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Abstract

In this paper, we focus on the problem of motion tracking in unknown environments using
visual and inertial sensors. We term this estimation taskvisual-inertial odometry(VIO), in analogy
to the well-known visual-odometry problem. We present a detailed study of EKF-based VIO
algorithms, by comparing both their theoretical properties and empirical performance. We show
that an EKF formulation where the state vector comprises a sliding window of poses (the MSCKF
algorithm) attains better accuracy, consistency, and computational efficiency than the SLAM
formulation of the EKF, in which the state vector contains the current pose and the features
seen by the camera. Moreover, we prove that both types of EKF approaches areinconsistent,
due to the way in which Jacobians are computed. Specifically,we show that the observability
properties of the EKF’s linearized system modelsdo notmatch those of the underlying system,
which causes the filters to underestimate the uncertainty inthe state estimates. Based on our
analysis, we propose a novel, real-time EKF-based VIO algorithm, which achieves consistent
estimation by (i) ensuring the correct observability properties of its linearized system model, and
(ii) performing online estimation of the camera-to-IMU calibration parameters. This algorithm,
which we term MSCKF 2.0, is shown to achieve accuracy and consistency higher than even
an iterative, sliding-window fixed-lag smoother, in both Monte-Carlo simulations and real-world
testing.

I. INTRODUCTION

This paper addresses the problem of tracking a vehicle’s egomotion in GPS-denied environments,
using an inertial measurement unit (IMU) and a monocular camera. Our focus is on pose estimation
in unknown environments, therefore we do not assume that a feature map is available in advance,
as in map-based localization methods (e.g., (Wu et al., 2005; Trawny et al., 2007)). Moreover, we
do not aim at building such a map. Our goal is to estimate the vehicle trajectory only, using the
inertial measurements and the observations of naturally-occurring features tracked in the images.
This task is similar to the well-known visual odometry (VO) problem (Nister et al., 2004), with the
added characteristic that an IMU is available. We thus term the approachvisual-inertial odometry
(VIO). VIO methods have attracted significant research interest, because they can either be used
as stand-alone pose-tracking methods, or as part of larger localization systems. For instance, VIO
estimates can be integrated with a loop-closure detection module to provide long-term, bounded-
uncertainty localization (Mourikis and Roumeliotis, 2008; Jones and Soatto, 2011).

A key requirement for VIO algorithms is that their computational complexity remains bounded,
both as a function of time and as a function of the size of the trajectory. Most present-day
algorithms in this class are either extended Kalman filter (EKF)-based methods (Mourikis and
Roumeliotis, 2007; Kelly and Sukhatme, 2011; Jones and Soatto, 2011), or methods utilizing
iterative minimization over a window of states (Dong-Si andMourikis, 2011; Konolige and
Agrawal, 2008; Konolige et al., 2011). The latter are generally considered to be more accurate,
as they employ re-linearization at each iteration to betterdeal with nonlinearities. However, the
need for multiple iterations also incurs a higher computational cost. Ideally, one would like to
obtain accuracy similar to, or better than, that of iterative-minimization algorithms, but at the



computational cost of an EKF algorithm. In this paper, we show how this can be achieved.
Specifically, we carry out an in-depth analysis of EKF-basedVIO, based on which we develop a
novel real-time EKF algorithm. Our results show that this algorithm attains estimation accuracy
better than both existing EKF alternativesand iterative-minimization VIO.

As a starting point for our analysis, we compare the performance of two families of EKF-based
VIO estimators: EKF-SLAM and sliding-window algorithms. In the former class of methods, the
filter state vector contains the current IMU pose as well as the features visible by the camera (Jones
and Soatto, 2011; Pinies et al., 2007; Kleinert and Schleith, 2010), while in the latter the state
vector contains only a sliding window of poses, and the feature measurements are used to apply
probabilistic constraints between them (Diel et al., 2005;Mourikis and Roumeliotis, 2007). Out
of this second class of methods, we focus on the multi-state-constraint Kalman filter (MSCKF)
algorithm (Mourikis and Roumeliotis, 2007), which we show to be the maximum-a-posteriori
estimator up to linearization.

In this paper we show, through extensive Monte-Carlo simulations emulating real-world datasets,
that the MSCKF algorithm outperforms EKF-SLAM methods by a wide margin, in terms of
accuracy, consistency, and computational efficiency. We attribute this primarily to the fact that the
MSCKF makes no Gaussianity assumptions on the pdf of the features’ positions, something that is
required in EKF-SLAM. Having shown the advantages of the MSCKF over EKF-SLAM methods,
we then focus on analyzing and further improving its performance. Specifically, our approach relies
on improving theconsistencyof the MSCKF, which, in turn, also improves the accuracy of the
estimates. As defined in (Bar-Shalom et al., 2001, Section 5.4), a recursive estimator is consistent
when the estimation errors are zero-mean and have covariance matrix equal to that reported by
the estimator.

We identify and address two key causes of inconsistency in the MSCKF. The first cause is related
to a fundamental shortcoming of the EKF: we prove that, due tothe way the EKF Jacobians are
computed, even though the IMU’s rotation about gravity (theyaw) is not observable in VIO (see,
e.g., (Jones and Soatto, 2011; Kelly and Sukhatme, 2011; Martinelli, 2012)), it appears to be
observable in the linearized system model used by the MSCKF –and the same occurs in EKF-
SLAM. Thus, the estimator erroneously believes it has more information than it actually does, and
under-estimates the state covariance matrix. The second cause of inconsistency is that, in most
practical cases, the extrinsic calibration parameters (rotation and translation) between the camera
and IMU are only known with finite precision. If (as is common practice) these parameters are
assumed to be perfectly known, the unmodelled uncertainty will result in under-reporting of the
state estimates’ covariance.

To improve the consistency of the MSCKF, we address the two problems identified above. First,
we show that a modification in the way in which the filter Jacobians are computed can restore
the appropriate observability properties for the filter’s linearized system model. We note that, as
part of this modification, we derive a closed-form expression for the IMU’s error-state transition
matrix. This expression can be used in any case in which an IMUis used for estimation (e.g.,
not only in VIO, but also in GPS-INS), and to the best of our knowledge is the first time such
an expression has been proposed. Additionally, to address the uncertainty in the knowledge of the
camera-to-IMU transformation, we include these parameters in the MSCKF’s state vector, so that
they can be estimated online, along with the IMU state.

We term the modified MSCKF algorithm, which ensures the correct observability properties of
its linearized system model and performs online calibration of the camera-to-IMU transformation,
MSCKF 2.0. Our simulation and experimental results demonstrate that this novel algorithm shows
substantial improvement in consistency compared to all theexisting EKF alternatives. Moreover, the
algorithm outperforms the alternatives in terms ofaccuracy, since a more accurate representation of
the uncertainty of the different states in the filter resultsin better state updates. More importantly,



however, our results show that the MSCKF 2.0 obtains higher consistency and accuracy even
than a comparable algorithm that uses sliding-window iterative-minimization, which has much
higher computational cost. This indicates that having a linearized system model with appropriate
observability properties may be more important than using re-linearization to better approximate
the nonlinear measurement models.

II. RELATED WORK

The simplest (and most computationally efficient) approaches to VIO areloosely-coupledones,
i.e, methods that process the IMU and image measurements separately. For instance, some methods
first process the images for computing relative motion estimates between consecutive poses,
and subsequently fuse these with the inertial measurements(Diel et al., 2005; Weiss and Sieg-
wart, 2011; Ma et al., 2012; Roumeliotis et al., 2002; Tardifet al., 2010). Alternatively, IMU
measurements can be processed separately for extracting rotation estimates, and fused in an
image-based estimation algorithm (Brockers et al., 2012; Konolige et al., 2011; Oskiper et al.,
2007). Separately processing the two sources of information leads to a reduction in computational
cost, and as a result loosely-coupled methods are typicallysuited for systems with very limited
resources, such as MAVs (Brockers et al., 2012). However, this comes at the expense of information
loss: for instance, using feature measurements for egomotion estimation between pairs of images
ignores the correlations between consecutive timesteps (Mourikis et al., 2007), and processing
IMU measurements separately does not allow for optimal estimation of sensor biases.

In this work, we are therefore interested intightly-coupledmethods, which directly fuse the
visual and inertial data, thus achieving higher precision.As previously mentioned, these are either
based on iterative minimization over a sliding window of states, or are EKF formulations1. In
the former methods (e.g., (Dong-Si and Mourikis, 2011; Konolige and Agrawal, 2008; Konolige
et al., 2011; Lupton and Sukkarieh, 2012; Oskiper et al., 2007)), which essentially implement
bundle-adjustment in a sliding window of states (Engels et al., 2006) with the addition of IMU
measurements, older poses and/or features are removed fromthe state vector to maintain the
computational cost bounded. The need for multiple iterations during minimization results in
increased computational cost, however. In this paper, we show that a properly designed EKF
estimator can attain performancehigher than that of iterative minimization, at only a fraction of
the computation.

To fuse the visual and inertial measurements, the most commonly used tightly-coupled EKF
estimator is EKF-based SLAM, in which the current camera pose and feature positions are jointly
estimated (Kleinert and Schleith, 2010; Pinies et al., 2007; Kim and Sukkarieh, 2007; Jones and
Soatto, 2011; Kelly and Sukhatme, 2011). To keep the computational cost bounded in EKF-
SLAM algorithms, features that move out of the camera’s fieldof view must be removed from
the state vector (Munguia and Grau, 2007). One disadvantageof EKF-SLAM is its computational
complexity, cubic in the number of features in the state vector. When many features are visible
(the common situation in images of natural scenes), EKF-SLAM’s runtime can be unacceptably
high (in fact, higher than that of iterative minimization (Strasdat et al., 2010) in certain cases).

To address this problem, the MSKCF algorithm was proposed asan alternative EKF-based VIO
method (Mourikis and Roumeliotis, 2007; Shkurti et al., 2011). In contrast to EKF-SLAM, the
MSCKF maintains a sliding window of poses in its state vector, and uses the feature measurements
to impose constraints on these poses. This results in a computational complexity that is linear in the
number of features, and thus the MSCKF is faster than EKF-SLAM. In this paper, we compare the

1Note that hybrid approaches have also appeared (e.g., (Mourikis and Roumeliotis, 2008)), which use the estimates
of the EKF as initial guesses for iterative minimization. Moreover, hybrid schemes that maintain both an EKF and a
minimization-based estimator for robustness and/or efficiency have been proposed (Weiss et al., 2012; Brockers et al.,
2012).



MSCKF’s accuracyandconsistencyto those of EKF-SLAM methods, and show that the MSCKF
outperforms EKF-SLAM in these respects as well.

A key contribution of this work is the analysis and improvement of the consistency of EKF-based
vision-aided inertial navigation. Past work on the consistency of 3D vision-based localization has
primarily focused on the parameterization of feature positions. In (Civera et al., 2008), it was shown
that the Cartesian-coordinate (XYZ) parametrization results in severely non-Gaussian pdfs for the
features, and degrades accuracy and consistency. Therefore an inverse-depth feature parametrization
was proposed, which is better suited for the camera measurement model, and results in improved
performance. In (Sola, 2010), an anchored homogeneous feature parametrization was proposed,
and was shown to further improve the filter’s consistency. Inour work, we compare all the above
parameterizations in VIO and show that, while the parameterization of (Sola, 2010) yields superior
results to the alternatives, its performance is still worsethan that of the MSCKF algorithm.

