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Abstract— This paper addresses the problem of resource allo-
cation in formations of mobile robots localizing as a group. Each
robot receives measurements from various sensors that provide
relative (robot-to-robot) and absolute positioning information.
Constraints on the sensors’ bandwidth, as well as communication
and processing requirements, limit the number of measurements
that are available or can be processed at each time step. The
localization uncertainty of the group, determined by the covari-
ance matrix of the equivalent continuous-time system at steady
state, is expressed as a function of the sensor measurements’
frequencies. The trace of the submatrix corresponding to the
position estimates is selected as the optimization criterion, under
linear constraints on the measuring frequency of each sensor and
the cumulative rate of EKF updates. This formulation leads to a
convex optimization problem whose solution provides the sensing
frequencies, for each sensor on every robot, required in order
to maximize the positioning accuracy for the group. Simulation
experiments are presented that demonstrate the applicability
of this method and provide insight into the properties of the
resource-constrained cooperative localization problem.

I. I NTRODUCTION

A large number of applications require robots to move
in a coordinated fashion, in order to accomplish a certain
task (e.g., object moving [1], surveillance [2], platooning for
efficient transportation systems [3], [4], formation flying[5],
and spacecraft formations [6]). In particular, the case in which
the members of a robotic team maintain constant relative
positions as they traverse the space, offers certain advantages,
such as simplified motion control, collision avoidance, andthe
ability to collectively manipulate objects in the environment.
Due to the increased versatility robot formations provide,
they have recently attracted significant interest in the mobile
robotics community.

In this paper, we address the problem ofCooperative Local-
ization (CL) in robot formations. Clearly, in order for a multi-
robot team to perform any meaningful task, it must have an
estimate of the positions of its members with respect to some
coordinate frame of interest. Several estimation techniques
have been applied to the CL problem, such as Extended
Kalman Filtering (EKF) [7], Least Squares Estimation [8],
Particle Filtering [9], etc. In this work, we employ an EKF
approach, similar to the one presented in [7]. The reason for
this is that the EKF encompasses a well-studied mechanism,
the Riccati equation, for propagating the covariance matrix
of the pose estimates through time, thus providing us with a
theoretically sound localization accuracy metric.

Roumeliotis and Bekey [7] have shown that proprioceptive

measurements from the robots’ odometry sensors can be
processed locally by each robot to propagate its own pose
estimates. However, every time an exteroceptive measurement
is received by any of the robots in the formation,all robots
must communicate their current pose estimates. Additionally,
the measuring robot must transmit its new measurement in
order for the EKF update to be performed. Therefore, every
exteroceptive measurement that is processed incurs a penalty
in terms of use of both bandwidth and CPU time. In a
realistic scenario, the robots of a team will need to allo-
cate computational and communication resources to mission-
specific tasks and this may force them to reduce the number
of measurements they process for localization purposes. The
limitations on the available resources may thus prohibit the
robots from transmitting and processing all measurements
available at every time instant.

It is clear that whether or not an exteroceptive measurement
should be processed in an EKF update, is determined by a
tradeoff between the value of the localization informationit
carries, and the cost of processing it. In this paper, we assume
that the robots process each of the available measurements at
a constant frequency, and we seek the optimal measurement
frequencies, in order to attain the highest possible positioning
accuracy. The key element in our analysis is the derivation
of an equivalent continuous-time system modelfor the robot
team, whose noise parameters are functionally related to the
frequency of the measurements. This enables us to express the
covariance matrix of the pose errors as afunctional relation
of the frequencies, and thus to formulate the problem of
determining the optimal sensing strategy as an optimization
problem. An important result that we prove is that this
problem is aconvex optimization problemand therefore it is
possible to find a globally optimal solution, using very efficient
algorithms. Before presenting the problem formulation, inthe
following section we outline relevant approaches that appear
in the literature.

II. RELATED WORK

In [10], [11], [8], localization algorithms for recovering
the relative poses between the robots in a formation, using
omnidirectional cameras as the primary sensors, are described.
The authors propose suboptimal estimation algorithms for
achieving efficient implementations. These are derived by
either having each robot localize using only relative position
measurements to a “leader” robot in the team, or by de-



coupling the problems of orientation and position estimation.
Both algorithms are compared to a centralized least-squares
estimation algorithm, that uses all the available measurements.
In presenting these methods, the trade-offs that exist between
localization accuracy and the overhead for communicating
and processing relative position measurements are pointedout
by the authors. However, no analysis is conducted to reveal
the effect of varying the available resources, and no optimal
sensing strategies are proposed.

