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Abstract

In this paper, we focus on the problem of motion tracking ikknown environments using
visual and inertial sensors. We term this estimation tas#al-inertial odometrgVIO), in analogy
to the well-known visual-odometry problem. We present aaitkd study of EKF-based VIO
algorithms, by comparing both their theoretical propertad empirical performance. We show
that an EKF formulation where the state vector compriseglmglwindow of poses (the MSCKF
algorithm) attains better accuracy, consistency, and coatipnal efficiency than the SLAM
formulation of the EKF, in which the state vector containg turrent pose and the features
seen by the camera. Moreover, we prove that both types of Hifffoaches arénconsistent
due to the way in which Jacobians are computed. Specificaltyshow that the observability
properties of the EKF's linearized system modétsnotmatch those of the underlying system,
which causes the filters to underestimate the uncertaintjénstate estimates. Based on our
analysis, we propose a novel, real-time EKF-based VIO dtlyor which achieves consistent
estimation by (i) ensuring the correct observability pmigs of its linearized system model, and
(i) performing online estimation of the camera-to-IMU ibahtion parameters. This algorithm,
which we term MSCKF 2.0, is shown to achieve accuracy andistmmy higher than even
an iterative, sliding-window fixed-lag smoother, in both ie-Carlo simulations and real-world
testing.

I. INTRODUCTION

This paper addresses the problem of tracking a vehiclemegon in GPS-denied environments,
using an inertial measurement unit (IMU) and a monocularezamOur focus is on pose estimation
in unknown environments, therefore we do not assume thaatarfe map is available in advance,
as in map-based localization methods (e.g., (Wu et al., 20Gvny et al., 2007)). Moreover, we
do not aim at building such a map. Our goal is to estimate thecletrajectory only, using the
inertial measurements and the observations of naturallysoing features tracked in the images.
This task is similar to the well-known visual odometry (VQpplem (Nister et al., 2004), with the
added characteristic that an IMU is available. We thus tdrenapproaclvisual-inertial odometry
(VIO). VIO methods have attracted significant researchr@se because they can either be used
as stand-alone pose-tracking methods, or as part of lawgalization systems. For instance, VIO
estimates can be integrated with a loop-closure detectiotuie to provide long-term, bounded-
uncertainty localization (Mourikis and Roumeliotis, 20@®nes and Soatto, 2011).

A key requirement for VIO algorithms is that their compubathl complexity remains bounded,
both as a function of time and as a function of the size of tlage¢tory. Most present-day
algorithms in this class are either extended Kalman filtekKEbased methods (Mourikis and
Roumeliotis, 2007; Kelly and Sukhatme, 2011; Jones andt&oa011), or methods utilizing
iterative minimization over a window of states (Dong-Si algurikis, 2011; Konolige and
Agrawal, 2008; Konolige et al., 2011). The latter are gelher@onsidered to be more accurate,
as they employ re-linearization at each iteration to bettal with nonlinearities. However, the
need for multiple iterations also incurs a higher compatetl cost. Ideally, one would like to
obtain accuracy similar to, or better than, that of iteeiminimization algorithms, but at the



computational cost of an EKF algorithm. In this paper, wevshwmw this can be achieved.
Specifically, we carry out an in-depth analysis of EKF-bag#éd, based on which we develop a
novel real-time EKF algorithm. Our results show that thigoaithm attains estimation accuracy
better than both existing EKF alternativasd iterative-minimization VIO.

As a starting point for our analysis, we compare the perfoiceaf two families of EKF-based
VIO estimators: EKF-SLAM and sliding-window algorithms the former class of methods, the
filter state vector contains the current IMU pose as well ade¢tures visible by the camera (Jones
and Soatto, 2011; Pinies et al., 2007; Kleinert and Schl@@10), while in the latter the state
vector contains only a sliding window of poses, and the featneasurements are used to apply
probabilistic constraints between them (Diel et al., 20@urikis and Roumeliotis, 2007). Out
of this second class of methods, we focus on the multi-statstraint Kalman filter (MSCKF)
algorithm (Mourikis and Roumeliotis, 2007), which we show lie the maximum-a-posteriori
estimator up to linearization.

In this paper we show, through extensive Monte-Carlo sitiaria emulating real-world datasets,
that the MSCKF algorithm outperforms EKF-SLAM methods by aevmargin, in terms of
accuracy, consistency, and computational efficiency. Weate this primarily to the fact that the
MSCKF makes no Gaussianity assumptions on the pdf of theresitpositions, something that is
required in EKF-SLAM. Having shown the advantages of the ME@ver EKF-SLAM methods,
we then focus on analyzing and further improving its perfance. Specifically, our approach relies
on improving theconsistencyf the MSCKF, which, in turn, also improves the accuracy @& th
estimates. As defined in (Bar-Shalom et al., 2001, Sectid)) &.recursive estimator is consistent
when the estimation errors are zero-mean and have covariaatrix equal to that reported by
the estimator.