In this work, we take a different approach to exploring the consistency properties of EKF-based
VIO. Specifically, our approach is motivated by recent work examining the relationship between
the observability properties of the EKF’s linearized system model and the filter’s consistency, in
the context of 2D SLAM (Huang et al., 2008; Huang et al., 2010). These works showed that, due
to the way in which Jacobians are computed in the EKF, the robot’s orientation appears to be
observable in the linearized system model, while it is not inthe actual, nonlinear system. As a
result of this mismatch, the filter produces too small estimates for the uncertainty of the orientation
estimates, and becomes inconsistent.

Our analysis in Section IV shows that the same problem affects EKF-based VIO in 3D. This
result first appeared in an earlier conference version of this paper (Li and Mourikis, 2012a).
Moreover, similar results were independently derived in subsequent papers by (Hesch et al.,
2012; Kottas et al., 2012). Compared to our earlier work, we here additionally (i) compare the
performance of the MSCKF to EKF-SLAM based methods, (ii) show that the same, erroneous
observability properties affect EKF-SLAM approaches, (iii) address the issue of inconsistency
caused by inaccurate knowledge of the camera-to-IMU calibration, and (iv) present additional,
large-scale simulation and experimental results demonstrating our analysis.

III. EKF-BASED V ISUAL-INERTIAL ODOMETRY

Consider a mobile platform, equipped with an IMU and a camera, moving with respect to a
global coordinate frame,{G}. Our goal is to perform VIO, i.e., to track the position and orientation
of the platform using inertial measurements and observations of naturally occurring point features,
whose positions are not knowna priori. To this end, we affix a coordinate frame{I} to the IMU,
and track the motion of this frame with respect to the global frame. In what follows, we first
describe the parameterization we employ for the IMU state, and then discuss the two alternative
tightly-coupled EKF formulations for VIO, and compare their performance.

A. IMU state parameterization

Following standard practice, the IMU state vector at time stepℓ is defined as the16×1 vector2:

xIℓ =
[
Iℓ
G q̄

T GpT
ℓ

GvT
ℓ bg

T
ℓ ba

T
ℓ

]T

(1)

2Throughout this paper, the preceding superscript (e.g.,G in Gpℓ) denotes the frame of reference with respect to
which quantities are expressed.A

BR is the rotation matrix rotating vectors from frame{B} to {A}, A
Bq̄ is the unit

quaternion corresponding to the rotation matrixA
BR, ⌊c×⌋ denotes the skew symmetric matrix corresponding to vector

c, 0 andI are the zero and identity matrices respectively,â and ã represent the estimate and error of the estimate of a
variablea respectively, and̂ai|j is the estimate of variablea at time stepi given measurements up to time stepj.



whereIℓ
G q̄ is the unit quaternion (Trawny and Roumeliotis, 2005) representing the rotation from

the global frame to the IMU frame at time stepℓ, Gpℓ andGvℓ are the IMU position and velocity
in the global frame, andbgℓ

andbaℓ are the gyroscope and accelerometer biases.
To define the IMU error state, we use the standard additive error definition for the position,

velocity, and biases
(
e.g.,Gp̃ = Gp − Gp̂

)
. For the orientation error, out of the several possible

options that exist, the preferable ones are those that (i) are local, so that singularities are avoided,
and (ii) use a minimal, 3-dimensional representation of theorientation error. To obtain a local
parameterization, we define the orientation error based on the quaternionδq̄ that describes the
difference between the true and estimated orientation. Specifically, we define:

I
Gq̄ = I

G
ˆ̄q⊗ δq̄ ⇒ δq̄ = I

G
ˆ̄q−1 ⊗ I

Gq̄ (2)

where⊗ denotes quaternion multiplication. Intuitively,δq̄, is the (small) rotation that is needed
to bring the estimated global frame to match the true one. To obtain a minimal representation for
this rotation, we note thatδq̄ can be written as:

δq̄ =

[
1
2
G
θ̃

√

1− 1
4
Gθ̃

T
Gθ̃

]

≃

[
1
2
G
θ̃

1

]

(3)

whereG
θ̃ is a 3× 1 vector describing the orientation errors about the three axes. With the above

error definition, the IMU error-state is defined as the15× 1 vector:

x̃I =
[
G
θ̃
T Gp̃T GṽT b̃T

g b̃T
a

]T

(4)

It is worth pointing out that our choice of the orientation-error parameterization is guided by the
analysis of (Li and Mourikis, 2012a). That analysis showed that defining the orientation error
based on the difference between the true and estimatedglobal frame, as in (2)-(3), is preferable
to defining it as the difference between the true and estimated IMU frame. Specifically, the latter
choice (used, for example, in (Mourikis and Roumeliotis, 2007)) causes undesirable terms to appear
in the observability matrix of the EKF’s linearized system model.

B. EKF-based SLAM

In EKF-SLAM algorithms, the filter state vector contains thecurrent IMU state,xIℓ , and a
representation of the feature positions. Thus, the filter state vector at time-stepℓ is defined as:

xℓ =
[
xT
Iℓ fT1 · · · fTnℓ

]T
(5)

where fi, i = 1, . . . , nℓ are the features included in the state vector at time stepℓ. These
could be parameterized in different ways. In this paper, we will consider the “traditional” XYZ
coordinate parametrization, the inverse depth parametrization (Civera et al., 2008), and the anchored
homogeneous parametrization (Sola, 2010). These are the most commonly used parameterizations
in practice, and the two latter ones specifically aim at increasing the filter’s consistency and
accuracy.

The EKF-SLAM equations are well-known, and we therefore only briefly describe them here, to
introduce the necessary notation. In standard practice, the IMU measurements are used to propagate
the IMU state. To describe the way in which the errors in the propagated state estimate depend
on the estimation errors at the previous time step, the EKF employs a linearized equation of the
form:

x̃Iℓ+1|ℓ
≃ ΦIℓx̃Iℓ|ℓ +wdℓ

(6)



whereΦI is the IMU error-state transition matrix, andwdℓ
is a noise vector, with covariance

matrix Qdℓ
. The filter’s covariance matrix is also propagated according to

Pℓ+1|ℓ =

[
ΦIℓPIIℓ|ℓΦ

T
Iℓ
+Qdℓ

ΦIℓPIFℓ|ℓ

PT
IFℓ|ℓ

ΦT
Iℓ

PFFℓ|ℓ

]

wherePIIℓ|ℓ is the covariance matrix of the IMU state,PFFℓ|ℓ
is the covariance matrix of the

features, andPIFℓ|ℓ
the cross-covariance between them.

Assuming a calibrated perspective camera, the observationof featurei at time stepℓ is described
by the equation3:

ziℓ = h(xIℓ , fi) + niℓ =





Cℓxfi
Cℓzfi
Cℓyfi
Cℓzfi



+ niℓ (7)

whereniℓ is the measurement noise vector, modelled as zero-mean Gaussian with covariance
matrix σ2I2, and the vectorCℓpfi = [Cℓxfi

Cℓyfi
Cℓzfi ]

T is the position of the feature with
respect to the camera at time stepℓ:

Cℓpfi =
C
I R

Iℓ
GR

(
Gpfi −

GpIℓ

)
+ CpI (8)

with {CI R, CpI} being the rotation and translation between the camera and the IMU. In EKF-
SLAM, the feature observations are used directly for updating the state estimates. For this process,
we employ the residual between the actual and expected feature measurement, and its linearized
approximation:

riℓ = ziℓ − h(x̂Iℓ|ℓ−1
, f̂iℓ|ℓ−1

)

≃ Hiℓ

(
x̂ℓ|ℓ−1

)
x̃ℓ|ℓ−1 + niℓ (9)

whereHiℓ

(
x̂ℓ|ℓ−1

)
is the Jacobian matrix ofh with respect to the filter state, evaluated at the

state estimatêxℓ|ℓ−1. This is a sparse matrix, containing nonzero blocks only at the locations
corresponding to the IMU state (position and orientation) and thei-th feature:

Hiℓ

(
x̂ℓ|ℓ−1

)
=

[
HIiℓ

(
x̂ℓ|ℓ−1

)
0 · · · Hfiℓ

(
x̂ℓ|ℓ−1

)
· · · 0

]
(10)

Onceriℓ andHiℓ have been computed, a Mahalanobis gating test is performed,and if successful
the standard EKF update equations are employed (Maybeck, 1982). Depending on the particular
feature parameterization used, the exact form of the above Jacobians, as well as the “bookkeeping”
required in the filter, will be slightly different.

In VIO, we must ensure that the computational cost of the algorithm remains bounded. To
achieve this, features are removed from the state vector immediately once they leave the field of
view of the camera. This of course means that the filter cannotprocess feature re-observations that
occur when an area is re-visited. However, such “loop-closure” events do not need to be handled
by a VIO algorithm: if desired, they can be handled by a separate algorithm running in parallel,
as done for example in (Mourikis and Roumeliotis, 2008). In the “prototypical” VIO scenario,
where the camera keeps moving in new areas all the time, the EKF-SLAM algorithm described
above will use all the available feature information.

3We note that throughout this paper, we focus on the monocular-camera case, which is the more challenging one.
However, our theoretical analysis and the MSCKF 2.0 algorithm are equally applicable to the case where a stereo pair
is used for visual sensing.



C. Multi-State-Constraint Kalman Filter (MSCKF)

In contrast to EKF-SLAM, the MSCKF is an EKF algorithm that maintains in its state vector a
sliding window of poses, and uses feature observations to impose probabilistic constraints between
these poses (Mourikis and Roumeliotis, 2007). The state vector of the MSCKF at time-stepℓ is
defined as:

xℓ =
[
xT
Iℓ

π
T
ℓ−1 π

T
ℓ−2 · · · π

T
ℓ−N

]T
(11)

whereπi = [IiGq̄
T Gp

T
i ]

T , for i = ℓ−N, . . . , ℓ− 1, are the IMU poses at the times the lastN

images are recorded.
During MSCKF propagation, the IMU measurements are used to propagate the IMU state

estimate and the filter covariance matrix, similarly to EKF-SLAM. The difference lies in the
way in which the feature measurements are used. Specifically, every time a new image is recorded
by the camera, the MSCKF state and covariance are augmented with a copy of the current IMU
pose, and the image is processed to extract and match features. Each feature is tracked until all
its measurements become available (e.g., until it goes out of the field of view), at which time an
update is carried out usingall the measurements simultaneously.

