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Abstract— When fusing visual and inertial measurements for
motion estimation, each measurement’s sampling time must be
precisely known. This requires knowledge of the time offset
that inevitably exists between the two sensors’ data streams.
The first contribution of this work is an online approach for
estimating this time offset, by treating it as an additional state
variable to be estimated along with all other variables of interest
(IMU pose and velocity, biases, camera-to-IMU transformation,
feature positions). We show that this approach can be employed
in pose tracking with mapped features, in SLAM, and in visual-
inertial odometry. The second main contribution of this paper
is an analysis of the identifiability of the time offset between the
visual and inertial sensors. We show that the offset is locally
identifiable, except in a small number of degenerate motion
cases, which we characterize in detail. These degenerate cases
are either (i) cases known to cause loss of observability even
when no time offset exists, or (ii) cases that are unlikely to
occur in practice. Our simulation and experimental results
validate these theoretical findings, and demonstrate that the
proposed approach yields high-precision, consistent estimates,
in scenarios involving either known or unknown features, with
both constant and time-varying offsets.

I. INTRODUCTION

Autonomous vehicles moving in 3D, such as aerial ve-
hicles or ground robots on uneven terrain, require accurate
3D pose estimates. We here focus on vision-aided inertial
navigation methods, which provide such estimates by fusing
measurements from a camera and an inertial measurement
unit (IMU). In recent years, several algorithms of this kind
have been proposed, tailored for different applications. For
instance, if features with known coordinates are available,
map-based localization algorithms can be used to provide
absolute-pose estimates (e.g., (Wu et al., 2005; Trawny
et al., 2007)). In an unknown environment, simultaneous
localization and mapping (SLAM) methods can be used for
jointly estimating the vehicle’s 3D motion and the positions
of visual landmarks (e.g., (Jones and Soatto, 2011; Hesch
et al., 2012)). Finally, if estimates for the vehicle’s motion
are needed but no map building is required, visual-inertial
odometry methods can be employed (e.g., (Mourikis and
Roumeliotis, 2007; Li and Mourikis, 2012)).

For the estimation algorithms to perform well in any of
these cases, both the spatial and the temporal relationship
between the camera and IMU must be accurately modeled.
The first of these problems, often termed extrinsic sensor
calibration, has been addressed by several authors (see,
e.g., (Mirzaei and Roumeliotis, 2008; Kelly and Sukhatme,

2010; Jones and Soatto, 2011; Weiss et al., 2012b)). By
contrast, the problem of temporal calibration between the
data streams of the camera and the IMU has largely been
left unexplored, and is the main focus of this work.

To enable the processing of the sensor measurements in an
estimator, a timestamp is typically obtained for each camera
image and IMU sample. This timestamp is taken either from
the sensor itself, or from the operating system (OS) of the
computer receiving the data. These timestamps, however,
are typically inaccurate. Due to the time needed for data
transfer, sensor latency, and OS overhead, a delay – different
for each sensor – exists between the actual sampling of a
measurement and its timestamp. Additionally, if different
clocks are used for timestamping (e.g., on different sensors),
these clocks may suffer from clock skew. As a result,
an unknown time offset, td, typically exists between the
timestamps of the camera and the IMU. If this time offset is
not estimated and accounted for, it will introduce unmodeled
errors in the estimation process, and reduce its accuracy.

With the exception of the work of (Kelly and Sukhatme,
2010), discussed in Section II, previous literature on vision-
aided inertial navigation has not addressed the problem
of estimating td. Presumably, algorithm developers either
determine this offset using hardware-specific knowledge, or
develop offline methods for estimating td on a case-by-
case basis, or assume that td is sufficiently small so that
it can be ignored. However, these solutions are not general
enough, and in the case where td is varying over time (e.g.,
due to clock skew) they can lead to eventual failure of the
estimator. In contrast to these methods, we here present a
methodology for estimating td online during vision-aided
inertial navigation, and a theoretical analysis of its properties.

Specifically, the first contribution of this work is a formu-
lation for the online estimation of the time offset in extended
Kalman filter (EKF)-based algorithms. Our approach relies
on explicitly including td in the EKF state vector, and
estimating it concurrently with all other states of interest.
This method is applicable in both known and unknown
environments (i.e., in both map-based estimation, and in
SLAM/visual-inertial odometry), and with both feature-based
and pose-based EKF formulations. We here present EKF
estimators for all these cases. These estimators jointly esti-
mate (i) the IMU state, comprising the IMU position, veloc-
ity, orientation, and biases, (ii) the transformation between
the camera and IMU frames, (iii) the time offset between
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the sensors’ data streams, and (iv) the positions of visual
features, when EKF-SLAM is performed. Compared to the
“standard” algorithms, which require the time offset to be
perfectly known in advance, the proposed approach only
incurs a minimal computational overhead, as it only requires
one additional scalar variable to be included in the filter state.

The second main contribution of this work is the analysis
of the identifiability of the time offset between the camera
and IMU. In particular, we present the analysis for the
case where the time offset, feature positions, camera-to-IMU
transformation, and IMU biases are all unknown, and need
to be estimated along with the IMU trajectory. For this (most
general) scenario, we prove that the time offset td is locally
identifiable in general trajectories. Moreover, we characterize
the critical trajectories that cause loss of identifiability, and
show that these are either (i) cases that are known to be
degenerate even when td is perfectly known (e.g., constant-
velocity motion), or (ii) cases that are unlikely to occur in
practice. Thus, including td in the estimated state vector does
not introduce new, practically significant critical trajectories
for the overall system’s observability.

These theoretical results have direct practical implications.
They prove that, when the time offset between the camera
and IMU is not known in advance, it can be estimated online
by the proposed EKF-based algorithms, together with all the
other quantities of interest. The identifiability properties of
td guarantee that this estimation will be successful, even if td
is drifting over time. Our experimental and simulation results
confirm that the proposed methods yield high-precision, con-
sistent state estimates, in scenarios involving either known
or unknown features, with both constant and time-varying
offsets. Importantly, we show that the accuracy obtained
when td is estimated online is almost indistinguishable from
the precision we would obtain if td was perfectly known
in advance. These results, together with the fact that the
inclusion of td in the filter’s state vector causes minimal
increase in the estimator’s complexity, demonstrate the prac-
tical advantages of the online temporal calibration of camera-
IMU systems.

II. RELATED WORK

Sensor latency is a common problem, and therefore the
topic of state estimation with time-delayed and time-offset
measurements has been studied in several contexts. The vast
majority of existing approaches focus on the problem of
using delayed sensor measurements for estimation, when
the delay is perfectly known in advance (see, e.g., (Bar-
Shalom, 2002; Zhang et al., 2005; Bak et al., 1998), and ref-
erences therein). The vision-aided inertial navigation method
of (Weiss et al., 2012a) belongs to this category. Moreover,
a number of methods have been proposed for the case
where the time offset is only approximately known (Julier
and Uhlmann, 2005; Choi et al., 2009). However, all these
algorithms use the time offset between the sensors as an
input: they do not attempt to estimate it, or to improve a prior

estimate using additional data, and are thus not applicable to
the problem we address.

To the best of our knowledge, the first work addressing the
problem of time-offset estimation in camera-IMU systems
in a principled manner is that of (Kelly and Sukhatme,
2010). In that work, rotation estimates from each individual
sensor are first computed, and then temporally aligned via
batch ICP-like registration in the space of rotations. This
technique can be applied to sensors beyond just cameras and
IMUs (Tungadi and Kleeman, 2010). While this approach
addresses the presence of a time offset and its estimation in
a rigorous manner, it has two limitations. First, being offline
in nature, it cannot operate in the presence of time-varying
time offsets. Moreover, since only the rotation measurements
are used, this method does not utilize all the available
measurement information.

We note that the standard way to estimate the time-shift
between two signals is by determining the peak of the cross-
correlation between them (see, e.g. (Giovanni and Scarano,
1993; Fertner and Sjolund, 1986) and references therein).
This technique could be used to estimate the time offset
between the camera and IMU, by correlating the rotation es-
timates computed by the two sensors. Moreover, a number of
approaches exist that determine the timing between sensors
using low-level data, such as direct measurements of network
response times (see, e.g., (Harrison and Newman, 2011) and
references therein). Conceivably, any of these methods could
be used online, in parallel to the state estimator, to provide
estimates for the time offset td. To deal with time-varying
offsets, the methods could run periodically. However, this
would lead to a more complex implementation than the
solution proposed in this work, and would not be able to
properly model the uncertainty of td in the estimator.