We identify and address two key causes of inconsistencyeMB8CKF. The first cause is related
to a fundamental shortcoming of the EKF: we prove that, duthéoway the EKF Jacobians are
computed, even though the IMU'’s rotation about gravity (faev) is not observable in VIO (see,
e.g., (Jones and Soatto, 2011; Kelly and Sukhatme, 2011tindlir 2012)), it appears to be
observable in the linearized system model used by the MSCl&Rd-the same occurs in EKF-
SLAM. Thus, the estimator erroneously believes it has mefermation than it actually does, and
under-estimates the state covariance matrix. The secamgkaaf inconsistency is that, in most
practical cases, the extrinsic calibration parameterstfom and translation) between the camera
and IMU are only known with finite precision. If (as is commoragtice) these parameters are
assumed to be perfectly known, the unmodelled uncertainityr@sult in under-reporting of the
state estimates’ covariance.

To improve the consistency of the MSCKF, we address the twblpms identified above. First,
we show that a modification in the way in which the filter Jaeoisi are computed can restore
the appropriate observability properties for the filteifeehrized system model. We note that, as
part of this modification, we derive a closed-form expresdir the IMU’s error-state transition
matrix. This expression can be used in any case in which an i8Used for estimation (e.g.,
not only in VIO, but also in GPS-INS), and to the best of ourWkhealge is the first time such
an expression has been proposed. Additionally, to addhessricertainty in the knowledge of the
camera-to-IMU transformation, we include these pararsetethe MSCKF'’s state vector, so that
they can be estimated online, along with the IMU state.

We term the modified MSCKF algorithm, which ensures the abrobservability properties of
its linearized system model and performs online calibmatbthe camera-to-IMU transformation,
MSCKF 2.0. Our simulation and experimental results dematesthat this novel algorithm shows
substantial improvement in consistency compared to akbxisting EKF alternatives. Moreover, the
algorithm outperforms the alternatives in termsoturacy since a more accurate representation of
the uncertainty of the different states in the filter resiftbetter state updates. More importantly,



however, our results show that the MSCKF 2.0 obtains higlersistency and accuracy even
than a comparable algorithm that uses sliding-window titezaminimization, which has much
higher computational cost. This indicates that having aditzed system model with appropriate
observability properties may be more important than usexjnearization to better approximate
the nonlinear measurement models.

Il. RELATED WORK

The simplest (and most computationally efficient) appreado VIO areloosely-coupleanes,
i.e, methods that process the IMU and image measuremerasasely. For instance, some methods
first process the images for computing relative motion es® between consecutive poses,
and subsequently fuse these with the inertial measureniBids et al., 2005; Weiss and Sieg-
wart, 2011; Ma et al.,, 2012; Roumeliotis et al., 2002; Tamdifal., 2010). Alternatively, IMU
measurements can be processed separately for extractiagomoestimates, and fused in an
image-based estimation algorithm (Brockers et al., 201@dfige et al., 2011; Oskiper et al.,
2007). Separately processing the two sources of informadiads to a reduction in computational
cost, and as a result loosely-coupled methods are typisaitgd for systems with very limited
resources, such as MAVs (Brockers et al., 2012). Howevisrctimes at the expense of information
loss: for instance, using feature measurements for egomestimation between pairs of images
ignores the correlations between consecutive timestepsuiikls et al., 2007), and processing
IMU measurements separately does not allow for optimairedion of sensor biases.

In this work, we are therefore interested tightly-coupledmethods, which directly fuse the
visual and inertial data, thus achieving higher precisiss previously mentioned, these are either
based on iterative minimization over a sliding window oftesa or are EKF formulatiofs In
the former methods (e.g., (Dong-Si and Mourikis, 2011; Kigygoand Agrawal, 2008; Konolige
et al., 2011; Lupton and Sukkarieh, 2012; Oskiper et al.,7200vhich essentially implement
bundle-adjustment in a sliding window of states (Engelslet2®06) with the addition of IMU
measurements, older poses and/or features are removedtlfi@ratate vector to maintain the
computational cost bounded. The need for multiple itersti@uring minimization results in
increased computational cost, however. In this paper, vmvsthat a properly designed EKF
estimator can attain performanbé@her than that of iterative minimization, at only a fraction of
the computation.

