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Abstract—Most existing algorithms for vision-aided inertial
navigation rely on linearization, and thus require good initial
estimates of the state to operate reliably. In this paper, we
present a method for computing such estimates in absence of
prior motion information, by fusing the inertial measurements
and observations of naturally-occurring point features extracted
from images. Specifically, we propose a convex-minimization
formulation, which is derived as an approximation to the optimal
maximum-a-posteriori estimator. In this formulation, both the
inertial and visual measurements are jointly used, and a robust
cost function (bivariate Huber) is employed to provide robustness
to outliers. Experimental results on both simulated and real-
world data demonstrate that the proposed approach outperforms
competing methods by a significant margin.

I. INTRODUCTION

In recent years, the topic of motion estimation using visual
and inertial sensors (termed vision-aided inertial navigation)
has attracted considerable research interest. Numerous esti-
mators have been proposed for fusing the measurements from
a camera and an inertial measurement unit (IMU), with the
vast majority of algorithms employing either an extended
Kalman filter (EKF) [1]–[4], or iterative minimization [5]–
[7]. A common characteristic of all these methods, which
rely on linearization, is that they require an accurate initial
estimate of the state for successful operation. While this is true
in any linearization-based estimator, in vision-aided inertial
navigation an accurate initial guess is especially important,
as the initial orientation and velocity greatly influence the
estimated trajectory. This makes the in-motion initialization
of visual-inertial estimators a challenging problem [8]–[11].

In this work, we present a convex-minimization algorithm
for computing an estimate of the trajectory using inertial mea-
surements and monocular observations of naturally-occurring
point features. The method is direct, in the sense that it
does not require a prior estimate of the motion. Moreover, it
employs a robust cost-function formulation, to permit reliable
operation in the presence of outliers. Therefore, it can be
employed for in-motion initialization of an EKF estimator, for
providing an initial guess for linearization-based estimators,
or for re-starting an estimator after failure.

We point out that, even though direct methods for visual-
inertial motion estimation are required in many settings, prior
work on the subject is limited. In [8], a loosely-coupled
estimator is presented, in which the measurements of the
inertial and visual sensors are processed separately. First, a
structure-from-motion (SfM) algorithm is used to derive a
motion estimate up to an unknown scale factor. Then, this
estimate is used together with the inertial measurements to

compute the scale and the orientation with respect to the
horizontal plane (i.e., with respect to gravity). In this approach,
obtaining an initial estimate for the motion and dealing with
outliers are left to the SfM algorithm, and not addressed. By
contrast, in our work the visual and inertial measurements are
used jointly, for increased robustness to outliers.

A different class of methods is presented in [9], [10],
[12], where the visual and inertial measurements are used to
derive linear equations involving the initial IMU velocity and
orientation (represented via the gravity vector expressed in
the IMU frame). The linear formulation leads to analytical
solutions, but does not correctly model the measurement noise
and thus yields estimates that are not statistically optimal.
While the approach we describe here is also suboptimal, the
cost function we minimize is a close approximation to the cost
function of the maximum-a-posteriori (MAP) estimator, and
thus results in significantly improved accuracy (see Section V).

Specifically, our algorithm computes estimates for (i) the
IMU motion and scene structure with respect to the initial
IMU frame, (ii) the gravity vector expressed with respect
to the initial IMU frame (equivalent to estimating the initial
roll and pitch), and (iii) the accelerometer bias. We note that
due to the lack of any feature points with known position,
estimation with respect to a “local” frame (chosen here to
coincide with the initial IMU frame) is the best one can hope
for, as the global position and yaw are unobservable [2], [12].
In our approach, the orientation with respect to the initial IMU
frame is computed by integrating the gyroscope measurements,
while all other quantities, including the sensor’s position,
velocity, scene points, accelerometer bias, and gravity vector,
are computed via convex minimization.