To present the update equations, we consider the case where the featurefi, observed from the
N poses in the MSCKF state vector, is used for an update at time step ℓ. The first step of the
process is to obtain an estimate of the feature position,Gp̂fi . To this end, we use all the feature’s
measurements to estimate its position via Gauss-Newton minimization (Mourikis and Roumeliotis,
2007). Subsequently, we compute the residuals (forj = ℓ−N, . . . , ℓ− 1):

rij=zij − h(π̂j|ℓ−1,
Gp̂fi) (12)

≃Hπij
(π̂j|ℓ−1,

Gp̂fi) π̃j|ℓ−1+Hfij(π̂j|ℓ−1,
Gp̂fi)

Gp̃fi+nij (13)

where π̃j|ℓ−1 and Gp̃fi are the error of the current estimate for thej-th pose and the error in
the feature position respectively, and the matricesHπij

andHfij are the corresponding Jacobians,
evaluated usinĝπj|ℓ−1, andGp̂fi . At this point we note that, in the EKF algorithm, to be able
to employ a measurement residual,r, for a filter update, we must be able to write this residual
in the form r ≃ Hx̃+ n, wherex̃ is the error in the state estimate, andn is a noise vector that
is independentfrom x̃. The residual in (13) does not have this form, as the feature position error
Gp̃fi is correlated to both̃πj|ℓ−1 andnij (this is becauseGp̂fi is computed as a function of̂πj|ℓ−1

and zij , j = ℓ − N, . . . , ℓ − 1). Therefore, in the MSCKF we proceed to removeGp̃fi from the
residual equations. For this purpose, we first form the vector containing theN residuals from all
the feature’s measurements:

ri ≃ Hπi
(x̂ℓ|ℓ−1,

Gp̂fi)x̃ℓ|ℓ−1 +Hfi(x̂ℓ|ℓ−1,
Gp̂fi)

Gp̃fi + ni (14)

whereri andni are block vectors with elementsrij andnij, respectively, andHπi
andHfi are

matrices with block rowsHπij
andHfij . Subsequently, we define the residual vectorroi = VT

i ri,
whereVi is a matrix whose columns form a basis of the left nullspace ofHfi . From (14), we
obtain:

roi = VT
i ri ≃ Ho

i (x̂ℓ|ℓ−1,
Gp̂fi) x̃ℓ|ℓ−1 + no

i (15)

whereHo
i = VT

i Hπi
andno

i = VT
i ni. Note that the residual vectorroi is now independentof

the errors in the feature coordinates, and thus can be used for an EKF update. It should also be
mentioned that, for efficiency,roi andHo

i are computed without explicitly formingVi (Mourikis
and Roumeliotis, 2007).

Once roi and Ho
i are computed, we proceed to carry out a Mahalanobis gating test for the

residualroi . Specifically, we compute:

γi = (roi )
T
(
Ho

iPℓ|ℓ−1(H
o
i )

T + σ2I
)−1

roi (16)



and compare it against a threshold given by the 95-th percentile of theχ2 distribution with2N−3
degrees of freedom (2N − 3 is the number of elements in the residual vectorroi ). If the feature
passes the test, we proceed to useroi for an EKF update, together with the residuals of all other
features that pass the gating test. After this update takes place, we remove from the sliding window
those poses whose observed features have all been used for updates. An overview of the MSCKF
is given in Algorithm 1.

Algorithm 1 Multi-State-Constraint Kalman Filter (MSCKF)

Propagation: Propagate state vector and covariance matrixusing IMU readings.

Update: when a new image is recorded,

• State augmentation: augment the state vector as well as the associated covariance matrix
with the current IMU position and orientation.

• Image processing: extract corner features and perform feature matching.
• Update: for each feature whose track is complete, computeroi andHo

i , and perform the
Mahalanobis test. Use all features that pass the test for an EKF update.

• State management: remove from the state vector those IMU states for which all associated
features have been processed.

D. Comparison of the MSCKF and EKF-SLAM approaches

We now compare the two VIO methods discussed in the precedingsubsections. We start
by noting that the MSCKF and EKF-SLAM make use of thesamemeasurement information.
Specifically, in Appendix B we prove that if the system model was linear-Gaussian, the MSCKF
estimate for the current IMU pose would be the optimal, maximum a posteriori (MAP) estimate.
In the linear-Gaussian case, EKF-SLAM also yields the MAP estimate, since the Kalman filter
is a MAP estimator (Kay, 1993). Thus, if the system models were linear-Gaussian, the EKF-
SLAM and the MSCKF algorithms would yield thesame, optimalestimates for the IMU pose.
The differences in their performance arise due to fact that the actual measurement models are not
linear, as discussed in what follows.

To test the performance of the methods with the actual nonlinear system models, we performed
extensive Monte-Carlo simulations. To obtain realistic simulation environments, we generated the
simulation data based on real-world datasets. For each dataset, the following process was followed:
First, we generated the platform angular velocity and linear acceleration by differentiating the
ground-truth orientation and linear-velocity estimates obtained by high-precision GPS-INS. Using
this angular velocity and linear acceleration, we subsequently generated (i) the simulator’s ground-
truth trajectory (position, velocity, orientation) by re-integration, and (ii) IMU measurements
corrupted with noises and biases with characteristics identical to those of the sensors used in the
datasets. In each Monte-Carlo run, different realizationsof the sensor noises and biases (which are
modelled as white, zero-mean Gaussian noise and Gaussian random walk processes, respectively)
were generated.

The feature tracks in the simulations were also generated with statistical characteristics matching
those of the actual datasets. Specifically, by processing the images collected in the actual dataset,
we modeled the distributions of (i) the feature number per image, (ii) the feature-track lengths,
and (iii) the feature distance to the camera, at different parts of the trajectory. Then, in each
simulation, feature tracks were generated by randomly sampling from these distributions, and the
image measurements were corrupted by white, Gaussian noise, with standard deviation of one
pixel – similarly to the actual data. In this way, the platform trajectory as well as the IMU and
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Fig. 1. The average NEES of the IMU pose and RMSE of the IMU position and orientation. The different lines
correspond to the MSCKF (red solid line), the AHP (green dashed line), the IDP (black dash-dotted line), and the XYZ
(blue dotted line). Note that due to their large values, the curves for some of the EKF-SLAM methods are not fully
visible. Table I presents the statistics for all curves.

camera measurements have properties emulating those of a real dataset, which provides for more
realistic testing.

For the results presented here, we used a 13-minute, 5.5-km-long dataset, as the basis for the
simulation. The dataset was collected with an ISIS IMU and a monocular camera, mounted on
top of a vehicle driving in an urban environment. In each image, 250 features were tracked, on
average, and the average track length was 4.5 frames (the feature-track distribution is similar to an
exponential one, with many features tracked over short periods, and fewer features tracked longer).
The algorithms compared are (i) the MSCKF, (ii) EKF-SLAM with inverse depth parametrization
(IDP) (Civera et al., 2008), (iii) EKF-SLAM with the anchored homogeneous feature parametriza-
tion (AHP) (Sola, 2010), and (iv) EKF-SLAM with the “traditional” XYZ feature parametrization
(XYZ). Our goal in these simulations is to examine both the accuracy and the consistency of the
algorithms. Therefore, we collect statistics for the average normalized estimation error squared
(NEES) for the IMU pose (position and orientation), as well as the root mean squared error
(RMSE) for the IMU position and orientation. We note that fora consistent estimator the average
pose NEES should be 6 (equal to the dimension of the pose error), while a larger NEES value
indicates inconsistency.

In all the SLAM algorithms, we wait untilκ observations of a feature are available, prior to
initializing it in the state vector. For this purpose, we maintain a sliding window ofκ poses in the
state vector, and when a feature has been observedκ times, all the measurements of the feature
are used concurrently to initialize the feature parameterization and its covariance. In our tests,



TABLE I
SIMULATION RESULTS: PERFORMANCE METRICS(IMU POSENEES,ORIENTATION RMSE,AND POSITION RMSE)

FOR THEMSCKF AND THE THREE EKF-SLAM ALGORITHMS WITH VARYING NUMBER OF OBSERVATIONS(κ)
USED FOR INITIALIZATION . THE VALUES ARE AVERAGES OVER ALLMONTE-CARLO TRIALS AND ALL TIME STEPS.

κ = 2 κ = 4 κ = 6

Algorithm Pos. RMSE (m) Ori. RMSE (o) NEES Pos. RMSE (m) Ori. RMSE (o) NEES Pos. RMSE (m) Ori. RMSE (o) NEES
XYZ N/A N/A N/A 78.447 5.609 4.9·103 53.469 3.974 1.3·103

IDP 69.502 3.731 2205.101 26.193 1.916 268.141 22.878 1.803 167.261
AHP 67.061 4.795 273.247 52.355 4.531 129.602 36.858 3.129 48.236

Pos. RMSE (m) Ori. RMSE (o) NEES
MSCKF 14.401 1.102 7.741

we used the valuesκ = 2, κ = 4, andκ = 6. Even though for the IDP and AHP approaches it
is not necessary to use multiple observations for initialization, our results show that this results
in dramatically improved performance. We note that if a feature’s track ends after fewer thanκ
observations, its measurements are processed with the MSCKF measurement model instead. In
this way no measurements are discarded, and all the algorithms compared use the same feature
observations for fairness.

Fig. 1 shows the average NEES for the IMU pose, as well as the RMSE for the IMU position
and orientation, averaged over 50 Monte-Carlo trials. Thisplot corresponds to the caseκ = 4 for
the SLAM methods. Moreover, Table I provides the numerical values for the NEES and RMSE
for all the algorithms, and with different values ofκ for the SLAM methods. Several interesting
conclusions can be drawn from these results. The most important one is that the MSCKF algorithm
outperforms all three EKF-SLAM VIO formulations, both in terms of accuracy (smaller RMSE)
and in terms of consistency (NEES closer to six). This is a result that we have consistently observed
in all our tests, and that we attribute to two main reasons:

• First, all EKF-SLAM algorithms assume that the errors of theIMU stateand feature positions
are jointly Gaussian at each time step. However, due to the nonlinearity of the camera
measurement model, this is not a good approximation, particularly for the XYZ parame-
terization (Civera et al., 2008). By intelligently choosing the feature parameterization, as
AHP and IDP do, the accuracy and consistency of EKF-SLAM can be improved, as shown
in these results. However, these algorithms still perform significantly worse than the MSCKF.
Since in the MSCKF the features are never included in the state vector, no assumptions on
the feature errors’ pdf are needed, thus avoiding a major source of inaccuracy.

• In EKF-SLAM, feature measurements are linearized and processed ateach time step. By
contrast, the MSCKF employs a “delayed linearization” approach: it processes each feature
only when all its measurements become available. This means that more accurate feature
estimates are used in computing Jacobians, leading to more precise calculation of the Kalman
gain and state corrections, and ultimately better accuracy.

Examining the different EKF-SLAM methods, we see that in accordance with previous re-
sults (Civera et al., 2008; Sola, 2010), the performance of the AHP and IDP parameterizations is
significantly better than that of the XYZ parameterization.It should be mentioned that, for the
XYZ parameterization, initializing features after only two observations is extremely unreliable:
the estimator always fails, which does not allow us to obtainreliable statistics. This failure
is characterized by a sequence of timesteps in which the filter corrections are very large (and
erroneous), after which all residuals fail the Mahalanobistest, no filter updates occur, and the esti-
mation errors increase rapidly. In fact, even if more observations are used for feature initialization,
the XYZ parameterization still remains unreliable: for instance, whenκ = 4, the EKF-SLAM
with XYZ parametrization fails in4% of the trials, if far-away features are discarded, and in
approximately 70% of the trials if all features are kept. In the statistics reported in Table I for the
XYZ parametrization, only successful trials are used, to provide more meaningful statistics. Note



that no failures were observed in the IDP SLAM, AHP SLAM, or MSCKF algorithms.
Moreover, we can observe that the use of more measurements for feature initialization (larger

κ) leads to better performance, for all EKF-SLAM algorithms.The improvement asκ increases
occurs because with more measurements, a better initial estimate for the feature is obtained, and
thus the filter Jacobians become more accurate and the feature pdf closer to a Gaussian. Moreover,
as κ increases, more features are in fact processed with the MSCKF measurement model, as a
larger percentage of features is seen fewer thanκ times. In this test, for example, whenκ = 6 more
than 50% of features are processed by the MSCKF update equations. Thus, asκ increases the
EKF-SLAM algorithms essentially become “hybrids” betweenMSCKF and EKF-SLAM (Williams
et al., 2011; Li and Mourikis, 2012b), and their performanceapproaches that of the pure MSCKF
method.