In contrast to the methods discussed above, the approach
proposed in our work allows for online estimation of td,
by treating it as an additional state to be estimated. This
idea, which has recently also been proposed in the context
of GPS-based navigation (Skog and Haendel, 2011), makes
it possible to use all the measurements from the camera, gy-
roscope, and accelerometer in a tightly-coupled formulation.
Moreover, it models the uncertainty in the estimate of td, and
its impact on the accuracy of motion estimation, in a natural
way via the EKF covariance matrix. The formulation of the
EKF-based estimators for online temporal calibration first
appeared in an earlier conference version of this paper (Li
and Mourikis, 2013a). Compared to that publication, we here
present additional experimental and simulation results, as
well as a detailed analysis of the time offset’s identifiability
(Section VI). To the best of our knowledge, this is the first
time such an analysis has been presented for 3D motion
estimation.

Note that, even though the observability properties of
vision-aided inertial navigation have been studied in great
detail in the past, all prior work assumes perfect knowledge
of the time offset between sensors (Mirzaei and Roumeli-
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Fig. 1: Example of time offset arising due to latency in the
sensor data. In this case the IMU data arrives with a latency
ta, while the camera data have a latency tb, both of which are
unknown. Since ta and tb are different, the estimator receives
measurements that were recorded simultaneously (e.g., the
first IMU and camera measurement) with timestamps that
are offset by td = ta − tb.

otis, 2008; Kelly and Sukhatme, 2011; Jones and Soatto,
2011; Martinelli, 2012). Our identifiability analysis makes
it possible to extend the results of the prior work to the
unknown-td case. Specifically, in Section VI we prove that
even if td is unknown, it can be determined based on
the sensor data, except in a small set of degenerate cases.
Therefore, unless the trajectory is one of the degenerate ones,
we can view the problem as one where td is known, and
the results of (Kelly and Sukhatme, 2011; Jones and Soatto,
2011) apply.

III. TIME-OFFSET DEFINITION

Consider a system comprising a camera and IMU, in
which each sensor provides measurements at a constant
frequency, known at least to a good approximation. As
described in Section I, an unknown time offset, td, generally
exists between the two sensors’ reported timestamps. Fig. 1
illustrates how a time offset can arise due to difference the
sensors’ latency, but td may also arise due to synchronization
errors, missed data, and clock skew. Note that, depending on
the system at hand, td may have a positive or negative value.
For instance, if the offset is caused due to sensor latency, then
td will be positive when the IMU has a longer latency than
the camera, and negative in the opposite case.

In our formulation, we use the “IMU time” as the time
reference by convention. Therefore, ζ(t) denotes the value
of a quantity ζ at the time instant the IMU measurement with
timestamp t was recorded. On the other hand, if an image
with timestamp t is received from the camera, this image
was actually captured at time t + td. We point out that in
our formulation it is possible (as proven in Section VI) to
identify the time offset td, but not the individual latencies of
the sensors. However, these latencies cannot be determined
unless additional, external state information is available. By
using the “IMU time” as the time reference we circumvent
this difficulty, and obtain equations that only involve the time
offset td, which we can estimate using only the camera and
IMU measurements.

IV. MAP-BASED POSE ESTIMATION

A. State vector formulation

We first consider the case of pose estimation in an en-
vironment containing features with known 3D coordinates.
Our objective is to estimate the 3D pose of the system with
respect to a global coordinate frame, {G}, while concurrently
performing temporal and spatial calibration between the two
sensors. To this end we employ an EKF estimator, whose
state vector comprises the IMU state, the time offset td, as
well as the transformation, C

I T, between the IMU frame,
{I}, and the camera frame, {C}:

x(t) =
[
xT
I (t)

C
I q̄

T CpT
I td

]T
(1)

where1 xI(t) is the IMU state at time t, and C
I T is described

by the unit quaternion C
I q̄ and the translation vector CpI .

Following standard practice, we define the IMU state as the
16× 1 vector:

xI =
[
I
Gq̄

T GpT
I

GvT
I bT

g bT
a

]T
(2)

where the 4 × 1 unit quaternion I
Gq̄ describes the rota-

tion from the global frame to the IMU frame, GpI and
GvI are the IMU’s position and velocity expressed in the
global frame, and bg and ba are the IMU’s gyroscope and
accelerometer biases. These are modeled as random walk
processes driven by zero-mean white Gaussian noise vectors
nwg and nwa, respectively. Using (2), the filter state vector
becomes:

x =
[
I
Gq̄

T GpT
I

GvT
I bT

g bT
a

C
I q̄

T CpT
I td

]T
Based on this state vector, we obtain the following 22 × 1
error-state vector for the EKF:

x̃ =
[
θ̃
T Gp̃T

I
GṽT

I b̃T
g b̃T

a ϕ̃
T C p̃T

I t̃d

]T
(3)

where for the position, velocity, and bias states, as well as
for the time offset td, the standard additive error definition
has been used (e.g., GvI = Gv̂I +

GṽI ). On the other hand,
for the orientation errors we use a minimal 3-dimensional
representation, defined by the equations (Li and Mourikis,
2013b; Li and Mourikis, 2012):

I
Gq̄ ≃ I

G
ˆ̄q⊗

[
1
2 θ̃
1

]
and C

I q̄ ≃ C
I
ˆ̄q⊗

[
1
2 ϕ̃
1

]
(4)

1Notation: The preceding superscript for vectors (e.g., X in Xa) denotes
the frame of reference with respect to which the vector is expressed.
X
Y R is the rotation matrix rotating vectors from frame {Y } to {X},
and A

B q̄ is the corresponding unit quaternion (Trawny and Roumeliotis,
2005). XpY denotes the position of the origin of frame {Y }, expressed
in {X}. ⊗ denotes quaternion multiplication, ⌊c×⌋ is the skew-symmetric
matrix corresponding to vector c, and 03 and I3 are the 3 by 3 zero and
identity matrices, respectively. Finally, â is the estimate of a variable a, and
ã

.
= a− â is the error of the estimate.
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B. EKF propagation

In the EKF, the IMU measurements are used to prop-
agate the state and covariance estimates. Specifically, the
gyroscope and accelerometer measurements are described
respectively by the equations:

ωm(t) = Iω(t) + bg(t) + nr(t) (5)

am(t) = I
GR(t)

(
Ga(t)− Gg

)
+ ba(t) + na(t) (6)

where Iω is the IMU’s rotational velocity, Gg is the grav-
itational acceleration, and nr and na are zero-mean white
Gaussian noise processes. Using these measurements, we can
write the dynamics of the state vector as:

I
G
˙̄q(t) =

1

2
Ω
(
ωm(t)− bg(t)− nr(t)

)
I
Gq̄(t) (7)

Gv̇(t) = I
GR(t)T (am(t)− ba(t)− na(t)) +

Gg (8)
GṗI(t) =

GvI(t) (9)

ḃg(t) = nwg(t), ḃa(t) = nwa(t) (10)
C
I
˙̄q(t) = 0, C ṗI(t) = 0 (11)

ṫd(t) = 0 (12)

where

Ω(ω) =

[
⌊ω×⌋ ω
ωT 0

]
(13)

Equations (7)-(9) describe the dynamics of the IMU mo-
tion, (10) describes the random-walk processes that model
the biases’ slowly time-varying nature, (11) describes the
fact that C

I T remains constant, while the last line expresses
the fact that the time offset between the camera and IMU
also remains constant. If the time offset is known to be
time-varying, we can model it as a random-walk process by
replacing the last line of the dynamics with ṫd(t) = nd(t),
where nd(t) is a white Gaussian noise process, whose power
spectral density expresses the variability of td.

Equations (7)-(12) describe the continuous-time evolution
of the true states. For propagating the state estimates in
a discrete-time implementation, we follow the approach
described in (Li and Mourikis, 2013b). Specifically, for
propagating the orientation from time instant tk to tk+1, we
numerically integrate the differential equation:

I
G
˙̄̂q(t) =

1

2
Ω
(
ωm(t)− b̂g(tk)

)
I
G
ˆ̄q(t), (14)

in the interval t ∈ [tk, tk+1], assuming that ωm(t) is
changing linearly between the samples received from the
IMU at tk and tk+1. The velocity and position estimates
are propagated by:

Gv̂k+1 = Gv̂k + G
I R̂(tk) ŝk + Gg∆t (15)

Gp̂k+1 = Gp̂k + Gv̂k∆t+ G
I R̂(tk) ŷk +

1

2
Gg∆t2 (16)

where ∆t = tk+1 − tk, and

ŝk =

∫ tk+1

tk

Ik
I R̂(τ)

(
am(τ)− b̂a(tk)

)
dτ (17)

ŷk =

∫ tk+1

tk

∫ s

tk

Ik
I R̂(τ)

(
am(τ)− b̂a(tk)

)
dτds (18)

The above integrals are computed using Simpson integration,
assuming a linearly changing am in the interval [tk, tk+1].
Besides the IMU position, velocity, and orientation, all other
state estimates remain unchanged during propagation.