The formulation we describe draws upon results in convex
SfM estimation [13], [14]. Compared to existing work in this
area, in our approach the objective function being minimized
additionally includes the terms arising from the inertial mea-
surements, and contains depth-weighted terms for the camera
reprojection errors. This depth-weighted formulation, which is
made possible by a pre-processing step to compute estimates
of the features’ depths from the images, results in improved
estimation accuracy, as shown in the experimental results.

II. SENSOR MODELS

We here consider the case where a system comprising an
IMU and a monocular camera moves while observing point
features with unknown positions. We are primarily interested
in the in-motion initialization problem, where the sensors
record measurements over a relatively short time interval (e.g.,



a few seconds to a few tens of seconds), and our goal is to
use these measurements to compute the quantities described
in Section I.

We assume that the camera intrinsics, as well as the relative
spatial transformation and timing between the two sensors
are known via prior calibration, for example by the approach
described in [15]. In this paper, {I} is the IMU coordinate
frame, {C} the frame of the camera, and {B} a fixed base
frame, selected to coincide with the IMU frame at the start of
the motion. The observation, zij , of the j-th feature, fj , in the
i-th image is described by the perspective camera model1:

zij =

[
uij

vij

]
= h

(
Cipfj

)
+ nij =

1

zij

[
xij

yij

]
+ nij (1)

where nij is the measurement noise vector, distributed as
nij ∼ N

(
0, σ2

imI2
)
, and Cipfj is the position of the feature

with respect to the camera frame at the time the i-th image is
recorded, given by:

Cipfj =

xij

yij
zij

 = C
I R

Ii
BR

(
Bpfj − BpIi

)
+ CpI (2)

In the above equations, CpI and C
I R are the known translation

and rotation between the IMU and camera.
The IMU’s gyroscopes and accelerometers measure rota-

tional velocity, ωm, and specific force, am, respectively:

ωm(t) = Iω(t) + bg + ng(t) (3)

am(t) = B
I R

T (t)
(
Ba(t)− Bg

)
+ ba + na(t) (4)

Here Iω represents the IMU’s rotational velocity; Ba is the
IMU’s linear acceleration; Bg denotes the gravity vector; ng

and na are the measurement noise vectors; and bg and ba

represent the gyroscope and accelerometer biases, respectively.
These biases are typically slowly time-varying and are usually
modeled by random walk processes [1]. However, since we are
here interested in motion estimation over short time periods,
we consider the IMU biases as being constant. We assume
that (noisy) prior estimates for the biases are available: for
example, they can be assumed to be close to zero, or estimates
may be available from an earlier calibration. We express this
prior information by modeling the biases as Gaussian random
variables, bg ∼ N (b̂g,Qg) and ba ∼ N (b̂a,Qa).

III. ESTIMATOR FORMULATION

A. MAP Estimation
We begin by describing the optimal MAP estimator, which

serves as the basis for the derivation of our convex formulation.
The state vector we seek to estimate is given by:

x =
[
vT
I1

xT
I2

· · · xT
IN

BpT
f1

· · · BpT
fM

Bg
T

bT
g bT

a

]T
(5)

1The preceding superscript for vectors (e.g., X in Xa) denotes the frame of
reference with respect to which quantities are expressed. X

Y R is the rotation
matrix rotating vectors from {Y } to {X}, and X

Y q̄ is the corresponding unit
quaternion. XpY is the origin of {Y } with respect to {X}. ⌊c×⌋ denotes
the skew symmetric matrix corresponding to vector c, 0 and I are the zero
and identity matrices respectively, and â and ã represent the estimate and
error of the estimate of a variable a, respectively.

where N is the number of images recorded in the time interval
of interest, M is the number features observed, and xIi

represents the IMU state at the time instant the i-th image
was recorded, consisting of the IMU orientation, position, and
velocity with respect to {B}:

xIi =
[
Ii
B q̄T BpT

Ii
BvT

Ii

]T
(6)

Note that for the first IMU state only the velocity is included
in x, since due to the definition of the base frame the first
IMU position is identically zero, and I1