In addition to the algorithms’ estimation performance, it is also important to examine the
computational efficiency of the different methods. For the tests performed above, the MSCKF’s
average runtime was 0.93 msec per update, while for the EKF-SLAM methods the average runtime
was 1.54 msec for XYZ, 3.28 msec for IDP, and 4.45 msec for AHP,whenκ = 2 (measured on
a Core i7 processor at 2.66 GHz, with a single-threaded C++ implementation). These observed
runtimes agree with the theoretical computational complexity of the algorithms: the MSCKF’s
computational cost per time step islinear in the number of features, as opposed tocubic for
EKF-SLAM. Thus, we can conclude that due to the higher accuracy, consistency, robustness, and
computational efficiency, the MSCKF is preferable to EKF-SLAM algorithms for VIO applications.

IV. EKF CONSISTENCY AND RELATION TO OBSERVABILITY

In Table I we can see that the average IMU-pose NEES for the MSCKF in the simulation tests
is 7.741, i.e., above the theoretically expected value of six for a consistent estimator. Moreover,
Fig. 1, shows that the NEES is gradually increasing over time, reaching an average of 10.6 in the
last 100 sec. These results show that MSCKF becomesinconsistent, albeit much less so than EKF-
SLAM methods. This inconsistency can become significant in long trajectories, as demonstrated in
the results of Section VIII-B. In the remainder of the paper we focus on explaining the cause of the
inconsistency, and proposing a solution to it, by examiningthe linearized system’s observability
properties.

To illustrate the main idea of our approach, consider a physical system described by general
nonlinear models:

ẋ = f(x,u) +w (17)

z = h(x) + n (18)

wherex is the system state,u is the control input,z are the measurements, and finallyw and
n are noise processes. To track the state vectorx on a digital computer, discretization of the
continuous-time system model is necessary. Furthermore, when an EKF is used for estimation, the
filter equations (e.g., covariance propagation and update,gain computation) rely on a linearized
version of the discrete-time model, which has the general form:

x̃ℓ+1 ≃ Φℓx̃ℓ +wℓ (19)

r̃ℓ ≃ Hℓx̃ℓ + nℓ (20)

whereΦℓ andHℓ denote the error-state transition matrix and the measurement Jacobian matrix,
respectively. Since the EKF equations are derived based on the linearized system model in (19)-
(20), the observability properties of this model play a crucial role in determining the performance
of the estimator. Ideally, one would like these properties to match those of the actual, nonlinear
system in (17)-(18): if a certain quantity is unobservable in the actual system, its error should also



be unobservable in the linearized model. If this is not the case, “fictitious” information about this
quantity will be accumulated by the EKF, which will lead to inconsistency.

The observability properties of the nonlinear system for visual-inertial navigation have recently
been studied in (Jones and Soatto, 2011; Kelly and Sukhatme,2011; Martinelli, 2012). Based on
the analysis of these papers, it is now known that when a camera/IMU system moves in a general
trajectory, in an environment with a known gravitational acceleration butno known features, four
degrees of freedom are unobservable: (i) the three corresponding to the global position, and (ii) one
corresponding to the rotation about the gravity vector (i.e., the yaw). In Section VI, we analyze the
observability properties of the linearized system model employed in EKF-based VIO, by studying
the nullspace of the observability matrix associated with (19)-(20):

O ,








Hk

Hk+1Φk

...
Hk+mΦk+m−1 · · ·Φk








(21)

The nullspaceO describes the directions of the state space for which no information is provided
by the measurements in the time interval[k, k + m], i.e., the unobservable directions. For the
linearized system to have observability properties analogous to the actual, nonlinear system, this
nullspace should be of dimension four, and should contain the vectors corresponding to global
translation and to rotation about gravity. However, our keyresult, proven in Section VI, is that this
is not the case when the MSCKF (or an EKF-SLAM method) is employed for VIO. Specifically,
due to the way in which the Jacobians are computed in the EKF, the global orientationappears
to be observable in the linearized model, while it is not in the actual system. As a result of
this mismatch, the filter produces too small values for the state covariance matrix (i.e., the filter
becomesinconsistent), and this in turn degrades accuracy.

Note that, to study the nullspace of the matrixO in (21) for the VIO system, we must have
an expression for the error-state transition matrixΦℓ, for ℓ = k, . . . , k + m − 1. In turn, this
requires an expression for the IMU’s error-state transition matrix, defined in (6). Therefore, before
proceeding with the observability analysis, we must derivean expression for this matrix. This is
the focus of the next section.

V. COMPUTING THE IMU ERROR-STATE TRANSITION MATRIX

Most existing methods for computingΦI stem from the integration of the differential equation
Φ̇I(t, tℓ) = F(t)ΦI(t, tℓ), where F(t) is the Jacobian of the continuous-time system model
of the IMU motion (Trawny and Roumeliotis, 2005). For instance (Mourikis and Roumelio-
tis, 2007; Tardif et al., 2010) employ Runge-Kutta numerical integration, (Weiss and Siegwart,
2011; Weiss et al., 2012) use a closed-form, approximate solution to the differential equation, while
several algorithms (especially in the GPS-aided inertial navigation community) employ the simple
approximationΦI ≃ I+F∆t that is equivalent to using one-step Euler integration (e.g., (Farrell,
2008; Vu et al., 2012; Foxlin, 2005; Zachariah and Jansson, 2010; Lupton and Sukkarieh, 2012)).
All these methods for computingΦI have the disadvantage that, being numerical in nature, theyare
not amenable to theoretical analysis. More importantly, however, whenΦI is computed numerically
and/or approximately, we have no guarantees about its properties. As a result, ifΦI is computed in
this fashion, wecannotguarantee that the observability matrix of the linearized VIO system (21)
will have the desirable nullspace properties, a prerequisite for consistent estimation.

In what follows, we describe how the IMU error-state transition matrix can be computed in
closed form, as a function of the state estimates. To this end, we first examine what motion
information we can infer from the IMU data, and how this information can be used for state
propagation. This will enable us to derive an expression forΦI that holds independently of the



particular method used to integrate the IMU signals. We notethat the expression derived here can
be employed in any estimation problem that uses IMU measurements for state propagation (e.g.,
GPS-aided inertial navigation, vision-aided inertial navigation, etc).

A. What information do the IMU measurements provide?

The IMU’s gyroscopes and accelerometers give sampled measurements of the following continuous-
time signals:

ωm(t) = I
ω(t) + bg(t) + nr(t) (22)

am(t) = I
GR(t)

(
Ga(t)− g

)
+ ba(t) + na(t) (23)

where Iω(t) andGa(t) denote the IMU angular rate and linear acceleration, respectively, nr(t)
andna(t) are white Gaussian noise processes, andg is the gravity vector expressed in the global
frame.

Equation (22) shows that the IMU gyroscopes provide measurements of the rotational velocity,
expressed in the IMU frame. Using these measurements, we canonly infer therelative rotation of
the IMU between two time instants. Moreover, (23) shows thatthe IMU accelerometers measure
specific force, which includes both the body and gravitational acceleration, expressed in the local
frame. These signals provide us with information about the velocity change expressed in thelocal
IMU frame, and must be “gravity-compensated” before use forstate propagation. In what follows,
we momentarily assume that we have access to thecontinuous-timesignalsωm(t) andam(t) in
the time interval[tℓ, tℓ+1] (corresponding to the transition from time-stepℓ to ℓ + 1), and show
how these signals can be used for state propagation. The effects of the discrete-time sampling of
the IMU’s signals are discussed in Section V-B.

1) Gyroscope measurements:The orientation of the IMU frame at timetℓ+1 with respect to
the IMU frame attℓ (i.e., the relative rotation) can be computed by integrating a differential
equation, whose form depends on the selected representation of orientation. In the unit-quaternion
representation (Trawny and Roumeliotis, 2005), the relative rotation of the IMU betweentℓ and
tℓ+1 is described by a4× 1 unit quaternionIℓ+1

Iℓ
q̄. To compute an estimate ofIℓ+1

Iℓ
q̄ usingωm(t),

we first obtain the estimated rotational velocity in[tℓ, tℓ+1] as ω̂(t) = ωm(t) − b̂g(t), and then
integrate the differential equation:

It
Iℓ
˙̄̂q =

1

2

[
−⌊ω̂(t)×⌋ ω̂(t)
−ω̂(t)T 0

]

It
Iℓ
ˆ̄q, t ∈ [tℓ, tℓ+1] (24)

with initial conditionIℓ
Iℓ
ˆ̄q = [0 0 0 1]T . The relative orientation estimateIℓ+1

Iℓ
ˆ̄q, computed from the

above differential equation, can be employed for propagating the IMU global orientation estimate
as follows:

Iℓ+1

G
ˆ̄q =

Iℓ+1

Iℓ
ˆ̄q⊗ Iℓ

G
ˆ̄q (25)

2) Accelerometer measurements:Using am(t) and an estimate of the accelerometer bias, we
can obtain an estimate of the IMU’s acceleration in the global frame as (see (23)):

Gâ(t) = G
It
R̂

(

am(t)− b̂a(t)
)

+ g (26)

Integrating this signal twice in the time interval[tℓ, tℓ+1] gives the velocity and position propagation
equations:

Gv̂ℓ+1 =
Gv̂ℓ +

∫ tℓ+1

tℓ

Gâ(τ)dτ

= Gv̂ℓ +

∫ tℓ+1

tℓ

G
Iτ
R̂

(

am(τ)− b̂a(τ)

)

dτ + g∆t (27)

= Gv̂ℓ +
G
Iℓ
R̂ ŝℓ + g∆t (28)



and

Gp̂ℓ+1 =
Gp̂ℓ +

∫ tℓ+1

tℓ

Gv̂τdτ

= Gp̂ℓ +
Gv̂ℓ∆t+ G

IℓR̂ ŷℓ +
1

2
g∆t2 (29)

where∆t = tℓ+1 − tℓ, and

ŝℓ =

∫ tℓ+1

tℓ

Iℓ
Iτ
R̂

(

am(τ)− b̂a(τ)

)

dτ (30)

ŷℓ =

∫ tℓ+1

tℓ

∫ s

tℓ

Iℓ
Iτ
R̂

(

am(τ)− b̂a(τ)

)

dτds (31)

Note that the termŝsℓ and ŷℓ dependonly on the values ofam(t) andωm(t) in the time interval
[tℓ, tℓ+1], as well as on the IMU biases. These terms express the information provided by the IMU
about the change in the IMU velocity and position in[tℓ, tℓ+1]. As shown in (28) and (29), to use
ŝℓ and ŷℓ to propagate the global velocity and position estimates, wemust express them in the
global frame (via the rotation matrixGIℓR̂), and account for the gravitational acceleration.

We note that in (Lupton and Sukkarieh, 2012) it is shown how the IMU measurements can be
“pre-integrated”, so that they can be used even without an initial guess for the state. While (Lupton
and Sukkarieh, 2012) follows a reasoning similar to the one presented here, we here go one step
further, and use this analysis to obtain a closed-form expression for the error-state transition matrix.

