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Abstract— In this paper, we study the accuracy of Cooper-
ative Localization and Target Tracking (CLATT) in a team
of mobile robots, and derive analytical upper bounds for the
position uncertainty. The obtained bounds provide a description
of the asymptotic positioning performance of the robots and
the targets as a function of the sensor characteristics and
the structure of the graph of relative position measurements.
By employing an Extended Kalman Filter (EKF) formulation
for data fusion, two key asymptotic results are derived. The
first provides the guaranteed worst-case positioning accuracy,
whereas the second determines an upper bound on the expected
covariance of the estimates. We investigate the effects of
jointly estimating the targets’ and the robots’ position, and
demonstrate that it results in better accuracy for the robots’
position estimates. The theoretical results are confirmed both
in simulation and experimentally.

I. INTRODUCTION

When a team of robots is employed for tracking a number
of targets, the position of the robots (Localization) and the
position of the targets (Tracking) need to be concurrently
estimated. In this paper, we study the problem of Cooperative
Localization and Target Tracking (CLATT) in scenarios
where teams of, possibly heterogeneous, mobile robots track
the position of multiple targets. One of the main results
of this paper is a proof that jointly estimating the position
of the robots and targets results in better accuracy for the
robots’ position estimates, compared to when the robots
localize ignoring the targets. Intuitively, this can be justified
by considering that every time the robots measure range
and bearing to the same targets, they indirectly perform
observations of their relative positions.

Another significant contribution of this paper is a thorough
investigation of the robots’ performance on average and in
the worst case. This is a common question that needs to
be addressed before any investment in system development
is made. In this work, performance refers to the accuracy
of position estimation and is assessed by the state esti-
mates’ covariance for the robots and targets. Analytical upper
bounds for the uncertainty of the robots’ and the targets’
localization are presented that are functions of the sensors’
characteristics and of the structure of the sensing graph that
connects the robots and targets. Furthermore, it is shown how
a priori information about the distribution of the positions
of the robots and the targets can be utilized to derive an
upper bound for the expected value of the position estimates’
covariance. The developed upper bounds can be employed
in order to predict the position accuracy attained in a certain
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tracking application, and thus can facilitate the task of sensor
selection, so as to meet user-imposed requirements.

In this paper, we consider the case where: (i) all robots are
equipped with proprioceptive sensors that measure velocity,
and are provided with orientation estimates of bounded
uncertainty, (ii) one of the robots is equipped with a GPS
receiver, enabling it to obtain absolute position estimates,
and (iii) some of the robots are capable of measuring the
relative positions of other robots and targets. These robot-
to-robot and robot-to-target measurements are described by
the Relative Position Measurement Graph (RPMG). This is
a connected and directed graph, whose vertices represent the
robots and targets, while the edges represent the relative-
position measurements between them.

II. RELATED WORK

The problem of target tracking using multi-sensor net-
works has been the subject of extensive research in recent
years [1], [2]. Most researchers address the problem of
tracking with a network of static sensors [3], nevertheless,
several approaches have been proposed for target tracking
with mobile robots. For example, Parker [4] has developed
a control strategy for multi-robot teams that minimizes the
total time a target can evade being observed by the robots.
Several region-based approaches to target tracking by mobile
robots have been developed by Jung and Sukhatme [5],
[6]. A hierarchical algorithm for localization and tracking
using directional sensors is presented in [7]. Stroupe et
al. [8] propose a distributed action-selection algorithm for
optimizing the robots’ trajectories with respect to the targets’
position covariance. Despite their importance for practical
applications, none of the aforementioned approaches ad-
dresses the problem of determining bounds on the perfor-
mance (accuracy) of the robots’ and targets’ localization.

A number of approaches aimed at providing a description
of the localization accuracy during target tracking have been
developed for the case in which the sensors remain static.
In [9], an optimal approach for fusing target tracking data
is developed, and its performance is evaluated using Monte
Carlo simulations. An analytical performance evaluation of
this method is also provided in [10]. Zhang et al. [11] have
studied the Cramer-Rao Lower Bound (CRLB) of the targets’
position estimates. The CRLB for tracking manoeuvering
targets is presented in [12]. In [13], the performance of a
wireless sensor network in the presence of communication
delays and false alarms is analyzed and compared to the
CRLB. All aforementioned approaches focus on static sen-
sor networks exclusively, and the results cannot be readily
extended to networks of mobile sensors. Additionally, the
CRLB cannot be employed to determine the worst-case



performance of tracking, which is of interest before the
deployment of a system in any application.

The main contribution of the work presented in this paper
is the characterization of the steady-state accuracy of the
position estimates in Cooperative Localization and Target
Tracking (CLATT). This is achieved by deriving analytical
upper bounds of the steady-state covariance matrix of the
position estimates, for the worst-case scenario as well as
for the average case (i.e., when a probabilistic description
of the targets’ and robots’ positions is known in advance).
Moreover, when the process noise in the target motion model
in the limit becomes infinite (i.e., no prior information of the
targets’ motion model is available), a study of the localization
accuracy provides a worst-case performance bound over all
possible motion models. This analysis also demonstrates
that the robots’ position estimates are always better when,
in addition to robot-to-robot measurements, the robots also
process robot-to-target measurements.