B q̄ = [0 0 0 1]T .
The MAP estimate for x can be obtained by solving the

minimization problem:

minimize cIMU (x) + ccam(x) + cprior(x)
subject to ∥Bg∥2 = g

(7)

where g is the known norm of the gravity vector, and cIMU ,
ccam, and cprior represent the cost functions corresponding to
the IMU measurements (used as process-model information),
the camera measurements, and the prior, respectively:

cIMU (x) =

N−1∑
i=1

∥xIi+1 − f (xIi ,bg,ba,am,ωm) ∥Qi (8)

ccam(x) =
∑

{i,j}∈S

∥zij − h (xIi , fj) ∥σ2
imI2 (9)

cprior(x) = ∥bg − b̂g∥Qg
+ ∥ba − b̂a∥Qa

(10)

In the above equations, S is a set containing all the pairs of
indices {i, j} that describe the feature measurements, f(·) rep-
resents the IMU propagation equation, which is implemented
as described in [1], Qi is the discrete-time process-noise co-
variance matrix, and we use the notation ∥y∥W = yTW−1y.

The minimization problem (7) is a nonlinear least-squares
problem, and can be solved via Gauss-Newton or Levenberg-
Marquardt minimization [5], [6], [9]. However, due to the non-
convex nature of the problem, for these minimization methods
to converge (close) to the global minimum of the objective
function, a good initial guess for x is required. In what follows,
we describe how such an initial guess can be obtained by
formulating and solving a convex minimization problem.

B. Convex formulation

One of the reasons making the minimization problem in (7)
non-convex is the fact that the IMU orientation is included
in the unknown x. To address this, in our formulation we
obtain an estimate for the orientation of all the IMU poses
relative to {B} (i.e., relative to the initial state) by integrating
the gyroscope measurements [1], and subsequently treat it as
known. Given these estimates for the relative orientation, the
remaining quantities that need to be estimated are described
by the vector:

xr=
[
vT
I1

x⋆ T
I2

· · · x⋆ T
IN

BpT
f1

· · · BpT
fM

BgT bT
a

]T
(11)

where x⋆
Ii

= [BpT
Ii

BvT
Ii
]T , for i = 2, . . . , N . The estimate

for xr is computed via convex minimization, as described next.
When the relative orientation between different time instants

is considered known, the IMU measurements can be used to



define linear constraints involving the IMU position and veloc-
ity, the gravity vector, and the accelerometer bias. Specifically,
as shown in [1], we can write:

BpIi+1 =BpIi+
BvIi∆ti+

Bg
∆t2i
2

+B
IiR̂ (yi −Pi ba) +wpi

(12)
BvIi+1 =BvIi +

Bg∆ti +
B
IiR̂ (si −Vi ba) +wvi (13)

where ∆ti = ti+1 − ti represents the time interval between
image i and i+1, wpi and wvi are error vectors whose joint
covariance matrix, Qwi , can be computed as a function of the
IMU noise parameters, and

yi =
∫ ti+1

ti

∫ τ

ti

Ii
Iη
R̂ am(η)dηdτ Pi =

∫ ti+1

ti

∫ τ

ti

Ii
Iτ
R̂dηdτ

si =
∫ ti+1

ti

Ii
Iτ
R̂ am(τ)dt Vi =

∫ ti+1

ti

Ii
Iτ
R̂dt

Equations (12) and (13) can be used to define the IMU-related
term in the objective function as a quadratic cost function:

c′IMU (xr) =

N−1∑
i=1

∥Aixr − ci∥Qwi
(14)

where Ai and ci are constant matrices and vectors, respec-
tively, computed from (12) and (13).

Turning our attention to the camera-related terms in the
objective function, we see that by substituting (1) into (9),
we can write the original cost function ccam as:

ccam(xr) =
∑

{i,j}∈S

(
(uij zij−xij)

2 + (vij zij−yij)
2

σ2
imz2ij

)
(15)

It is important to point out that the coordinates xij , yij , and
zij are linear functions of the IMU position BpIi and feature
position Bpfj , as shown in (2). Therefore, the above cost
function is a summation of quadratic-over-quadratic terms,
which, in general, is not convex. To approximate it by a convex
function, let us consider that an estimate of the feature depth
in each image, ẑij , is available (see Section IV). Then (15)
can be approximated by:

c′cam(xr)=
∑

{i,j}∈S

1

σ2
imẑij

(
(uij zij−xij)

2 + (vij zij−yij)
2

zij

)
(16)

Since all feature depths zij are positive, each of the functions
in the above summation is convex (it is the perspective of a
quadratic function), and therefore c′cam(xr) is convex.