The impact of the geometry of astatic robot formation
on the accuracy of pose estimation is studied in the work of
Zhang et al. [12]. The authors consider formations of robots
that receive absolute position measurements, as well as relative
measurements (i.e., relative range, bearing, or orientation). In
order for the formation to be localizable, a necessary condition
on the number of measurements of each type is derived. A
study of the structure of the measurement equations shows
that the information matrix corresponding to the exteroceptive
measurements is a function of the relative positions of the ro-
bots, and a gradient-based optimization technique is employed
to determine local maxima of the trace of this matrix. However,
due to the non-concavity of the objective function, the selected
optimization method does not guarantee global optimality of
the solution. Furthermore, these results cannot be extended to
the practical case ofmovingrobots.

In [13], a robot team comprised of one master and two slave
robots is studied and aportable landmarks-basedtechnique is
adopted, i.e., at each time instant at least one robot remains
stationary. The robots move along a straight-line path and
record measurements of their relative positions at evenly
spaced intermediate points. The authors propose a method for
determining the optimal relative positions between the robots
and identify three configurations that yield the maximum
possible localization accuracy at the end of the path. We
note, however, that neither of the aforementioned approaches
addresses the effects of the number and type of measurements
recorded by the robots on localization accuracy. Additionally,
the constraints imposed by the available computational and
communication resources are not taken into consideration.

Our work is more closely related to work in the Sensor
Networks community, that aims at determining the optimal
scheduling of measurements, in order to attain the best pos-
sible localization of a target. Representative examples ofthis
line of research can be found in [14], [15], [16], while a similar
analysis, in the context of designing observers for dynamical
systems, is presented in [17]. The defining assumption in all
these cases is that afinite number of measurements is available
during a certain time interval. This problem amounts to
determining the optimal measurement ordering (scheduling),
so as to maximize the achieved localization accuracy. For
this problem, tree-search algorithms (e.g., [16]), as wellas
optimization methods in the continuous domain (e.g., [17]),
have been proposed. This approach to the problem of finding
an optimal measurement strategy is in contrast to the one
employed in our work, since we here assume that thefre-
quenciesof the measurements are the design variables, and

we are interested in thesteady stateestimation accuracy.
A different formulation of the scheduling problem has been

presented in [16], [18]. In this work, the timing of each
measurement is modeled by a random variable with a known
probability density function (pdf). An upper bound on theex-
pected steady state covarianceof the target’s position estimate
is then computed as a function of the pdf’s parameters. By
employing a numerical optimization routine it is possible to
minimize this upper bound, and the resulting pdf is used as the
optimal sensing strategy. Despite its mathematical elegance,
this approach only aims at optimizing an upper bound. Since
no means of determining the looseness of the bound are
available, we cannot have any guarantee of optimality, or a
measure of suboptimality, when this method is used.

Our work differs from the aforementioned approaches, in
that we consider a team of robots thatmovewhile maintaining
their formation, and localize in a global coordinate frame.The
steady-state covariance matrix of the robots’ localization is ex-
pressed as a function of the frequencies of all the exteroceptive
measurements, and we seek to select the optimal frequencies,
in order to attain the best possible positioning accuracy for
the team. The constraints imposed by the available computing
and communication resources are taken into account, and
their effects on the accuracy of the attainable localization are
examined.

III. PROBLEM FORMULATION

We consider a team ofN robots that move in formation,
employing a suitable control strategy in order to maintain a
constant heading and constant relative positions among them.
The spatial configuration of the robots is assumed to be given,
defined, for example, by the application at hand. All robots are
equipped with proprioceptive sensors (such as wheel encoders)
that measure their translational and rotational velocities at
every time step. Additionally, some (or all) of the robots
are equipped with exteroceptive sensors that enable them to
measure: (i) relative distance between two robots, (ii) relative
bearing between two robots, (iii) absolute position of a robot,
and (iv) absolute orientation of a robot. The measurements
received from all the sensors are processed using an Extended
Kalman Filter (EKF), in order to estimate the pose of the
robots with respect to aglobal frame of reference.

