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Abstract

In this paper, we present a localization algorithm for es-
timating the 3D position and orientation (pose) of a mov-
ing vehicle based on visual and inertial measurements. The
main advantage of the proposed method is that it provides
precise pose estimates at low computational cost. This is
achieved by introducing a two-layer estimation architec-
ture that processes measurements based on their informa-
tion content. Inertial measurements and feature tracks be-
tween consecutive images are processed locally in the first
layer (Multi-State-Constraint Kalman filter) providing esti-
mates for the motion of the vehicle at a high rate. The second
layer comprises a bundle adjustment iterative estimator that
operates intermittently so as to (i) reduce the effect of the
linearization errors, and (ii) update the state estimates every
time an area is re-visited and features are re-detected (loop
closure). Through this process reliable state estimates are
available continuously, while the estimation errors remain
bounded during long-term operation. The performance of
the developed system is demonstrated in large-scale experi-
ments, involving a vehicle localizing within an urban area.

1. Introduction

In this paper, we focus on the problem of tracking the
pose of a mobile platform by combining visual and iner-
tial measurements. In particular, the main contribution of
this work is a system capable of long-term, accurate, and
real-time pose estimation using Inertial Measurement Unit
(IMU) and monocular-camera measurements. The key char-
acteristic of the system is its dual-layer estimation architec-
ture (cf. Fig. 1): At the first layer, a combined visual/inertial
odometry estimator fuses the visual and inertial measure-
ments to continuously track the 3D motion of the camera.
The Multi-State Constraint Kalman Filter (MSC-KF) [9]
estimator, employed for this task, offers real-time perfor-
mance, and reports the camera pose estimates at the IMU
data rate. However, since the MSC-KF utilizes no loop-
closure information, the uncertainty of the state estimates
will gradually increase over time. In order to compensate for
the error growth, at the second layer of the architecture we
employ a least-squares Bundle-Adjustment (BA) estimator
in conjunction with a loop-closure detection module. Every
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Figure 1. The block diagram of the system.

time a loop-closing event is detected, the re-observations of
previously seen features are processed by the BA algorithm,
to obtain an improved pose estimate. This estimate is then
fed back to the visual/inertial odometry module, thus result-
ing in diminished localization errors.

Two key properties render the proposed dual-layer archi-
tecture suitable for long-term, real-time localization: Firstly,
it is important to note that the MSC-KF, utilized in the first
layer, tightly couples the visual and inertial measurements,
and has computational complexity only linear in the number
of locally visible features. Therefore, it is able to process
all the available feature measurements in real-time, produc-
ing motion estimates of high accuracy. Secondly, the use of
BA for processing loop-closure information ensures that the
computational burden of loop-closing is incurred only when
a loop closure actually occurs (cf. Section 4). Since loop
closing is typically an infrequent event, the additional cost in
processing time is minimal compared to using the MSC-KF
alone (cf. Section 5). As a result of the two aforementioned
characteristics, the proposed dual-layer architecture is capa-
ble of producing pose estimates that are available both in real
time, and with bounded long-term errors.

2. Related Work

In this section, we briefly discuss existing approaches for
processing visual feature observations and inertial measure-
ments. One family of such algorithms track the trajectory
of the camera over time, without estimating the structure of
the environment, and are typically termed visual-odometry
methods. The most computationally efficient of these meth-
ods utilize the feature measurements to derive constraints
between pairs of consecutive camera poses, and then fuse
them with the inertial measurements. For example in [14],



an image-based motion estimation algorithm is applied, to
obtain displacement estimates between consecutive camera
poses. Similarly, in [1, 3] constraints between the current
and previous pose are defined using the epipolar geome-
try. In both cases, the derived constraints are combined
with IMU measurements using an Extended Kalman Filter
(EKF). Applying only pairwise constraints, however, is sub-
optimal when a feature is seen in multiple images.