III. PROBLEM FORMULATION

Consider a group of M mobile robots, denoted as r1, r2,
..., rM and N targets, denoted as T1, T2, ..., TN , moving
on a planar surface. A zero-velocity model is employed to
describe the motion of the targets. The robots use propriocep-
tive measurements (e.g., from odometric or inertial sensors)
to propagate their state (position) estimates, and are equipped
with exteroceptive sensors (e.g., laser range finders) that
enable them to measure the relative position of other robots
and targets. Additionally, one of the robots is equipped with
a GPS receiver, that enables it to measure its position in
the global coordinate frame. In real situations, this absolute
position is usually needed for coordinating actions by the
command center.1 All these measurements are fused using an
Extended Kalman Filter (EKF) in order to produce estimates
of the position of the robots and targets. In our formulation,
we assume that each robot has access to measurements of its
absolute orientation, and that an upper bound on the variance
of these measurements can be determined a priori. This is
the case, for example, when each robot is equipped with a
heading sensor of limited accuracy (e.g., a compass [14] or
a sun sensor [15]) that directly measures its orientation, or if
the robots infer their orientation from measurements of the
structure of the environment (e.g., based on the direction of
the walls when this is known a priori [16]).

The variance of the absolute orientation measurements that
each robot receives defines an upper bound on each robot’s
orientation uncertainty. The availability of such a bound
enables us to decouple the task of position estimation from
that of orientation estimation, for the purpose of determining
upper bounds on the performance of CLATT. Specifically,
the state vector includes only the positions of the robots and
targets, and the orientation estimates are used as inputs to the
system, of which noise-corrupted observations are available.
Clearly, the resulting EKF-based estimator is a suboptimal
one, because the correlations between the position and ori-
entation estimates of the robots are discarded. Therefore, by

1The problem can be reformulated for relative position measurements
only, however this case is outside the scope of this paper.

deriving an upper bound on the covariance of the estimates
produced with this suboptimal, “position-only” estimator, we
simultaneously determine an upper bound on the covariance
of the position estimates that would result from using a “full-
state” EKF estimator.

In our formulation, which follows from those of [17], [18]
the metric employed for describing the accuracy CLATT is
the covariance matrix of the position estimates. The time
evolution of the covariance matrix in the EKF framework
is described by the propagation and update equations (cf.
Eqs. (8) and (14)). Combining these equations yields the
Riccati recursion (cf. Eq. (15)), whose solution is the co-
variance of the error in the state estimate at each time-step,
immediately following the propagation phase of the EKF. In
the case of CLATT, certain matrices in this recursion are
time-varying and a general closed-form expression for the
time evolution of the covariance matrix does not exist. We
thus resort to deriving upper bounds for the covariance, by
exploiting the convexity and monotonicity properties of the
Riccati recursion (cf. Lemmas 4.1 and 4.2). These properties
allow for the formulation of constant coefficient Riccati
recursions, whose solutions provide upper bounds for the
positioning uncertainty in CLATT.

A. Position propagation

The discrete-time kinematic equations for the i-th robot
are

xri
(k + 1) = xri

(k) + Vi(k)δt cos(φi(k)) (1)

yri
(k + 1) = yri

(k) + Vi(k)δt sin(φi(k)) (2)

where Vi(k) denotes the robot’s translational velocity at time-
step k and δt is the sampling period. In the EKF, the
estimates of the robot’s position are propagated using the
measurements of the its velocity, Vmi

(k), and estimates of
the its orientation, φ̂i(k).

By linearizing Eqs. (1) and (2), the error propagation
equation for the robot’s position is derived:[

x̃rik+1|k
ỹrik+1|k

]
=
[

1 0
0 1

] [
x̃rik|k
ỹrik|k

]

+
[

δt cos(φ̂i(k)) −Vmi
(k)δt sin(φ̂i(k))

δt sin(φ̂i(k)) Vmi
(k)δt cos(φ̂i(k))

] [
wVi

(k)

φ̃i(k)

]
⇔ X̃rik+1|k

= I2X̃rik|k
+ Gri

(k)Wi(k), i = 1 . . . M (3)

where2 wVi
(k) is a zero-mean white Gaussian noise sequence

of variance σ2
Vi

affecting the velocity measurements, and
φ̃i(k) is the error in the robot’s orientation estimate at time
k. This is modeled as a zero-mean white Gaussian noise
sequence of variance σ2

φi
.

From Eq. (3), the covariance matrix of the system noise
affecting the i-th robot is:

Qri(k) = C(φ̂i(k))

[
δt2σ2

Vi
0

0 δt2V 2
mi

(k)σ2
φi

]
CT (φ̂i(k)) (4)

where C(φ̂i) is the 2×2 rotation matrix associated with φ̂i.