Clearly, due to cost, reliability, or other design considera-
tions, it may not be desirable for all robots to be equipped with
identical sensors. This potential heterogeneity of the team is
incorporated naturally in our approach, under the restriction
that at least onerobot has access, at least intermittently,
to absolute position information, such as that provided by
a GPS or from observing previously mapped features. This
constraint is imposed because our goal is to minimize the
steady-statelocalization uncertainty of the robots in a global
coordinate frame. It is well known [19], that when no absolute
position information is available to a robot team, the system is
unobservable, and at steady state, the uncertainty of the robots
continuously increases. The assumption for the availability of
absolute positioning information could be raised if we studied



a scenario in which onlyrelative localization was sought.
For that case, relative range and bearing measurements would
(under certain conditions) be sufficient, in order to attaina
bounded steady-state error covariance, and our approach would
be applicable.

We now present the system and measurement models used
for pose estimation.

A. Propagation

Consider N non-holonomic robots moving in 2D. The
discrete-time kinematic equations for thei-th robot are:

xi(k + 1) = xi(k) + Vi(k)δt cos(φi(k)) (1)

yi(k + 1) = yi(k) + Vi(k)δt sin(φi(k)) (2)

φi(k + 1) = φi(k) + ωi(k)δt, i = 1 . . . N (3)

whereVi(k) and ωi(k) denote the translational and rotational
velocity of thei-th robot at time stepk, respectively, andδt is
the odometry sampling period. In the Kalman filter framework,
the position estimates of roboti are propagated using the mea-
surements of the robot’s translational and rotational velocity,
Vmi

(k) andωmi
(k), respectively. By linearizing Eqs. (1) - (3)

the error propagation equation for the robot’s pose is readily
derived:



x̃ik+1|k

ỹik+1|k

φ̃ik+1|k


 =




1 0 −Vmi
(k)δt sin(φ̂i(k))

0 1 Vmi
(k)δt cos(φ̂i(k))

0 0 1







x̃ik|k

ỹik|k

φ̃ik|k




+




δt cos(φ̂i(k)) 0

δt sin(φ̂i(k)) 0
0 δt




[
wVi

(k)

wωi
(k)

]

⇔ X̃ik+1|k
= Φi(k)X̃ik|k

+ Gi(k)Wi(k) (4)

wherewVi
(k) andwωi

(k) are white, zero-mean, Gaussian and
uncorrelated noise sequences of varianceσ2

Vi
andσ2

ωi
affecting

the linear and rotational velocity measurements, respectively.
At this point, we note that since the robot team moves in a

predefined formation, all robots are required to head towards
the same direction, and with the same velocity, both of which
are known constants. Assuming that a motion controller is used
in order to minimize the deviations from the desired formation,
and that the accuracy of the velocity measurements and
orientation estimates is sufficiently high, we can replace the
quantitiesVmi

(k), ωmi
(k), andφ̂i(k) in the above expressions

by their respective predefined values,Vo, ωo andφo, and thus
employ the approximationsΦi(k) ≃ Φo and Gi(k) ≃ Go,
whereΦo andGo are theconstantmatrices:

Φo =




1 0 −Voδt sin(φo)
0 1 Voδt cos(φo)
0 0 1


 , Go =




δt cos(φo) 0
δt sin(φo) 0

0 δt




With this approximation, the state error covariance propagation
equation for thei-th robot can be written as

Pik+1|k+1
= ΦoPik+1|k

ΦT
o + GoQiG

T
o (5)

whereQi = diag(σ2
Vi

, σ2
ωi

).

The state vector for the entire robot team is defined as the
3N × 1 vector comprising of the posesXi of all the robots.
Therefore, the covariance propagation equation for the robot
formation is

Pk+1|k = ΦPk|kΦ
T + Q (6)

where Pℓ|k = Diag(Piℓ|k
), Φ = Diag(Φo), and Q =

Diag(GoQiG
T
o ) are3N × 3N block diagonal matrices.