To understand the effects of approximating the cost function
in (15) by the one in (16), we note that each of the summands
in (16) equals the corresponding summand in (15), weighted
by zij/ẑij . Therefore, using the approximate cost function
in (16) is tantamount to introducing a weighting of each
feature measurement’s cost by zij/ẑij . Minimizing this cost
function would be equivalent to solving a weighted least-
squares problem, where the weight of each term is not the
“ideal” one required for MAP estimation, but one close to it.

We now define the following minimization problem for xr:

minimize c′IMU (xr) + c′cam(xr) + ∥ba − b̂a∥Qa

subject to ∥Bg∥2 ≤ g, zij ≥ 0, ∀ij
(17)

where the first two terms in the objective function represent
the information provided by the IMU and the camera mea-
surements, respectively, and the term ∥ba− b̂a∥Qa represents
the prior information about the accelerometer bias. Compared
to the exact formulation in (7), the above formulation has
an approximate cost function, and uses a relaxed version of
the gravity-norm constraint. While these approximations mean
that the solution of (7) will in general not be identical to the
solution of (17), the latter problem is a convex one, since it
involves a convex objective function and convex constraints.
Therefore, the global minimum of (17) can be found using
standard optimization tools, without requiring a prior estimate
for the solution.

C. Initialization in the presence of outliers

One key challenge when using vision for state estimation
is the presence of outlier measurements. If the problem for-
mulation in (17) was used with feature measurements that
included outliers (e.g., wrong correspondences or features on
moving objects), the estimation result would be unreliable.
In recursive estimation, where a prior distribution for the
state is available, outliers can be identified and discarded
using standard statistical tests such as Mahalanobis-distance
gating [1]. Since we here perform initialization in the absence
of a motion prior, these methods are not applicable.

To deal with possible outliers in the camera measurements,
we replace the cost function shown in (16) by a “robust” one,
which exhibits lower sensitivity to outliers. Specifically, we
employ the bivariate Huber function [13], to write:

c′′cam(xr) =
∑

{i,j}∈S

m(uij zij−xij , zij) +m(vij zij−yij , zij)

σ2
imẑij

(18)

where

m(α, β) =

{
α2

β |α| ≤ κβ

2κ|α| − κ2β |α| > κβ
(19)

Here κ is a threshold, chosen so that the function enters its
linear branch for residuals larger than 3σim. If the residuals
are small, the bivariate Huber function yields a cost function
identical to that in (16). However, for large measurement
residuals (likely for outliers), the bivariate Huber results in
a smaller penalty term added to the objective function. In this
way, outliers do not have large effects on the solution. Note
that the bivariate Huber is a convex function, and therefore
by using c′′cam(xr) in (17), instead of c′cam(xr), the problem
remains convex.

IV. FEATURE DEPTH ESTIMATION

The objective function being minimized requires estimates,
ẑij , for the depths of the features in the images. For simplicity,
one may use a constant value (e.g., the expected average
depth of scene features) for all terms ẑij . However, improved
accuracy can be achieved by using pre-processing step to
obtain better depth estimates, as described next.