2Throughout this paper, 0m×n denotes the m×n matrix of zeros, 1m×n

denotes the m×n matrix of ones, and In denotes the n×n identity matrix.
The symbol ⊗ represents the Kronecker product for matrices.



A zero-velocity model is used to model the targets’ motion
[1], hence, the state propagation equations for the i-th target
are

XTik+1|k
= XTik|k

+ δtWTi
(k)

where WTi
= [wTxi

wTyi
]T is the white noise process,

introduced in the target’s motion model to express the
uncertainty in the actual motion of the target.

The error propagation equation is given by:

X̃Tik+1|k
= I2X̃Tik|k

+ δtWTi
(k) (5)

and the covariance of the system noise of the i-th target is

QTi
= E

{
δt2WTi

(k)WT
Ti

(k)
}

= δt2σ2
T I2 = QT (6)

where σ2
T is the variance of the targets’ system noise along

each axis, assumed to be identical for all targets. The state
vector for the entire system is defined as the stacked vector
comprising the positions of the robots and the targets, i.e.,

X =
[

XT
r1

· · · XT
rM

XT
T1

· · · XT
TN

]T
Hence, the state transition matrix for the entire system at
time-step k is Φk = I2M+2N , and the covariance matrix of
the system noise is:

Q(k) =
[

Qr(k) 02M×2N

02N×2M QT

]
(7)

where Qr(k) = Diag(Qri
(k)), and QT = IN ⊗ (QT )

are block diagonal matrices describing the system noise
covariance for the robots and targets, respectively.

The equation for propagating the covariance matrix of the
state error is written as:

Pk+1|k = Pk|k + Q(k) (8)

where P�|k = E{X̃�|kX̃T
�|k} is the covariance of the error in

the estimate of X(�), after the measurements up to time k
have been processed.

B. Measurement model

At every time-step, the robots perform robot-to-robot and
robot-to-target relative position measurements:

zij = CT (φi)
(
XSij

− Xri

)
+ nzij

(9)

where ri is the observing robot, and nzij
is the noise

affecting this measurement. Sij denotes the subject of the
j-th measurement of robot i, i.e.,

Sij ∈ {r1, r2, . . . , rM , T1, T2, . . . , TN} \ {ri}
If the i-th robot performs Mi relative position measurements,
the index j assumes integer values in the range [1,Mi]
to describe these measurements. By linearizing the last
expression, the measurement error equation is obtained:

z̃ij(k + 1) = Hij(k + 1)X̃k+1|k + Γij(k + 1)nij(k + 1)

where

Hij(k + 1) = CT (φ̂i(k + 1)) Hoij
(10)

Hoij
=
[

02×2 . . . −I2︸︷︷︸
ri

. . . I2︸︷︷︸
Sij

. . . 02×2
]

X̃k+1|k =
[
· · · X̃T

ri
· · · X̃T

Sij
· · ·

]T
k+1|k

Γij(k) =
[

I2 −CT (φ̂i(k + 1))J∆̂pij(k + 1)

]

J =
[

0 −1
1 0

]
, nij(k) =

[
nzij

(k + 1)

φ̃i(k + 1)

]
∆̂pij(k + 1) = X̂Sij k+1|k − X̂ri k+1|k

The error, nij(k + 1), in each relative-position measure-
ment comprises two independent components. Firstly, each
observation is corrupted by noise in the measurement of
the range and bearing. This noise is described by two
independent, zero-mean, Gaussian processes, with variance
σ2

ρi
and σ2

θi
, affecting the range and bearing measurements,

respectively. A second source of error is the uncertainty in
the measuring robot’s orientation estimates, φ̃i(k + 1). This
error affects all relative position measurements performed
by robot i, thus rendering them correlated. The covariance
matrix of the relative position measurements recorded by
robot i is given by [19]:

Ri(k + 1) = ΞT
φ̂i

(k + 1)Roi
(k + 1)Ξφ̂i

(k + 1) (11)

where Ξφ̂i
(k + 1) = IMi

⊗ C(φ̂i(k + 1)), and

Roi
(k + 1) =σ2

ρi
I2Mi

− Di diag

(
σ2

ρi

ρ̂2
ij

)
DT

i + σ2
θi

DiD
T
i

+ σ2
φi

Di1Mi×Mi
DT

i (12)

In this last expression, ρ̂ij is the estimated range of the

relative position measurement zij , and Di = Diag
(
J∆̂pij

)
is the block-diagonal matrix with elements J∆̂pij , j =
1 . . . Mi.

The measurement matrix describing all the relative-
position measurements performed by robot i at each time-
step is a matrix whose block rows are Hij , j = 1 . . . Mi,
i.e.:

Hi(k + 1) = ΞT
φ̂i

(k + 1)Hoi
(13)

where Hoi
is a constant matrix with block rows Hoij

, j =
1 . . . Mi (cf. Eq. (10)).