B. Update

The robots of the team employ the measurements recorded
by their exteroceptive sensors, in order to perform pose
updates in the EKF. Our method is applicable to any exterocep-
tive measurement model, but for simplicity, we here consider
the following four types of exteroceptive measurements:

1) Relative range measurements:If robot i is equipped with
a sensor capable of measuring the distance of other robots with
respect to itself, such as a laser scanner, then the distance
measurement between robotsi and j is

zρij
(k) =

√
∆xij(k)2 + ∆yij(k)2 + nρij

(k)

where∆xij = xj − xi, ∆yij = yj − yi, andnρij
is a white,

zero-mean, Gaussian noise process, whose standard deviation,
σρi

, is determined by the characteristics of the sensor. By
linearizing, the measurement error equation is derived:1

z̃ρij
(k) = Hρij

(k)X̃(k) + nρij
(k)

=
[

0 .. Hρi
.. Hρj

.. 0
]
X̃ + nρij

whereHρij
(k) is a 1× 3N matrix, whosei-th andj-th block

elements are, respectively:

Hρj
(k) = −Hρi

(k) =
[ ∆xij(k)

ρ̂ij(k)

∆yij(k)

ρ̂ij(k)
0

]

In the preceding expression,̂∆xij(k), ∆̂yij(k) and ρ̂ij(k)

represent the estimated differences in thex andy coordinates,
and the estimated distance between robotsi and j, respec-
tively. Clearly, the matrixHρij

(k) is time-varying, due to its
dependence on the position estimates for the robots. However,
by replacing the estimates with the values corresponding tothe
desired formation of the robots (denoted with the subscripto),
we can make the following approximations:

Hρi
(k) ≃

[
−∆xijo

ρijo

−∆yijo

ρijo

0
]

= Hρio

Hρj
(k) ≃

[
∆xijo

ρijo

∆yijo

ρijo

0
]

= Hρjo

Using these relations, an approximateconstantvalue for the
measurement matrix,Hρij

≃ Hρijo
can be derived.

For practical reasons, it may not be possible for all robots
to measure relative distances to all other robots in the team.
For example, some robots may not be equipped with range
sensors, or certain measurements may be impossible due to
occlusions in the formation. In order to describe the set of all
possible measurements we define the set

Hρ = {Hρij
| robot i can measure range to robot j}

1To make the notation less cumbersome, in the following derivations the
time step indices are omitted wherever this does not cause confusion.



2) Relative bearing measurements:Assuming roboti mea-
sures the relative bearing of robotj, the corresponding mea-
surement equation is:

zθij
(k) = Atan 2(∆yij(k),∆xij(k)) − φi(k) + nθij

(k)

wherenθij
(k) is a white, zero-mean, Gaussian noise process,

with standard deviationσθi
. Linearization yields the following

measurement error equation:

z̃θij
(k) = Hθij

(k)X̃(k) + nθij
(k)

≃ Hθijo
X̃(k) + nθij

(k)

=
[

0 .. Hθio
.. Hθjo

.. 0
]
X̃ + nθij

where we have once again approximated the time-varying
position estimates with their constant, desired values. Note
that Hθijo

is a 1 × 3N matrix, whosei-th and j-th block
elements are, respectively:

Hθio
=

[ ∆yijo

ρ̂2
ijo

−∆xijo

ρ̂2
ijo

−1

]

Hθjo
=

[
−∆yijo

ρ̂2
ijo

∆xijo

ρ̂2
ijo

0

]

Similarly to the case of relative range measurements, we
describe all possible bearing measurements with the set

Hθ = {Hθij
| robot i can measure bearing of robot j}

3) Absolute orientation measurements:Because in the EKF
framework, the pose propagation equations are linearized
around the current orientation estimates for each robot (cf.
Eq. (4)), it is necessary to guarantee sufficiently small ori-
entation errors for all robots. If the errors in the robots’
orientation are allowed to grow unbounded, the linearization
will unavoidably fail, and the EKF estimates will diverge.
Therefore, it is reasonable to equip robots with absolute
orientation sensors, such as, for example a compass. The
measurement equation for thei-th robot is

zφi
(k) = φi(k) + nφi

(k)

wherenφi
is a white, zero-mean, Gaussian noise process, with

standard deviationσφi
. The measurement error equation is:

z̃φi
(k) = Hφi

X̃(k) + nφi
(k)

=

[
0 .. [0 0 1]︸ ︷︷ ︸

ith block

.. 0
]

X̃(k) + nφi
(k)

All possible absolute orientation measurements are described
by the set

Hφ = {φi| robot i can measure abs. orientation}

4) Absolute position measurements:In this work, the robots
localize with respect to a global coordinate frame. Therefore,
in order for the position errors to remain bounded for all times,
it is necessary that at least one of the robots has access to
absolute position measurements. The measurement equation
for the i-th robot is

zpi
(k) =

[
xi(k) yi(k)