A. Depth Estimation in Image Pairs

We begin by employing pairs of images to compute (scaled)
estimates for the feature depths. Specifically, let us consider a
feature, fj , observed in images i and k. The coordinates of fj
in camera frames {Ci} and {Ck} are related by:

Ckpfj = Ck

Ci
RCipfj +

CkpCi (20)

Ignoring the noise, we can write the above equation as:

zkj

ukj

vkj
1

 = zij
Ck

Ci
R

uij

vij
1

+

CkxCi
CkyCi
CkzCi

 (21)

Solving the third row of the above equation for zkj , and
substituting in the first two rows, we obtain:

zij

(
w̄ij

[
ukj

vkj

]
−
[
ūij

v̄ij

])
︸ ︷︷ ︸

kik,j

=

[
CkxCi
CkyCi

]
−CkzCi

[
ukj

vkj

]
︸ ︷︷ ︸
zkj

(22)

where we have used the notationūij

v̄ij
w̄ij

 = Ck

Ci
R

uij

vij
1


Stacking the equations in (22) for all features (i.e., all j)
observed in images i and k, we obtain:

[
Axy

ik azik Af
ik

]︸ ︷︷ ︸
Aik


CkxCi
CkyCi
CkzCi

ρi


︸ ︷︷ ︸

xik

= 0, with ρi =

 zi1
...

ziM

 (23)

where

Axy
ik =

I2...
I2

 , azik =

−zk1
...

−zkM

 , Af
ik = −Diag(kik,j)

(24)

If no noise was present, we could compute the camera motion
and the features’ depths (up to scale) by finding the vector that
satisfies Aikxik = 0 (this is the right singular vector of Aik

corresponding to the smallest singular value). In the presence
of noise and outliers, however, this solution is not robust. To
address this issue, we formulate a minimization problem based
on the Huber cost function.

First, since the scale of xik can not be determined using
monocular-camera measurements alone, we must enforce a
scale factor on the solution. To this end, we set one of CkxCi ,
CkyCi , or CkzCi to be equal to one. Specifically, if the camera
motion has a significant component along the optical axis, we
set CkzCi = 1, otherwise we set either CkxCi or CkyCi equal
to one, based on the dominant motion direction of the feature
points on the image. To detect whether the motion along the
optical axis is significant, we note that when CkzCi is zero,
then all vectors kik,j , j = 1, . . . , M, are collinear (see (22)).
Therefore, we can test whether CkzCi is significant by testing
for the collinearity of these vectors.

Assuming for the sake of presentation that we have used
CkzCi = 1, we subsequently compute xik by solving the
following least-soft-square minimization problem [16]:

min
x⋆
ik,ζ

1

2

∥∥∥∥ [Axy
ik Af

ik

]︸ ︷︷ ︸
A⋆

ik

CkxCi
CkyCi

ρi


︸ ︷︷ ︸

x⋆
ik

+azik + ζ

∥∥∥∥2
2

+ λ∥ζ∥1 (25)

In [16] it is shown that solving the above problem, which
includes the “regulation term” λ∥ζ∥1, is equivalent to min-
imizing the sum of the Huber functions of each element in
A⋆

ikx
⋆
ik+azik, with λ being the threshold of the Huber function.

The minimization problem in (25) is convex, and can be
efficiently solved by an iterative algorithm. Due to the sparsity
of the involved matrices, the computational cost per iteration
is only linear in the size of x⋆

ik.

B. Computing consistent depth estimates for all images
By completing the process described above for each pair of

consecutive images, we have an estimate of the scaled depths
of the features in each image, ρi, i = 1, . . . , N . The difficulty
lies in the fact that a different scale factor, si, exists in each
image. In order to obtain consistent scale among all images,
we solve a set of ℓ1-minimization problems.

Specifically, the feature depths in image i are related to the
elements of the vector ρi by: zij = siρij , j = 1, . . . ,M . Using
this relationship in (21), we can write skρkj = siρijw̄ij +
CkzCi , j = 1, . . . ,M . Eliminating CkzCi from these M
equations, we obtain:

sk

 ρk2−ρk1
...