B. Discrete-time IMU propagation

To derive equations (24)-(25) and (28)-(31), it was assumedthat the signalsωm(t) andam(t)
were available in the entire interval[tℓ, tℓ+1]. In practice, however, the IMU provides samples
of am(t) and ωm(t) at the discrete timestℓ and tℓ+1. To use these measurements for state
propagation, it is necessary to employ additional assumptions about the time evolution ofam(t)
andωm(t) between the two times for which samples are available. For instance, we can assume
that these signals remain constant for the entire period (equal to their values at eithertℓ or
tℓ+1), or that they change linearly between the sampled values. These assumptions will introduce
approximations, which will be small if the sample rate is sufficiently high. We stress however,
that some approximation is unavoidable, since turning a continuous-time signal to a sampled one
leads to loss of information4.

In what follows, we describe the integration approach followed in our implementation. In our
work, the IMU biases are modelled as random-walk processes,i.e., we model the continuous-time
evolution of the biases bẏbg(t) = nwg(t) and ḃg(t) = nwa(t), wherenwg andnwa are zero-
mean white Gaussian noise processes, with covariance matricesQwg andQwa. Therefore, during
propagation the bias estimates remain constant:b̂gℓ+1

= b̂gℓ
and b̂aℓ+1

= b̂aℓ
. To propagate the

IMU pose in time, at timetℓ+1 we use the IMU samples recorded attℓ andtℓ+1 and assume that the
signalsωm(t) andam(t) change linearly between these two time instants. With this assumption,
we numerically integrate (24) using fourth-order Runge-Kutta to obtainIℓ+1

Iℓ
ˆ̄q, and propagate the

IMU orientation using (25). For the position and velocity, we employ equations (28) and (29),
where the quantitieŝsℓ and ŷℓ are computed using Simpson integration of (30) and (31).

4Note that, if the signals are known to be band-limited, more advanced signal-reconstruction methods can be employed.
However this requires additional assumptions about the motion characteristics and/or the sensor, which are not always
appropriate.



C. ComputingΦIℓ

We now turn our attention to computing the IMU error-state transition matrix shown in (6),
which can be done by direct linearization of the state-propagation equations (25), (28), and (29).
For clarity, we here show the derivation ofΦIℓ omitting the IMU biases, while the full result for
the case where the biases are included in the state vector is shown in Appendix A. Starting with
the orientation error, we note that the orientation-error definition in (2)-(3) satisfies:

I
GR ≃ I

GR̂
(

I3 − ⌊Gθ̃×⌋
)

(32)

Moreover, the estimated rotation in the time interval[tℓ, tℓ+1] is corrupted by an error due to the
inaccuracy of the gyroscope measurements as well as the assumptions employed during integration.
We define this error based on the expressionIℓ+1

Iℓ
q̄ =

Iℓ+1

Iℓ
ˆ̄q⊗ δq̄∆t, from which we obtain

Iℓ+1

Iℓ
R ≃

Iℓ+1

Iℓ
R̂

(

I− ⌊θ̃∆t×⌋
)

(33)

whereθ̃∆ℓ is a 3× 1 error vector. Substituting (33) and (32) into the expression relating the true
rotation matrices,Iℓ+1

G R =
Iℓ+1

Iℓ
R Iℓ

GR, and removing second-order terms, we obtain the following
linearized expression for the orientation-error propagation:

G
θ̃ℓ+1 ≃

G
θ̃ℓ + R̂T

ℓ θ̃∆t (34)

where we used the shorthand notationIℓ
GR̂ = R̂ℓ. For the velocity error, we linearize (28)

using (32), to obtain the linearized error-propagation equation:

Gṽℓ+1 ≃ −⌊R̂T
ℓ ŝℓ×⌋Gθ̃ℓ +

Gṽℓ + R̂T
ℓ s̃ℓ (35)

The terms̃ℓ = sℓ − ŝℓ is the error inŝℓ, which depends only on the IMU measurement noise and
the assumptions employed during integration. Similarly, for the position we obtain:

Gp̃ℓ+1 ≃ −⌊R̂T
ℓ ŷℓ×⌋Gθ̃ℓ+

Gṽℓ∆t+ Gp̃ℓ + R̂T
ℓ ỹℓ (36)

whereỹℓ = yℓ − ŷℓ. By combining (34), (35) and (36), we can now write:
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︸ ︷︷ ︸

wdℓ

(37)

It is important to note that the above expression forΦIℓ has an intuitive explanation. We see that:
(i) The diagonal block elements are all identity matrices, which shows that the errors in the IMU
state at timetℓ “carry over” to the next time step, as expected. (ii) The velocity error, multiplied
by ∆t, affects the position error at timetℓ+1, and (iii) The orientation error at timetℓ is multiplied
by the “lever-arms”R̂T

ℓ ŷℓ andR̂T
ℓ ŝℓ, causing accumulation of errors in position and velocity. To

write the state transition matrix as a function of the state estimates only, we solve (28) and (29)
for ŝℓ and ŷℓ, respectively, and substitute in (37) to obtain:

ΦIℓ(x̂Iℓ+1
, x̂Iℓ) =





I3 03 03
Φpq(x̂Iℓ+1

, x̂Iℓ) I3 ∆tI3
Φvq(x̂Iℓ+1

, x̂Iℓ) 03 I3



 (38)

Φpq(x̂Iℓ+1
, x̂Iℓ) = −⌊

(
Gp̂ℓ+1−

Gp̂ℓ−
Gv̂ℓ∆t−

1

2
g∆t2

)
×⌋

Φvq(x̂Iℓ+1
, x̂Iℓ) = −⌊(Gv̂ℓ+1−

Gv̂ℓ−g∆t)×⌋

We stress that this matrix is a closed-form function of the state estimatesonly. Thus, it can be
employed regardless of the way in which the integration of (24), (30) and (31) is carried out.



Note that in different implementations of IMU propagation,the form of the equations being
integrated may be different from those shown above (for example, for velocity propagation one
may choose to numerically compute the integral in (27), instead of breaking it into two terms
as in (28)). However, this does not change the nature of the information provided by the IMU
measurements, and thus does not (in fact,shouldnot) change the way in which the errors in a state
estimate propagate to future estimates. This way is described by the matrix in (38), as discussed
above.

VI. OBSERVABILITY PROPERTIES OF THEMSCKF SYSTEM MODEL

We now employ the closed-form expression forΦIℓ derived in the preceding section to analyze
the observability properties of the MSCKF’s system model. To simplify the presentation, we here
carry out the analysis for the case where the IMU biases are not included in the estimated state
vector. These biases are known to be observable (Jones and Soatto, 2011), and thus their inclusion
would not change the key result of this analysis, which is theerroneous decrease in the dimension
of the nullspace of the observability matrix5. The fact that the analysis also holds for the case where
the biases are included in the state vector is demonstrated by the results presented in Sections VIII
and IX. In the implementation used for all our simulation andexperimental results, the biases are
included in the state vector, as described in Section III-A.

A direct analysis of the observability properties of the MSCKF’s linearized system model is
cumbersome, due to the form of the MSCKF equations (see, e.g., (15)). To simplify the analysis,
we make use of the result of Appendix B, which shows that givena linear (or, equivalently,
a linearized) model, the EKF-SLAM and MSCKF measurement equations are equivalent. This
means that we can study the observability of the MSCKF’s linearized model by studying the
EKF-SLAM linearized model, butusing the MSCKF’s linearization points. Note that the MSCKF
and EKF-SLAM linearize the measurements using different state estimates: in the MSCKF, a single
estimate for each feature is used for computing all the Jacobians involving this feature (see (14)),
in contrast to EKF-SLAM, where the current estimate is used at each iteration. The details of the
observability analysis follow.

We consider an EKF-SLAM state vector containing the IMU orientation, position, and velocity,
as well as the positions of all the landmarks observed in the time interval[k, k+m]. For this state
vector, the error-state transition matrix (using the MSCKF’s linearization point) at time stepℓ is
given by:

Φℓ(x̂Iℓ+1|ℓ
, x̂Iℓ|ℓ) =

[
ΦIℓ(x̂Iℓ+1|ℓ

, x̂Iℓ|ℓ) 0

0 I3M×3M

]

(39)

where M is the number of landmarks. Turning to the feature measurements, we note that if
featurei is processed at time-stepαi + 1, then in the MSCKF the corresponding Jacobians are
evaluated with the state estimates computed using all measurements up toαi, and the feature
position estimateGp̂fi computed via triangulation. Thus, the measurement Jacobian we use in our
analysis becomes (see (10) and (13)):

Hiℓ(π̂ℓ|αi
,Gp̂fi) =

[
HIiℓ(π̂ℓ|αi

,Gp̂fi) 0 · · · Hfiℓ(π̂ℓ|αi
,Gp̂fi) · · · 0

]
(40)

where the Jacobians of (7) with respect to the IMU pose and thefeature position are given by

Hfiℓ(π̂ℓ|αi
,Gp̂fi) = Jiℓ(π̂ℓ|αi

,Gp̂fi)
C
I RR̂ℓ|αi

(41)

HIiℓ(π̂ℓ|αi
,Gp̂fi) = Hfiℓ(π̂ℓ|αi

,Gp̂fi)
[
⌊
(
Gp̂fi −

Gp̂ℓ|αi

)
×⌋ −I3 03

]

5If we include in the state additional quantities that are known to be observable, this will augment the observability
matrix (21) with additional, linearly independent, columns and will not affect the dimension of the nullspace ofO.



Jiℓ(π̂ℓ|αi
,Gp̂fi) =

1
Cℓ ẑfi




1 0

−Cℓ x̂fi
Cℓ ẑfi

0 1
−Cℓ ŷfi
Cℓ ẑfi



 (42)

with [Cℓ x̂fi
Cℓ ŷfi

Cℓ ẑfi ]
T being the estimate of the feature position with respect to the camera:




Cℓ x̂fi
Cℓ ŷfi
Cℓ ẑfi



 = C
I RR̂ℓ|αi

(
Gp̂fi−

Gp̂ℓ|αi

)
+CpI (43)

By substitution of (39) and (40) in (21), we can therefore study the observability properties of
the linearized system model of the MSCKF. Before doing that however, it is interesting to first
examine what the observability matrix would look like in the“ideal” case where thetrue state
estimates were used in computing all Jacobians.

1) “Ideal” Observability Matrix: To derive the “ideal” observability matrix, we evaluate the
state transition matrix asΦ(xIℓ+1

,xIℓ) (see (39)), and evaluate the Jacobian matrix in (40) using
the true states. Substituting these matrices in (21) yieldsthe following result for the block row of
the observability matrix corresponding to the observationof featurei at time stepℓ:

Ǒiℓ = M̌iℓ

[
Γ̌iℓ −I3 −∆tℓI3 03 · · · I3 · · · 03

]
(44)

M̌iℓ = J̌iℓ
C
I RRℓ (45)

Γ̌iℓ =
⌊(

Gpfi −
Gpk −

Gvk∆tℓ −
1

2
g∆t2ℓ

)
×
⌋

(46)

In the above equations,∆tℓ denotes the time interval between time stepsk and ℓ, and we have
used the symbol “̌” to denote a matrix computed using the true state values. At this point, if we
define the matrixN as:

N =














03 Rkg

I3 −⌊Gpk×⌋g
03 −⌊Gvk×⌋g
I3 −⌊Gpf1×⌋g
I3 −⌊Gpf2×⌋g
...