In addition to relative-position measurements, one of the
robots receives measurements of its position in the global
coordinate frame. Assuming that robot r1 is equipped with
a GPS receiver, the corresponding measurement matrix is:

Ho0 =
[
I2 02×(2M+2N−2)

]
Accordingly, we define Ro0 as the covariance matrix of the
GPS measurement, given by Ro0 = σ2

GPSI2.
The measurement matrix for the entire system, H(k + 1),

is defined as the block matrix with block rows Hi(k + 1), i =
0 . . . M . Since the measurements performed by different
robots are independent, the measurement covariance ma-
trix, R(k + 1), is a block-diagonal matrix with elements
Ri(k + 1), i = 0 . . . M (cf Eq. (11)). The covariance update
equation of the EKF is written as

Pk+1|k+1 = Pk+1|k − Pk+1|kHT
(k + 1)S−1H(k + 1)Pk+1|k

with S = H(k + 1)Pk+1|kHT (k + 1)+R(k + 1). Substitution
from Eqs. (11) and (13) and simple algebraic manipulation
cancels out the orientation-dependent terms, and yields the
expression

Pk+1|k+1 = Pk+1|k − Pk+1|kHT
o S−1

o HoPk+1|k (14)

with So = HoPk+1|kHT
o + Ro(k + 1). In these equations



Ho is a matrix whose block rows are Hoi
, while Ro is a

block-diagonal matrix with elements Roi
.

IV. CLATT POSITIONING ACCURACY

CHARACTERIZATION

The time evolution of the covariance matrix of the position
estimates in CLATT is described by the Riccati recursion,
which can be derived by substituting the expression from
Eq. (14) into Eq. (8). The resulting expression is:

Pk+1 = Pk − PkHT
o

(
HoPkHT

o + Ro(k + 1)
)−1

HoPk

+ Q(k + 1) (15)

where we use the substitutions Pk = Pk+1|k and Pk+1 =
Pk+2|k+1 to simplify the notation. The initial value of this
recursion is given by the position estimates’ covariance
matrix at the onset of the robots’ tracking task, and is
assumed to be an arbitrary positive semidefinite matrix,
P0. We note that the matrices Q(k + 1) and Ro(k + 1) in
this Riccati recursion are time-varying, and thus a closed-
form expression for Pk cannot be derived for the general
case. However, by exploiting the monotonicity and concavity
properties of the Riccati recursion, we are able to derive
upper bounds for the worst-case value, as well as for the
average value of the covariance matrix at steady state.

A. Bound on worst-case steady-state covariance

In this section, we derive an upper bound for the position
estimates’ covariance matrix in CLATT. It can be shown
[19] that the right-hand side of Eq. (15) is a matrix-
increasing function of the covariance matrices Q(k + 1) and
Ro(k + 1), as well as of the state covariance matrix Pk.
These properties allow us to prove the following lemma [19]:

Lemma 4.1: If Ru and Qu are matrices such that Ru �
Ro(k) and Qu � Q(k), for all k ≥ 0, then the solution to
the Riccati recursion

Pu
k+1 = Pu

k − Pu
kHT

o

(
HoP

u
kHT

o + Ru

)−1

HoP
u
k + Qu

(16)

with the initial condition Pu
0 = P0, satisfies Pu

k � Pk for
all k ≥ 0.

Since QT is a constant matrix (cf. Eq. (7)), an upper bound
for Q(k) can be found as:

Qu =

[
Qru 02M×2N

02N×2M QT

]
where Qru = Diag(qiI2),

qi � max(δt2σ2
Vi

,δt2V 2
i σ2

φi
) (17)

For deriving this equation we have assumed that the velocity
of each robot is approximately constant and equal to Vi [19].

An upper bound for Roi
(k + 1), i = 1 . . . M , can be

derived by considering the maximum distance, ρoi
, at which

relative position measurements can be recorded by robot
i. This distance can, for example, be determined by the
maximum range of the robots’ relative position sensors. It
can be shown that [19]

Ri(k + 1) � (σ2
ρi

+ Miσ
2
φi

ρ2
o + σ2

θi
ρ2

o

)
I2Mi

= riI2Mi
= Ru

i

The GPS measurement covariance is constant (i.e., its upper
bound is trivially Ru

0 = Ro0), and hence, an upper bound
on Ro(k + 1) is computed as

Ro(k + 1) = Diag(Roi
(k + 1)) � Diag(Ru

i ) = Ru (18)

Having derived upper bounds for Q(k + 1) and Ro(k + 1),
mere substitution in Eq. (16) and numerical evaluation of the
solution to the resulting recursion, yields an upper bound on
the maximum possible uncertainty of the position estimates
in CLATT, at any time instant after the deployment of the
robot team. However, since the system is observable [19],
after sufficient time the covariance matrix of the position
estimates will reach a steady state, during which the covari-
ance fluctuates around a mean value. Thus it is interesting
to evaluate the upper bound Pu

k after sufficient time, i.e., as
k → ∞. This derivation is presented in Section V. In the
remainder of this section, we study the time evolution of the
expected covariance of the position estimates in CLATT.