To fuse the visual and inertial measurements, the most carlyneed tightly-coupled EKF
estimator is EKF-based SLAM, in which the current cameraepasd feature positions are jointly
estimated (Kleinert and Schleith, 2010; Pinies et al., 200ih and Sukkarieh, 2007; Jones and
Soatto, 2011; Kelly and Sukhatme, 2011). To keep the cortipo& cost bounded in EKF-
SLAM algorithms, features that move out of the camera’s figldriew must be removed from
the state vector (Munguia and Grau, 2007). One disadvamtaB&F-SLAM is its computational
complexity, cubic in the number of features in the state aedvhen many features are visible
(the common situation in images of natural scenes), EKFi8ksAuntime can be unacceptably
high (in fact, higher than that of iterative minimizationtr@&sdat et al., 2010) in certain cases).

To address this problem, the MSKCF algorithm was proposethadternative EKF-based VIO
method (Mourikis and Roumeliotis, 2007; Shkurti et al., 2D1in contrast to EKF-SLAM, the
MSCKF maintains a sliding window of poses in its state vea@od uses the feature measurements
to impose constraints on these poses. This results in a datignal complexity that is linear in the
number of features, and thus the MSCKF is faster than EKFMLW this paper, we compare the

INote that hybrid approaches have also appeared (e.g., {(kitband Roumeliotis, 2008)), which use the estimates
of the EKF as initial guesses for iterative minimization. fdover, hybrid schemes that maintain both an EKF and a
minimization-based estimator for robustness and/or effiy have been proposed (Weiss et al., 2012; Brockers et al.,
2012).



MSCKF’s accuracyandconsistencyo those of EKF-SLAM methods, and show that the MSCKF
outperforms EKF-SLAM in these respects as well.

A key contribution of this work is the analysis and improvernef the consistency of EKF-based
vision-aided inertial navigation. Past work on the comsisy of 3D vision-based localization has
primarily focused on the parameterization of feature parsét In (Civera et al., 2008), it was shown
that the Cartesian-coordinate (XYZ) parametrization ltesn severely non-Gaussian pdfs for the
features, and degrades accuracy and consistency. Theesfanverse-depth feature parametrization
was proposed, which is better suited for the camera measmtemodel, and results in improved
performance. In (Sola, 2010), an anchored homogeneousréeptirametrization was proposed,
and was shown to further improve the filter's consistencyouin work, we compare all the above
parameterizations in VIO and show that, while the paranesteon of (Sola, 2010) yields superior
results to the alternatives, its performance is still wdremn that of the MSCKF algorithm.

In this work, we take a different approach to exploring thasistency properties of EKF-based
VIO. Specifically, our approach is motivated by recent woxlaraining the relationship between
the observability properties of the EKF’s linearized systaeodel and the filter's consistency, in
the context of 2D SLAM (Huang et al., 2008; Huang et al., 20T®)ese works showed that, due
to the way in which Jacobians are computed in the EKF, thetiolooientation appears to be
observable in the linearized system model, while it is nothi@ actual, nonlinear system. As a
result of this mismatch, the filter produces too small esi®dor the uncertainty of the orientation
estimates, and becomes inconsistent.

Our analysis in Section IV shows that the same problem a&ffE&tF-based VIO in 3D. This
result first appeared in an earlier conference version o paiper (Li and Mourikis, 2012a).
Moreover, similar results were independently derived ihs&quent papers by (Hesch et al.,
2012; Kottas et al., 2012). Compared to our earlier work, weshadditionally (i) compare the
performance of the MSCKF to EKF-SLAM based methods, (ii)vehbat the same, erroneous
observability properties affect EKF-SLAM approaches)) (@#iddress the issue of inconsistency
caused by inaccurate knowledge of the camera-to-IMU clifam, and (iv) present additional,
large-scale simulation and experimental results dematirsgy our analysis.

I1l. EKF-BASED VISUAL-INERTIAL ODOMETRY

Consider a mobile platform, equipped with an IMU and a cameraving with respect to a
global coordinate framg,G}. Our goal is to perform VIO, i.e., to track the position angeatation
of the platform using inertial measurements and obsemsitd naturally occurring point features,
whose positions are not knovenpriori. To this end, we affix a coordinate frargé} to the IMU,
and track the motion of this frame with respect to the gloaime. In what follows, we first
describe the parameterization we employ for the IMU state, then discuss the two alternative
tightly-coupled EKF formulations for VIO, and compare thperformance.

