the line, and
Propagation: For each exteroceptive measurement: that the robot's FOV is limited td,,../2 in each direction.

« compute the displacement measurement using (1) aficthe robot moves byA/¢ between the time instants the
its Jacobians with respect to the current and previowseasurements are recorded, then the overlap in the FOV at
exteroceptive measurement using (3). consecutive time instants ... — Af. Within this region lie

« propagate the robot state estimate using (5) My, = p(lmax — Al) features, whose measurements are used

« compute the Jacobians of the pose propagation functifgt displacement estimation. The least-squares displacement
using (7) estimate is given by:

« propagate the robot pose covariance matrix via (10) LM
(during the first iteration, use only the first two terms) _ o ,

- compute and store the matrix produgt/; 1}, that wil k= g > ()i = (z1)i) (13)
be used in the next iteration

i=1

where (z;); and (zx+1); are the measurements to theh
feature at timeg, andt;.,, respectively. The covariance of

B. Investigation of the effects of correlations Zkks1 IS given by:
Based on numerous experiments and simulation tests, we 9 9
: ; 20 20
have observed that when the correlations between displace- Ry k1 = (14)

ment measurements are accounted for, the covariance estimate My p(bmax — AL)
is typically smaller than when the correlations are ignore@hus, if one ignores the correlations between consecutive



displacement estimates, the covariance propagation equation®®[" = No correl.
07!

202 In

NC __ pNC \
Pa=F +7P(€max*Af) . (15) o6/ |
where the superscript NC denotes the fact that no correlatiorig |
are treated. At the end of a path of lengtfy;., (i.e., after |

liotal /AL propagation steps), the estimated covariance of the o4l
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robot position, starting from a zero initial value, will be given § \ /
by: E 03F o
9 iT \\ I/
iotal 20 \ /
PRC = =t . 16 02 S
final A/ p(gmax — AE) ( ) N K

We now derive the corresponding covariance equations for the 011 el -7 ]
case that the correlations are properly incorporated. Sincethe | = —
robot moves by a distanc&? between the time instants when % 1 2 3 4 5 6 7 8 9 10

the measurements are recorded, the number of features that Measurement Spacing (m)
are observed at three consecutive time instants {,€s, t, Fig. 2. The covariance estimates at the end of a 100 m trajectory using the

andtyy1), is p(fmax — 2A¢). Employing this observation to expression of (10) (solid line), vs. when the correlations between consecutive
evaluate the Jacobians in (10) yields the following expressidiaplacement measurements are not accounted for (dashed line). Note that

for the propagation of the covariance: when the measurements occur more than 5 m apart, no correlations exist, and
’ the two estimates are identical.
202 AL
Poi1 =P+ ——s  for Lpax >200. (17) 6

P(gmax - AE)Q ’

Note that if ¢,,,.. < 2A¢, no overlap exists between the FOVE4
at timest,_, andt, 1, and thus no feature measurement isQ 3
used twice for computing displacement estimates. In that casé:,zf ‘ .
expression (15) is exact. At the end of a path of lenggth,, =1 ‘- —— 1

—~

the covariance of the robot position is: 0 ‘ ‘ ‘ : : : ] : :

0 0.5 1 1.5 2 2.5 3 35 4 4.5 5 55
202£tota1
Pip = ————, f Lrnax > 200 . 18
final p(gmax — AE)Z or max ( ) 87: 7
From (16) and (18) we see that ff.,. > 2A/, the following “g |
relation holds: 3 e 1
PNC gmx_Ag 347I‘ ]
final __ a >1 (19) g \\

Pﬁnal Al g 2 AN . il

This shows that when the correlations are ignored, the resulting o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
covariance estimates are larger, similarly to what is observed °  °° ' Y2 2 emanaiy %% ®°

in the experimental results.
Fig. 3. The covariance estimates at the end of a 100 m trajectory, for a robot

; ; ; ) it erforming visual odometry with a stereo pair. The top plot shows the position
Fig. 2 plots the variance in the robot's position at th%ncertainty, while the bottom one the attitude uncertainty. When correlations

end of a trajectory of length;.t.1 = 100 m, as a function are properly treated (solid lines), the covariance is a monotonic function of
of the size of the robot's displacement between consecutivie measurement spacing. This is not the case when correlations are ignored

measurements. The solid line corresponds to the case wifi&ihed lines).

the correlations between displacement measurements are ac-

counted for (cf. (18)), while the dashed line corresponds Eig. 2 shows that forA¢ < ZDTX = 5 m, as measurements
the case when these are ignored (cf. (16)). The parametars recorded more frequently, the covariance estimates become
used to generate this plot are: the feature density is 5 larger. This behavior is clearly incorrect, and arises due to the
features/m, the robot's FOV &, = 10 m, and the standard fact that the dependency between consecutive displacement
deviation of each distance measurementis- 0.2 m. It is estimates is ignored.