In addition to the state estimate, the EKF propagates the
state covariance matrix, as follows:

P(tk+1) = Φ(tk+1, tk)P(tk)Φ(tk+1, tk)
T +Qd (19)

where P is the state-covariance matrix, Qd is the covariance
matrix of the process noise, and Φ(tk+1, tk) is the error-state
transition matrix, given by:

Φ(tk+1, tk) =

[
ΦI(tk+1, tk) 015×7

07×15 I7×7

]
(20)

with ΦI(tk+1, tk) being the 15 × 15 error-state transition
matrix for the IMU state, derived in (Li and Mourikis,
2012; Li and Mourikis, 2013b).

C. EKF Updates

We now describe how the camera measurements are em-
ployed for EKF updates. Note that, if no time offset existed
(or, equivalently, if it was perfectly known a priori), the EKF
update would present no difficulty. The complications arise
from the fact that the image received by the filter at time t
was in fact recorded at time t+td, where td is now a random
variable.

Let us consider the observation of the i-th feature in the
image timestamped at t. Assuming an intrinsically calibrated
camera, this is described by:

zi(t) = h
(
Cpfi(t+td)

)
+ ni(t+td) (21)

=
1

Czi(t+ td)

[
Cxi(t+ td)
Cyi(t+ td)

]
+ ni(t+td) (22)

where h(·) is the perspective camera model, ni is the
measurement noise vector, modelled as zero-mean Gaussian
with covariance matrix σ2

imI2×2, and Cpfi(t+ td) is the
position of the feature with respect to the camera at the time
the image was sampled:
Cpfi(t+td)=

C
I R

I
GR(t+td)

(
Gpfi−GpI(t+td)

)
+CpI (23)

In this equation Gpfi is the position of the i-th feature in the
global frame, which in this section is assumed to be known.

To use zi(t) for an EKF update, we must formulate the
residual between the actual measurement and the measure-
ment expected based on the filter’s estimates (Maybeck,
1982):

ri = zi(t)− h
( ̂Cpfi(t+td)

)
(24)

where ̂Cpfi(t+td) denotes the estimate of Cpfi(t+td). To
first-order approximation (as dictated by the EKF paradigm),
this estimate is given by:

̂Cpfi(t+td) =
C
I R̂

I
GR̂(t+ t̂d)

(
Gpfi−Gp̂I(t+ t̂d)

)
+C p̂I
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The above equation shows that, in order to compute the
residual ri, we must have access to the estimates of the state
at time t+ t̂d. Therefore, to process the measurement zi(t),
we propagate using the IMU measurements up to t+ t̂d, at
which point we compute ri, and perform an EKF update.
For this update, the Jacobian of h

(
Cpfi(t+td)

)
with respect

to the filter state is necessary. This is given by:

Hx,i(t+ t̂d) =
[
Hθ,i Hp,i 02×9 Hϕ,i Hpc,i Htd,i

]
(25)

where the nonzero blocks are the Jacobians with respect to
the IMU rotation, IMU position, camera-to-IMU rotation,
camera-to-IMU translation, and time offset, respectively.
These are computed as:

Hθ,i = Ji
C
I R̂

I
GR̂(t+ t̂d)⌊(Gpfi−Gp̂I(t+ t̂d))×⌋

Hp,i = −Ji
C
I R̂

I
GR̂(t+ t̂d)

Hϕ,i = Ji
C
I R̂⌊ IGR̂(t+ t̂d)(

Gpfi−Gp̂I(t+ t̂d))×⌋
Hpc,i = Ji

Htd,i = Hθ,i
I
GR̂

T (t+ t̂d)
Iω̂(t+ t̂d) +Hp,i

Gv̂I(t+ t̂d)
(26)

where Ji is the Jacobian of the perspective model:

Ji =
∂h(f)

∂f

∣∣∣∣∣
f= ̂Cpfi

(t+td)

=
1

C ẑfi

1 0 −
C x̂fi
C ẑfi

0 1 −
C ŷfi
C ẑfi

 (27)

Note that all the matrices shown above are computed using
the EKF state estimates available at time t+ t̂d. In addition,
the Jacobian with respect to the time offset, Htd,i, requires an
estimate of the rotational velocity vector, which is computed
using the IMU measurements as Iω̂(t+ t̂d) = ωm(t+ t̂d)−
b̂g. We thus see that all the Jacobians can be computed in
closed form, using quantities available to the filter at t+ t̂d.
Using the above expression for Hx,i(t+ t̂d), we can now
proceed to carry out the EKF update. Specifically, the state
and covariance matrix are updated as:

x̂(t+ t̂d)← x̂(t+ t̂d) +Kiri (28)

P(t+ t̂d)← P(t+ t̂d)−KiSiK
T
i (29)

where:

Ki = P(t+ t̂d)Hx,i(t+ t̂d)
TS−1

i , with (30)

Si = Hx,i(t+ t̂d)P(t+ t̂d)Hx,i(t+ t̂d)
T + σ2

imI (31)

If more than one features are observed in the same image,
their residuals can be processed in the same manner.

A few interesting comments can be made at this point. We
start by noting that the camera measurement was recorded
at time t + td, but it is being processed at t + t̂d. Since
the estimate of the time offset will inevitably contain some
error, the measurement will inevitably be processed at a
slightly incorrect time instant. However, the EKF explicitly
accounts for this fact. Specifically, since td is included in the
estimated state vector, the filter keeps track of the uncertainty

in t̂d, via the state-covariance matrix P. Therefore, when
computing the covariance matrix of the residual (Si in (31))
the uncertainty in the time offset is explicitly modelled, and
is accounted for in the computation of the state update. As
a result, we are able to obtain both more accurate pose
estimates and a better characterization of their uncertainty.

It is worth pointing out that, in some cases, the camera
timestamps may be affected by a random-noise component
(“jitter”), in addition to a systematic time offset. In the
proposed formulation, it is straightforward to model these
random effects in the estimator’s equations. Specifically, if
each image timestamp is affected by an independent, zero-
mean, random error with standard deviation σt, then, instead
of (31), the covariance matrix of the residual is computed as:

Si = Hx,i(t+ t̂d)P(t+ t̂d)Hx,i(t+ t̂d)
T

+ σ2
imI+ σ2

tHtd,iH
T
td,i

(32)

This modification makes it possible to model the additional
timestamp uncertainty, and to account for it in the EKF
update equations.

D. Implementation

The algorithm for concurrent pose estimation and temporal
calibration described in the preceding sections can be imple-
mented in a number of different ways. We have opted for a
multi-threaded approach, as it allows for increased flexibility
and extensibility. The high-level architecture described here
is employed both in map-based localization, as well as in
localization with unknown features, discussed in Section V.
In our implementation, each sensor’s readings are managed
by a separate thread. Two queues are maintained (one for
the IMU measurements and one for the camera images), and
each new measurement is timestamped and placed in the
appropriate queue as it arrives.

One thread is used for implementing the EKF equations.
This thread waits until the image queue has at least one
image, at which point it begins using the measurements in the
IMU queue to propagate the state estimate and its covariance
matrix, as described in Section IV-B. If the timestamp of
the the first image in the image queue is t, then IMU
measurements are used to propagate up to time t+ t̂d. After
propagation is completed, the EKF update is performed, as
described in Section IV-C. We note here that, in general, the
time instant t+ t̂d will fall between two consecutive sample
times of the IMU. Therefore, we employ linear interpolation
to obtain an inferred IMU measurement at t + t̂d, used for
propagation as well as in computing the estimated rotational
velocity in (26).

Finally, we point out that if the camera images are delayed
relative to the IMU (i.e., if td < 0), the EKF thread will
produce state estimates with a latency, as it waits until an
image is available before processing the IMU measurements.
If estimates of the current state are required at the IMU
sample rate, these can be computed by a separate thread



6

running in parallel. Specifically, this thread can use the latest
available state estimate from the EKF, as well as all the
measurements in the IMU queue, to compute the estimate
for the current system state via propagation.