A. IMU state parameterization
Following standard practice, the IMU state vector at timepstis defined as thé6 x 1 vector:

T
X1, = GqT GPT GV[ bgg bae} (1)

2Throughout this paper, the preceding superscript (&gin “p¢) denotes the frame of reference with respect to
which quantities are expressefiR is the rotation matrix rotating vectors from frandé3} to {A}, 4q is the unit
quaternion corresponding to the rotation matiR, |cx | denotes the skew symmetric matrix corresponding to vector
c, 0 andI are the zero and identity matrices respectivélygnda represent the estimate and error of the estimate of a
variablea respectively, and;; is the estimate of variable at time stepi given measurements up to time stgp



wheregq is the unit quaternion (Trawny and Roumeliotis, 2005) repreing the rotation from
the global frame to the IMU frame at time stég“p, and“v, are the IMU position and velocity
in the global frame, antg, andb,, are the gyroscope and accelerometer biases.

To define the IMU error state, we use the standard additiver etefinition for the position,
velocity, and biase§e.g.,Gf) = Gp — Gf)). For the orientation error, out of the several possible
options that exist, the preferable ones are those thatdijaal, so that singularities are avoided,
and (i) use a minimal, 3-dimensional representation of dhentation error. To obtain a local
parameterization, we define the orientation error basechenquaternioniq that describes the
difference between the true and estimated orientationcifgaly, we define:

lg=Laesy=da=Lta'eola )

where® denotes quaternion multiplication. Intuitivelygq, is the (small) rotation that is needed
to bring the estimated global frame to match the true one.bfai a minimal representation for
this rotation, we note thatq can be written as:

N @)

1Gg
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where©0 is a3 x 1 vector describing the orientation errors about the thressaWith the above
error definition, the IMU error-state is defined as ttiex 1 vector:

~ ~T - ~ ~ ~ T
X7 = {GO Gpl G3T bg bﬂ 4)

It is worth pointing out that our choice of the orientatiomez parameterization is guided by the
analysis of (Li and Mourikis, 2012a). That analysis showldt tdefining the orientation error
based on the difference between the true and estingltdzil frame, as in (2)-(3), is preferable
to defining it as the difference between the true and estonddé) frame. Specifically, the latter
choice (used, for example, in (Mourikis and Roumeliotis)2)) causes undesirable terms to appear
in the observability matrix of the EKF’s linearized systenodel.

B. EKF-based SLAM

In EKF-SLAM algorithms, the filter state vector contains tberrent IMU statex;,, and a
representation of the feature positions. Thus, the filtetestector at time-stepis defined as:

T
Xy = [XE | A f};] ()
wheref;, i = 1, ..., ny, are the features included in the state vector at time gtephese

could be parameterized in different ways. In this paper, vile cgnsider the “traditional” XYZ
coordinate parametrization, the inverse depth paranagiiz (Civera et al., 2008), and the anchored
homogeneous parametrization (Sola, 2010). These are teeaommonly used parameterizations
in practice, and the two latter ones specifically aim at iasieg the filter's consistency and
accuracy.

The EKF-SLAM equations are well-known, and we thereforeydmlefly describe them here, to
introduce the necessary notation. In standard practiedMk) measurements are used to propagate
the IMU state. To describe the way in which the errors in th@ppgated state estimate depend
on the estimation errors at the previous time step, the EKpl&ym a linearized equation of the
form:

il@+l\l = q)fzife\e +wy, (6)



where ®; is the IMU error-state transition matrix, anel;, is a noise vector, with covariance
matrix Qg,. The filter's covariance matrix is also propagated accagydm

T
Pé 1‘6 _ QIZPII,IW@IZ,J:'_ Qd@ QlePIFg‘g
e =
Pir,, @1, Prr,,

where Py, , is the covariance matrix of the IMU stat®rr,, is the covariance matrix of the
features, and®,r,, the cross-covariance between them.

Assuming a calibrated perspective camera, the obsenvafif@ature:; at time stefy is described
by the equatiofi
Cray,
C@Zfi

le}
[yfi
Cezfi

zio = h(xy,, i) + ny = +ny (7)

where n;; is the measurement noise vector, modelled as zero-meansi@ausith covariance
matrix o2I, and the vectof'py, = [“a;, “y,; “zp]7 is the position of the feature with
respect to the camera at time stép

“ps, =R ER(“ps, — “pr,) + o1 (8)

with {¥R, “p,} being the rotation and translation between the camera andMb). In EKF-
SLAM, the feature observations are used directly for updgtine state estimates. For this process,
we employ the residual between the actual and expectedréeateasurement, and its linearized
approximation:

Tiyg = 2y — h(ﬁcle\efﬂ fie\ef1)
~ H(Xepo—1) Xejo—1 + nig 9)

where Hig(fcm_l) is the Jacobian matrix oh with respect to the filter state, evaluated at the
state estimatex,,_,. This is a sparse matrix, containing nonzero blocks onlyhat [bcations
corresponding to the IMU state (position and orientatiom) &ei-th feature:

H(%¢0-1) = [Hz, (X¢e=1) 0 -+ Hg, (Xg0—1) -+ 0] (10)

Oncer;; andH;, have been computed, a Mahalanobis gating test is perforameblif successful
the standard EKF update equations are employed (Maybe8&2)1Bepending on the particular
feature parameterization used, the exact form of the abas@bians, as well as the “bookkeeping”
required in the filter, will be slightly different.