B. Bound on average steady-state covariance

The expression in Eq. (16) determines the time evolution
of the upper bound of the CLATT covariance matrix for a
robot team with a given set of sensors and a known RPMG.
This bound holds under any possible spatial configuration
of the robots and the targets, regardless of their trajectories
within their operational area. However, in realistic scenar-
ios, the robots’ and targets’ relative positions can often be
described by known probability distribution functions (e.g.,
when the robots follow the targets at given a distance). Such
a priori knowledge of the distribution of the relative positions
between robots and targets allows us to compute the average
value of the matrix Ro(k + 1), for example, by Monte Carlo
simulations. This information can be exploited in order to
compute a tighter upper bound for the expected covariance
of the position estimates.

Specifically, it can be shown [19] that the right-hand
side of Eq. (15) is a concave function of the matrices
Pk, Ro(k + 1) and Q(k + 1). This property enables us to
employ Jensen’s inequality [20] to prove, by induction, the
following lemma [19]:

Lemma 4.2: If R̄ = E{Ro(k + 1)} and Q̄ = E{Q(k + 1)}
then the solution to the following Riccati recursion

P̄k+1 = P̄k − P̄kHT
o

(
HoP̄kHT

o + R̄
)−1

HoP̄k + Q̄ (19)

with initial condition P̄0 = P0, satisfies P̄k � E{Pk} for
all k ≥ 0.

Assuming that the robots’ heading is uniformly distributed,
the average value of the system noise covariance matrix is
computed [19] by averaging over all values of orientation:

E{Qri
} =

δt2σ2
Vi

+ δt2V 2
i σ2

φi

2
I2 = q̄iI2 (20)

and thus

Q̄ =

[
Q̄r 02M×2N

02N×2M QT

]
, with Q̄r = Diag (q̄iI2) (21)

In order to simplify the presentation, we assume a uniform
distribution for the positions of the robots and targets in a
square area of side α. Using the definition of Roi

(k + 1) in



Eq. (12), it can be shown that [19]

R̄i = E{Roi
} =

(
1
2
σ2

ρi
+

α2

12
σ2

φi
+

α2

6
σ2

θi

)
I2Mi

+
α2

12
σ2

φi
(1Mi×Mi

⊗ I2) (22)

The covariance of the GPS measurement noise is constant,
so its expected value is simply R̄0 = Ro0 , and thus the
average value of Ro(k + 1) is given by (cf. Eq. (11))

R̄ = E{Ro(k + 1)} = Diag(R̄i) (23)

Instead of uniform distributions, other distributions may be
used for the derivation of R̄ and Q̄, but the results will not be
necessarily in closed form. Nevertheless, Lemma 4.2 holds
for any pdf.

V. ASYMPTOTIC SOLUTIONS TO THE RICCATI EQUATION

Given the constant-coefficient Riccati recursions of
Eq. (16) and Eq. (19), the upper bounds for the positioning
performance of CLATT can be evaluated, by numerical
integration of the respective recursions. As explained in
Section IV, the asymptotic solutions to these equations are of
particular interest, since they provide a characterization of the
steady-state localization and tracking performance. In order
to obtain the steady-state solutions of the Riccati recursions
of Lemmas 4.1 and 4.2, we first note that by employing the
substitutions

Rs → Ru, Qs → Qu and Rs → R̄ , Qs → Q̄ (24)

Eq. (16) and Eq. (19)) can be written as

Ps
k+1 = Ps

k − Ps
kH

T
o

(
HoP

s
kH

T
o + Rs

)−1

HoP
s
k + Qs (25)

In [19], the steady-state solution to this Riccati recursion is
shown to be:

Ps
ss = Q1/2

s Us diag
(

1
2

+
√

1
4

+
1
λi

)
UT

s Q1/2
s (26)

where Cs = UsΛUT
s , Λ = diag(λi) is the SVD of:

Cs = Q1/2
s HT

o R−1
s HoQ1/2

s (27)

The upper bounds on the worst-case and the expected steady-
state positioning uncertainty of CLATT can be evaluated by
employing the substitutions shown in Eq. (24).

At this point, we should note that the upper bounds on
the steady-state uncertainty depend on the topology of the
RPMG, the accuracy of the proprioceptive and exterocep-
tive sensors of the robots, and the target noise covariance.
However, the steady-state uncertainty is independent of the
initial covariance of the robots and targets, which comes as
no surprise, since the system is observable.