important to note that when the correlations between consecThe preceding analysis substantiates, at least in the simple
utive measurements are accounted for, the final uncertaiogse of a robot moving in 1D, that the use of expression (10)
is a monotonically increasingunction of the displacement for covariance propagation results in considerably more ac-
between measurement&/. This agrees with intuition, which curate covariance estimates. Unfortunately, for robots moving
dictates that when measurements occur less frequently, the2D [4] and 3D [2], the covariance propagation equations
accuracy of the final state estimates deteriorates. Howeane time-varying (the Jacobians appearing in (10) depend on
when the correlations between displacement measurementstheerobot state and the positions of the features relative to
ignored, the covariance estimates do not have this propethe robot). As a result, an analogous closed-form analysis for



general trajectories and arbitrary feature placement appetis measurement was received, while the double subscript has
to be intractable. However, simulation experiments indicatee meaning explained above. The erréﬁgi‘k are defined
that the conclusions drawn from the analytical expressioascordingly.

for the 1D case also apply to the more practical scenariosBy including the measurement error in the system’s state
of robots moving in 2D and 3D. For example, Fig. 3 showgector, the dependency of the relative-state measurement
the position and attitude covariance at the end of a 100 m 4, on the exteroceptive measurement is transformed
trajectory for a robot performing visual odometry with a stereimto a dependency on theurrent state of the filterand the

pair of cameras [2]. The plotted lines represent the tracpsblem can now be treated in the standard EKF framework.
of the submatrices of the covariance matrix corresponditigshould be noted that since the measurement error is the
respectively to position (top subplot) and attitude (bottorsource of the correlation between the current and previous
subplot). These plots once again show that the covariancelisplacement estimates, this is the “minimum-length” vector
a monotonically increasing function of measurement spacititat must be appended to the state vector in order to incorpo-
when the exact expression of (10) is employed, while aate the existing dependencies. Thus, this approach yields the
artificial “valley” appears when the correlation terms in (10minimal computational overhead needed to account for these
are ignored. correlations.

A. Filter Initialization
IV. FILTERING WITH CORRELATED RELATIVE-STATE ] ] )
MEASUREMENTS Consider the case where the first exteroceptive measure-

. . . ment, 2o, is taken at time, = 0 and let the robot’s state esti-
We now des_cnbe Fhe formulat[on of an EKF estimator th%ate and covariance be denotedXiy, and Py o, respectively.
can fuse proprioceptive and relative-pose measurements, WHil, initial error-state vector for the SC-KF contains the robot

properly accounting for the correlations in the latter. state and its clone, as well as the errors of the exteroceptive
To reiterate the challenge posed in Section I, displacemeptasyrements at timg (cf. (20)):

measurements relatevo robot states, and therefore tfnt T

pdf of these states must be available in the filter. For this )”(0‘0 - {XSIOT )}g‘o gglOT} (21)
reason, we augment the EKF (error) state véctorinclude

two copies of the robot's error state (cloning) [9]. The firsThe superscript in (21) refers to the static copy of the state,
copy of the error vectorX,,, represents the pose error at the inwhich will remain unchanged during propagation.

stant when the latest exteroceptive measurement was recorde§loning of the robot state creates two identical random
while the second copf{kﬂ;, represents the error in the robot'svariables that convey the same information, and are thus fully
current state. In the propagation phase of the filter, only tgerrelated. Moreover, sincg is not used to estimate the initial
current (evolving) state is propagated, while the previous stagbot state, the latter is independent of the measurement errors
remains unchanged. Consequently, the robot states relatec@bjime to. Thus, the initial covariance matrix of the SC-KF
each displacement estimate are both represented explicithystate vector has the form:

the filter state. Poo Poo 0
To correctly account for the correlations between consecu- 150‘0 = |(Poyo Pop O (22)
tive relative-state measurements, the state vector is additionally 0 0 Rp

augmented to include the errors of the latest exteroceptiv% . . . .
. where0 denotes a zero matrix of appropriate dimensions.

measurement [11]. Thus, if the most recent exteroceptive

measurement was recordedtaf the filter's error-state vector g giate Propagation

at ty; is: . : , . :
h During regular operation, the filter’s state covariance matrix,

v . — |yTr xT et |7 immediately after the relative-state measurement,, =
Kivatk = [ X Xiape Z’““'"’} (20) €(zx—e, zi) has been processed, takes the form:
where the subscripij denotes the value of a quantity at time P Pux Py
t¢, after exteroceptive measurements up to timeind propri- P _ P | P | P R (23)
oceptive measurements up to time ;, have been processed. ik z]flk pIE o
It is important to note that when odometry and displacement
measurements are combined for pose estimation, it is possityeere Py ;. is the covariance of the robot statetat P, -,
to apply correctionsto the exteroceptive measurements (cfS the covariance matrix of the errﬁ’glk, and Px,., =
Section IV-C). Therefore, in the SC-KF we also maintain aE{f(kZ,’jlkT} is the cross-correlation between the robot’s state
estimate,z ,;,, of the most recent measurenfentn this and the measurement error at (closed-form expressions
notation, the superscript denotes the time instant at whifdr P, . and Px, ., are derived in Section IV-C). Between
two consecutive updates, proprioceptive measurements are