V. MOTION ESTIMATION WITH UNKNOWN FEATURES

The preceding section describes time-offset estimation
when the feature positions in the world are known a priori. In
many cases, however, we are interested in motion estimation
in previously unknown environments, for which it is not
possible to have a feature map. Several algorithms have been
developed for vision-aided inertial navigation in this type of
applications. Broadly, these methods use the visual measure-
ments in one of two ways (Williams et al., 2011): on the
one hand, feature-based methods include feature positions
in the state vector being estimated, as in EKF-SLAM, and
employ the feature observations directly for state updates
(see. e.g., (Jones and Soatto, 2011; Pinies et al., 2007)). On
the other hand, pose-based methods do not include feature
positions in the state vector, and instead maintain a state
vector containing a number of poses (e.g., (Bayard and
Brugarolas, 2005; Mourikis and Roumeliotis, 2007; Li and
Mourikis, 2012; Roumeliotis et al., 2002; Shkurti et al.,
2011)). In these methods, the feature measurements are first
used to define constraints between two or more poses (e.g.,
to estimate the relative motion between consecutive images),
and these constraints are subsequently used for filter updates.

As we explain in what follows, the proposed approach for
time-offset estimation by explicitly including td in the filter
state vector can be readily applied in both types of methods.

A. Feature-based methods
In typical feature-based EKF algorithms (often referred

to as EKF-SLAM algorithms) the state vector of the filter
contains the current state of the IMU, as well as the positions
of the features detected by the camera. In order to perform
online spatial and temporal calibration, we here additionally
include td and the camera-to-IMU transformation in the EKF
state vector. Thus, this state vector is given by:

x =
[
xT
I

C
I q̄

T CpT
I td fT1 fT2 · · · fTN

]T
where fi, i = 1, . . . N , are the features, which can be
parameterized in a number of different ways (e.g., XYZ
position, inverse depth (Montiel et al., 2006), homogeneous
coordinates (Sola, 2010)).

With this augmented state vector, the feature measure-
ments, zi, can be directly employed for EKF updates. The
process followed in order to address the presence of the
time offset td is analogous to that described in Section IV-C.
Specifically, if a measurement zi(t) is received, we employ
the IMU measurements for propagation up to time t + t̂d,
and perform an EKF update at that time. The residual (24)
is computed, as well as its Jacobian with respect to the state,
given by:

HSLAM
x,i =

[
Hx,i(t+ t̂d) 0 · · · Hf ,i(t+ t̂d) · · · 0

]

where Hx,i(t+t̂d) is defined in (25), and Hf ,i(t+t̂d) is the
Jacobian with respect to the i-th feature state, whose exact
form will depend on the chosen feature parameterization.
With this Jacobian, the EKF update can proceed according
to the standard EKF equations, with no further modification.

B. Pose-based methods

In pose-based EKF algorithms, the state vector typi-
cally contains the current IMU state, as well as M poses
(with M ≥ 1), corresponding to time instants images
were recorded. For instance, in (Mourikis and Roumeliotis,
2007; Li and Mourikis, 2012; Shkurti et al., 2011; Kottas
et al., 2012) the state vector is formulated as:

x =
[
xT
I cT1 · · · cTM

]T
(33)

where cj is the camera pose at the time the j-th image was
recorded:

cj =
[
C
Gq

T
j

GpT
Cj

]T
(34)

Every time a new image is received, the state vector is
augmented to include a copy of the current camera pose, and
the oldest pose is removed. The features are tracked for up
to M images, and are used for deriving constraints between
the camera poses.

In order to estimate the extrinsic calibration and time offset
between the camera and IMU in this setting, we can include
these parameters in the state vector:

x =
[
xT
I

C
I q̄

T CpT
I td cT1 · · · cTM

]T
(35)

To account for these additional parameters, one can compute
the Jacobians of the feature measurements with respect to
them, similarly to what was described in the previous cases.
However, in pose-based-methods, an alternative, and simpler,
approach exists. Specifically, the only filter operation that
needs to be changed, compared to the original methods,
is state augmentation: when a new image is received with
timestamp t, we augment the state vector to include an
estimate of the camera pose at time t + td (instead of time
t, as in the original method). We therefore use the IMU
measurements to propagate up to t+ t̂d, at which point we
augment the state with the estimate of the camera pose at
t+ td:

ĉnew =

[
̂C

Gq(t+td)
̂GpC(t+td)

]
=

[
C
I q̂⊗ I

G
ˆ̄q(t+ t̂d)

Gp̂I(t+ t̂d) +
I
GR̂(t+ t̂d)

T I p̂C

]
The filter covariance matrix is also augmented, as:

P(t+ t̂d)←
[

P(t+ t̂d) P(t+ t̂d)J
T
new

JnewP(t+ t̂d) JnewP(t+ t̂d)J
T
new

]
(36)

where Jnew is the Jacobian of cnew with respect to the state
vector. This matrix has the following structure:

Jnew =
[
JI JIC Jt 0

]
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where JI is the Jacobian with respect to the IMU state:

JI =

[
I3×3 03×3 03×9

−⌊ IGR̂(t+ t̂d)
T I p̂C×⌋ I3×3 03×9

]
JIC is the Jacobian with respect to the camera-to-IMU
transformation:

JIC =

[
I
GR̂(t+ t̂d)

T 03×3

03×3
I
GR̂(t+ t̂d)

T

]
and Jt is the Jacobian with respect to td:

Jt=

[
I
GR̂

T (t+ t̂d)
Iω̂(t+ t̂d)

I
GR̂(t+ t̂d)

T ⌊Iω̂(t+ t̂d)×⌋I p̂C+Gv̂I(t+ t̂d)

]
(37)

Compared to the methods of (Mourikis and Roumeliotis,
2007; Li and Mourikis, 2012), the above equations differ
in that additional Jacobians are computed with respect to the
parameters of C

I T, and with respect to the time offset td. This
is the only change that is needed: after the augmentation has
been performed in this fashion, the feature measurements can
be used for EKF updates as in (Mourikis and Roumeliotis,
2007; Li and Mourikis, 2012), with no further alterations.
Since the dependence of the camera poses on td has been
modelled (via the Jacobian Jt), when the EKF update is
performed td will also be updated, as normal in the EKF.

As a final remark, we note that up now, we have only
discussed EKF-based methods, and we have shown that
the time-offset between the camera and IMU can be ex-
plicitly included in the state vector and estimated online.
The key to achieving this is to model the dependence of
the measurements on the time offset, by computing the
appropriate Jacobians with respect to td (see (26) and (37)).
It is important to point out that a similar approach can be
followed in methods that employ iterative minimization for
pose estimation, either in batch (Dellaert and Kaess, 2006)
or in incremental form (Kaess et al., 2008). By including td
in the estimated state vector, and computing Jacobians with
respect to it, we can estimate it jointly with all other states
of interest.

VI. IDENTIFIABILITY ANALYSIS

In the preceding sections we presented online algorithms
for estimating the time offset between the camera and
IMU. However, for these algorithms to be able to obtain
meaningful results, this time offset must be identifiable
(equivalently, observable2) given the available measurements.
In this section, we examine the identifiability of td in the
case where the feature positions, time offset, camera-to-IMU
transformation, and IMU biases are all unknown, and need
to be estimated along with the IMU trajectory. We show that
even in this most general (and most challenging) case, td is
in general locally identifiable (Bellman and Astrom, 1970).
Clearly, if more information were available (e.g., known

2Note that td can be viewed as either a fixed parameter to be estimated
or as a state of a dynamical system, with zero dynamics. Therefore, we can
use the terms identifiability and observability interchangeably for td.

feature positions, and/or known C
I T) the local identifiability

of td would also hold.

A. Camera measurement model

We begin by examining the type of information provided
by the camera measurements. When a camera is observing
(a sufficient number of) unknown features, the feature mea-
surements can be used to compute (i) the orientation of the
camera with respect the initial camera frame, and (ii) the po-
sition of the camera with respect to the initial camera frame,
up to an unknown scale factor s (Hartley and Zisserman,
2000). That is, by processing the visual measurements in
the time interval [0, t], we can compute a measurement of
the camera rotation in the time interval [td, t + td], and a
scaled measurement of the camera translation in the same
time interval:

Rc(t) =
Co

C R(t+ td)e
⌊ncr(t)×⌋ (38)

pc(t) = sCopC(t+ td) + ncp(t) (39)

where ncr(t), and ncp(t) are noise vectors, and {Co} is
the initial camera frame, i.e., the camera frame at the time
instant td. Note that equivalently, we can state that the visual
measurements can be used to compute (i) a measurement,
ωc, of the camera’s rotational velocity, and (ii) a scaled
measurement, vc, of the camera’s translational velocity:

ωc(t) =
Cω(t+ td) + ncω(t) (40)

vc(t) = sCovC(t+ td) + ncv(t) (41)

where ncω(t), and ncv(t) are the measurement noise vectors.
We will carry out our analysis by using the measurement

models described above, instead of the “raw” feature mea-
surements. We stress that (38)-(39) or (40)-(41) contain all
the information that the visual feature measurements provide
for the camera motion, and therefore we can use these,
instead of the feature measurements, for our analysis. The
advantage of using the “abstracted” camera measurement
models shown above (an approach also employed in (Kelly
and Sukhatme, 2011)) is that their use leads to a significantly
simplified analysis.