VI. INFINITE TARGET NOISE COVARIANCE

When employing any of the common motion models
(e.g., zero-velocity, zero-acceleration, zero-jerk [1]) for target
tracking, the implicit assumption made is that some informa-
tion about the target’s motion characteristics is available. Our
confidence in this information determines the selection of the
variance of the process noise included in the motion model.
When a low variance value is selected, this implies that our
a priori knowledge is deemed very reliable. In general, the
use of prior information in estimation results in increased

accuracy. In order to study the most general case (i.e., when
no knowledge about the motion of the targets is available),
we now examine the positioning performance of CLATT in
the limit as the process noise, in the zero-velocity model we
have used, approaches infinity (i.e., we let σT → ∞). This
implies that after each EKF propagation step the position of
the targets is completely unknown and corresponds to a non-
informative prior for the targets’ position before each update.
By evaluating an upper bound for the accuracy of the position
estimates for the robots and the targets in this scenario, we
essentially determine the worst-case performance of CLATT
when no target model is assumed.

Specifically, application of the matrix inversion lemma to
the Riccati recursion in Eq. (25) leads to:

Ps
k+1 =

(
(Ps

k)−1 + Ψ
)−1

+ Qs

where the term

Ψ = HT
o R−1

s Ho =
[
Ψ11 Ψ12

Ψ21 Ψ22

]
(28)

represents the information of the exteroceptive measurements
at every time-step.

To represent the absence of an informative motion model
for the target, we set

Qs =
[

Qrr 02M×2N

02N×2M µI2N

]
, µ → ∞ (29)

Thus, after each propagation step, the covariance matrix Ps
k

can be expressed in the form:

Ps
k =

[
Ps

rrk
Ps

rTk

Ps
Trk

Ps
TTk

+ µI2N

]
(30)

where Ps
rrk

is the covariance matrix corresponding to the
robots’ position estimates, Ps

TTk
+ µI2N is the covariance

matrix of the targets’ position estimates, and Ps
rTk

is the
correlation between the robots and targets. Eq. (30) thus
yields

Ps
k+1 =

[
Ps

rrk+1 Ps
rTk+1

Ps
Trk+1

Ps
TTk+1

]
= lim

µ→∞

([
Ps

rrk
Ps

rTk

Ps
Trk

Ps
TTk

+ µI2

]−1

+

[
Ψ11 Ψ12

Ψ21 Ψ22

])−1

+ Qs

=

([
(Ps

rrk
)−1 0

0 0

]
+

[
Ψ11 Ψ12

Ψ21 Ψ22

])−1

+ Qs (31)

Considering the submatrix of Ps
k+1 corresponding to the

robots separately, we obtain the following recursion:

Ps
rrk+1

= Ps
rrk

(
I2M + ΨrrPs

rrk

)−1 + Qrr (32)

where

Ψrr = Ψ11 − Ψ12Ψ−1
22 Ψ21 (33)

At this point, we should note that all the eigenvalues of Ψrr

are positive, since Ψrr is the Schur complement of Ψ11 in
the positive definite matrix HT

o R−1
s Ho.

In [19] the steady-state solution of Eq. (32) is shown to
be:

Ps
rr = Q1/2

rr U
′
r diag

(
1
2

+

√
1
4

+
1
λ

′
i

)
U

′T
r Q1/2

rr (34)

where

Cr = Q1/2
rr ΨrrQ1/2

rr = U
′
r diag(λ

′
i)U

′T
r (35)



Since the covariance of the targets’ motion model noise is
infinite, the location of the target immediately after each
propagation step approaches infinity (cf. Eq. (30)). How-
ever, once robot-to-target measurements are received and
processed (i.e., after each update step), the covariance for
the position of the targets can be computed as follows (cf.
Eqs. (31), (28)):

Ps
TT =

(
Ψ22 − Ψ21

(
(Ps

rr)
−1 + Ψ11

)−1
Ψ12

)−1

(36)

A. Improved localization due to target measurements

We now show that when robots localize while simul-
taneously estimating the position of targets, the resulting
accuracy for the robots’ position is improved. A complete
proof for this result cannot be included in this paper due to
space limitations. A detailed derivation is presented in [19].

For simplicity of presentation, we show this result for the
constant-coefficient system model represented by the Riccati
recursion in Eq. (25), assuming that Rs is a diagonal matrix.
As previously mentioned, infinite process-noise variance
for the targets defines the worst-case scenario in terms of
localization accuracy. Thus it suffices to show that even in
this case the covariance for the robots’ position estimates of
Eq. (34) is smaller than the covariance computed when the
targets are not included in the state vector of the system (i.e.,
no target observations are incorporated).

We note that the block rows of the measurement matrix
Ho can be permuted, so that the following partitioning holds:

Ho =
[
Hrr 0
HrT HTT

]
(37)

where Hrr is the measurement matrix that would arise if
only robot-to-robot and GPS measurements were employed
for localization, and the rest of the block rows describe the
robot-to-target measurements.