]T
+ npi

(k)

where npi
(k) is a 2 × 1 white, zero-mean, Gaussian noise

process, with covariance matrixRpi
. The measurement error

equation for this type of measurement is

z̃pi
(k) = Hpi

X̃(k) + npi
(k)

=

[
02×3 .. [I2×2 02×1]︸ ︷︷ ︸

ith block

.. 02×3

]
X̃ + npi

whereHpi
is a2×3N matrix, I2×2 denotes the2×2 identity

matrix, and0m×n is a m × n matrix of zeros.
In order to describe all possible absolute position measure-

ments we define the set

Hp = {Hpi
| robot i can measure abs. position}

C. The Riccati recursion

All exteroceptive measurements recorded by the robots at
each time instant are processed by the EKF, in order to update
the robots’ pose estimates. The covariance update equationof
the EKF is

Pk+1|k+1 = Pk+1|k − Pk+1|kH
T
k S−1

k HkPk+1|k (7)

whereSk = HkPk+1|kH
T
k + Rk. In these equations,Hk is

the measurement matrix for the system at time stepk, andRk

is the corresponding measurement-noise covariance matrix.
It is clear that since at each time instant a different set

of measurements is recorded,Hk and Rk will not remain
constant, and will possibly vary even in size at each time step.
Specifically, if at time stepk a total ofmk measurements are
performed,Hk will comprise ofmk block rows belonging in
the setH = Hρ

⋃
Hθ

⋃
Hφ

⋃
Hp, andRk will be a diagonal

matrix whose elements can be defined accordingly.
Combining Eqs. (6) and (7) yields the Riccati recursion

Pk+2|k+1 =Φ
(
Pk+1|k − Pk+1|kH

T
k S−1

k HkPk+1|k

)
ΦT + Q

that describes the discrete-time evolution of the covariance
of the pose estimates for the robot team. If the system is
observable, then after undergoing an initial, transient phase,
the covariance matrix will enter a steady state, where its
elements will fluctuate around some mean value (cf. Fig. 1).
Had we been able to provide a description of this mean
value as a function of the measurement frequencies, then
we would have a means of directly relating the localization
performance of the system to these frequencies. However,
there exist no analytical tools for describing the mean value
of a Riccati recursion with time-varying coefficients. To solve
this problem, we propose a transition from the discrete-time
system model to a continuous-time one, as described in the
following section.

IV. T HE RICCATI DIFFERENTIAL EQUATION

In [20], it is shown that given a discrete-time system
model, anequivalentcontinuous-time system model can be
derived. Equivalence is established based on the requirement
that the state estimates’ accuracy in both systems is the
same. In particular, it is shown that if state observations
whose covariance isRd are performed at frequencyf in



the discrete-time description, then the equivalent continuous-
time measurements’ covariance function isE{nc(t)nc(τ)} =
Rcδ(t − τ), wherenc(·) is the white Gaussian noise process,
δ(·) denotes the Dirac delta function, andRc = f−1Rd. The
intuition behind the scaling of the covariance matrix is that it
ensures a constant information influx to the continuous-time
system, for any value of the sampling frequency. By a similar
argument, we can derive the appropriate value of the system-
noise covariance matrix.

We now employ the idea of deriving an equivalent
continuous-time system, in order to formulate aLinear Time
Invariant (LTI) system model for the robot team. Specifically,
since each of the measurements in the setH occurs at a
constant frequency (generally different for each measurement),
we can formulate a continuous-time system model, whereall
the measurements occur continuously, and the covariance of
each measurement is scaled by the inverse of its frequency. In
the continuous time system model, the measurement matrix
Hc will be a constantmatrix comprising of all the block rows
in the setH. The covariance matrix of the measurements,
Rc, will be a diagonal matrix, with elements the weighted
covariances of the discrete-time measurements. For example,
if robot i receives absolute orientation measurements at a rate
of fφi

, then the continuous-time covariance corresponding to
this measurement is

Rφic
= σ2

φic
=

σ2
φi

fφi

=
1

fφi

Rφi

We can now use the Riccati differential equation in order
to describe the time evolution of the covariance of the robots’
pose estimates. We note that the state transition matrix for
the system in continuous time is equal toFc = Diag(Fo),
while the matrix describing the influx of uncertainty in the
continuous time system is equal toQc = Diag(Goc