Contrary to the aforementioned approaches, the MSC-KF
algorithm, which is employed in the first layer of the pro-
posed localization architecture, uses the feature measure-
ments to impose constraints between all consecutive poses
from which a feature is seen. This is similar in spirit to
visual-odometry approaches that use bundle adjustment over
a sliding window of camera poses [7, 10]. Similarly to the
MSC-KF, these approaches temporarily initialize features,
use them for imposing constraints on windows of consecu-
tive camera poses, and then discard them. These approaches,
however, employ only a loose coupling between the visual
and inertial measurements: the IMU rotational velocity mea-
surements are used to independently compute attitude esti-
mates, which are subsequently fused with the results of the
visual odometry module. In this case, the resulting estimates
are suboptimal, because the IMU biases are not updated. A
loose coupling of visual and inertial measurements is also
employed in the system presented in [12], which uses mul-
tiple cameras for visual odometry, and then fuses the result
with that of pure IMU-based pose tracking. In contrast, in
the MSC-KF the visual and inertial measurements are fused
in a tightly coupled formulation, which results in increased
accuracy.

All the aforementioned approaches only process the mea-
surements for motion tracking, and do not utilize loop clo-
sure information. On the other end of the spectrum lie Si-
multaneous Localization and Mapping (SLAM) algorithms,
which jointly estimate the current IMU pose, as well as the
3D positions of all landmarks. The estimation is typically
carried out by an EKF [11, 13, 15]. The fundamental advan-
tage of EKF-SLAM algorithms is that, because the feature
positions are maintained in the filter state vector, feature re-
observations that occur when the camera re-visits an area can
be readily processed. However, EKF-based SLAM methods
have computational complexity quadratic in the total num-
ber of features estimated. Most importantly, even though
the camera observes only a small number of features at each
time instant, the covariance matrix for all the features in the
state vector needs to be updated at every time step. Thus the
quadratic cost of updating the entire state is incurred at every
time step.

In contrast to EKF-based SLAM, in the BA formulation,
which is employed for processing loop closure information
in our system, the information (i.e., Hessian) matrix remains
naturally sparse. Feature observations introduce new terms
involving only the particular feature and the camera poses
from which it was observed. Thus, the computational cost of

Algorithm 1 MSC-KF
Propagation: For each IMU measurement received, propa-
gate the filter state and covariance (cf. Section 3.2).

Image registration: Every time a new image is recorded,

• augment the state and covariance matrix with a copy of
the current camera pose estimate (cf. Section 3.3).

• image processing module begins operation.

Update: When a feature track is lost, perform an EKF up-
date (cf. Section 3.4).

updating the Hessian with the new measurement information
is constant. Additionally, solving the system is postponed
until a loop closure occurs. We note that a batch algorithm
for estimating the camera trajectory using visual and iner-
tial measurements is also presented in [15]. However, in that
work the constraints that are introduced by the IMU mea-
surements on the position, attitude, and velocity are treated
as independent, which is an approximation. In our work, the
full correlation structure between these constraints is prop-
erly accounted for (cf. (20)), resulting in improved estima-
tion accuracy.

3. First Layer: MSC-KF

In this section, we describe the Multi-State constraint-
Kalman filter (MSC-KF), which is used in the first layer of
the localization system (cf. Fig. 1). As mentioned in the
Introduction, the purpose of this layer is to efficiently and
accurately track the camera motion, using the visual and in-
ertial measurements. The MSC-KF is chosen for this task,
because it has computational complexity only linear in the
number of local features (thus attaining real-time perfor-
mance), and can utilize the camera-motion constraints due
to the feature measurements in a statistically optimal fash-
ion. Specifically, the filter’s design is motivated by the ob-
servation that, when a static feature is viewed from multiple
camera poses, its measurements can be used to define con-
straints involving all these poses. The MSC-KF employs a
measurement model that expresses these constraints without
including the 3D feature position in the filter state vector, as
explained in Section 3.4.

An overview of the MSC-KF algorithm is given in Al-
gorithm 1. We consider a system consisting of an IMU and
a camera, in which the transformation between the two is
known and constant. The MSC-KF tracks the 3D pose of
the IMU-affixed frame {I} with respect to a global frame of
reference {G}. In our work, {G} is chosen as an Earth-
Centered, Earth-Fixed (ECEF) frame, which allows us to
easily account for the effects of the earth’s rotation on the
IMU measurements (cf. Eqs. (5)-(6)). In the MSC-KF, the
IMU measurements are processed immediately as they be-



come available, for propagating the EKF state and covari-
ance (cf. Section 3.2). On the other hand, each time an
image is recorded, the current camera pose estimate is ap-
pended to the state vector (cf. Section 3.3). State augmen-
tation allows us to create a state vector comprising a sliding
window of the N latest camera poses. During EKF updates,
the measurements of each tracked feature are used for im-
posing constraints between these poses. In the following,
we describe the various components of the MSC-KF algo-
rithm (for a more detailed description, the interested reader
is referred to [9]).