The information matrix for the entire system, Ψ, can be
expressed as:

Ψ =
[
HT

rr HT
rT

0 HT
TT

] [
R−1

r 0
0 R−1

T

] [
Hrr 0

HrTT HTT

]
=[

HT
rrR

−1
r Hrr + HT

rT R−1
T HrT HT

rT R−1
T HTT

HT
TT R−1

T HrT HT
TT R−1

T HTT

]
(38)

Thus the information matrix for the robots, Ψrr, is (cf. (33)):

Ψrr = HT
rrR

−1
r Hrr + HT

rT R−1
T HrT

− HT
rT R−1

T HTT

(
HT

TT R−1
T HTT

)−1
HT

TT R−1
T HrT (39)

When the targets are ignored (the case of Cooperative
Localization (CL) only), the robots’ positioning uncertainty
is described by the Riccati recursion

Prrk+1 = Prrk
(I2M + ΨCLPrrk

)−1 + Qrr (40)

where the information matrix is now ΨCL = HT
rrR

−1
r Hrr,

and we obtain
Ψrr − ΨCL =

HT
rT R−1

T

(
RT − HTT

(
HT

TT R−1
T HTT

)−1

HT
TT

)
R−1

T HrT

The term RT −HTT

(
HT

TT R−1
T HTT

)−1
HT

TT is the Schur
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Fig. 1. Trajectories of the robots and the target during the experiment.
A sample laser scan acquired by robot 1 is superimposed (after being
transformed to the global frame), in order to illustrate the geometry of the
area where the robots operate.

complement of RT in the positive semidefinite matrix:[
RT HTT

HT
TT HT

TT R−1
T HTT

]
(41)

and therefore

RT − HTT

(
HT

TT R−1
T HTT

)−1

HT
TT � 0 ⇒ Ψrr − ΨCL � 0

This implies that the information matrix for the robots’
position in the case of CLATT is larger (in the positive semi-
definite sense) than the corresponding information matrix
during CL. It is straightforward to show that the solution
of the Riccati recursion is a matrix-decreasing function of
the information matrix, and therefore, the covariance matrix
of the robots’ position estimates in the case of CLATT is
smaller.

VII. EXPERIMENTS AND SIMULATIONS

In order to demonstrate the validity of the theoretical
analysis in a realistic setting, we have conducted a real-
world experiment. A team comprising two Pioneer 3 robots,
each equipped with two opposite-facing SICK LMS200 laser
scanners to provide a 360◦ field of view, was employed.
Additionally, one Pioneer 1 robot is used as the target. The
robots move randomly at a constant velocity of 0.1m/sec,
while performing CLATT in an area of approximate di-
mensions 10m×4m. The estimated trajectories of the robots
and the target are shown in Fig. 1. In this experiment,
absolute position and orientation measurements are obtained
by employing line-fitting on the laser scans. The upper bound
for the standard deviation of the position measurements is
σGPS = 0.2m and for the absolute orientation measurements
is σφ = 1◦. Only robot 1 records absolute position measure-
ments, while both robots measure the relative position of the
target, and robot 1 measures the relative position of robot
2 at every time step. The robots are equipped with wheel
encoders that provide velocity measurements with standard
deviation σV = 5×10−3m/sec. The odometry measurements
are available at a rate of 10Hz, while the laser scanners
provide measurements at a frequency of 2Hz.

In Fig. 2, the time evolution of the diagonal elements
of the position estimates’ covariance matrix is shown, and
compared to the worst-case upper bounds. We note at this
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Fig. 2. Comparison of the robots’ and target’s position covariance computed
during the experiment (solid blue lines) against the analytically-computed
worst-case bound (dashed red lines). In each plot, the diagonal elements of
the covariance matrix corresponding to both the x- and y- axes are plotted.
The intervals that the covariance of the target position estimate exceeds the
bound correspond to periods when robot-to-target measurements were not
available due to occlusions.

point that, due primarily to the existence of occlusions and
data association failures, the robot-to-target measurements
were not possible at every time instant. As a result, the
RPMG did not remain constant for the entire duration of
the experiment. The spikes in the target covariance occur at
the occasions when none of the robots was able to measure
the position of the target. However, once the robot-to-target
measurements become available again, the uncertainty falls
to levels that are correctly predicted by the bounds. This
is not a surprising result, as the system is observable,
and thus its covariance converges to the steady-state value
independent of possible temporary reconfigurations of the
RPMG.

In order to further illustrate the properties of the derived
bounds, simulation results are also presented. In the simula-
tion setup, two robots and two targets are moving in a square
of dimensions 30 × 30m. The velocity of the robots is kept
constant at V = 0.25m/s, while their orientation changes
randomly, using samples drawn from a uniform distribution.
The standard deviation of the robots’ velocity measurement
noise is σV = 0.05V and the standard deviation of the
errors in the orientation measurements is σφ = 1◦, for both
robots. The values selected for the standard deviations of
the exteroceptive measurements are σθ = 2◦ for the bearing
measurements, and σρ = 0.15m for the range measurements.
In addition, one of the robots is equipped with GPS, provid-
ing absolute position measurements with a standard deviation
of σGPS = 0.25m. For the results presented in this section,
both robots measure relative position of both targets, and the
GPS-bearing robot measures the relative position of the other
robot. The targets being tracked in this experiment are two
robots, identical to the tracking ones. For the motion model
of the targets we have used σT = 0.5m.