...
I3 −⌊GpfN×⌋g














(47)

it is easy to verify thatǑiℓ ·N = 02×4. Since this holds for anyi and anyℓ (i.e., for all block rows
of the observability matrix), we conclude thaťO ·N = 0. In addition, the four columns ofN are
linearly independent, which implies that they form a basis for the nullspace of the observability
matrix Ǒ (in (Li and Mourikis, 2011), we prove that no additional basis vectors can be found for
the nullspace).

In other words, the above shows that the observability matrix, when all Jacobians are computed
using the true states, has a nullspace of dimension four. It is also interesting to examine the physical
interpretation of the nullspace basis found above. We see that the first three vectors correspond to
global translation of the state vector, while the last column corresponds to rotations about gravity
(i.e., the yaw) (Li and Mourikis, 2011). Thus, if we were ableto estimate all the Jacobians using
the true state estimates, the observability properties of the linearized system model would match
those of the nonlinear system, as desired.

2) MSCKF Observability Matrix:Using (39) and (40) in (21), the block row of the observability
matrix O corresponding to the observation of featurei at time-stepℓ becomes:

Oiℓ = Miℓ

[
Γiℓ+∆Γiℓ −I3 −∆tℓI3 03 · · · I3 · · · 03

]
(48)



where

Miℓ = Jiℓ(x̂ℓ|αi
,Gp̂fi)

C
I R R̂ℓ|αi

(49)

Γiℓ =
⌊(

Gp̂fi −
Gp̂k|k −

Gv̂k|k∆tℓ −
1

2
g∆t2ℓ

)
×
⌋

(50)

∆Γiℓ = ⌊Gp̂ℓ|ℓ−1−
Gp̂ℓ|αi

×⌋+

ℓ−1∑

j=k+1

(Ej
p+

j
∑

s=k+1

Es
v∆t) (51)

with

Ej
p = ⌊Gp̂j|j−1 −

Gp̂j|j×⌋ (52)

Ej
v = ⌊Gv̂j|j−1 −

Gv̂j|j×⌋ (53)

By comparing (48)-(51) to (44)-(46) we see that the structure of the observability matrix in both
cases is similar. The key difference is that when the Jacobians are evaluated using the stateestimates
instead of the true states, the “disturbance” term∆Γiℓ appears. While∆Γiℓ is quite complex,
we can observe that it contains terms that depend on the corrections (e.g.,Gp̂j|j − Gp̂j|j−1,
Gv̂j|j −

Gv̂j|j−1) that the filter applies at different time steps. Since thesecorrections are random,
the term∆Γiℓ is a random one, and this “destroys” the special structure ofthe observability matrix.
As a result, the propertyOiℓ ·N = 0 does not hold.

It can be shown that the nullspace ofO (i.e., the unobservable subspace) is now of dimension
only three (Li and Mourikis, 2011). This nullspace is spanned by the first three column vectors
(the first block column) ofN in (47), which means that the global yawerroneously appearsto be
observable. As a result, the MSCKF underestimates the uncertainty of the yaw estimates. Since
the yaw uncertainty affects the uncertainty of other state variables (e.g., the position), eventually
the uncertainty of all states will be underestimated, and the estimator will be inconsistent. This
helps to explain the results observed in the NEES plot of Fig.1.

It is important to point out that the incorrect observability properties of the linearized system
model do not affect only the MSCKF algorithm. In Appendix C the observability matrix of the
linearized model of EKF-SLAM is shown. This matrix has a nullspace of dimension three as well,
similarly to the MSCKF. In fact, for the EKF-SLAM methods, the “disturbance” term appearing
in the observability matrix contains additional terms due to the corrections in the feature position
estimates. Such terms do not appear in the MSCKF, which uses only one estimate for each feature
in all Jacobians.

VII. MSCKF 2.0

In the preceding section, we proved that the linearized system model employed by the MSCKF
has incorrect observability properties, which cause the filter to become inconsistent. In this section,
we propose a simple method by which the increase in the observable subspace of the filter can
be avoided. Moreover, we propose an extension of the basic MSCKF algorithm, which serves to
improve the algorithm’s performance in real-world scenarios. Specifically, in our analysis to this
point it was assumed that the IMU-to-camera transformation(position and orientation) is perfectly
known. In practice, this is typically not the case: while an estimate for the transformation may
be known from a CAD plot or manual measurements, this is typically inexact. For example, the
coordinate frames of the sensors are typically not perfectly aligned with the sensor housing, which
makes manual measurements less useful. If the transformation is assumed to be perfectly known,
even though the available estimates are not exact, this willlead to a degradation of both the
consistency and the accuracy of the filter estimates. To address this issue, we propose to include
the camera-to-IMU transformation in the estimated state vector of the MSCKF.



A. Enforcing correct dimension of the unobservable subspace

As shown in Section VI, the fact that in the MSCKFdifferent estimates of the same states
are used for computing Jacobians leads to an infusion of “fictitious” information about the yaw.
Specifically, the use of different estimates for the IMU position and velocity result in nonzero
values for the disturbance terms∆Γiℓ (see (51)), which change the dimension of the nullspace
of the observability matrix. To remove these∆Γiℓ terms, a simple solution is to ensure that only
one estimate of each IMU position and velocity is used in all Jacobians involving it. A causal
approach to achieve this is to always use thefirst available estimate for each state. Specifically,
we compute the filter Jacobians as follows:

• Compute the IMU error-state transition matrix at time-stepℓ as:

Φ⋆
Iℓ
(x̂Iℓ+1|ℓ

, x̂Iℓ|ℓ−1
) (54)

• Calculate measurement Jacobians as:

H⋆
fiℓ

= Jiℓ(x̂ℓ|αi
,Gp̂fi)

C
I R R̂ℓ|αi

(55)

H⋆
Iiℓ = H⋆

fiℓ

[
⌊
(
Gp̂fi−

Gp̂ℓ|ℓ−1

)
×⌋ −I3 03

]
(56)

As a result of the above changes, only the “propagated” estimates for the position and velocity
(e.g., Gp̂ℓ|ℓ−1 and Gv̂ℓ|ℓ−1) are used in computing Jacobians. It is easy to show that withthis
change, the observability matrix regains the correct nullspace dimension, and thus the infusion of
“fictitious” information for the yaw is avoided. We stress that we allow the state estimates to be
updated normally; the only change we make to the MSCKF equations is that we do not use the
updated estimates of the position and velocity in computingJacobians. This change, which incurs
no additional computational cost, substantially improves performance, as shown in the simulation
and experimental results presented in Sections VIII and IX.

The idea of using the first estimates of all states to ensure the correct observability properties of
the linearized system model can also be employed for EKF-SLAM VIO. In this case, in addition
to the IMU position and velocity estimates, we must also use the same (first) estimate of each
feature when computing all Jacobians involving it. As shownin Section VIII, the resulting EKF-
SLAM algorithms outperform the standard ones, yet cannot reach the accuracy or consistency of
the MSCKF 2.0.

B. Camera-to-IMU Calibration

To estimate the camera-to-IMU transformation in the MSCKF framework, we include the
transformation parameters in the filter state vector. Specifically, we augment the IMU state by
adding the pose of the camera with respect to the IMU,πCI = {CI p,

C
I q̄}:

x⋆
I =

[
I
Gq̄

T GpT GvT bg
T ba

T C
I p

T C
I q̄

T
]T

(57)

where we have used the symbol “⋆” to distinguish this state vector from the original IMU
state in (1). During propagation, the estimates for the camera-to-IMU parameters as well as
their covariance remain unchanged. For the updates, only minimal modifications of the MSCKF
equations are required to account for the inclusion ofπCI in the state vector. Specifically, the
linearized residual equations (13) for each feature measurement now become:

rij = zij − h(π̂j|ℓ−1, π̂CIℓ|ℓ−1
, f̂i) (58)

≃ Hijπ̃j|ℓ−1 +HCij
π̃CIℓ|ℓ−1

+Hfij f̃i + nij (59)



TABLE II
AVERAGE RMSEAND NEESRESULTS FOR ALL THEEKF-BASED VIO ALGORITHMS TESTED IN THE SIMULATIONS.

κ = 2 κ = 4 κ = 6

Algorithm Pos. RMSE (m) Ori. RMSE (o) NEES Pos. RMSE (m) Ori. RMSE (o) NEES Pos. RMSE (m) Ori. RMSE (o) NEES
XYZ N/A N/A N/A 78.447 5.609 4.9·103 53.469 3.974 1.3·103

IDP 69.502 3.731 2205.101 26.193 1.916 268.141 22.878 1.803 167.261
AHP 67.061 4.795 273.247 52.355 4.531 129.602 36.858 3.129 48.236

m-XYZ 60.564 3.160 116.721 19.297 1.512 9.185 12.477 1.238 7.385
m-IDP 40.912 2.057 57.346 18.144 1.400 8.600 15.498 1.211 7.156
m-AHP 38.288 2.311 38.932 18.010 1.385 8.357 15.494 1.205 7.160

Pos. RMSE (m) Ori. RMSE (o) NEES
MSCKF 14.401 1.102 7.741

MSCKF 2.0 12.840 1.008 5.890
“Ideal” MSCKF 12.720 1.001 5.816

for j = ℓ − N . . . ℓ − 1, whereHCij
is the Jacobian of the measurement with respect to the

camera-IMU pose:

HCij
= Jiℓ

[

I3
C
I R̂ℓ|ℓ−1⌊R̂ℓ|ℓ−1

(
Gp̂fi −

Gp̂ℓ|ℓ−1

)
×⌋

]

The equations (59) can still be stacked to obtain an equationanalogous to (14), as the errorπ̃CIℓ|ℓ−1

is now a part of the state vector. Thus, the MSCKF’s method of removing the feature error to
create a residual suitable for an EKF update (see (15)) can beapplied with no further changes.

Estimating the camera-to-IMU transformation in the MSCKF framework offers two key advan-
tages over alternative EKF-based algorithms for the same task: First, it can operate in unknown
environments, with noa priori known features (in contrast to methods such as (Mirzaei and
Roumeliotis, 2008; Kelly et al., 2008)). Second, since it isbased on the MSCKF, it shares all the
advantages of the MSCKF over SLAM-based methods (e.g. (Jones and Soatto, 2011; Kelly and
Sukhatme, 2011)), as outlined in Section III-D. For instance, its computational cost is significantly
lower, and it is less sensitive to the nonlinear nature of theestimation problem. Moreover, based on
the analysis of (Jones and Soatto, 2011; Kelly and Sukhatme,2011), we know that the camera-to-
IMU transformation is observable for general trajectories. Thus, by including it in the MSCKF state
vector, we do not run the risk of introducing additional variables that may become “erroneously
observable”. We term the algorithm that uses the first estimates of each state in computing
Jacobians and includes the IMU-to-camera calibration parameters in the state vector MSCKF 2.0.
In the following sections, we present simulation and experimental results that demonstrate the
performance of the method.

VIII. S IMULATION RESULTS

In this section we present simulation results that illustrate the analysis presented in the preceding
sections, and demonstrate the performance of the MSCKF 2.0 algorithm compared to alternatives.
All the simulation data is generated based on real-world datasets, as explained in Section III-D,
and all the results reported are averages over 50 Monte-Carlo trials.