ρkM−ρk1

−si
 ρi2w̄i2−ρi1w̄i1

...
ρiM w̄iM−ρi1w̄i1

= 0 (26)

Based on the above equation we formulate a series of mini-
mization problems in order to obtain the scale factors for all
images. For the first image, we select the factor s1 such that the
median estimated depth of the features matches the expected
average depth of the scene. Subsequently, we recursively
compute the scale factors for all remaining images, by solving,
for i = 1, . . . , N − 1, the following minimization problem:

min
si+1

∥∥∥∥∥si+1

si

 ρ(i+1)2−ρ(i+1)1

...
ρ(i+1)M−ρ(i+1)1

−
 ρi2w̄i2−ρi1w̄i1

...
ρiM w̄iM−ρi1w̄i1

∥∥∥∥∥
1

The solution to this problem can be computed in closed form,
as shown in [17].

We stress that the overall computational cost of the process
for obtaining feature-depth estimates is linear in the number of
image features. As shown in the simulation results presented
in the following section, this process leads to an improvement
in the accuracy of the convex estimator, at a low additional
cost. In certain cases, however, depth estimation is intrinsically
unreliable, e.g., when the features are all at large distances
compared to the baseline of the camera motion. These cases
can be explicitly detected using the results of (25). To avoid
using inaccurate estimates of depth, the depth estimation is
disabled in these cases, and the average scene depth is used
as the initial guess for all features’ depths in (18).



TABLE I: RMS errors in the simulations

CE dep. est. CE Martinelli 2014 MAP
Vel. (m/s) 0.055 0.072 0.189 0.032
Ori. (deg) 0.411 0.430 0.511 0.396

V. EXPERIMENTS

A. Simulations

1) Motion estimation accuracy: We first present the results
of Monte-Carlo simulations showing the accuracy of the
proposed method compared to alternatives. We simulate a
scenario where a camera-IMU system records images and
inertial measurements over a 3.2-sec long time interval. Eight
images are recorded, in each of which an average of 50 fea-
tures are observed, with feature depths uniformly distributed
between 2 and 12 meters. Inertial measurements are available
at 100 Hz. We conducted 100 Monte-Carlo trials, where in
each trial the camera trajectory was randomly generated, while
the feature positions, IMU biases, and measurement noises
were independently sampled from their corresponding pdfs.
The noise parameters were selected to be identical to those of
the experimental setup described in Section V-B.

Four different algorithms are compared: i) the pro-
posed convex-minimization estimator (CE) using the depth-
estimation approach described in Section IV, ii) the proposed
convex-minimization estimator where all depth estimates ẑij
are set to the average scene depth, iii) the linear estimator
of [10], and iv) the optimal MAP estimator, implemented
using the Levenberg-Marquardt algorithm. To evaluate the
performance of the different approaches, we compute the root
mean squared (RMS) errors over all the trials, for the initial
velocity BvI1 and for the initial orientation (the latter is
computed as the angle between the true and estimated gravity
vectors Bg). Since in the method of [10] outliers are not
modeled, we do not generate any outliers in the simulations,
to ensure a fair comparison. Outlier features do exist in the
real-world experiment described in Section V-B.

For visualization purposes, Fig. 1 shows the initial-velocity
estimation errors in ten representative simulation trials, while
the error statistics for both the initial velocity and orienta-
tion over all 100 Monte-Carlo trials are shown in Table I.
As expected, the MAP estimator reports the most accurate
estimates, since it minimizes the “exact” cost function. On
the other hand, both of the proposed convex formulations
outperform the method of [10] by a significant margin. This
is due to the fact that the approach of [10] does not model the
measurement noise properly, while the proposed formulations
are derived from the MAP estimator, and better characterize
the relative accuracy of the measurements. Among the two
convex-optimization based methods, the one in which a pre-
processing step is used to estimate the feature depths achieves
higher accuracy. However, the difference between the two
approaches is not dramatic. This suggests that the main factor
limiting the performance of the convex-optimization approach
is the separate estimation of the relative rotation, rather than
the approximation of the camera-cost function.
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Fig. 1: Estimation errors of the initial velocity in ten repre-
sentative Monte-Carlo simulation trials.

2) Initializing the iterative MAP estimator: We next com-
pare the performance of the proposed convex formulation
against that of [10], in terms of how reliably it can initialize the
iterative MAP estimator. To obtain challenging scenarios we
generated only 20 features per image on average, and reduced
the duration of the data to 2 sec. We generated features with
depths uniformly distributed between d and 2d in each trial.
To examine the effect of scene depth, d was varied between
3 m and 11 m, with 30 Monte-Carlo trials run for each setting.