Qic
GT

oc
),

with

Fo =




0 0 −Vo sin(φo)
0 0 Vo cos(φo)
0 0 0


 , Goc

=




cos(φo) 0
sin(φo) 0

0 1




and Qic
= foi

diag(σ2
Vi

, σ2
ωi

). In this last expression,foi

denotes the rate at which roboti samples its proprioceptive
sensors. Using the previous relations, the Riccati differential
equation is written as

Ṗ(t) = FcP(t) + P(t)FT
c + Qc − P(t)CP(t) (8)

where we have definedC = HT
c R−1

c Hc. It is important to
point out that inR−1

c , the frequencies of all measurements
appear in the numerator of fractions on the diagonal. Therefore
the elements ofC arelinear combinationsof the measurement
frequencies. The importance of this observation will become
apparent shortly.

We note that the Riccati differential equation in Eq. (8) is
a constant coefficientdifferential equation, and its steady state
solution can be found in closed form [21]. Specifically, we
define the Hamiltonian matrix

MH =

[
FT

c −C

−Qc −Fc

]
(9)
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Fig. 1. True covariance vs. theoretical values. The diagonal elements of the
covariance matrix corresponding to the position of the 3 robots are plotted.

and denote its eigendecomposition asMH = UΛU−1. With
this definition, the steady state solution of Eq. (8) is equalto

Pss = U21U
−1
11 (10)

whereU21 and U11 are 3N × 3N matrices, defined by the
partitioningU = [ Uij ], i, j = 1, 2.

The preceding analysis shows that it is indeed possible to
express the steady-state covariance of the pose estimates for
the robots of the formation as a function of the measure-
ment frequencies. To be more precise, the covariance matrix
computed in Eq. (10) is the steady-state covariance of the
equivalent continuous-time system, whose parameters depend
on the measurement frequencies. In Fig. 1, we present the
time evolution of the diagonal elements of the covariance
matrix for the actual discrete-time system (solid lines) and
compare them to the theoretically computed values (dashed
lines) from Eq. (10). For these simulations, a team of 3
robots, that have access to all four types of exteroceptive
measurements, discussed in Section III-B, was considered.The
relative positions, as well as the measurement frequenciesfor
all robots were selected randomly.

It becomes clear that, at steady state, the actual values of the
covariance fluctuate around the theoretically predicted values.
Thus, we can employ the continuous-time analysis in order
to study the properties of the localization accuracy in the
formation.

V. M EASUREMENTFREQUENCYOPTIMIZATION

In this section, we formulate the problem of determining
the optimal measurement frequencies as a convex optimization
problem. Our goal is to find the optimal frequencies for all
available measurements, i.e., those frequencies that willattain
the best possible localization results, under given constraints.
Clearly, in order to improve the localization accuracy of
the formation, the steady state covariance matrix should be
minimized. However,Pss is a 3N × 3N matrix, and sev-
eral criteria of optimality can be defined based on it (e.g.,



determinant, maximum eigenvalue, trace). A difficulty that
arises is that while the elements ofPss that correspond to
the position estimates of the robots have units ofm2, the
elements that correspond to orientation have units ofrad2.
Clearly, we cannot treat these two types of elements equally.
One approach would be to introduce a weight matrixW, and
try to minimize a function of the weighted matrixWPssW

T .
However, any selection ofW would be ad-hoc and thus
difficult to motivate. We have therefore chosen to focus only
on the diagonal elements ofPss that correspond to the position
estimates of the robots, while making sure that the orientation
uncertainty of each robot does not exceed a thresholdǫφ (this
is necessary, in order to guarantee small linearization errors).
We thus formulate the following optimization problem:

minimize
3N∑

i=1
i6=3n,n∈IN

Pss(i, i) + c(Pss)

subject to 0 ≤ fj ≤ fjmax
, for j = 1 . . . M (11)

M∑

j=1

fj < ftotal

wherefj are the frequencies of theM available exteroceptive
measurements, andc(Pss) is a penalty term that is negligible
whenever the orientation uncertainty of all robots is smaller
than ǫφ, but becomes dominant when the threshold is ex-
ceeded. In our implementation, we have selected the function

c(Pss) =

N∑

i=1

(
Pss(3i, 3i)

ǫφ

)100

(12)

The linear constraints on the measurement frequencies express
the facts that: (i) each sensor has a maximum sampling rate,
that cannot be exceeded, and (ii) the total frequency of the
measurements cannot exceed a threshold,ftotal, which is
determined by the available resources. We note that more
general constraints can be incorporated in this formulation. For
example, different types of measurements may have different
costs associated with them, and this can be easily taken
into consideration, by introducing weights for each of their
frequencies.