B. Overview of the approach

In previous work, the question of which states of the
vision-aided inertial navigation system can be estimated and
under what conditions, has been addressed by performing
an observability analysis. Specifically, (Jones and Soatto,
2011; Kelly and Sukhatme, 2011) examined the case where
the feature positions, camera-to-IMU transformation, and
IMU biases are unknown, but the time offset between the
camera and IMU is known. For this scenario it was shown
that, in general, the following quantities are (locally weakly)
observable:
(O1) The trajectory expressed in the initial camera frame.
(O2) The gravity vector expressed in the initial camera

frame.
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(O3) The gyroscope and accelerometer biases.
(O4) The camera-to-IMU transformation, and
(O5) The positions of the features expressed in the camera

frame.
The quantities O1-O5 are generally observable, that is,
unless the camera follows “degenerate” trajectories such
as constant-velocity motion or rotation about a single axis
(see (Jones and Soatto, 2011; Kelly and Sukhatme, 2011) for
a complete characterization). On the other hand, four degrees
of freedom are always unobservable: three corresponding to
the system’s position in the global frame, and one to the
rotation about gravity (i.e., the yaw).

The approach we follow in order to examine the local
identifiability of td can be explained, at a high level, as
follows. We start by defining a vector ξ, which contains the
time offset td, as well as all the additional quantities needed
in order to compute O1-O5. Specifically, we define ξ as:

ξ =
[
CovT

o
CogT bT

g bT
a

CpT
I

C
I q

T td s
]T

where Covo is the IMU velocity at time instant td, expressed
in {Co}, and Cog is the gravity vector expressed in the
same frame. We stress that the elements of ξ describe all
the potentially observable quantities in the system, and none
of the quantities that are known to be unobservable. To see
why, we first note that ξ contains the time offset td, as well
as O2, O3 and O4 explicitly. Moreover, using the elements
of ξ and the measurements, we can compute the velocity of
the camera at any time instant, expressed in the frame {Co}
(as shown in (47)). Integrating this velocity yields the camera
trajectory in {Co}, which is quantity O1. Finally, once the
trajectory of the camera is known, then the features’ positions
(quantity O5) can be computed by triangulation using the
camera measurements.

The above discussion shows that if ξ is locally identifiable
given the measurements, then td and O1-O5 are locally
weakly observable. To determine whether ξ is locally identi-
fiable, we employ the camera and IMU measurements, along
with the system dynamics, to derive constraint equations that
ξ must satisfy. These constraints have the general form:

ci
(
ξ, z[0,t],ωm[0,t],am[0,t]

)
= 0 (42)

where z[0,t],ωm,[0,t], and am,[0,t] are the camera, gyroscope,
and accelerometer measurements in the time interval [0, t].
Once these constraints are formulated, we can check the local
identifiability of ξ by examining the rank of the Jacobian
matrices of these constraints with respect to ξ.

Since the conditions for the observability of O1-O5 have
been derived in previous work, we here focus on exam-
ining the identifiability of td. The main result, proven in
Lemma 6.2, is that td is locally identifiable, except in a small
number of degenerate motion cases that can be characterized
in detail. This result validates the use of the EKF-based
algorithms described in the preceding sections. Moreover,
it provides us with a way to examine the observability of
the entire system (including td and O1-O5), by leveraging

the results of (Jones and Soatto, 2011; Kelly and Sukhatme,
2011). Specifically, when td is identifiable, we can use the
measurements alone to determine its value; therefore in terms
of observability, the system can be treated as one with a
known td in this case. Put differently, when td is identifiable,
the observability properties of O1-O5 are identical to those
derived in previous work for the known-td case. Thus, to
certify that all the quantities of interest (td and O1-O5) are
observable, one can use Lemma 6.2 to verify that td is locally
identifiable, and then employ the results of (Jones and Soatto,
2011; Kelly and Sukhatme, 2011) to verify the observability
of O1-O5.

Our analysis of the identifiability of td consists of two
steps. First, we show that, even if only the rotational
components of the motion (i.e., rotational constraints) are
considered, the time offset is in general locally identifiable,
and we obtain a concrete description of the cases that cause
loss of identifiability. We then show that if all the available
information is utilized (which is the case in the algorithms
described in the preceding sections), the set of degenerate
cases is further restricted. The details of the analysis are
presented in what follows.

C. Derivation of the constraints for ξ

We here ignore the noise (as standard in an identifiabil-
ity/observability analysis) and derive two constraint equa-
tions: one based on the rotational velocity measurements,
and one based on the accelerometer and (scaled) velocity
measurements. We begin by using (40) and (5), and the
identity Cω(t) = C

I R
Iω(t), to obtain:

ωm(t) = C
I R

Tωc(t− td) + bg (43)

which we can write in the form of (42) as follows:

c1(ξ, t) =
C
I R

Tωc(t− td) + bg − ωm(t) = 0 (44)

This constraint involves the known functions of the IMU
and camera rotational velocity measurements, as well as the
unknown parameters td, C

I R (equivalent to C
I q̄), and bg.

To obtain the second constraint, we express vc(t) as
a function of ξ, Rc(t), and am(t). We start by writing
CovC(t+ td) as:

CovC(t+ td) =
Co

G RGvC(t+ td) (45)

= Co

G R
(
GvI(t+ td)− G

CṘ(t+ td)
CpI

)
(46)

Next, we note that the IMU velocity at time instant t + td
can be computed as:

GvI(t+ td) =
GvI(td) +

∫ t

0

G
I R(τ + td)

Ia(τ + td)dτ

Using (6), we can write the last equation as:

GvI(t+ td) =
GvI(td) +

∫ t

0

G
I R(τ + td)am(τ + td)dτ
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+ Gg t−
∫ t

0

G
I R(τ + td)dτba

Substituting the last equation in (46), and using the identity
Rc(τ) =

Co

I R(τ + td)
C
I R

T (see (38)), we obtain:

CovC(t+ td) =
Covo +

Cog t+

∫ t

0

Rc(τ)
C
I Ram(τ + td)dτ

−
∫ t

0

Rc(τ)dτ
C
I Rba − Ṙc(t)

CpI (47)

where we have used the notation Covo = Co

G RGvI(td).
Finally, substitution in (41) yields the following constraint
(ignoring the noise):

c2(ξ, t) = s

(
Covo +

Cog t+

∫ t

0

Rc(τ)
C
I Ram(τ + td)dτ

−
∫ t

0

Rc(τ)dτ
C
I Rba − Ṙc(t)

CpI

)
− vc(t) = 0

(48)

This equation is the second constraint we sought: it involves
terms that are known via the IMU and camera measurements,
as well as the elements of ξ. In what follows, we show how
we can employ (44) and (48) to determine the identifiability
of td.

D. Identifiability of td based on the rotational-velocity con-
straint

We now prove the following result:

Lemma 6.1: The time offset td is locally identifiable based
on the rotational constraints (44) alone, if no vectors k1 and
k2 exist, such that the rotational velocity of the IMU satisfies
the following differential equation:

Iω̇(t) = ⌊k2×⌋Iω(t) + k1 (49)

Proof: To examine the local identifiability of td based
on the constraint (44), we compute the derivative of c1(ξ, t)
with respect to the elements of ξ that appear in it:

D1(t) =
[
∂ c1

∂ bg

∂ c1

∂ ϕ̃

∂ c1

∂ td

]
(50)

where

∂ c1
∂ bg

= I3×3 (51)

∂ c1

∂ ϕ̃
= −⌊CI RT ωc(t−td)×⌋ (52)

∂ c1
∂ td

= −C
I R

T ω̇c(t−td) (53)

Note that, since (44) must hold for any t, we can generate an
infinite number of constraints, by choosing different values
of t. A sufficient condition for bg, C

I q̄, and td to be locally

identifiable based on these constraints is that there exists a
set of time instants, S = {t1, t2, . . . ts}, such that the matrix

D1(t1)
D1(t2)

...
D1(ts)

 (54)

has full column rank (Doren et al., 2009). Equivalently, a
sufficient condition is that there exists no nonzero vector
k = [kT

1 kT
2 k3]

T such that, for all t > 0, the condition
D1(t)k = 0 holds. Note that, since we are interested in
detecting cases in which td is not identifiable, we can restrict
our attention to the vectors k in which k3 is nonzero. Thus,
we can set k3 = 1 (the scaling of k is arbitrary). Using (50)-
(53), the sufficient condition for td to be locally identifiable
is that there exist no vectors k1 and k2 such that:

k1 − ⌊CI RT ωc(t−td)×⌋k2 − C
I R

T ω̇c(t−td) = 0⇒
k1 + ⌊k2×⌋CI RT ωc(t−td)− C

I R
T ω̇c(t−td) = 0, ∀t > 0

Using the identity C
I R

T ωc(t− td) = Iω(t) in the above
equation yields (49).