3Since the extended form of the Kalman filter is employed for estimatiog,mpmyed to propagate the filter's state and its covariance. The
the state vector comprises tleerors in the estimated quantities, rather than :

the estimates. Therefore, cloning has to be applied to both the error staf@@ors state estimate Is propagated In time by the, generally
and the state estimates. non-linear, equation:

4To be more precise, this is an estimate of phgsical quantitiesneasured ~ ~
by the sensor, such as the distance and bearing to a set of features. Xipie = (X, vr) (24)

T



wherev;, denotes the proprioceptive (e.g., linear and rotation@ihe expected value of; .1, is computed from the state
velocity) measurement aj,. Linearization of (24) yields the estimates at;, andty ., as
error-propagation equation for the (evolving) second copy of

the robot state: Zh ktm = D( Xk, Xigmi) (31)
X, T Fka|k + Gin (25) and therefore, based on (2), the innovation is given by:
IR
_ R _ — e —F 32
whereF}, andG, are the Jacobians ¢i( X i, vi) with respect ' ©tm = Zhkdm = Zhkim (32)
to Xj,, andwy, respectively. Since the cloned stafe; ;. as ~ Hp Xk + HotmXgtmk
well as the estimate for the measuremept do not change + T ktm ol + Th b ket + e ktm

with the integration of a new proprioceptive measurement, the

error propagation equation for the augmented state vector Y¥h€re 7k and .., are the Jacobians @f( Xy, X, ) with
respect toX; and Xy, correspondingly. We note that the

)u(kﬂ\k = Fk)?k|k + Gl (26) quantityz’,jj:jj‘,C appearing in the last equation is equal to the

I 0 0 0 sensor noise in the measuremept ,,, i.e., ’z“’,jjrr:zlk = Zktm-
with Fp = [0 F. 0 and G = |Gy 27) In Qrder _to_ simplify the _presentatlor_l of the state update
0 0 I 0 equations, it is helpful to think of the displacement measure-

) ) ) i _ ~ ment 2z 14+, @S a constraint relating the robot pos&s,
wherel denotes an identity matrix of appropriate dimensionsy, . and the measurements and zj..,. If we consider
Thus the covariance matrix of the propagated filter state isihe “temporary” variable:

P = Fy P FL + GrQu Xt = Kl BT

Py, Py Fl Px, 2, ;

v o then we can write (32) as
= | FiPo  FuPoiFl + GrQrG{  FiPx,., | (28) (32)
T T T m *

PXka P)(kz,C Fk: PZka Thk+m = |:H]€ Hk+m JII:,k'+m, J]]::li;-i-m:| X"+ Nk k+m
whereQ;, = E{ﬁk%’,{} is the covariance of the proprioceptive = HX* + g krm (33)
measurementy,.

By straightforward calculation, if: propagation steps occur 1his linearized residual expression can be used for carrying

between two consecutive relative-state updates, the covariafte@n update onX™ (and thus on its constituent variables),
matrix pk+ i is determined as using the standard EKF methodology. The covariance of the
ok

residual is
Py PrjeFi s Px, 2, v T
Pk = | Frrm ke Prlk Pr ik Frrm e Px 2, Skpm = HPH™ + Ry i, (34)
P%, - PY o Fhimok P,z where R,,, ... is the covariance of the noise term ;.
(29) and
where Fiqm ik = 1‘[;’;51 Fy1i, and Py, 5, is the propagated pP— kak 0 ] (35)
covariance of the robot state @t, ,,,. The form of (29) shows 0 Ry tm

minimal computation. In an implementation where efficiency y

is of utmost importance, the produd;,,, can be accu- K=prPH"S ! =Kl K[, K. KL
mulated, and the matrix multiplications necessary to comput

Dymx can be delayed and carried out only when a neW%ereKk’ K m, Ky, andK.

exteroceptive measurement is processed.

}T

. are the block elements of
e corresponding taXy, Xiim, 2k, and zxym,, respectively.
We note that although the measuremept,,, can be used to
update the robot’s pose &t and the previous measurement,
C. State Update 2k, these variables will no longer be needed, so we can omit

computation ofK; and K., . Only the block element&(, ,,

We next consider the sta_lte-update step of t_he SC-KF. A%d K., ., need to be evaluated. Taking into consideration
sume that a new exteroceptive measuremgnt,,, is recorded P

et . -~ the special structure off and P, we obtain:
atty ., and along witre . itis used to produce a relative-

k+m)|
state measurement, x., = 5(2’g+m|k, Zk+m), relating robot Kipm = (Frsmp Lo HE + Progmp Hi
pqsest and Xy.,,. Note thatzy ;4. may not fully deter- + j:k+7n7kpXMJ]’§7kT+m) 5k—+1m , (36)
mine all the degrees of freedom of the pose change between I _ R ghtm T g1 (37)
andt;..,. For example, the scale is unobservable when using * #++m = “km7k ktm Pktm -

a single camera to estimate displacement via point-featuseing these results, the equations for updating ¢herent
correspondences [8]. Thus, the relative-state measuremenoisot state and the measurements,,, are

equal to a nonlinear function of the robot posestatand ~ ~

tx1m, With the addition of error: Xitmlk+m = Xitmlk T Kitmktm (38)