A. Comparison to EKF-based SLAM

We first compare the performance of the MSCKF and MSCKF 2.0 algorithms to EKF-SLAM
based methods for VIO. For the results presented here, the camera-to-IMU calibration parameters
are assumed to be known without uncertainty. In the results presented in Section III-D, it was
shown that the original MSCKF algorithm outperforms the EKF-SLAM algorithms using either
XYZ, IDP, or AHP feature parameterizations. We thus here focus on comparing the performance
of the MSCKF-based algorithms to that of the “modified” EKF-SLAM versions, where the first
estimate of each state is used in computing Jacobians to ensure the correct rank of the linearized
system’s observability matrix. These modified algorithms are identified as m-XYZ, m-IDP, and
m-AHP. Additionally, in this simulation we include an “ideal” MSCKF algorithm, in which the
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Fig. 2. Simulation results: The average position and orientation RMSE over 50 Monte-Carlo trials. The algorithms
compared are the MSCKF (blue dash-dotted line), the “ideal”MSCKF (red line with x-marks), the MSCKF 2.0 (black
line with squares), the m-XYZ SLAM (green solid line), the m-IDP SLAM (cyan dashed line), and the m-AHP SLAM
(magenta line with “plus”-marks).

true IMU states and feature positions are used for computingall the filter Jacobians. This algorithm
(which is only realizable in a simulation environment), canserve as a benchmark of performance
for the MSCKF-based methods. For the results presented here, exactly the same simulation data
as in Section III-D are used, to facilitate comparison.

Fig. 2 shows the average IMU pose NEES as well as the IMU position and orientation RMSE
over time, for the three MSCKF based methods, as well as for the three EKF-SLAM methods
(with κ = 4 for the SLAM methods). Moreover, Table II provides the numerical values for the
NEES and RMSE for all the algorithms (this table includes theresults of Section III-D for easier
comparison).

We can conclude that all the “modified” algorithms, which usethe first estimates of each state
in Jacobian computation, outperform their counterparts that use the standard approach for Jacobian
computation. Not only are these algorithms more consistent(i.e., they have smaller NEES), but also
more accurate (i.e., smaller RMSE). These results show thatenforcing the correct observability
properties of the linearized system is crucially importantfor the performance ofall EKF-based VIO
methods, and validate the analysis of Section VI. Despite the improvement that the modified EKF-
SLAM algorithms offer, however, they are all less accurate than all the MSCKF-based methods.
This shows the advantages of the MSCKF approach to processing the feature measurements, which
copes better with nonlinearities by not making Gaussian assumptions about the feature pdfs.

Additionally, we can observe that the performance of the MSCKF 2.0 algorithm is almost
indistinguishable from that of the “ideal” MSCKF, both in terms of accuracy and consistency.
This indicates that, as long as the correct observability properties are ensured, using slightly
less accurate linearization points in computing the Jacobians does not significantly degrade the



estimation performance. Based on the simulation results (and given that the “ideal” MSCKF is
not realizable), we can conclude that the MSCKF 2.0 is the preferred VIO method out of all the
EKF-based approaches considered.

B. Comparison to iterative-optimization methods

We next compare the performance of the MSCKF-based algorithms to that of an iterative-
minimization based method. Specifically, we use an information-form fixed-lag smoother (FLS),
based on (Sibley et al., 2010) for comparison. This is a sliding-window bundle adjustment method
that marginalizes older states to maintain a constant computational cost. The FLS is essentially
the counterpart of the MSCKF within the class of iterative-minimization methods, which allows
for a meaningful comparison. In our implementation, the sliding window contains a number of
IMU poses corresponding to the times images were recorded, as well as the features observed in
these poses. The IMU measurements are used to provide the “process-model” information between
the poses of the window, while the feature observations provide the “sensor-model” information
(see Section 2.1 in (Sibley et al., 2010)). Every time a new image is recorded, Gauss-Newton
minimization is employed to update the state estimates in the sliding window, and subsequently
the oldest pose, and features that are no longer observed, are marginalized out. All the methods
tested (MSCKF, “ideal” MSCKF, MSCKF 2.0, and FLS) use a sliding window of the same length.

For these tests we employ a much longer dataset as our basis for generating simulated data.
Specifically, we use the Cheddar Gorge dataset (Simpson et al., 2011), which involves a 29-
km-long trajectory, collected in 56 minutes of driving. Forthis dataset an Xsens IMU provided
measurements at 100 Hz, and images are available at 20 Hz. In each image, 240 features were
tracked on average, and the average track length was 4.1 frames (note that this is due to the fact
that a very large percentage of features are tracked for short periods in this dataset, which involves
a fast-moving vehicle. The longest track lengths exceed 60 frames).

Before examining the averaged results of all the Monte-Carlo trials, it is interesting to examine
the results of estimation for the rotation about gravity (the yaw) in a single trial. Fig. VIII-B
shows the estimation errors in the yaw for the four algorithms, as well as the±3σ envelopes
computed using the reported covariance of each method (these are the reported 99.7% confidence
regions). The most important observation here is that the reported standard deviation for both
the MSCKF and the FLS fluctuates about a constant value,as if the yaw was observable. By
contrast, in the “ideal” MSCKF and the MSCKF 2.0 algorithms,the standard deviation of the
yaw increases over time, as theoretically expected, given that the yaw is unobservable. This figure
clearly demonstrates the importance of the observability properties of the linearized system: when
these do not match the properties of the underlying nonlinear system, the estimation results (e.g.,
reported uncertainty) exhibit fundamentally incorrect characteristics. We note here that the FLS
also suffers from the same inconsistency problem, even though it employs iterative re-linearization,
as shown in (Dong-Si and Mourikis, 2011).

The three subplots in Fig. 4 show the average NEES for the IMU pose, as well as the RMSE
for the IMU orientation and position, averaged over 50 Monte-Carlo trials. Table III lists the
average NEES and RMSE values for the four algorithms. First,we note that the performance
of the MSCKF 2.0 is similar to that of the “ideal” MSCKF, and that both algorithms clearly
outperform the standard MSCKF. These results once again show that by enforcing the correct
observability properties, the filter’s performance can be significantly improved. Additionally, in
this simulation environment, we see that the performance difference between the standard MSCKF
and the MSCKF 2.0 is more pronounced than before. This is due to the fact that the Cheddar
Gorge dataset is significantly longer (both in trajectory length and duration). As a result, more
“spurious” information about the yaw is accumulated, due tothe incorrect observability properties
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TABLE III
AVERAGE NEESAND RMSEFOR FIG. 4.

Pos. RMSE (m) Ori. RMSE (o) NEES
FLS 133.4 2.83 50.97

MSCKF 146.2 3.40 51.72
MSCKF 2.0 97.7 2.21 6.53

“Ideal” MSCKF 100.2 2.35 6.45

of the filter’s linearized model. In turn, this causes a larger degradation in the estimates of the
standard MSCKF.

More importantly though, we see that the MSCKF 2.0 (as well asthe “ideal” MSCKF) attains
substantially better accuracy and consistency even than the iterative FLS method. This occurs even
though the latter uses approximately 5 times more computation time. The performance difference
between the MSCKF 2.0 and the FLS demonstrates that (at leastin the case examined here) having
a linearized system model with appropriate observability properties is more important than using
re-linearization to better approximate the nonlinear measurement models.

C. Performance of the online camera-to-IMU calibration

To test the performance of the online camera-to-IMU calibration, we conducted a second Monte-
Carlo simulation test based on the Cheddar Gorge dataset. Ineach Monte-Carlo trial, the IMU-to-
camera translation and orientation were set equal to known nominal values with the addition of
random errorsδp andδθ, respectively. In each trial,δp andδθ were randomly drawn from zero-
mean Gaussian distributions with standard deviations equal to σp = 0.01 m andσθ = 0.5o along
each axis, respectively. This setup models the scenario in which the transformation parameters are
approximately, but not exactly, known (e.g., through manual measurement).



0 500 1000 1500 2000 2500 3000
0

100

200
IMU pose NEES

 

 

MSCKF "Ideal" MSCKF MSCKF 2.0 FLS

0 500 1000 1500 2000 2500 3000
0

2

4

6

de
g

Orientation RMSE

0 500 1000 1500 2000 2500 3000
0

100

200

300

m

Position RMSE

Time (sec)

Fig. 4. Average NEES and RMSE over 50 Monte Carlo trials of theCheddar Gorge simulation. The dotted green
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In this simulation, we compared the performance of four algorithms: (i) The MSCKF 2.0
algorithm with the online calibration enabled, (ii) The MSCKF 2.0 algorithm with the online
calibration disabled, and assuming the camera-to-IMU transformation is equal to its nominal value.
This will help demonstrate the effect of incorrect transformation estimates on the estimator’s
accuracy and consistency. (iii) The m-AHP algorithm, with online camera-to-IMU calibration
implemented. Out of all the EKF-SLAM algorithms considered, the m-AHP is the one with the best
performance, and thus is the “best-case scenario” for online calibration in the SLAM framework.
(iv) Finally, we run the MSCKF 2.0 algorithm with perfectly known calibration, as a benchmark
of performance. We term this the “precise” scenario.

Table IV shows the results of Monte-Carlo trials, listing separately the RMSE errors along the
three axes (thex and y axes are parallel to the ground, while thez axis is parallel to gravity).
Three key observations can be made here. First, we observe that when the camera calibration is
falsely assumed to be known (calibration “off”), the filter’s accuracy and consistency are severely
degraded, particularly along thez axis. This happens even though the errors of the calibration
parameters are relatively small in these simulations. Second, we can observe that the accuracy of
the IMU pose estimates computed when the calibration is performed online with the MSCKF 2.0 is
almost identical to the accuracy that is achieved witha priori perfectly known calibration. This is
practically significant, as it indicates that more sophisticated (and expensive) calibration processes
involving specialized equipment may not be required for most applications. Third, by comparing
the performance of m-AHP to MSCKF 2.0, we observe that the SLAM-based approach attains
lower accuracy and consistency for the IMU pose, as well as lower precision for the camera-to-IMU
calibration. This result, which agrees with those of Section VIII-A, demonstrates the advantage of
performing the camera-to-IMU calibration in the MSCKF 2.0 framework.



TABLE IV
PERFORMANCE OF THE ONLINE CAMERA-IMU CALIBRATION

Transformation imprecise precise
Calibration on on off N/A
Estimator m-AHP MSCKF 2.0

IMU pose RMSE

86.2 59.6 59.6 59.0 x (m)
113.2 80.3 84.9 79.9 y (m)
6.4 5.5 117.0 2.5 z (m)
0.11 0.10 0.15 0.10 roll (o)
0.12 0.11 0.15 0.10 pitch (o)
3.27 2.26 2.26 2.25 yaw (o)

IMU pose NEES 8.24 7.45 2591 7.02

Calib. RMSE
0.03 0.03 N/A N/A position (m)
0.07 0.05 N/A N/A orientation (o)
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Fig. 5. Trajectory estimates plotted on a map of Canyon Crest, Riverside, CA. The initial vehicle position is shown
by a green circle, and the end position by a red circle. The black solid line corresponds to the ground truth, the green
dash-dotted to the MSCKF, the red dashed line to the MSCKF 2.0, and the blue dotted line to the FLS.