3.1. Structure of the EKF state vector

At any time instant, the MSC-KF state vector comprises
(i) the evolving IMU state, XIMU, and (ii) a sliding window
of N past camera poses. The IMU state vector is:

XIMU =
[
I
Gq̄T bg

T GvI
T ba

T GpT
I

]T
(1)

where I
Gq̄ is the unit quaternion describing the rotation from

frame {G} to frame {I}, GpI and GvI are the IMU posi-
tion and velocity with respect to {G}, and finally bg and ba

are 3 × 1 vectors that describe the biases affecting the gy-
roscope and accelerometer measurements, respectively. The
IMU biases are modeled as random walk processes, driven
by the white Gaussian noise vectors nwg and nwa, respec-
tively. Following (1), the IMU error-state is defined as1:

X̃IMU =
[
δθT

I b̃T
g

GṽT
I b̃T

a
Gp̃T

I

]T

(2)

where δθI is the 3×1 IMU attitude-error vector, defined by:

I
Gq̄ = δq̄ ⊗ I

G
ˆ̄q, where δq̄ � [

1
2δθT

I 1
]T

(3)

Intuitively, the quaternion δq̄ describes the (small) rotation
that causes the true and estimated attitude to coincide. Since
attitude corresponds to 3 degrees of freedom, using δθ to
describe the attitude errors is a minimal representation.

Assuming that N camera poses are included in the EKF
state vector at time-step k, this vector has the following
form:

X̂k =
[
X̂T

IMUk

C1
G

ˆ̄q
T Gp̂T

C1
. . . CN

G
ˆ̄q
T Gp̂T

CN

]T

(4)

where Ci

G
ˆ̄q and Gp̂Ci

, i = 1 . . . N are the estimates of the
camera attitude and position, respectively. The EKF error-
state vector is defined accordingly.

1Throughout this paper x̂ denotes the estimate of a quantity x, and x̃ de-
notes the error in this estimate, defined as x̃ = x−x̂. Moreover, IN denotes
the N × N identity matrix, C(q̄) denotes the rotation matrix correspond-
ing to a quaternion q̄, the symbol ⊗ denotes quaternion multiplication, and
�x×� denotes the skew symmetric matrix corresponding to the 3×1 vector
x. Finally, the preceding superscript for a quantity x, e.g., Ax, denotes the
frame of reference in which the quantity is expressed.

3.2. IMU Propagation

Propagation of the IMU state is carried out by numerical
integration of the continuous-time IMU system model. The
gyroscope and accelerometer measurements, ωm and am re-
spectively, are given by [2]:

ωm = Iω + C(I
Gq̄)Gωe + bg + ng (5)

am = C(I
Gq̄)(Ga − Gg + 2�Gωe ×�GvI + �Gωe ×�2 GpI)

+ ba + na (6)

where Iω is the IMU rotational velocity, Ga is the IMU body
acceleration, Gg and Gωe are the gravitational acceleration
and the earth rotation vector respectively, and finally ng

and na are zero-mean, white Gaussian measurement noise
processes. Given the IMU measurements at time-steps tk
and tk+1 = tk + T , propagation of the IMU state estimate
is carried out by 5-th order Runge-Kutta integration of the
continuous-time IMU system model [9]:

˙̂XIMU = f(X̂IMU,ωm,am) (7)

in the time interval [tk, tk+1]. Moreover, the covariance ma-
trix of the MSC-KF has to be propagated. For this purpose,
we introduce the following partitioning for the covariance:

Pk|k =
[
PIIk|k PICk|k
PT

ICk|k PCCk|k

]
(8)

where PIIk|k is the 15 × 15 covariance matrix of the evolv-
ing IMU state, PCCk|k is the 6N × 6N covariance matrix
of the camera pose estimates, and PICk|k is the correlation
between the errors in the IMU state and the camera pose
estimates. With this notation, the covariance matrix of the
propagated state is given by:

Pk+1|k =
[

PIIk+1|k Φ(tk+1, tk)PICk|k
PT

ICk|kΦ(tk+1, tk)T PCCk|k

]

where PIIk+1|k is computed by numerical integration of the
Lyapunov equation:

ṖII = FPII + PIIFT + GQIMUGT (9)

In this equation, F and G are the Jacobians of the system
model with respect to the IMU error state and the process
noise, respectively, and QIMU is the covariance matrix of the
process noise. Numerical integration is carried out for the
time interval [tk, tk+1], with initial condition PIIk|k . The
state transition matrix Φ(tk+1, tk) is similarly computed by
numerical integration of the differential equation

Φ̇(tk + τ, tk) = FΦ(tk + τ, tk), τ ∈ [0, T ] (10)

with initial condition Φ(tk, tk) = I15. We point out that the
computational complexity of IMU propagation is linear in



the number of camera poses in the MSC-KF state vector, N ,
and is therefore extremely efficient, with each propagation
requiring only a few microseconds of processing time.