Note that Lemma 6.1 provides a sufficient condition for
the local identifiability of td: if (49) does not hold for any k1

and k2, then td is locally identifiable. We can in fact show
that this condition is also a necessary one, by showing that if
it is not met, there exists at least one indistinguishable family
of solutions for td and the remaining unknown parameters.
To this end, we start by noting that if (49) holds for some
k1 and k2, then Iω(t) is given by:

Iω(t) = e⌊k2×⌋tko +

∫ t

0

e⌊k2×⌋(t−τ)dτ · k1 (55)

where ko is the initial value of the rotational velocity. We can
now prove, by substitution in (5) and (40), that for any scalar
δ, the sets {td, C

I R, bg,
Iω(t)} and {t′d, C

I R
′, b′

g,
Iω′(t)},

where

t′d = td + δ
C
I R

′ = C
I Re−⌊k2×⌋δ

b′
g = bg +

∫ δ

0

e⌊k2×⌋(δ−τ)dτk1

Iω′(t) = Iω(t)−
∫ δ

0

e⌊k2×⌋(δ−τ)dτk1

yield exactly the same measurements ωm(t) and ωc(t), for
all t. This means that td and t′d are indistinguishable, and
thus td is not locally identifiable.

An important question to answer is whether the cases
in which td becomes unidentifiable are practically relevant.
Examination of (55) shows that this general functional form
for Iω(t) encompasses the cases of no rotation, when k0 =
k1 = 0, and of constant rotational velocity, e.g., when
k1 = k2 = 0 (in fact, in these cases the indistinguishable
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families contain more than one free parameters). Besides
these two cases, which can potentially arise in real-world
trajectories, we believe that all other degenerate situations
are unlikely to occur in practice. We should note however,
that the cases of zero or constant rotational velocity result
in loss of observability even if the time offset between the
camera and IMU is perfectly known (Kelly and Sukhatme,
2011; Jones and Soatto, 2011). In this sense, we see that
having an unknown td does not appear to cause loss of
observability in additional, practically significant situations.

E. Identifiability of td based on both constraints

In the preceding section we only considered the rotational
constraints provided by the camera and IMU. We now also
take into account the constraints arising from the velocity
and acceleration measurements, and show that the set of
degenerate motion cases that lead to an unidentifiable td can
be further restricted. Specifically, we prove the following
result:

Lemma 6.2: The time offset between the camera and IMU
is locally identifiable, if no k1, k2, k3, k4, k5, and k6 exist,
such that (i) the rotational velocity of the IMU satisfies
the differential equation (49), and (ii) the accelerometer
measurements satisfy the differential equation:

ȧm(t) = (⌊k2×⌋ − k3I3)am(t)− k4

−
(
⌊Iω(t)×⌋2 + ⌊Iω̇(t)×⌋

)
k5 − Io

I R(t)Tk6 (56)

Proof: The proof of this result follows a course anal-
ogous to that of Lemma 6.1, and is given in the Appendix.

The above result shows that, in general, td is locally
identifiable, and it may become unidentifiable only when
both the orientation and the position of the platform follow
specific motion patterns. As discussed, equation (49) yields
only few critical cases for the orientation that are likely
to occur in practice. Similarly, by examining the nature of
the solutions to (56) for different choices of ki, we find
only few cases of practical significance. The most important
one is that of constant accelerometer measurements, which
can arise for instance when the platform is accelerating at
a constant rate with no rotation, or when it is moving at
constant velocity and rotations occur only about the direction
of gravity. However, these scenarios would result in loss of
observability even if td was perfectly known. Thus, we once
again see that estimating td online does not appear to result
in any new degenerate trajectories with practical significance.

As a final remark, we point out that Lemma 6.2 provides
a means of certifying the local identifiability of td only. As
discussed in Section VI-B, the identifiability/observability of
the remaining states must be checked separately. Situations
can arise where td is locally identifiable, but some of the
states O1-O5 defined in Section VI-B are not. For example,
if the rotational velocity of the platform is given by Iω(t) =

Fig. 2: The area where the indoor experiment took place.

[sin(t) 0 0]T , td is locally identifiable, as Iω(t) does
not satisfy an equation of the form (49). However, since
the rotation happens only about the axis [1 0 0]T , in
this case the orientation of the camera with respect to the
IMU is not identifiable (Jones and Soatto, 2011; Kelly and
Sukhatme, 2011; Mirzaei and Roumeliotis, 2008). Thus,
as explained in Section VI-B, in order to certify that the
entire system is locally weakly observable, one should certify
that (49) and (56) do not simultaneously hold, and that none
of the critical trajectories identified in (Jones and Soatto,
2011; Kelly and Sukhatme, 2011) occurs.

VII. EXPERIMENTS

A. Real-world Experiments

Our real-world experiments involve indoor localization in
an office environment, and outdoor localization during urban
driving. The visual-inertial system used in our experiments
consists of a PointGrey Bumblebee2 stereo pair (only a single
camera was used) and an Xsens MTI-G unit. The IMU
reported inertial measurements at 100 Hz, while the camera
captured images at 20 Hz.

1) Map-Based Indoor Localization: The lab environment
where the indoor-localization experiment took place is shown
in Fig. 2. In this area 20 blue LED lights with accurately
known positions exist, and these are used as the mapped
visual features for localization. During the experiment, the
sensor platform started from a known initial position, and
was moved in two loops around the room, returning to
its initial location after each one. Since no high-precision
ground truth was otherwise available, this motion pattern
gives us three time instants in the trajectory, for which
the estimation errors can be computed. Fig. 3 shows the
trajectory estimated by the algorithm described in Section IV
(blue line) and the positions of the mapped features (blue
asterisks). For the known positions in the trajectory, the
maximum estimation error was found to be 4.6 cm, which
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Fig. 4: Map-based experiment: time-offset estimate and
corresponding ±3σ uncertainty envelope computed from the
covariance matrix reported by the estimator.

is commensurate with the covariance matrix reported by
the filter at these locations. In Fig. 4 we plot the estimate
of the time offset, td, as well as the uncertainty envelope
defined by ±3 times the standard deviation reported by
the EKF. We can see that within the first few seconds the
estimate converges very close to its final value, and that the
uncertainty in the estimate drops rapidly. We point out that
the standard deviation of td at the end of the experiment is
only 0.40 msec, showing the high precision attainable by the
proposed online estimation method.

To examine the effects of online time-offset estimation on
the reported estimates and their precision, we re-processed

the same dataset, but using the final estimate for td as an
input and disabling its online estimation. In Fig. 5a we plot
the difference of the trajectory estimates computed by the
two methods (online estimation of td vs. a priori known
td), while Fig. 5b shows the standard deviation reported by
the two approaches. These plots demonstrate that performing
estimation of td online yields results that are almost identical
to those we would obtain if td was known in advance. We
thus see that using the proposed online approach, instead of
an offline calibration procedure, for determining td would
result in no significant loss of performance.

2) EKF-SLAM: To test the performance of the online
estimation of td in EKF-SLAM, we used the same dataset
as for map-based localization, which provides a baseline for
comparison. The features used for EKF-SLAM consisted of
the 20 LEDs for which ground truth is available, as well as
any additional features that were detected in the images via
the Shi-Tomasi algorithm (Shi and Tomasi, 1994). Once the
LED features were first detected and initialized, they were
kept in the state vector for the remainder of the experiment.
The re-observations of these “persistent” features after each
loop provided correction of position drift. On the other hand,
each of the Shi-Tomasi features was kept in the state vector
only for as long as it was visible after its initialization. When
the feature dropped out of the camera field of view, it was
removed from the state, to maintain the computational cost
of the algorithm within real-time constraints. On average,
in each image 65 “temporary” Shi-Tomasi features were
tracked.