IX. REAL-WORLD EXPERIMENT

We next describe the results of a real-world experiment, during which an IMU/camera platform
was mounted on top of a car and driven on the streets of Riverside, CA. The sensors consisted of
an Xsens MTi-G unit, and a PointGrey Bumblebee2 stereo pair (only a single camera’s images are
used). The IMU provided measurements at 100 Hz, while the camera images were stored at 20 Hz.
For position ground truth we used a GPS-INS estimate of the trajectory. For image processing,
Shi-Tomasi feature points were extracted (Shi and Tomasi, 1994), and matching was carried out
by normalized cross-correlation. On average, approximately 290 features were tracked per image.
The experiment lasted about 37 minutes, during which the vehicle drove approximately 21.5 km.
Some sample images from the experiment are shown in Fig. 7.

Fig. 5 shows the ground truth trajectory on a map of the area where the vehicle drove, as well as
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Fig. 6. Estimation errors for the three approaches. The leftplots are the results for the MSCKF 2.0, and the right
plots for the MSCKF and FLS.

Fig. 7. Sample images recorded during the experiment.

the estimates computed by three algorithms: the MSCKF, the FLS, and the proposed MSCKF 2.0.
These are the three most accurate estimators tested, and we only present their results for clarity.
Fig. 6 plots the estimation error as well as the reported standard deviation of the yaw and thex-y
position for the three algorithms. Similarly to what was observed in Fig. VIII-B, we see that the
MSCKF 2.0 (plots on the left) offers a better characterization of the actual uncertainty. By contrast,
the uncertainties of both the yaw and the IMU position are underestimated by the MSCKF and the
FLS (plots on the right). The estimation errors for these algorithms are also significantly larger
than those of the MSCKF 2.0. The elevation (altitude) estimates of the MSCKF 2.0 are also more
accurate, having worst-case errors of26 m, compared to27 m for the MSCKF and33 m for
the FLS. The largest position error for the MSCKF 2.0 algorithm is approximately58 m, which
corresponds to only0.28% of the travelled distance. In contrast, the trajectory estimates reported
by the MSCKF and the FLS are much less accurate, with largest position errors of about230 m
and202 m, respectively.

Since the precise IMU-to-camera parameters were not perfectly known, they were estimated
online by the MSCKF 2.0 algorithm, using manual measurements for initialization. Fig. 8 shows
the orientation estimates between the IMU and the camera, where the roll, pitch, and yaw angles
describe the camera orientation expressed in the IMU frame.The final standard deviation of the
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Fig. 8. Orientation estimates of the camera expressed in theIMU frame. Note that the estimation uses a quaternion
representation, and the results are transformed to roll-pitch-yaw for visualization purposes only.

orientation estimates is[0.008o 0.008o 0.039o] about the three axes, while for the position we
obtain[0.008 0.008 0.005] m, showing the high accuracy attainable by the online camera-to-IMU
calibration process.

As a final remark, we note that in this experiment, the averageprocessing time per update of
the MSCKF 2.0 (including image processing and estimation) is 10 msec measured on a Core
i7 processor at 2.66 GHz, with a single-threaded C++ implementation. Since the image period
is 50 msec, the algorithm’s performance is comfortably within the requirements for real-time
operation.

X. CONCLUSION

In this paper, we have presented a detailed analysis of the properties and performance of different
EKF-based VIO algorithms. We show that the MSCKF algorithm attains better accuracy and
consistency than EKF-based SLAM algorithms, due to its lessstrict probabilistic assumptions and
delayed linearization. In addition, we performed a rigorous study of the consistency properties of
EKF-based VIO algorithms, and showed that the filters’ linearized system models have incorrect
observability properties, which result in inconsistency.To address this problem, we developed
the MSCKF 2.0 algorithm, which uses a novel closed-form expression for the IMU error-state
transition matrix and fixed linearization states to ensure the appropriate observability properties.
Moveover, the MSCKF 2.0 algorithm is capable of performing online camera-to-IMU calibration.
Extensive Monte-Carlo simulations and real-world experimental testing provide strong validation
of our theoretical analysis, and demonstrate that the proposed MSCKF 2.0 algorithm is capable
of performing long-term, high-precision, consistent VIO in real time. In fact, the MSCKF 2.0
algorithm is shown to outperform even an iterative-minimization based fixed-lag smoother, an
algorithm with substantially higher computational requirements.
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APPENDIX A

If the biases are included, the IMU error-state transition matrix is given by:

ΦIk =









I3 03 03 Φqbg
03

Φpq I3 ∆tI3 Φpbg
Φpa

Φvq 03 I3 Φvbg
Φva

03 03 03 I3 03
03 03 03 03 I3









(60)

where

Φqbg
=−R̂T

ℓ

∫ tℓ+1

tℓ

Iℓ
Iτ
R̂ dτ

Φpbg
=

∫ tℓ+1

tℓ

∫ w

tℓ

⌊(G ˙̂vτ − g)×⌋R̂T
ℓ

∫ τ

tℓ

Iℓ
Is
R̂ ds dτ dw

Φpa=−R̂T
ℓ

∫ tℓ+1

tℓ

∫ τ

tℓ

Iℓ
Is
R̂ ds dτ

Φvbg
=

∫ tℓ+1

tℓ

⌊(G ˙̂vτ − g)×⌋R̂T
ℓ

∫ τ

tℓ

Iℓ
Is
R̂ ds dτ

Φva=−R̂T
ℓ

∫ tℓ+1

tℓ

Iℓ
Iτ
R̂ dτ (61)

The detailed derivation of this result is provided in (Li andMourikis, 2011).

APPENDIX B

We here prove that, in a linear-Gaussian system, the state estimate and covariance matrix
computed by the MSCKF is identical to the MAP estimate for theIMU pose. Since EKF-SLAM
is also a MAP estimator, this means that the MSCKF and EKF-SLAM would be identical in a
linear-Gaussian system. Due to limited space, we here provide an outline of the main steps of the
proof, and the full details are provided in (Li and Mourikis,2011).

Let us consider the following linear system:

xi =Φixi−1 +wi−1 (62)

zij =Hxij
xi +Hfijpfj + nij (63)

wherexi, i = 0 . . . N are the IMU states,pfj , j = 1 . . .M are the feature positions,wi andnij are
zero-mean white Gaussian noise processes with covariance matricesQi andσ2I2, respectively, and
Φi, Hxij

, andHfij are known matrices. We denote the vector containing all the IMU states asx =
[
xT
0 xT

1 · · · xT
N

]T
, the vector containing all the feature positions asf =

[
fT1 fT2 · · · fTM

]T
,

and the vector containing all measurements as

z = Hxx+Hf f + n

whereHx andHf , are matrices with block rowsHxij
andHfij , respectively.

Using the prior estimate for the first state,x̂0, as well as the state propagation equation, we
can obtain an estimate forx, which we denote bŷxs, along with its covariance matrix,Ps. This
estimate uses all the information from the prior and the state propagation model. The MAP estimate



for the entire state vector, which uses all the available information (prior, propagation model, and
measurements) is given by:

[
x̂MAP

f̂MAP

]

= Λ−1

[
P−1

s x̂s +
1
σ2H

T
xz

1
σ2H

T
f z

]

whereΛ is the information matrix:

Λ =

[
P−1

s + 1
σ2H

T
xHx

1
σ2H

T
xHf

1
σ2H

T
f Hx

1
σ2H

T
f Hf

]

and Λ−1 is the covariance matrix of the MAP estimate. Using the standard properties of the
inversion of a partitioned matrix, we can show that the estimate x̂MAP and its covariance matrix
equal:

x̂MAP =PMAP

(

P−1
s x̂s+

1

σ2
HT

x

(

I−Hf

(
HT

f Hf

)−1
HT

f

)

z

)

PMAP =

(

P−1
s +

1

σ2
HT

x

(

I−Hf

(
HT

f Hf

)−1
HT

f

)

Hx

)−1

On the other hand, in the MSCKF algorithm, if we use the IMU measurements to propagate the
state estimates, and then employ the camera measurements for an update, the update is performed
based on the residual:

ro
.
= VT (z −HT

x x̂s) =
(
VTHx

)
x̃s + no (64)

whereV is a matrix whose columns form an orthonormal basis for the left nullspace ofHf , and
no is a noise vector with covariance matrixσ2I. Using the Kalman filter equations, the state and
covariance update can be written as:

x̂MSC = x̂s +Kro (65)

PMSC =

(

P−1
s +

1

σ2

(
VTHx

)T (
VTHx

)
)−1

(66)

whereK is the Kalman gain, which can be written as (Maybeck, 1979):

K =
1

σ2
PMSC

(
VTHx

)T
(67)

Our goal is to show that̂xMSC = x̂MAP, andPMSC = PMAP. To this end, we note that the
matrix I −Hf

(
HT

f Hf

)−1
HT

f is the orthogonal projector onto the left nullspace ofHf , and thus
I − Hf

(
HT

f Hf

)−1
HT

f = VVT (Meyer, 2000). Using this result, the equalityPMSC = PMAP

follows immediately, and we can also write:

x̂MAP = PMSC

(

P−1
s x̂s +

1

σ2
HT

xVVT z

)

(68)

Substitution of (64) and (67) in (65) yields:

x̂MSC= x̂s +
1

σ2
PMSC

(
VTHx

)T
VT (z−HT

x x̂s)

=PMSC

((

P−1
MSC

−
1

σ2
HT

xVVTHT
x

)

x̂s+
1

σ2
HT

xVVT z

)

Showing that the last equation is equal to (68) follows immediately by use of (66).



APPENDIX C

In EKF-based SLAM, the current feature estimates are used for computing the measurement
Jacobians at each time step. Thus, we have:

HIiℓ = Jiℓ
C
I RR̂ℓ|ℓ−1

[
⌊
(
Gp̂fi|ℓ−1

−Gp̂ℓ|ℓ−1

)
×⌋ −I3 03

]

Hfiℓ = Jiℓ
C
I RR̂ℓ|ℓ−1 (69)

where the matrixJiℓ is evaluated using the estimate:

Cℓp̂fi|ℓ−1
= C

I RR̂ℓ|ℓ−1

(
Gp̂fi|ℓ−1

−Gp̂ℓ|ℓ−1

)
+CpI (70)

Using these Jacobians, we obtain the block row of the observability matrix corresponding to the
observation of featurei at time-stepℓ. This matrix has the same structure as (48), with:

Γiℓ =
⌊
Gp̂fi|ℓ−1

− Gp̂k|k −
Gv̂k|k∆tℓ −

1

2
g∆t2ℓ ×

⌋

∆Γiℓ =

ℓ−1∑

j=k+1

(Ej
p +

j
∑

s=k+1

Es
v∆t) +

⌊
∆Gpfi ×

⌋
(71)

Miℓ= Jiℓ
C
I RR̂ℓ|ℓ

∆Gpfi = ⌊Gp̂fi|ℓ−1
− Gp̂fi|k−1

×⌋ (72)

Ej
p = ⌊Gp̂j|j−1 −

Gp̂j|j×⌋ (73)

Ej
v = ⌊Gv̂j|j−1 −

Gv̂j|j×⌋ (74)

Similarly to the MSCKF, the observability matrix of EKF-based SLAM also contains a disturbance
term∆Γiℓ, which decreases the dimension of the unobservable subspace.
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