3.3. State Augmentation

Upon recording a new image, the camera pose estimate is
computed from the IMU pose estimate as:

C
G

ˆ̄q = C
I q̄ ⊗ I

G
ˆ̄q, and Gp̂C = Gp̂I + CT (I

G
ˆ̄q) IpC (11)

where C
I q̄ is the quaternion expressing the rotation between

the IMU and camera frames, and IpC is the position of
the origin of the camera frame with respect to {I}, both of
which are known. This camera pose estimate is appended
to the state vector, and the covariance matrix of the EKF is
augmented accordingly [9].

3.4. MSC-KF Measurement Model

We now present the measurement model employed for
updates in the MSC-KF. Since the Extended form of the
Kalman filter is used, for constructing a measurement model
it suffices to define a residual, r, that depends linearly on the
state errors, X̃, according to the general form:

r = HX̃ + noise (12)

In this expression H is the measurement Jacobian matrix,
and the noise term must be zero-mean, white, and uncorre-
lated to the state error, for the EKF framework to be applied.

For simplicity, we consider the case of a single feature,
fj , that has been observed from the N camera poses, Πi =
{Ci

G q̄, GpCi
}, in the MSC-KF state vector. Each of the N

observations of the feature is described by the perspective
(nonlinear) measurement model:

z(j)
i = h(Gpfj

,Πi) + n(j)
i , i = 1 . . . N (13)

where n(j)
i is the 2 × 1 image noise vector, with covariance

matrix R(j)
i = σ2

imI2. Since the feature position Gpfj
is

unknown, in the first step of the MSC-KF algorithm we em-
ploy least-squares minimization (intersection) to obtain an
estimate, Gp̂fj

, of the feature position [9]. Once this esti-
mate is obtained, we compute the measurement residual:

r(j)
i = z(j)

i − ẑ(j)
i = z(j)

i − h(Gp̂fj
, Π̂i) (14)

Linearizing about the estimates of the camera pose and the
feature position, the residual of (14) is approximated as:

r(j)
i � H(j)

Xi
X̃ + H(j)

fi

Gp̃fj
+ n(j)

i (15)

where H(j)
Xi

and H(j)
fi

are the Jacobians of the measurement

z(j)
i with respect to the state and the feature position, respec-

tively. By stacking the residuals of all N measurements of

this feature, we obtain:

r(j) � H(j)
X X̃ + H(j)

f
Gp̃fj

+ n(j) (16)

where r(j), H(j)
X , H(j)

f , and n(j) are block vectors or matri-

ces with elements r(j)
i , H(j)

Xi
, H(j)

fi
, and n(j)

i , for i = 1 . . . N .
Since the feature observations in different images are inde-
pendent, the covariance matrix of n(j) is R(j) = σ2

imI2N .
Recall at this point that the state estimate, X̂, was used to

compute the feature position estimate. Therefore, the error
Gp̃fj

in (16) is correlated with the errors X̃. Consequently
the residual r(j) is not in the form of Eq. (12), and cannot
be directly applied for updates in the EKF. To overcome this
problem, we define a residual r(j)

o , by projecting r(j) on the
left nullspace of the matrix H(j)

f . Specifically, if we let U
denote the unitary matrix whose columns form the basis of
the left nullspace of Hf , we obtain:

r(j)
o = UT (z(j) − ẑ(j)) � UT H(j)

X X̃ + UT n(j) (17)

= H(j)
o X̃(j) + n(j)

o (18)

For computational efficiency, this projection is carried out in
O(N2) operations using Givens rotations [5], and without
explicitly forming U. Since the 2N × 3 matrix H(j)

f has
full column rank, its left nullspace is of dimension 2N − 3.
Therefore, r(j)

o is a (2N − 3) × 1 vector. This residual is
independent of the errors in the feature coordinates, and thus
EKF updates can be performed based on it. Eq. (18) defines
a linearized constraint between all the camera poses from
which the feature fj was observed. This expresses all the

available information that the measurements z(j)
i provide for

the N states, and thus the resulting EKF update is optimal,
except for the inaccuracies caused by linearization.