Zhkrm = M Xk, Xiym) + Zekrm - (30) EZIZ\k+m = Zhtm + Koy Thm (39)



Algorithm 2 Stochastic Cloning Kalman filter computation and memory requirements. We now show that
Initialization : When the first exteroceptive measurement ihese algorithmic requirements alieear in the number of
received: features observed at a single time-step.
. clone the state estimatﬁom If N and M, respectively denote the dimensions of the
. initialize the filter state covariance matrix using (22) robot's state and the size of the measurement vectdy,,at
then the covariance matri¥y, ., has size(2N + My) x
Propagation: For each proprioceptive measurement: (2N 4 My). If M), > N, the overhead of state augmentation

, . is mostly due to the inclusion of the measurements in the
. h I f th 24)° .
propagate the evolving copy of the robot state via ( )Illter state vector, which leads to the correct treatment of

* (pzrggaagate the filter covariance using (28), or equivalent Ke temporal correlations in the relative-pose measurements.
If these correlations are ignored, the size of the filter state
) vector is twice the size of the robot’s state vector. In this
Update: For each exteroceptive measurement: case, the computational complexity and memory requirements
« compute the relative-state measurement using (1), agg& O(N2). In the algorithm proposed in this paper, the
its Jacobians with reSpeCt to the current and preVio%St Computationa”y expensive operation, ka > N,

exteroceptive measurement, using (3). . is the evaluation of the covariance of the residus},. ..,
- update the current robot state using equations (3}, (34)). The covariance matri® ., is of dimensions
(32), (34), (36), and (38) (2N +Mj,) x (2N + M), and thus the computational complex-

« update the current measurement using (37) and (39) ity of obtaining Sy, is generallyO((2N+M;,)?) ~ O(M3).
» remove the previous robot state and exteroceptive Mgdowever, from (43) we see that that the submatry .,

surement of 15,6+m‘k,, which corresponds to the updated measurement
« create a cloned copy of the current robot state covariance matrix, has the following structure:
o compute the covariance of the new augmented state C T Sl ok
i - P, = Rrp —RiJ,_ S, Jr_ . L RE:
vector (cf. (40)) using (41)-(44) Zkzk ’ k kdk—mk Pk Jk—m,kilk
M, X My MpxN NXN  NxM,;,

) ) As explained in Section IIl, the measurement noise covariance
After zj 1, is processed, the clone of the previous stai@atrix R, is commonly block diagonal. Therefor®,, ., has
error, Xy, and the previous measurement e"ﬁ@;mw’ are the special structure of a block-diagonal matrix minus a rank-
discarded. The robot's current staé, ., .+ iS cloned, and x ypdate. By exploiting this structure when evaluating (34),

the updated exteroceptive measurement ereg f§$|k+m, are the operations needed reduce @&{N2M,). Moreover, the

appended to the new filter state. submatrixP,, ., does not need to be explicitly formed, which
Thus, the filter error-state vector becomes decreases the storage requirements of the algorith@{ 36>+

% _xr %7 — T (40) _NMk) ~ O(NM_k). For more details on this point, the
ktmlk+m = | ktm|k+m k+mlk+m  “k+mlk+m interested reader is referred to [18].

the!:urthermore, for a number of applications, it is not nec-

covariance matrix of, .. To this end. we note that the €SSary to maintain a clone of the entire robot state and its
Fmiktm ' covariance. Close inspection of the filter update equations

covariance matrix ofX* is updated a$®> — P — K§k+mKT. . .
Using the structure of the matrices involved in this equatioﬁeve"’lIS that only the_states that direcily aifect the relative-
state measurement (i.e., those that are needed to compute

The state update process is completed by computing

we obtain the expected relative-state measurement and its Jacobians)
. Peymikdm  Pramiktm  PXipmziim are required for the update step. The remaining states and
Prtmktm = P§g+m\k+m P§+m\k+m PXyimenim | (41) their covariance need not be cloned, thus further reducing the
KXitmzorm  E Xusmeznim L 2ktmanim memory and computational requirements. For example, when
where measurements from an inertial measurement unit (IMU) are
. employed for localization, estimates for the bias of the IMU
Pretmiktm = Prtmik — KitmSerm K (42) measurements are often included in the state vector [19]. These
Peiiziim = Ritm — Riem J:ETH? §;jm Jlljjgfm Riim bias estimates clearly do not appear in (31), and therefore it

(43) s not necessary to maintain their clones in the filter.