In VIO, we must ensure that the computational cost of the rilgn remains bounded. To
achieve this, features are removed from the state vectoeitiately once they leave the field of
view of the camera. This of course means that the filter capromtess feature re-observations that
occur when an area is re-visited. However, such “loop-ckisavents do not need to be handled
by a VIO algorithm: if desired, they can be handled by a sepaabgorithm running in parallel,
as done for example in (Mourikis and Roumeliotis, 2008). He tprototypical” VIO scenario,
where the camera keeps moving in new areas all the time, tHe &AM algorithm described
above will use all the available feature information.

3We note that throughout this paper, we focus on the monocalarera case, which is the more challenging one.
However, our theoretical analysis and the MSCKF 2.0 algoriaire equally applicable to the case where a stereo pair
is used for visual sensing.



C. Multi-State-Constraint Kalman Filter (MSCKF)

In contrast to EKF-SLAM, the MSCKF is an EKF algorithm thatintains in its state vector a
sliding window of poses, and uses feature observations pos® probabilistic constraints between
these poses (Mourikis and Roumeliotis, 2007). The stattoved the MSCKF at time-step is
defined as:

Xp = [X], Ty Ty - WZT—N]T (11)

wherer; = [Lq” Gpl1T fori=£¢—N,...,0 —1, are the IMU poses at the times the lat
images are recorded.

During MSCKF propagation, the IMU measurements are usedropggate the IMU state
estimate and the filter covariance matrix, similarly to EREAM. The difference lies in the
way in which the feature measurements are used. Specifieatlyy time a new image is recorded
by the camera, the MSCKF state and covariance are augmeitte@ wopy of the current IMU
pose, and the image is processed to extract and match feakaeh feature is tracked until all
its measurements become available (e.g., until it goes fothteofield of view), at which time an
update is carried out usingl the measurements simultaneously.

To present the update equations, we consider the case Wieefeaturef;, observed from the
N poses in the MSCKF state vector, is used for an update at tiepe/s The first step of the
process is to obtain an estimate of the feature posit?qﬁ},. To this end, we use all the feature’s
measurements to estimate its position via Gauss-Newtoimiziation (Mourikis and Roumeliotis,
2007). Subsequently, we compute the residuals {fer{ — N,..., ¢ — 1):

rij =2 — h(#;1_1, “Pr.) (12)
~Hyp (7 j1-1,.9Ds) T jj—1+He, (701,50 1,) D p A1 (13)
where;,_; and Gf)fi are the error of the current estimate for tjigh pose and the error in
the feature position respectively, and the matrieks, andHy,, are the corresponding Jacobians,
evaluated usingr;,_;, and Gf)fi. At this point we note that, in the EKF algorithm, to be able
to employ a measurement residusl,for a filter update, we must be able to write this residual
in the formr ~ Hx + n, wherex is the error in the state estimate, ands a noise vector that
is independenfrom x. The residual in (13) does not have this form, as the featas#ipn error
Gf)fi is correlated to bothr;,_; andn;; (this is becaus@f)fi is computed as a function af;,_;
andz;;, j=¢— N,...,£ —1). Therefore, in the MSCKF we proceed to remcﬁ/ﬁfi from the

residual equations. For this purpose, we first form the vembotaining theN residuals from all
the feature’s measurements:

r; o~ Hy (Xe0-1, "B s ) %e0—1 + He, (%01, “Dy,) Py, + 1 (14)
wherer; andn; are block vectors with elements; andn,;, respectively, andd,, andHy, are
matrices with block rowd -, andHg, . Subsequently, we define the residual veetor= V;fri,

where'V; is a matrix whose columns form a basis of the left nullspac&lgf From (14), we
obtain:

I‘? = VZTri = HZQ(}EE\Z—D Gf)fm) iflﬁ—l + nZQ (15)

where H? = VI'H,, andn? = V! n;. Note that the residual vectaf is now independenbf
the errors in the feature coordinates, and thus can be usexhf&KF update. It should also be
mentioned that, for efficiency;? and H{ are computed without explicitly forminy’; (Mourikis
and Roumeliotis, 2007).

Oncery and HY are computed, we proceed to carry out a Mahalanobis gatstgfde the
residualry. Specifically, we compute:

o o] o -1 o
v = ()" (HYPyo_1(HY)" + 0°I) 1 (16)



and compare it against a threshold given by the 95-th peleeaitthe y? distribution with2N —3
degrees of freedom2(V — 3 is the number of elements in the residual veatpy. If the feature
passes the test, we proceed to ugdor an EKF update, together with the residuals of all other
features that pass the gating test. After this update tdkes pnve remove from the sliding window
those poses whose observed features have all been usedifiesipAn overview of the MSCKF
is given in Algorithm 1.