In [22], it is shown that the steady-state solution of the
Riccati equation in Eq. (8) is aconvexfunction of the matrix
C. Because the elements ofC are linear functions of the
measurement frequencies, we conclude thatPss is a convex
function of the measurement frequencies. As a result, the
optimization problem (11) is a convex one (the objective is
the sum of convex functions, and the constraints are linear).
This is a very important property, because it implies that the
problem does not have local minima, and we can employ
standard, and very efficient, optimization algorithms for its
solution. Convexity guarantees that a global optimum of the
objective function will be found [23].

VI. OPTIMIZATION RESULTS

This section presents simulation results that demonstrate
the application of our method and provide insight into the

properties of this problem. For the results shown here, a team
of 4 robots, that move atVo = 0.5m/sec in a diamond-shaped
formation comprising of two adjacent equilateral triangles of
side 1m, is considered (cf. Fig 2(a)). The robots are equipped
with sensors of equal accuracy. Specifically, the standard
deviation of the noise in the linear velocity measurements
is equal toσV = 0.05Vo, while for the rotational velocity
it is σω = 5 · 10−3rad/sec. These values are consistent
with the accuracy of the wheel encoders of Pioneer 1 ro-
bots, that we have determined experimentally. The standard
deviation of the absolute position measurements is equal to
σGPS = .25m along each axis, the standard deviation of the
absolute orientation measurements isσφ = 2o, while for the
relative measurements between the robots we have selected
σρ = 0.05m, and σθ = 3o. The maximum frequency for
each measuring sensor is set tofjmax

=1Hz, j = 1 . . . 4. The
threshold on the orientation variance for the robots,ǫφ, was
selected to guarantee an orientation error standard deviation
smaller than3o.

In the first set of experiments, we assume that all robots can
receive all types of measurements. The results of the optimiza-
tion procedure, when the frequency at which measurements
can be processed for the entire team isftotal=2Hz, are shown
in Table I. In the relative measurements’ part of the table, the
j-th entry in the row corresponding to roboti (Ri), describes
the frequency of the measurement performed by roboti,
observing robotj. We note that approximately 65% of the
measurements processed are absolute position measurements.
It is interesting that at the optimal solution,no absolute
orientation measurements are recorded. This implies that the
correlations that exist between the position and orientation
estimates of the robots suffice in order to provide sufficiently
accurate orientation estimates (i.e., variance smaller than ǫφ)
for all robots. However, it should be made clear that this is
not a general result. For example, if we double the standard
deviationσω of the rotational velocity noise, the results of the
optimization under the same conditions are shown in Table II.
We note that in this case, absolute orientation measurements
are processed by the robots.

In order to show the applicability of our approach to a
heterogeneous robot team, we consider the case in which
only one robot is equipped with a GPS receiver (R1). This
is a realistic scenario, as cost considerations may render it
impractical to equip all robots with such a device. In Table III,
we show the optimization results obtained for this scenario.
We notice that in this case the GPS receiver is fully utilized
(fGPS1

=1Hz), since the positioning information it provides is
more important than this provided by the rest of the available
measurements. It is also worth noting that in this case, as in
all previous ones, none of the range measurements’ frequency
is zero.

In Fig. 2(b), the optimal value of the cost function is
plotted as a function of the total frequency of measurements
(ftotal=2..32Hz) for all robots in the team. We clearly observe
a law of diminishing return: there is a sharp improvement in
performance by increasing the total number of measurements
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Fig. 2. (a) Robot formation and motion direction. (b) Cost function vs. Total frequency of measurements. (c) Frequency of each measurement type vs.
formation size.

per time step performed by the robots, when this number is
small, but the gain is lower as the number of measurements
increases further. Since the necessary communication and
computational resources increase linearly with the numberof
measurements performed by the robots, it becomes clear that
unless resources are abundant, it is not beneficial for the robots
to process a very large number of measurements.