Pxyymznim = — Km0 Bim - (44) V. EXTENSIONS
For clarity, the steps of the SC-KF algorithm are outlined iA. Treatment of Additional Measurements
Algorithm 1. To simplify the presentation, in the previous section it was
assumed that only proprioceptive and relative-pose measure-
D. Computational Complexity ments are available. However, this assumption is not necessary,

_ . as additional measurements can be processed in the standard
While our proposed state-augmentation approach does KE methodology [20]. For example, let
count for the correlations that have been neglected in previous ' '

work, its use imposes a small additional cost in terms of 2kt = C(Xkte) + nte



be an exteroceptive measurement receiveg gt By lineariz- Eliminating the feature positionY;,, from (47) yields a

ing, we obtain the measurement error equation: constraint vector that involves all of the robot poses:
Zere = HioXeyok + Mt cr (Xes Xiv1s ooy Xorr—1,2g,,my5,) =0, (48)
R whereq is the dimension of the constraint vectoy,. If the

[0 Hiyy O] |Xppqr| +nese  (45) EKF state vector has been augmented to includelticepies
zr of the robot pose, the above equation can be used to perform

. . . n EKF update, thus utilizing all the geometric information
Since this expression adheres to the standard EKF model, Gvided by the observations of this feature. Furthermore,

a_lugmented filter gtate can be up_dated.v.vithout any modifi i1/, features are observed from robot poses, then a
tions to the algorithm. However, if additional measuremengéisimjIint vectorcy,, j = 1...Mj, can be written for

are processed, the compact special expressions of (29) and of these features. Since the feature measurements are
are no longer valid, as update steps occur between consec%\mua”y uncorrelated, the resulting constraints will also be

displacement estimates. In this case, the general form of m’?correlated, and therefore, an EKF update that utilizes all

SC-KF equat|on's mu;t be used. M, constraints can be performed @(1;) time.
Another practically important case occurs when more than

one sensor provides relative-pose measurements, but at dif-

ferent rates. Such a situation would arise, for example, when VI. RELATION TO SLAM

a mobile robot is equipped with a camera and a laser rangean alternative approach to processing the feature mea-
finder. In such a scenario, the state-augmentation approagfements obtained with an exteroceptive sensor is to jointly
of the SC-KF still applies. In particular, every time eithepstimate the robot's pose and the feature positions. This is
of the sensors records a measurement, cloning is appligtk well-known SLAM problem, which has been extensively

Therefore, at any given time the filter state vector is Comprisgﬂ]died (e_g_, [22]_[25]) This section examines the relation of
of i) three instances of the robot state, corresponding to th SC-KF algorithm to SLAM.

each sensor received a measurement, and ii) the errors indgl@M was possible, the resulting pose estimates would be
latest exteroceptive measurement of each sensor. Although gh@mal, since all the positioning information would be used

propagation and update equations must be modified to accoyig all the inter-dependencies between the robot and the
for the change in dimension of the state vector, the bagigture states would be accounted for. However, good local-

P4tk

principles of the approach still apply. ization performance comes at a considerable computational
_ ) cost. It is well known that the computational complexity
B. Extension to Multiple States and memory requirements of the EKF solution to SLAM

In the algorithm presented in Section IV, feature medncrease quadratically with the total number of features in the
surements are processed to construct displacement estimai@gironment [22]. While several approximate solutions exist
which subsequently define constraints between consecutiat possess lower computational complexity (e.g., [23], [25],
robot poses. By including two robot poses in the filter staje6]), many of them cannot guarantee the consistency of the
vector, the SC-KF can optimally process successive extegstimates, nor is there a concrete measure of suboptimality.
ceptive measurements, while incurring a computational costSince the high computational burden of SLAM is due to
linear in the number of observed features. However, whefe need to maintain a map of the environment, the amount of
a static feature is observed more than two times, the basimputational resources allocated for localization constantly
SC-KF must be modified. Intuitively, the observation of @creases as the robot navigates in an unknown environment.
static feature from multiple robot poses should impose For continual operation over an extended period, this overhead
geometric constraint involving these measurementsaindf can become unacceptably large. Even in an approximate
the corresponding poses. We now briefly describe an extens®InAM algorithm, the largest portion of the computational
to the SC-KF approach that correctly incorporates multiplesources is devoted to maintaining the constantly expanding
observations of a single point feature while still maintainingeature map. However, there exist a number of applications
computational complexitylinear in the number of locally where building a map is not necessary, while real-time perfor-
observed features [21]. mance is of utmost importance (e.g., in autonomous aircraft