In each trial, the MAP estimator was initialized by the
estimates of (i) the proposed method with depth estimation and
(ii) the linear formulation of [10], and run to convergence. We
would like to examine whether the iterations converge to the
global minimum in each trial. However, a provably globally
optimal solution is difficult to obtain. Therefore, we instead
ran the MAP estimator initialized by the ground-truth in each
trial, and treated the resulting solution as the “ideal” one. To
evaluate the results of the two initialization methods in (i) and
(ii) above, we compare the cost function after convergence to
the cost of the “ideal” solution, and if it is more than 1%
larger, the trial is considered unsuccessful.

Fig. 2 shows the percentage of unsuccessful trials for the
two methods compared. It becomes clear that when the MAP
estimator is initialized using the estimates of [10], a significant
proportion of trials are unsuccessful, i.e., the MAP estimator
converges to a local minimum of the cost function. This
percentage increases as features are placed farther away from
the camera, since this makes the estimation problem harder
(the baseline is smaller compared to the scene depth). On
the other hand, the proposed method results in significantly
improved performance (only four unsuccessful trials out of
270). Interestingly, the performance of the algorithm does not
appear to be significantly affected by increasing scene depth.
This is important, as it permits operation in a wider range of
environmental conditions.

B. Real-world Experiment
In this section, we provide results from a real-world exper-

iment, conducted with an IMU-camera platform in an indoor
environment. This platform comprised an Xsens MTi-G IMU
and a Bumblebee2 stereo camera (only one camera was used).
During the experiment, the platform moved for about two
minutes at an average velocity of 0.4m/s. The measurements
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Fig. 2: Percentage of unsuccessful MAP solutions in the
Monte-Carlo simulations.

TABLE II: RMS errors in the real-world experiment

CE dep. est. Martinelli 2014 MAP
Vel. (m/s) 0.096 0.208 0.058
Ori. (deg.) 0.315 0.470 0.250

of the IMU and camera were recorded at 100 Hz and 2.5 Hz,
respectively. To process images, the Shi-Tomasi algorithm [18]
was used to extract features, and feature matching was done
by normalized cross-correlation. To compare the performance
of the methods, we break the dataset into 30 non-overlapping
3-sec windows, and perform estimation separately in each.

We here report the results of three methods: i) the proposed
method, with depth estimation used only when it is deemed
reliable (see Section IV-B), ii) the method of [10], and iii) the
MAP algorithm. Since [10] does not tolerate outliers, features
with large reprojection errors (larger than 3σim when used in
our method) were not used for [10]. To compare the results
of these approaches, we computed an approximate ground
truth for the entire dataset via the method of [15]. While
this ground truth will likely contain some errors, these are
significantly smaller than the errors of each of the estimators
used here, as [15] uses the entire history of measurements to
obtain estimates at each point in time.

Table II shows the RMS errors of the three algorithms,
averaged over the 30 time windows. Similarly to the results
in the simulations, Table II shows that the proposed convex
approach outperforms the method of [10] by a significant
margin, even though the latter uses “outlier-free” data. The
performance of the proposed convex optimization is closer to
that of the optimal MAP estimator (which is in fact initialized
by the result of the convex minimization), than to that of [10].

VI. CONCLUSION

In this paper, we propose a novel algorithm for estimating
motion using visual and inertial measurements. The method
does not require a prior estimate of the motion, and can
operate in the presence of outliers. Due to these proper-
ties, the proposed approach can be employed for in-motion
initialization of an EKF estimator, for providing an initial
guess for linearization-based estimators, or for re-starting
an estimator after failure. Our simulations and real-world
testing demonstrate that the proposed method outperforms that

of [10], which is the best previous solution proposed for this
problem. In our ongoing work, we are investigating methods
for attaining better performance (i.e., smaller approximations)
within the convex formulation proposed here.
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