For the SLAM features the inverse-depth parametrization
is used initially, and it is then converted to the Cartesian
XYZ parametrization to reduce computation as suggested
by (Civera et al., 2008). In addition to the features, the
state vector of the filter contains the time offset td and
C
I T, as described in Section V-A. To ensure consistent
estimation, the modified-Jacobian approach described in (Li
and Mourikis, 2013b) is employed.

The trajectory estimate computed by EKF-SLAM with
concurrent estimation of both C

I T and td is shown in Fig. 3
(red dashed line), along with the estimated positions for the
LED features (red dots). We can observe that the trajectories
estimated by the map-based method and EKF-SLAM are
very similar. The maximum error for EKF-SLAM at the
known locations of the trajectory is 5.7 cm, while for the
persistent features the maximum error is 7.0 cm. Moreover,
the top plot of Fig. 6 shows the td estimate computed by
EKF-SLAM, as well as the corresponding ±3σ uncertainty
envelope. The bottom plot of Fig. 6 shows the difference
between the values of td computed in the map-based and
EKF-SLAM experiments. After the first 3 sec in the tra-
jectory, the two estimates are within 2.5 msec of each other,
while the final estimates differ by 0.7 msec. The fact that the
state estimates by the two different methods are so similar is
a direct consequence of the identifiability of td in both cases,
and indicates the robustness of the proposed algorithms.
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Fig. 5: Map-based localization: comparison of concurrent localization and td estimation vs. localization with known td. (a)
The difference in the position estimates computed in the two cases. (b) The filter’s reported standard deviation in the two
cases.
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Fig. 7: EKF-SLAM localization: comparison of concurrent localization and td estimation vs. localization with known td. (a)
The difference in the position estimates computed in the two cases. (b) The filter’s reported standard deviation in the two
cases.

Similarly to the previous experiment, we re-processed the
data in EKF-SLAM using the final td estimate as an input
and disabling its online estimation (note that C

I T is still being

estimated online). The difference in the trajectory estimates
of the two approaches, as well as the reported position uncer-
tainty, are shown in Fig. 7a and Fig. 7b, respectively. These
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the corresponding ±3σ uncertainty envelope. Bottom plot:
Difference in the td estimates of map-based and EKF-SLAM
estimation.

plots show that the difference in the trajectory estimates is
very small (within one σ of the reported covariance for
most of the trajectory), while the reported uncertainty is
almost indistinguishable after the first few seconds of the
experiment. We see that, due to the identifiability of td even
without known feature positions, the online estimation of td
does not incur any significant loss of performance.

3) Visual-inertial odometry: In addition to the indoor
experiment, we also carried out a larger, outdoor driving ex-
periment, to test the performance of visual-inertial odometry
with concurrent estimation of td and C

I T. In this experiment,
the camera-IMU system was mounted on the roof of a car
driving in Riverside, CA, covering approximately 7.3 km
in 11 minutes. The algorithm used for estimation is the
MSCKF 2.0 algorithm of (Li and Mourikis, 2013b), with the
addition of the time offset in the state vector, as described in
Section V-B. Shi-Tomasi features are extracted in the images,
and matched by normalized cross-correlation. Fig. 8 shows
(i) the trajectory estimate computed by the proposed method,
(ii) the estimate obtained using the final estimate of td as a
known input, and (iii) the estimate computed without online
estimation of C

I T and td (for the C
I T manual measurements

were used, and td = 0 was assumed in this case). For this
experiment, ground truth was obtained by a GPS-INS system,
and is shown in black in Fig. 8.

Fig. 9 shows the orientation (yaw) and horizontal position
errors for the three algorithms tested. On this plot, we
also show the predicted uncertainty envelope computed as
±3 times the standard deviation reported by the proposed
method. We can observe that the proposed method yields
accurate estimates (the error remains below 0.5% of the
traveled distance), which are within the reported uncertainty
envelope, indicating consistency. Similarly to what we ob-
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Fig. 9: Visual inertial odometry: yaw and horizontal position
errors by the three methods tested in the real-world experi-
ment.

served in the cases of map-based estimation and SLAM, the
results of the algorithm that performs online estimation of td
are very similar to those obtained with a known td. Moreover,
the proposed method is considerably more accurate than the
case where td and C

I T are assumed to have “nominal” values,
and are not estimated online.

B. Simulations

In addition to the real-world experiments presented above,
we conducted Monte-Carlo simulation tests, to examine the
accuracy and consistency of the estimates produced by the
proposed algorithms, and to verify whether the results of our
real-world testing are typical.
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TABLE I: RMS errors in the map-based simulations

RMS errors
GpI

I
Gq̄ GvI

CpI
C
I q̄ td

0.096 m 0.10o 0.021 m/sec 0.088 m 0.036o 1.519 msec

1) Map-based motion estimation: For the simulations
of map-based localization, we generated trajectories with
a camera/IMU system moving on a sinusoidal trajectory.
In each image six landmarks with known locations, with
depths uniformly distributed between 5 and 20 meters, were
visible. The sensor noise parameters were chosen to be
identical to those of the sensors we used for the real-world
experiment described in Section VII-A.1. The IMU provided
measurements at 100Hz, while the images were recorded at
10Hz.

To examine the statistical properties of our proposed
algorithm, we carried out 50 Monte-Carlo trials. In each trial,
the rotation and translation between the IMU and the camera
were set equal to known nominal values, with the addition
of random errors δp, and δϕ. In each trial, δp and δϕ were
randomly drawn from zero-mean Gaussian distributions with
standard deviations equal to σp = 0.1 m and σθ = 1.0o along
each axis, respectively. In addition, td was randomly drawn
from the Gaussian distribution N (0, σ2

t ), with σt = 50 msec,
and kept constant for the duration of the trial. Time offsets in
the order of tens of milliseconds are typical of most systems
in our experience.

Table I shows the RMS errors for the IMU position,
orientation, and velocity, as well as for the camera-to-IMU
transformation and the time offset. The values shown are
averages over all Monte-Carlo trials, and over the second
half of the trajectory (i.e., after the estimation uncertainty
has reached steady state). This table shows that the proposed
approach allows for precise estimation of all the variables of
interest, including the time offset td.

Additionally, to examine the consistency of the state esti-
mates we computed the normalized estimation error squared
(NEES) for the IMU state, C

I T and td, each averaged over
all Monte-carlo trials and all timesteps. For a variable a,
the NEES at time step k of a given trial is computed as
ãTkP

−1
ak

ãk, where ãk is the estimation error and Pak
is the

covariance matrix reported by the filter. If the estimator is
consistent, i.e., if it reports an appropriate covariance matrix
for its state estimates, the NEES should have an average
value equal to the dimension of a (the NEES for a consistent
estimator is a χ2-distributed random variable with dim(a)
degrees of freedom) (Bar-Shalom et al., 2001). In our tests,
the average NEES values were 15.32 for the IMU state,
6.6 for C

I T, and 0.99 for td, close to the expected values of
15, 6, and 1, respectively. This indicates that the estimator
is consistent, and that the covariance matrix reported by the
EKF is an accurate description of the actual uncertainty of
the estimates.

TABLE II: RMS errors in the EKF-SLAM simulations

RMS errors
GpI

I
Gq̄ GvI

CpI
C
I q̄ Gpf td

.078 m .26o .017 m/sec .01 m .07o .094 m 0.1 msec

2) EKF-SLAM: For the SLAM simulations, we generated
trajectories that were similar to the trajectory of the real-
world experiment presented in Section VII-A.2. The simu-
lated IMU-camera system moved in a 7×12×5 m room for
90 seconds, at an average velocity of 0.37 m/sec. The sensor
characteristics were the same as in the real-world experiment
described in Section VII-A.2. A total of 50 persistent features
were placed on the walls of the room, and in each image
we generated 100 additional temporary features, with depths
uniformly distributed between 1.5 and 10 meters.

Table II shows the RMS errors for the IMU position,
orientation, and velocity, as well as for the camera-to-
IMU transformation, feature positions, and the time offset,
averaged over all Monte-Carlo trials, and over the second
half of the trajectory. Similarly to what was observed in
the case of map-based localization, the time-offset between
the sensors can be very accurately estimated, owing to its
identifiability. The average NEES values have been computed
as 17.00 for the IMU state, 6.66 for C

I T, and 0.87 for td.
Again, these are close to the theoretically expected values
of 15, 6, and 1, respectively. For the feature position the
average NEES is 4.48, above the theoretically expected value
of 3. This slight increase in the feature NEES is expected,
as EKF-SLAM is known to be sensitive to the nonlinearity
of the measurement models.