Let Yy, be the position of a static feature, which is observegnding [27], or emergency response [28]). Such applications
from L > 2 consecutive robot poseXy, Xy y1,..., Xkyz-1-  require high localization accuracy, but with minimal compu-
The measurement function,,, corresponding to these meatational overhead.
surements is The SC-KF uses pairs of consecutive exteroceptive mea-

fi _ fi S surements to produce displacement estimates, which are then

Zicrs = Ry (Xiwis Vi) g, for 0=0...L—1 (46) fused with propprioceptive psensing information. As shown in

where n?_ﬂ is the measurement noise. Stacking thdse Section IV-D, our algorithm’'s complexity is linear in the
equations results in a block measurement equation of the fortmber of features observemhly at each time-stedn most

cases this number is orders of magnitude smaller than the total
zg, = hy (Xp, Xpg1, oo X1, Yy, + 1y, (47)  number of features in the environment. A reduced-complexity
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SLAM approach that is similar in spirit to the SC-KF would st
consist of maintaining only the most recently acquired loce
features, i.e., those that are currently visible by the robot, i
the state vector. However, the algorithmic complexity of suc 51
an EKF-SLAM would bequadratic in the number of local “10F
features. In contrast, the SC-KF ligiear in the number of
local features.

2) Feature position observability’ SLAM algorithms re-
quire the states of the local features to be completely obser |-
able, in order to be included in the state vector. When a sing
measurement does not provide sufficient information to in
tialize a feature’s position estimate with bounded uncertaint %
feature initialization schemes must be implemented [29], [30 x|
In fact, state augmentation is an integral part of many methor ol i
for delayed feature initialization [31], [32]. In contrast, in the ‘ ‘ ‘ ‘ ‘ ‘ ‘
SC-KF framework, feature initialization is not required since
the featuremeasurementare included in the augmented state
vector, instead of the featupositions Fig. 4. The estimated trajectory of the robot using the SC-KF algorithm

3) Data association: Since only pairs of exteroceptive(solid line), the SC-KF-NC algorithm (dashed line), the method of [10] that
measurements are used by the SC-KF algorithm, the g4t s absolute position pseudo-measurements (dash-dotted line), and odometry

. .. . . only (solid line with circles).
association problem is simplified. In contrast, SLAM requires
a correspondence search over all map features in the ro-
bot's vicinity and its computational overhead is considerab§LAM framework. This integration would further improve
higher [33]. To facilitate robust data association, it is commdhe€ attainable localization accuracy within areas with lengthy
practice to employ a feature detection algorithm that extrad@PPs. Since this modification is beyond the scope of this
“high-level” features (e.g., landmarks such as corners, junwork, in the following section we present experimental results
tions, straight-line segments) from raw sensor data. Then, oRgPIying the SC-KF algorithm to the case where only relative-

o
— SC-KF

— - SC-KF-NC

— ' Pseudo-absolute updates

-©- Odometry

y (m)

x (m)

these features are employed for SLAM. state and proprioceptive measurements are considered.
4) Information loss: While the extraction of high-level
features results in more robust and computationally tractable VII. EXPERIMENTAL RESULTS

algorithms (e.g., laser scans consist of hundreds of rangernis section presents experimental results that demonstrate
points, but may contain only a few corner features), thige performance of the algorithms described in Sections IV
approach effectivelydiscards informationcontained in the ang |11-A. The experiments use a Pioneer Il mobile robot
sensor data (cf. Fig. 1). Consequently, the resulting EStima&ﬁJipped with a SICK LMS-200 laser rangefinder. The robot’s

of the robot's pose are suboptimal compared to those thiyse consists of its planar position and orientation in a global
use all the available information. Maintaining and processifggme:

the entire history of raw sensor input (e.g., [34]) can lead . o - e G
to excellent localization performance, but such an approach X+ = [“zr “yr 9] = [pf “ox]” .(49)

may be infeasible for_ real-time implementatio_n on prica‘}\,e first present results from the application of the SC-KF, and
mobile robots. A benefit of the SC-KF approach is that it takega, study the case where the robot's state is propagated based

advantage of all the available information in two consecutiv&1 displacement estimates exclusively (i.e., no proprioceptive
exteroceptive measurements (i.e., most laser points in tWwa. < rements are processed)

scans can be used to estimate displacement by scan matching).

5) SC-KF and SLAM:For longer robot traverses, the posi- _ ] )
tioning accuracy obtained when only pairs of exteroceptié Stochastic Cloning Kalman Filter
measurements are considered is inferior to that of SLAM, In this experiment, odometry measurements are fused with
as no loop closing occursEssentially, the SC-KF approachdisplacement measurements that are obtained by laser scan
offers an enhanced form of Dead Reckoning, in the sensmtching with the method presented in [6]. The SC-KF
that the uncertainty of the robot’s state monotonically irequations for the particular odometry and measurement model
creases over time. The rate of uncertainty increase, thoughe presented in [18].
is significantly lower than that attained when only proprio- 1) Experiment descriptionDuring the first experiment, the
ceptive measurements are used (cf. Section VII). Howeveopot traversed a trajectory of approximately 165 m, while
as mentioned in Section IV-D, in the SC-KF approach thecording 378 laser scans. The robot processed a new laser
state vectorX; is not required to contain only the robotscan approximately every 1.5 m, or every time its orientation
pose. If high-level, stable features (landmarks) are availabtdianged by 1Q We here compare the performance of the SC-
their positions can be included in the “robot” state vectd€F algorithm to that obtained by the approach of Hoffren
X.. Therefore, the SC-KF method for processing relatived. [10]. In [10], the displacement estimates and the previous
state measurements can be expanded and integrated withptbee estimates are combined to yield pseudo-measurements of
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Fig. 5. The time evolution of the diagonal elements of the covariance matrix of the robot's pose. Note the difference in the vertical axes’ scale. In these
plots, the covariance values after filter updates are plotted.