It is important to note that the residual defined in (17) is
not the only possible expression of the geometric constraints
that are induced by observing a static feature in N images.
An alternative approach would be, for example, to employ
the epipolar constraints that are defined between 2N − 3
pairs of the images, or to use the multi-linear constraints de-
fined by the N measurements directly [6]. However, the re-
sulting constraints are highly nonlinear, and moreover, they
are not statistically independent, since each measurement
is used in defining multiple constraints. Our experiments
have shown that employing linearization of these constraints
yields inferior results compared to the approach described
above.

3.5. Outlier Rejection

Prior to using each feature’s measurements for updates,
an outlier rejection test is performed. Specifically, for each
feature the Mahalanobis distance:

d = r(j)T
o

(
H(j)

o PH(j)T
o + σ2

imI2N−3

)−1

r(j)
o (19)



is computed, and compared against the 95-th percentile of
the χ2 cumulative distribution function with 2N −3 degrees
of freedom. If d is smaller than this threshold, the feature is
accepted as an inlier, and used in the updates.

Note that, in contrast to outlier rejection based on vision
alone, in this outlier rejection scheme the MSC-KF state es-
timate is used as a prior, to help identify outliers. Addition-
ally, it is important to observe that all the measurements of
the feature are simultaneously used for the rejection test. As
a result, features that correspond to slowly-moving objects,
or whose tracking is unreliable, can be more easily detected
and discarded. These properties arise from the tight cou-
pling of the visual and inertial measurements, implemented
by the MSC-KF. Finally, we note that in our dual-layer lo-
calization architecture, outlier rejection is carried out in the
first layer by the MSC-KF, where the covariance matrix is di-
rectly available. Thus, the cost of computing the covariance
matrix for outlier rejection in BA can be avoided, resulting
in computational savings.

3.6. MSC-KF computational complexity

The computational complexity of applying the measure-
ment model described in Section 3.4 is quadratic in N
for each feature, and is dominated by the cost of the pro-
jection operation. If at time-step tk we use Mk features
for updates, the total computational cost of applying the
measurement model is O(MkN2). Moreover, in [9] it is
shown that once all residual vectors r(j)

o have been com-
puted, the update can also be carried out at computational
cost max(O(MkN2), O(N3)). What is important here is
that the cost is linear in the number of features, which is
typically much larger than N (typically a few tens of states
are kept in the MSC-KF sliding window, while hundreds of
features are processed at each time step). This property en-
ables the MSC-KF to operate in real-time, while processing
all the available feature measurements. Because the mea-
surement model described in Section 3.4 is optimal up to
linearization, all the motion constraints provided by the fea-
ture tracks are utilized. As a result, the MSC-KF provides
combined visual/inertial odometry of high accuracy.

4. Second Layer: Closing Loops

The MSC-KF, presented in the preceding section, only
processes local motion information, in the form of IMU
measurements and features tracked in consecutive images.
The localization information available when the camera re-
visits an area, is not utilized. For this reason, we employ a
second layer of estimation (cf. Fig. 1), whose main purpose
is to detect loop closures, and use the corresponding mea-
surements for improving the state estimates. As discussed
in Section 2, a simple approach for achieving this would be
to include in the MSC-KF state vector a number of land-
marks, similarly to SLAM, and to use the re-observations
of these landmarks for improving the estimation accuracy.

However, this approach has two limitations: First, even if
we knew in advance which landmarks will be re-observed,
their inclusion in the EKF state vector would require updat-
ing their position estimates (and the associated covariance
matrix) every time a filter update takes place. This would
incur a significant computational cost. Secondly, and most
importantly, we typically cannot predict which landmarks
will be re-observed in the future. As a result, we would need
to maintain a large number of landmarks in the state vector,
many of which would never be seen again.