Algorithm 1 Multi-State-Constraint Kalman Filter (MSCKF)

Propagation: Propagate state vector and covariance mueirg IMU readings.

Update: when a new image is recorded,

« State augmentation: augment the state vector as well asstueiated covariance matrix
with the current IMU position and orientation.

« Image processing: extract corner features and perfornurieahatching.

« Update: for each feature whose track is complete, computend H?, and perform the
Mahalanobis test. Use all features that pass the test forkdhupdate.

« State management: remove from the state vector those IMEsstar which all associated
features have been processed.

D. Comparison of the MSCKF and EKF-SLAM approaches

We now compare the two VIO methods discussed in the preceslifigections. We start
by noting that the MSCKF and EKF-SLAM make use of tsememeasurement information.
Specifically, in Appendix B we prove that if the system modelswinear-Gaussian, the MSCKF
estimate for the current IMU pose would be the optimal, maxima posteriori (MAP) estimate.
In the linear-Gaussian case, EKF-SLAM also yields the MARmegte, since the Kalman filter
is a MAP estimator (Kay, 1993). Thus, if the system modelsewlerear-Gaussian, the EKF-
SLAM and the MSCKF algorithms would yield theame, optimakstimates for the IMU pose.
The differences in their performance arise due to fact thatactual measurement models are not
linear, as discussed in what follows.

To test the performance of the methods with the actual nealisystem models, we performed
extensive Monte-Carlo simulations. To obtain realistimdation environments, we generated the
simulation data based on real-world datasets. For eackatathe following process was followed:
First, we generated the platform angular velocity and lingeceleration by differentiating the
ground-truth orientation and linear-velocity estimatesamed by high-precision GPS-INS. Using
this angular velocity and linear acceleration, we subsetiyigenerated (i) the simulator’'s ground-
truth trajectory (position, velocity, orientation) by imegration, and (ii) IMU measurements
corrupted with noises and biases with characteristicsticino those of the sensors used in the
datasets. In each Monte-Carlo run, different realizatiofiithe sensor noises and biases (which are
modelled as white, zero-mean Gaussian noise and Gaussidomavalk processes, respectively)
were generated.

The feature tracks in the simulations were also generattdstatistical characteristics matching
those of the actual datasets. Specifically, by processimgntlages collected in the actual dataset,
we modeled the distributions of (i) the feature number peage) (ii) the feature-track lengths,
and (iii) the feature distance to the camera, at differentspaf the trajectory. Then, in each
simulation, feature tracks were generated by randomly 8aghfrom these distributions, and the
image measurements were corrupted by white, Gaussian, nitke standard deviation of one
pixel — similarly to the actual data. In this way, the platiotrajectory as well as the IMU and
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Fig. 1. The average NEES of the IMU pose and RMSE of the IMU tmosiand orientation. The different lines
correspond to the MSCKF (red solid line), the AHP (green dddime), the IDP (black dash-dotted line), and the XYZ
(blue dotted line). Note that due to their large values, theves for some of the EKF-SLAM methods are not fully
visible. Table | presents the statistics for all curves.

camera measurements have properties emulating those af dataset, which provides for more
realistic testing.

For the results presented here, we used a 13-minute, 5eigneataset, as the basis for the
simulation. The dataset was collected with an ISIS IMU andanocular camera, mounted on
top of a vehicle driving in an urban environment. In each ima2b0 features were tracked, on
average, and the average track length was 4.5 frames (theddeack distribution is similar to an
exponential one, with many features tracked over shorbgsriand fewer features tracked longer).
The algorithms compared are (i) the MSCKEF, (ii) EKF-SLAM lwinverse depth parametrization
(IDP) (Civera et al., 2008), (iii) EKF-SLAM with the anchatdhomogeneous feature parametriza-
tion (AHP) (Sola, 2010), and (iv) EKF-SLAM with the “tradithal” XYZ feature parametrization
(XYZ). Our goal in these simulations is to examine both theusiacy and the consistency of the
algorithms. Therefore, we collect statistics for the ageraormalized estimation error squared
(NEES) for the IMU pose (position and orientation), as wedl tae root mean squared error
(RMSE) for the IMU position and orientation. We note that éoconsistent estimator the average
pose NEES should be 6 (equal to the dimension of the pose),ewbile a larger NEES value
indicates inconsistency.