In order to demonstrate the validity of the bound on the

worst-case steady-state covariance of CLATT, presented in
Section V, a particularly adverse scenario for the initial po-
sition of the robots and the targets is considered. Specifically,
the robot-to-robot and robot-to-target distances are large, and
thus the relative position measurements carry limited posi-
tioning information, since the error in these measurements
increases with distance. In Fig. 3(a), the time evolution of the
position estimates’ covariance for the robots and the targets
are shown, and compared to the theoretical steady-state
worst-case performance bound. Clearly, the upper bound is
indeed larger than the steady-state covariance of the targets
and robots. It can also be seen that the covariance bound
of the robot which is equipped with GPS is tighter. This is
attributed to the fact that the GPS accuracy is the dominant
factor in determining this robot’s position accuracy, and the
uncertainty in the GPS measurements is exactly known.

Although the bound of Lemma 4.1 accounts for the worst-
case accuracy of CLATT, it does not yield a sufficient per-
formance description when the robots and targets are more
evenly distributed in space. In such cases, employing the
steady-state performance bound on the expected uncertainty,
results in a closer description of the positioning performance,
as demonstrated in Fig. 3(b). In these plots, the average
values (over 100 runs) of the covariance in CLATT, are
compared against the theoretically derived bounds on the
expected uncertainty. For each run of the algorithm, the
initial positions of the targets and the robots were selected
using samples from a uniform distribution. Comparison of
the covariance of the robots’ and targets’ position estimates
with the corresponding bounds demonstrates that when avail-
able information about the distribution of the robots’ and
targets’ positions is exploited, (by employing the expressions
of Lemma 4.2), a better characterization of the expected
accuracy of the position estimates is achieved, which results
in tighter bounds.

Finally, simulation experiments were conducted, to study
the effects of using an infinite target noise covariance. The
solid lines in the plots of Fig. 3(c) present the time evo-
lution of the covariance of the robots’ and targets’ position
estimates when performing CLATT with no prior knowledge
about the targets’ motion characteristics (i.e., infinite target
noise covariance). For comparison, the dash-dotted lines
show the covariance of the robots’ position estimates when
the robots localize ignoring the presence of the targets. This
figure confirms that when performing CLATT, the localiza-
tion information obtained by the simultaneous observation of
a target by multiple robots results in substantial improvement
of the robots’ position accuracy. As expected, the amount of
improvement for the robot that is equipped with a GPS (and
therefore mostly relies on absolute measurements for position
estimation) is almost negligible.

An additional interesting observation can be made by
comparing the covariance upper bound for the case of a
non-informative motion model (dashed lines in Fig. 3(c))
with the bound previously computed with σT = 0.5m (cf.
Fig. 3(a)). The numerical values of the upper bounds for
the robots differ by less than 0.1%. This indicates that,
in this particular setup, using a priori information for the
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Fig. 3. (a) Comparison of the robots’ and targets’ actual position covariance (solid blue lines) against the worst-case bound (dashed red lines). In each
plot, the diagonal elements of the covariance matrix corresponding to both the x- and y- axes are plotted. Note the different scales in the plots’ vertical
axes. (b) The mean covariance values for the robots’ and targets’ position uncertainty (solid blue lines), computed over 100 runs, vs. the upper bounds on
the expected covariance (dashed red lines). In each plot, the diagonal elements of the mean covariance matrix, corresponding to both the x- and y- axes
are plotted. (c) The top two plots compare the robots’ position covariance in the case of CLATT with an infinite target noise covariance (solid blue lines),
with the covariance when the targets are ignored (dash-dotted black lines). The third plot shows the covariance of the targets’ position estimate, when a
non-informative model is employed for tracking. The dashed red lines represent the corresponding upper bounds for the latter case.

targets’ motion results in a negligible gain for the robot’s
localization accuracy over using a non-informative target
model. However, this information significantly affects the
accuracy with which the targets’ positions can be estimated,
resulting in 50% smaller covariance values, as shown in the
corresponding figures.

VIII. CONCLUSION

In this paper we studied the problem of determining
upper bounds for the covariance of the position estimates
in Cooperative Localization and Target Tracking (CLATT).
The developed analytical expressions enable us to predict
the worst-case performance of a team of robots with a given
set of sensors in a particular tracking scenario. Moreover,
when a priori knowledge about the distribution of the
relative positions of the robots and targets is available, this
can be utilized in order to derive a tighter upper bound
for the expected value of the covariance of the position
estimates. In our work, we employed a zero-velocity motion
model for the targets. By evaluating the upper bound of
the steady-state covariance of the position estimates, in the
limit as the targets’ motion model becomes non-informative,
we computed the worst-case performance of tracking when
no target motion model is assumed. The effect of jointly
estimating the positions of the targets and robots on the
performance of localization is studied, and it is shown that
CLATT outperforms Cooperative Localization, in terms of
the robots’ positioning accuracy.
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