For these reasons, we have opted for a different approach
when processing loop-closure information. In particular, a
separate module of our system uses the recorded images, as
well as the history of camera-pose estimates, to detect when
an area is re-visited (cf. Fig 1). Since the MSC-KF esti-
mates are typically very accurate (e.g., errors less than 0.5%
of the distance traveled) detecting candidate loop-closures
along the trajectory can be performed very efficiently, based
on a simple distance criterion. Once a candidate location is
identified, only then images are processed to detect features
observed during both visits. These feature re-observations
are subsequently processed in a BA algorithm, along with
the IMU measurements and the features that passed the Ma-
halanobis gating test in the MSC-KF2. The main benefit of
this approach is that the processing is essentially trajectory-
driven. The computational cost of loop closing is incurred
only when loop closing occurs, which is typically an infre-
quent event.

In addition to using loop-closure information, the use of
an iterative BA algorithm leads to improved linearization.
Since the MSC-KF algorithm is an EKF-based estimator,
it linearizes the measurements only once, and the gradual
buildup of linearization errors can eventually lead to incon-
sistent estimates. To reduce the effect of linearization inac-
curacies, BA can be run intermittently (or continuously, as a
background process), even when no loop closure occurs, and
its results can be used to “reset” the MSC-KF state and co-
variance estimates, and remove any accumulated lineariza-
tion errors.

4.1. Bundle Adjustment

We now describe the formulation of a batch Maximum
a Posteriori (MAP) estimator for processing the inertial and
visual measurements. We consider the case in which K IMU
measurements and K images are available, recorded at every
time-step in the interval3 [t1, tK ]. The MAP estimate for all

2Although this architecture is independent of the type of visual features
used, we note for completeness that in our implementation Harris corners
are used when there is little change between images (e.g., tracking features
for the MSC-KF), while SIFT keypoints are used for wide-baseline match-
ing (e.g., loop closure).

3To simplify the presentation in this section, we assume that IMU mea-
surements and images are concurrently recorded. In a real implementation,
however, IMU measurements are most often available at a higher rate than
images. This case is treated analogously, by performing multiple propaga-



IMU states and all feature positions can be determined by
minimizing the cost function:

J =
∣∣∣∣XIMU1 − Z1

∣∣∣∣
Rprior

+
∑
�,j

∣∣∣∣z(j)
� − h(Gpfj

,Π�)
∣∣∣∣

R
(j)
�

+
K−1∑
�=1

∣∣∣∣XIMU�+1 − φ(XIMU�
,ωm,am)

∣∣∣∣
Q�

(20)

where
∣∣∣∣x∣∣∣∣

A
denotes the matrix-weighted norm xT A−1x.

The three terms in this cost function correspond to the fol-
lowing types of information that is available to the system:
• The first term in J expresses the prior information about
the initial state of the IMU. Typically, we have an estimate
for the pose and velocity of the IMU at the start of the sys-
tem’s operation, while for the IMU biases such prior infor-
mation is obtained from the sensor specifications, or by sen-
sor calibration. In (20) the prior estimate and its covariance
are denoted by Z1 and Rprior, respectively.
• The second term in (20) is the weighted squared error
between the actual and predicted feature measurements, and
expresses the constraints due to the visual observations. This
term is the cost that is typically minimized by photogram-
metric bundle-adjustment algorithms [16]. We note that the
indices � and j in this term assume appropriate values to in-
dex all the available feature measurements. This includes
both the feature tracks provided by the MSC-KF, as well
as the feature re-observations that are detected by the loop-
closure module.
• The last term in (20) expresses the constraints due to
the IMU process model. Each of the K − 1 summands is
the weighted difference between the estimated IMU state at
time-step t�+1, and the IMU state predicted using the iner-
tial measurements. To compute this predicted state (denoted
by φ(XIMU�

,ωm,am)), we numerically integrate the IMU
system model over the time interval [t�, t�+1], starting from
the estimate XIMU�

. The covariance matrix Q�, which ex-
presses the uncertainty of the IMU-state-change estimate, is
similarly computed by numerically integrating the Lyapunov
equation (cf. (9)), starting from a zero initial value. The Ja-
cobian of the term φ(·), needed by the iterative minimiza-
tion algorithm, is computed by numerically integrating (10),
starting with the identity matrix as an initial value.

In order to minimize the cost function J with respect to
all IMU states and all feature positions, we employ Gauss-
Newton iterative minimization. Since the vast majority
of the features observed are tracked in a small number of
frames, in each iteration we utilize the technique of first
marginalizing out all features, solving for the IMU states,
and then back-substituting for the feature positions, simi-
larly to [4]. This leads to a sparse structure for the Hessian
matrix of the system, which we solve using sparse skyline
Cholesky factorization [16]. Because the iterative minimiza-

tion steps in the computation of each of the summands of the third term
in (20).

tion uses as an initial guess the MSC-KF output, which is
typically very accurate, only a few iterations (usually 3-4)
are required for convergence.