In all the SLAM algorithms, we wait untik observations of a feature are available, prior to
initializing it in the state vector. For this purpose, we main a sliding window of poses in the
state vector, and when a feature has been obseredes, all the measurements of the feature
are used concurrently to initialize the feature parameaéion and its covariance. In our tests,



TABLE |
SIMULATION RESULTS: PERFORMANCE METRICS(IMU POSENEES,ORIENTATION RMSE,AND POSITIONRMSE)
FOR THEMSCKF AND THE THREEEKF-SLAM ALGORITHMS WITH VARYING NUMBER OF OBSERVATIONS()
USED FOR INITIALIZATION. THE VALUES ARE AVERAGES OVER ALLMONTE-CARLO TRIALS AND ALL TIME STEPS.

K=2

k=4

k=06

Algorithm

Pos. RMSE (m)

Ori. RMSE 0)

NEES

Pos. RMSE (m)

Ori. RMSE 0)

NEES

Pos. RMSE (m)

Ori. RMSE 0)

NEES

XYZ
IDP
AHP

N/A
69.502
67.061

N/A
3.731
4.795

N/A
2205.101
273.247

78.447
26.193
52.355

5.609
1.916
4.531

4.910°
268.141
129.602

53.469
22.878
36.858

3.974
1.803
3.129

1.310°
167.261
48.236

[ Pos. RMSE (m)[ Ori. RMSE () | NEES || |
[ 14401 | 1102 | 7.741 | |

we used the values = 2, k = 4, andx = 6. Even though for the IDP and AHP approaches it
is not necessary to use multiple observations for inition, our results show that this results
in dramatically improved performance. We note that if a degls track ends after fewer than
observations, its measurements are processed with the MS@&asurement model instead. In
this way no measurements are discarded, and all the algmitompared use the same feature
observations for fairness.

Fig. 1 shows the average NEES for the IMU pose, as well as th&RMkdr the IMU position
and orientation, averaged over 50 Monte-Carlo trials. Pig corresponds to the cage= 4 for
the SLAM methods. Moreover, Table | provides the numericdues for the NEES and RMSE
for all the algorithms, and with different values effor the SLAM methods. Several interesting
conclusions can be drawn from these results. The most impioone is that the MSCKF algorithm
outperforms all three EKF-SLAM VIO formulations, both inrtes of accuracy (smaller RMSE)
and in terms of consistency (NEES closer to six). This is altéisat we have consistently observed
in all our tests, and that we attribute to two main reasons:

« First, all EKF-SLAM algorithms assume that the errors of lfkié) stateandfeature positions
are jointly Gaussian at each time step. However, due to thdinearity of the camera
measurement model, this is not a good approximation, paetly for the XYZ parame-
terization (Civera et al., 2008). By intelligently choogithe feature parameterization, as
AHP and IDP do, the accuracy and consistency of EKF-SLAM carintiproved, as shown
in these results. However, these algorithms still perfoignificantly worse than the MSCKEF.
Since in the MSCKF the features are never included in the stattor, no assumptions on
the feature errors’ pdf are needed, thus avoiding a majorcsoaf inaccuracy.

o In EKF-SLAM, feature measurements are linearized and mseEx ateachtime step. By
contrast, the MSCKF employs a “delayed linearization” agjgh: it processes each feature
only whenall its measurements become available. This means that motgatedeature
estimates are used in computing Jacobians, leading to mecése calculation of the Kalman
gain and state corrections, and ultimately better accuracy

Examining the different EKF-SLAM methods, we see that inc&dance with previous re-
sults (Civera et al., 2008; Sola, 2010), the performancéefAHP and IDP parameterizations is
significantly better than that of the XYZ parameterizatitthshould be mentioned that, for the
XYZ parameterization, initializing features after onlydvwobservations is extremely unreliable:
the estimator always fails, which does not allow us to obtalable statistics. This failure
is characterized by a sequence of timesteps in which the Glierections are very large (and
erroneous), after which all residuals fail the Mahalana®st, no filter updates occur, and the esti-
mation errors increase rapidly. In fact, even if more obagons are used for feature initialization,
the XYZ parameterization still remains unreliable: fortarsce, whens = 4, the EKF-SLAM
with XYZ parametrization fails ird% of the trials, if far-away features are discarded, and in
approximately 70% of the trials if all features are kept.He statistics reported in Table | for the
XYZ parametrization, only successful trials are used, wvjgle more meaningful statistics. Note



that no failures were observed in the IDP SLAM, AHP SLAM, or ®IS- algorithms.