In order to study the importance of processing each of
the available types of measurements with varying formation
size, in Fig. 2(c) we plot the total frequency of measurements
assigned to each of the four possible measurement types, as
a function of the length of the closest distance between any
two robots in the formation. We observe that as the robots
get farther from each other, the positioning information value
of the relative bearing measurements diminishes, and these
measurements’ frequencies are equal to zero at the optimal
solutions for large formation sizes. To replace the orientation
information that is lost when no bearing measurements are
processed, we note that the frequency of the orientation
measurements increases.

As a closing remark, we note that the parameters affecting
the selection of optimal measurement frequencies include the
number of robots, the size and configuration of the formation
in space, the robots’ velocity, the accuracy of all available
sensors, the type and number of available measurements and
the maximum frequency of each sensor. Therefore, it is not
possible, in the limited space of this paper, to demonstratethe
effects of all the aforementioned parameters. The presented
results are only representative.

VII. C ONCLUSIONS

In this paper we present a new approach to the resource-
constrained localization problem for formations of mobile
robots. We consider heterogeneous groups of robots equipped
with sensors that can provide relative and absolute positioning
information at device-specific maximum frequencies. Updat-
ing the robots’ position estimates requires certain measure-
ments to be processed by an Extended Kalman Filter (EKF)

R1 R2 R3 R4

Absolute position measurements

0.3273 0.3269 0.0247 0.6728

Absolute orientation measurements

0 0 0 0

Relative range measurements

R1 × 0.0128 0.0223 0.0109

R2 0.0132 × 0.0390 0.0501

R3 0.0318 0.0148 × 0.0240

R4 0.0481 0.0093 0.0175 ×

Relative bearing measurements

R1 × 0.0159 0 0.0803

R2 0.0159 × 0 0.0809

R3 0.0808 0.0805 × 0

R4 0 0 0 ×

TABLE I

OPTIMAL MEASUREMENTFREQUENCIES(σω ).

R1 R2 R3 R4

Absolute position measurements

0.2644 0.2629 0 0.5800

Absolute orientation measurements

0.0656 0.0646 0.0323 0.1268

Relative range measurements

R1 × 0.0091 0.0107 0.0271

R2 0.0143 × 0.0181 0.0330

R3 0.0357 0.0283 × 0.0224

R4 0.0272 0.0220 0.0112 ×

Relative bearing measurements

R1 × 0.0130 0 0.0799

R2 0.0122 × 0 0.0801

R3 0.0798 0.0791 × 0

R4 0 0 0 ×

TABLE II

OPTIMAL MEASUREMENTFREQUENCIES(2σω ).



R1 R2 R3 R4

Absolute position measurements

1 0 0 0

Absolute orientation measurements

0 0.0431 0 0.2144

Relative range measurements

R1 × 0.0615 0.0330 0.0446

R2 0.0066 × 0.0292 0.0429

R3 0.0399 0.0150 × 0.0254

R4 0.0313 0.0152 0.0132 ×

Relative bearing measurements

R1 × 0.0254 0 0.0896

R2 0.0317 × 0 0.0691

R3 0.1022 0.0667 × 0

R4 0 0 0 ×

TABLE III

OPTIMAL MEASUREMENTFREQUENCIES(R1-GPS)

at rates determined by the constraints on the communication
and processing resources of the team. In order to maximize the
localization accuracy of the robot group, we have formulated a
convex optimization problem for the minimization of the trace
of the state covariance matrix. This matrix was determined as
the analytical solution to the Riccati equation of the equivalent
continuous-time system. The derived solutions, for different
cases of sensor uncertainty, sensing frequencies, spread of
the robot formation, and sensor-availability constraintswere
examined in simulation providing insight to the localization
capabilities of different team configurations.

These results can be employed in practice for determining
the sensing frequencies for robot formations of any size and
shape comprised of robots with various types of sensors and
sensing capabilities. The optimal sensing frequencies canbe
used not only for obtaining the best localization results, but
also for determining the necessity of certain sensors (e.g.,
sensors with zero frequency can be omitted) which can lead to
significant cost savings. Finally, it is our intention to capitalize
on this methodology and expand our results to groups of robots
that have no access to absolute position data. In this case the
problem formulation will be modified so as to express the
optimization criterion as a function of the covariance of the
pose estimates with respect to one of the robots in the team
(relative localization).
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