4.2. Feedback to the First Layer

Once the minimization has converged, the IMU and cam-
era state estimates contained in the current MSC-KF slid-
ing window are fed back to the first layer. Moreover, the
corresponding covariance matrix is computed and replaces
the current MSC-KF covariance matrix. The computation of
the covariance matrix can be sped up significantly, by taking
into consideration the properties of Cholesky factorization.
Specifically, from the Gauss-Newton iteration, the Cholesky
factor of the Hessian matrix corresponding to the history of
all IMU states is available:

A = RT R ⇒
[
Aoo Aoa

AT
oa Aaa

]
=

[
RT

oo 0
RT

oa RT
aa

] [
Roo Roa

0 Raa

]

where blocks denoted by the subscript “oo” correspond to
older poses, blocks denoted by “aa” correspond to the poses
that are currently active in the MSC-KF sliding window, and
“ao” corresponds to the cross-terms between these. Employ-
ing the properties of the block-matrix inversion and substi-
tuting from the above expression, the covariance matrix of
the active states is computed as:

Paa =
(
Aaa − AT

oaA
−1
oo Aoa

)−1
= R−1

aa R−T
aa (21)

Since Raa is already available, the cost of computing Paa is
simply that of inverting a triangular matrix and multiplying
it with its transpose.

4.3. Marginalization of Old States

An important issue is that the computational cost of BA
increases with the number of states in the estimated trajec-
tory (due to sparsity, the increase is approximately linear in
time). Thus, for very long trajectories the computational bur-
den can become intractable. To address this problem, we can
choose to permanently marginalize out certain older poses
and the features seen from these poses. By limiting the num-
ber of estimated states, this process allows the processing
time for BA to remain bounded. Clearly, after marginaliza-
tion the linearization of the measurements that involve the
removed states is not recomputed, and hence marginaliza-
tion leads to an approximation of the cost function. How-
ever, if only older, “mature” states (i.e., states for which the
estimates are deemed accurate) are removed, the approxima-
tion will be very good. Finally, we note that once a pose is
marginalized, we no longer have the ability to close loops
using this pose. Therefore, care should be taken in order to
always maintain a set of poses in areas that are likely to be
revisited by the vehicle.



5. Experimental results

The presented localization system has been applied for
estimating the trajectory of a vehicle moving in an urban en-
vironment. The experimental setup comprised a Pointgrey
FireFly camera, registering images with resolution 640×480
pixels, and an Inertial Science ISIS IMU, providing inertial
measurements at 100Hz. During the experiments all data
were stored on a computer and processed off-line. The run-
times reported in the following exclude feature extraction
and tracking. We hereafter present results from two experi-
ments to demonstrate the system’s performance.

Experiment 1: In this experiment the vehicle drove for
about 16 minutes, covering a distance of approximately
7.6 km. Images were processed at a rate of 7.5 Hz, and an
average of 800 features were tracked in each image. These
feature measurements were processed by the MSC-KF, in
which a sliding window of 30 camera poses was maintained.
In order to demonstrate the localization accuracy attainable
by the tightly-coupled visual/inertial odometry when used
without feature re-detection, in this dataset loop-closing was
not applied. The BA module is run every 500 images, for re-
ducing the buildup of linearization errors. To limit the com-
putational burden of the iterative minimization process, per-
manent marginalization of older poses is applied in the BA,
so as to keep the maximum number of actively optimized
camera states to 1000.

With these settings, the MSC-KF requires approximately
100 msec of processing time per image, while BA requires
approximately 2.2 sec per iteration (the algorithms run on
a 2GHz processor). Since BA runs every 500 images, and
typically requires 3 iterations, this implies that the additional
cost of carrying out the batch optimization is about 6.6 sec
for every 50 sec of processing time taken up by the MSC-KF,
a mere 13% overhead. This small additional cost demon-
strates the benefits of using the dual-layer localization archi-
tecture: the BA guarantees that the state estimates are very
close to the globally optimal MAP result (a small difference
is expected due to the marginalization), while the overhead
over the simple local processing of the MSC-KF is minimal.