3) Visual-Inertial Odometry: To obtain realistic simu-
lation environments for visual-inertial odometry, we gen-
erated the simulation data based on a real-world dataset.
Specifically, the ground truth trajectory (position, velocity,
orientation) for the simulations is generated from the ground
truth of a real-world dataset, which was about 13 minutes,
5.5 km long. Using this trajectory, we subsequently generated
IMU measurements corrupted with noise and biases, as well
as visual feature tracks with characteristics matching those
in the real-world data. For each trial the camera-to-IMU
transformation and the time offset were generated as in the
map-based simulations, by perturbing known nominal values.

In the tests presented here, we compare the performance of
visual-inertial odometry using the MSCKF-based approach
described in Section V-B, in four cases: (i) online C

I T
estimation enabled, but td estimation disabled, (ii) td esti-
mation enabled, but C

I T estimation disabled, (iii) td and C
I T

estimation enabled (i.e., the proposed approach), and (iv) the
case where td and C

I T are perfectly known and not estimated.
In the first three cases (termed the “imprecise” ones), the
exact values of C

I T and td are not known (only their
nominal values are known). When a particular parameter
is not estimated, it is assumed to be equal to the nominal
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Fig. 10: Visual-inertial odometry with unknown features and drifting time-offset td: estimation errors (blue lines) and
associated ±3σ envelopes (red dash-dotted lines). (a) The IMU position errors in the North, East, Down directions, (b) The
IMU orientation errors in roll, pitch, and yaw, (c) The error in the estimate of td. Note that the position and yaw uncertainty
gradually increases, as normal in visual-inertial odometry without any known landmarks.

TABLE III

Scenario imprecise precise
C
I T estimation on off on N/A
td estimation off on on N/A

IMU Pose RMSE

North (m) 54.60 18.39 8.11 7.93
East (m) 81.82 13.50 5.18 5.00

Down (m) 14.53 45.07 0.64 0.53
roll (o) 0.39 0.18 0.06 0.06

pitch (o) 0.33 0.18 0.05 0.05
yaw (o) 1.19 1.22 0.70 0.69

IMU state NEES 85.4 2046 14.6 14.5

Calib. RMSE
CpI (m) 0.07 N/A 0.01 N/A
C
I q̄ (o) 0.31 N/A 0.05 N/A

td (msec) N/A 0.28 0.25 N/A

value. By comparing these three cases, we can evaluate
the necessity and effectiveness of the online estimation of
individual parameters. Moreover, by comparing against case
(iv), where all parameters are perfectly known (the “precise”
scenario), we can assess the loss of accuracy incurred due
to the uncertainty in the knowledge of these parameters.

Table III shows the average RMSE and NEES for the four
cases, averaged over 50 Monte-Carlo trials. For clarity, the
position errors are reported in the NED (North-East-Down)
frame, and IMU orientation in roll-pitch-yaw. We see that,
to be able to accurately estimate the IMU’s motion, both the
frame transformation and the time offset between the camera
and IMU must be estimated. If either of these is falsely
assumed to be perfectly known, the estimation accuracy and
consistency are considerably degraded (see the first two data
columns in Table III). Moreover, by comparing the third and
fourth data columns, we can see that the accuracy obtained
by our online estimation approach is very close to that ob-
tained when both C

I T and td are perfectly known. This result,
which was also observed in the real-world experiments, is
significant from a practical standpoint: it shows that the

proposed online approach, initialized with rough estimates,
can provide pose estimates almost indistinguishable to what
we would get if offline calibration was performed in advance.

4) Time-varying td: For all the results presented up to
now, a constant time offset was used. We here also examine
the case of a time-varying td in visual inertial-odometry.
Instead of presenting Monte-Carlo simulation results (which
look similar to those in Table III), it is interesting to show
the results of a single representative trial. In this trial, the
time offset varies linearly from 20 msec at the start, to
520 msec at after 500 sec, modelling a severe clock drift
of 0.5 sec in 8.3 minutes. Fig. 10 presents the estimation
errors and associated ±3 standard deviations for the IMU
position, the IMU orientation, and the time offset. We can
see that even in this challenging situation (unknown features,
uncertain camera-to-IMU transformation, large and time-
varying offset) the estimates remain consistent. We stress
that this is due to the identifiability of td, which allows us
to track its value closely as it drifts over time.

VIII. CONCLUSION

In this paper we have proposed an online approach for
estimating the time offset, td, between the camera and IMU
during EKF-based vision-aided inertial navigation. The key
component of our formulation is that the variable td is
explicitly included in the EKF state vector, and estimated
jointly with all other variables of interest. This makes it
possible to track time-varying offsets, to characterize the
uncertainty in the estimate of td, and to model the effect
of the imperfect knowledge of td on the accuracy of the
estimates, in a natural way. Moveover, we have shown that
td is identifiable in general trajectories, which guarantees the
effectiveness of the proposed online estimation approach. A
detailed characterization of the critical motion cases that lead
to loss of identifiability of td reveals that they are either (i)
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cases that are known to cause loss of observability even with
a perfectly known td, or (ii) cases that are unlikely to occur
in practice. Our simulation and experimental results indicate
that the proposed approach leads to high-precision estimates
for both the system motion, as well as for the temporal and
spatial alignment between the camera and IMU.
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APPENDIX: PROOF OF LEMMA 6.2

We start by performing a change of variables, defining
v̄ = sCovo, ḡ = sCog, b̄ = −sCI Rba, and p̄ = −sCpI , to
obtain:

c2(ξ̄, t) = v̄ + ḡt+ s

∫ t

0

Rc(τ)
C
I Ram(τ + td)dτ

+

∫ t

0

Rc(τ)dτ b̄+ Ṙc(t)p̄− vc(t) = 0 (57)

with

ξ̄ =
[
v̄T ḡT b̄T bg

T p̄T C
I q

T td s
]T

Note that since td, bg, and C
I q̄ remain the same in the change

from ξ to ξ̄, the condition c1 in (44) also holds for ξ̄ with
no modification.

Clearly, ξ is locally identifiable if and only if ξ̄ is. A
sufficient condition for identifiability is that there exists a
set of time instants, such that if we evaluate the matrix
containing the Jacobians of c1 and c2 at these time instants,
the matrix has full column rank. In turn, a sufficient condition
for this is that there exists no nonzero vector m such that,
for all t > 0, it is:[

D1(t)
D2(t)

]
m = 0 ⇔ D1(t)m = 0 and D2(t)m = 0 (58)

where D1(t) is the Jacobian of c1 with respect to ξ̄, and
D2(t) is the Jacobian of c2 with respect to ξ̄. We now
introduce the partitioning

m = [mT
1 mT

2 mT
3 kT

1 mT
4 kT

2 1 m5]
T

where the element corresponding to the Jacobians with
respect to td has been set to one, as we are interested in
detecting cases in which td is not identifiable.

The condition D1(t)m = 0 is identical to the condition
that was encountered in the proof of Lemma 6.1, and yields
the first condition of Lemma 6.2. The second condition of
Lemma 6.2 is derived from the equation D2(t)m = 0.
Computing the Jacobians of c2 with respect to ξ̄, and
substituting in D2(t)m = 0, we obtain:

m1 + tm2 +

∫ t

0

Rc(τ)dτ m3 + Ṙc(t)m4

+ s

∫ t

0

Rc(τ)
C
I R⌊am(τ + td)×⌋dτk2

+ s

∫ t

0

Rc(τ)
C
I Rȧm(τ + td)dτ

+

∫ t

0

Rc(τ)
C
I Ram(τ + td)dτm5 = 0, ∀t > 0

Differentiating this expression with respect to t, and re-
arranging terms, yields:

ȧm(t+ td) =
(
⌊k2×⌋ −

m5

s
I3

)
am(t+ td)−

1

s
γ(t), ∀t > 0

or, equivalently,

ȧm(t) =
(
⌊k2×⌋ −

m5

s
I3

)
am(t)− 1

s
γ(t− td), ∀t > 0

(59)

where

γ(t− td) =
C
I R

TRc(t− td)
Tm2 +

C
I R

Tm3

+ C
I R

TRT
c (t− td)R̈c(t− td)m4

= Io
I R(t)T C

I R
Tm2 +

C
I R

Tm3

+ Io
I R(t)T Io

I R̈(t)CI R
Tm4

= Io
I R(t)T C

I R
Tm2 +

C
I R

Tm3

+
(
⌊Iω(t)×⌋2 + ⌊Iω̇(t)×⌋

)
C
I R

Tm4

Substituting the last expression in (59), and defining k3 =
m5/s, k4 = 1

s
C
I R

Tm3, k5 = 1
s
C
I R

Tm4 and k6 =
1
s
C
I R

Tm2, yields (56).
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