the robot's absolute position. In order to guarantee consisten®) Impact of correlations:Clearly, the lack of ground truth
estimates for the latter case, we have employed the Covatita along the entire trajectory for the real-world experiment
ance Intersection (Cl) method [35] for fusing the pseudaloes not allow for a detailed comparison of the performance
measurements of absolute position with the most current padethe SC-KF and SC-KF-NC algorithms, as both appear to
estimates. From here on we refer to this approach as “pseudtiain comparable estimation accuracy. Simulations are used
absolute updates”. to perform a more thorough assessment of the impact of the

. . . . easurement correlations on the position accuracy and the
As discussed in Section IV-D, the SC-KF has Comput"’lt'onré]ncertainty estimates. The primary objective of these simu-

complexity linear in the pumber of fe_ature measurgmpnts takf?i ons is to contrast the magnitude of the estimation errors
at each pose. If even this computational complexity is dee h the computed covariance values in the cases when the

too high for a particular application, one can ignore th((Z:‘orrelations between consecutive measurements are accounted

correlations between consecutive displacement measuremeflaiis(sc_KF) vs. when they are ignored (SC-KF-NC)
at the expense of optimality. In that case, the augmented state T '

only contains the two copies of the robot state [9]. Results FOr the simulation results shown here, a robot moves in
for this approximate, though computationally simpler, variat circular trajectory of radiug m, while observing a wall

of the SC-KF, referred to as SC-KF-NC (i.e., no correlatiodbat lies6 m from the center of its trajectory. The relative-
between the measurement errors are considered), are prese?f6§ Measurements in this case are created by performing

below and are compared with the performance of the SC-Kifie-matching, instead of point matching between consecutive
scans [36]. Since only one line is available, the motion of the

The robot trajectories estimated by the different algorithnighot along the line direction is unobservable. As a result, the

are shown in Fig. 4. Fig. 5 presents the covariance estima@sgular value decomposition of the covariance matrix of the
for the robot pose as a function of time. We observe thgibot's displacement estimate can be written as

correctly accounting for the correlations between consecutive

displacement estimates in the SC-KF, results in smaller covari- s1 00 v
ance values. Even though ground truth for the entire trajector)ﬁkv’”m = [Vu Vo] |0 s 0 [VOT
is not known, the final robot pose is known to coincide with 0 0 s
the initial one. The errors in the final robot pose are equahere V, is the basis vector of the unobservable direction

:|, S§1 — OO

to X = [0.5m 0.44m —0.11°]" (0.4% of the trajectory (i.e., a unit vector along the direction of the wall, expressed
length) for the SC-KF,.X = [0.6lm 0.65m — 0.1§°]T with respect to the robot frame at timg) and V, is a
(0.54% of the trajectory length) for the SC-KF-N& = 3 x 2 matrix, whose column vectors form the basis of the

[15.03m 7.07m —32.3°]7 (10.6% of the trajectory length) for observable subspace. To avoid numerical instability in the
the approach of [10], an& = [32.4m 5.95m — 69.9°]7 filter, the displacement measurements,, ,, computed by
(19.9% of the trajectory length) for Dead Reckoning basdithe-matching are projected onto the observable subspace, thus
on odometry. From these error values, as well as from visuakating a relative-state measurement of dimension 2, given by
inspection of the trajectory estimates in Fig. 4, we concludg ;. ,, = VI 2k k-

that both the SC-KF and the SC-KF-NC yield very similar Fig. 6 shows the robot pose errors (solid lines), along

results. However, the approach based on creating pseuflan the corresponding9.8th percentile of their distribution
measurements of the absolute pose [10] performs significanilisshed lines). The left column shows the results for the SC-
worse. It should be noted that the errors in the final robi- algorithm presented in Section IV, while the right one
pose are consistent with the estimated covariance in all CaggSihe SC-KFE-NC algorithm. As evident from Fig. 6, the

considered. covariance estimates of the SC-KF-NC are not commensurate
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whereC(-) denotes the x 2 rotation matrix. In this case, the
Jacobian matrice$, andI'; are given by
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Fig. 6. The robot pose errors (solid lines) vs. the corresponéingth F 0 1

percentile of their distribution, (dashed lines). The left column shows the . . .
results for the SC-KF algorithm proposed in this paper, while the right orfeig. 7 presents the estimated robot trajectory, along with the