In Fig. 2, the estimated trajectory is shown, and compared
to the GPS ground truth. The estimate is plotted in white (a
red square indicates the starting position), while the GPS
measurements are denoted by blue dots. Both are superim-
posed on a satellite image of the area where the experiment
took place. Comparison of the estimated trajectory with the
GPS measurements shows that the position error remains be-
low 30 m throughout the trajectory. For a trajectory of length
7.6 km, this corresponds to an error of less than 0.4% of the
distance traveled. Note also that this level of accuracy is
achieved without utilizing any additional localization infor-
mation (e.g., knowledge of the map, vehicle wheel odome-
try, or kinematic model of the car) and by processing images
at a relatively low rate (7.5 Hz). This further demonstrates
the benefits of fusing visual with inertial measurements.

Experiment 2: In this case, the car covered a distance
of 3.2 km within 9 minutes and five loop closures were
detected. Due to hardware limitations, in this experiment
images could only be recorded at 3 Hz. Since the vehi-
cle often revisited the same areas, a number of loop-closure
events were considered. In our implementation, candidate
loop-closure sections of the trajectory are identified based
on two criteria: (i) spatial closeness of the trajectory, and
(ii) motion in approximately the same direction. To limit
the search space, candidate loop closures are sought only in
portions of the trajectory where the vehicle either stops or
turns. Once the candidate loop-closure locations are identi-
fied, three equally spaced images are chosen in each of the
matching trajectory segments. In these images, SIFT key-
points are detected and matched [8]. If keypoints are reli-
ably matched in all the images (both within each segment
and across the current and previous segments), they are then
passed for processing to the BA algorithm.

The estimated trajectory is shown in Fig 3, superimposed
on a satellite image of the area where the experiment took
place. Even though GPS ground truth was not available, the
quality of the estimated trajectory can be evaluated based on
how closely it follows the road pattern. Additionally, the fi-
nal position of the vehicle with respect to its starting point
was known, and this allowed us to compute the final posi-
tion error: 6.3 m in the ground plane, and 0.8 m in altitude.
For a trajectory of 3.2 km in length, this corresponds to less
than 0.2% of the distance traveled. When no loop-closing
features were used, the final error magnitude was approxi-
mately 10 m [9], which shows the benefits of utilizing loop-
closure information.

In terms of processing requirements, in this dataset the
MSC-KF requires approximately 34 msec of processing
time per image (this is less than in the previous case, because
fewer features are tracked, and for fewer frames on average),
and processes the entire dataset of 1596 images in approxi-
mately 54 sec. For this dataset no marginalization of older
poses is employed, and BA requires approximately 2.4 sec
per iteration, when processing all the 1596 states simultane-
ously. BA is once again run every 500 states, requiring a
total processing time of 15.4 sec for the entire run. Thus, the
processing overhead is 28%, compared to using the MSC-
KF alone. We deem this overhead to be small, consider-
ing that, by using the entire two-layer architecture instead of
the first layer alone, we obtain the benefits of (i) using loop
closure information, and (ii) obtaining the globally optimal
MAP estimate for the trajectory.

6. Conclusions

In this paper, we have presented a localization system
that tightly integrates measurements from a camera and an
inertial measurement unit. The system follows a two-layer
architecture, in which the first layer carries out combined vi-
sual/inertial odometry in real time, while the second layer



Figure 2. The estimated trajectory overlaid on a satellite image of
the area where the experiment took place. The initial position of
the vehicle is denoted by a red square. The blue dots represent the
GPS measurements, which are often unavailable, due to the dense
foliage.

Figure 3. The estimated trajectory overlaid on a satellite image of
the area where the experiment took place. The initial position of
the vehicle is denoted by a red square.

intermittently employs a batch nonlinear minimization al-
gorithm (bundle adjustment) for imposing loop-closure con-
straints. As key advantages of the proposed two-layer ar-
chitecture we can identify: (i) The estimates are available in
real time, and at the IMU data rate, (ii) The estimation er-
rors remain bounded when loops are detected, thus enabling
long-term localization, and (iii) The computational over-
head of utilizing loop-closure constraints is minimal, even
though loop closure significantly improves localization ac-
curacy. These properties render the proposed architecture
suitable for large-scale localization applications. As a final
remark, we note that if additional measurements (e.g., GPS)

are available to the system, these can be readily used to im-
prove the localization accuracy, without any modification of
the system’s architecture.
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