demonstrates Ithe refsultsf_lfor th%l SC—KF—NCI algé)rithm. gn thesejgl;})ftjs, thqzap of the area that has been constructed by overlaying all
gg‘l’mﬁ;”;ﬁ)nvgt‘ﬁg;dtser(c'_te(;) e sl %éiﬁdgaalong ﬁ:g’:xis [ the scan points, transformed using the estimates of the robot
- f) Orientation errors and-=3¢ bounds. pose (we stress that the map is only plotted for visualization
purposes, and is not estimated by the algorithm). This experi-
ment used the same dataset from Section VII-A. Fig. 8 presents
with the corresponding errors. When the temporal correlatioosvariance estimates for the robot’s pose, computed using (10)
of the measurements are properly treated, as is the case(8€-KF, solid lines) in contrast with those computed when the
the SC-KF, substantially more accurate covariance estimatesirelations between the consecutive displacement estimates
which reflect the true uncertainty of the robot's state, amre ignored (SC-KF-NC, dashed lines). As expected, the pose
computed. Moreover, evaluation of the rms value of theovariance is larger when only displacement measurements
pose errors shows that the errors associated with the SC-#ie used, compared to the case where odometry measurements
algorithm (which accounts for correlations) are 25% smallerre fused with displacement measurements (cf. Fig. 5). From
than those of the SC-KF-NC. Fig. 8 we also observe that accounting for the correlations
results in significantly smaller values for the estimated covari-
ance of the robot pose, thus corroborating the discussion of
Section 1l1-B.
B. State Propagation based on Displacement Estimates

We now present results for the case in which the robot’s pose VIII. CoNcLUSIONS
is estimated using only displacement estimates computed frony, this paper, we have proposed an efficient EKF-based

|2§§r sce;nAmatc;]ing. Given a displacement estimgi& . = estimation algorithm, termed &tochastic Clonindg<alman
["Pkym “@rem]”, the global robot pose is propagated usingiltering (SC-KF), for the problem of fusing proprioceptive
the equations measurements with relative-state measurements that are in-

)A(;Hm _ g()?mzk,k-&-m) = ferred from exteroceptive sensory mp_ut. An analysis of the
e - G p structure of the measurement equations demonstrated that
[ 2k+m] _ { 31«] + O @c) Pk+m (50) when the same exteroceptive measurements are processed
“ Drem “or FOtrm to estimate displacement in consecutive time intervals, the
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Fig. 8. The estimated covariance of the robot’'s pose when the correlation between consecutive measurements is properly accounted for (solid lines) vs.
the covariance estimated when the correlations are ignored (dashed lines). (a) Covariance ateagigh@®@) Covariance along thg-axis (c) Orientation
Covariance. At approximately 130 sec, a displacement estimate based on very few laser points was computed, resulting in a sudden increase in the covariance

displacement errors are temporally correlated. The main cofs] S. T. Pfister, K. L. Kriechbaum, S. I. Roumeliotis, and J. W. Burdick,
tribution of this work is the introduction of a novel feature- “Weighted range sensor matching algorithms for mobile robot displace-

inalizati that all f th . f ment estimation,” irProc. IEEE Int. Conf. on Robotics and Automation
marginalization process al allows T1or € processing O Washington D.C., May 11-15 2002, pp. 1667—74.

relative-pose measurements while also considering the corrgt K. Konolige, “Large-scale map-making,” iAAAI National Conference
lations between these. This method is based on augmenting? on Artificial Intelligence San Jose, CA, July 2004, pp. 457-463.

S P. Torr and D. Murray, “The development and comparison of robust
the state vector of the EKF to temporarlly include the robo methods for estimating the fundamental matriternational Journal

poses and the feature observations related through a local of Computer Visionvol. 24, no. 3, pp. 271-300, 1997.
geometric constraint (i.e., a relative-state measurement). Bl S. . Roumeliotis and J. W. Burdick, “Stochastic cloning: A generalized

. . . framework for processing relative state measurementsPrat. |IEEE
employing state augmentation, the dependence of the relative- Int. Conf. on Robotics and AutomatiolVashington D.C., 2002, pp.
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transformed to a dependence on therent state of the filter, [10] B.D.Hoffman, E. T. Baumgartner, T. L. Huntsberger, and P. S. Schenker,

: At “Improved state estimation in challenging terraiAfitonomous Robats
and this enables application of the standard EKF framework. 6, no. 2, pp. 113-130, April 1999,

The experimental and simulation results demonstrate thaf] A. 1. Mourikis and S. I. Roumeliotis, “On the treatment of relative-pose
the SC-KF method attains better localization performance measurements for mobile robot localization,”Rmoc. IEEE Int. Conf.

compared to previous approaches [10], while the overhead on Robotics and Automatip®©rlando, FL, May 15-19 2006, pp. 2277
! — 2284.

imposed by the additional complexity is minimal. The methodz] s. 1. Roumeliotis, “A kalman filter for processing 3-d relative pose mea-
yields more accurate estimates, and most significantly, it surements,” California Institute of Technology, Tech. Rep., Mar. 2002,
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