Moreover, we can observe that the use of more measuremenfsatore initialization (larger
k) leads to better performance, for all EKF-SLAM algorithrmi$ie improvement ag increases
occurs because with more measurements, a better initiatast for the feature is obtained, and
thus the filter Jacobians become more accurate and thedgadficloser to a Gaussian. Moreover,
as x increases, more features are in fact processed with the MS@&asurement model, as a
larger percentage of features is seen fewer théimes. In this test, for example, when= 6 more
than 50% of features are processed by the MSCKF update egsafihus, as: increases the
EKF-SLAM algorithms essentially become “hybrids” betw@d8CKF and EKF-SLAM (Williams
et al., 2011; Li and Mourikis, 2012b), and their performaapproaches that of the pure MSCKF
method.

In addition to the algorithms’ estimation performance, stdlso important to examine the
computational efficiency of the different methods. For thstd performed above, the MSCKF’s
average runtime was 0.93 msec per update, while for the Bk&vVBmethods the average runtime
was 1.54 msec for XYZ, 3.28 msec for IDP, and 4.45 msec for AMienx = 2 (measured on
a Core i7 processor at 2.66 GHz, with a single-threaded C+pteimentation). These observed
runtimes agree with the theoretical computational comiplexf the algorithms: the MSCKF’s
computational cost per time step lisear in the number of features, as opposedctabic for
EKF-SLAM. Thus, we can conclude that due to the higher aayu@onsistency, robustness, and
computational efficiency, the MSCKF is preferable to EKFASL algorithms for VIO applications.

IV. EKF CONSISTENCY ANDRELATION TO OBSERVABILITY

In Table | we can see that the average IMU-pose NEES for the KFSI@ the simulation tests
is 7.741, i.e., above the theoretically expected value xff@i a consistent estimator. Moreover,
Fig. 1, shows that the NEES is gradually increasing over tireaching an average of 10.6 in the
last 100 sec. These results show that MSCKF beconoesisistentalbeit much less so than EKF-
SLAM methods. This inconsistency can become significanbivg ltrajectories, as demonstrated in
the results of Section VIII-B. In the remainder of the paperfacus on explaining the cause of the
inconsistency, and proposing a solution to it, by examirtimg linearized system'’s observability
properties.

To illustrate the main idea of our approach, consider a glaysystem described by general
nonlinear models:

x = f(x,u)+w a7
z=h(x)+n (18)

wherex is the system statay is the control inputz are the measurements, and finally and

n are noise processes. To track the state veetan a digital computer, discretization of the
continuous-time system model is necessary. Furthermdrenvan EKF is used for estimation, the
filter equations (e.g., covariance propagation and updgt®, computation) rely on a linearized
version of the discrete-time model, which has the generahfo

X1 >~ Pyxp + Wy (29)
f‘g ~ Hgig +1ny (20)

where ®, and H, denote the error-state transition matrix and the measuredseobian matrix,

respectively. Since the EKF equations are derived basetiefintearized system model in (19)-
(20), the observability properties of this model play a @lmle in determining the performance
of the estimator. Ideally, one would like these propert@snatch those of the actual, nonlinear
system in (17)-(18): if a certain quantity is unobservahl¢hie actual system, its error should also



be unobservable in the linearized model. If this is not theecéfictitious” information about this
quantity will be accumulated by the EKF, which will lead tacansistency.

The observability properties of the nonlinear system fausi-inertial navigation have recently
been studied in (Jones and Soatto, 2011; Kelly and Sukh&@id,; Martinelli, 2012). Based on
the analysis of these papers, it is now known that when a vy system moves in a general
trajectory, in an environment with a known gravitationateleration buino known features, four
degrees of freedom are unobservable: (i) the three comelsppto the global position, and (ii) one
corresponding to the rotation about the gravity vector,(ifee yaw). In Section VI, we analyze the
observability properties of the linearized system modepleyed in EKF-based VIO, by studying
the nullspace of the observability matrix associated wit®){(20):

Hy,
Hyp 1Py

G
>

(21)

Hitrn ®rym—1--- P

The nullspac&? describes the directions of the state space for which narirdton is provided
by the measurements in the time interyal k£ + m], i.e., the unobservable directions. For the
linearized system to have observability properties aralsgo the actual, nonlinear system, this
nullspace should be of dimension four, and should containviictors corresponding to global
translation and to rotation about gravity. However, our kesult, proven in Section VI, is that this
is not the case when the MSCKF (or an EKF-SLAM method) is eggadofor VIO. Specifically,
due to the way in which the Jacobians are computed in the Hi€~global orientatiorappears
to be observable in the linearized model, while it is not ie tctual system. As a result of
this mismatch, the filter produces too small values for tladestovariance matrix (i.e., the filter
becomesnconsistent and this in turn degrades accuracy.

Note that, to study the nullspace of the matéixin (21) for the VIO system, we must have
an expression for the error-state transition matbx for ¢ = k,... kK +m — 1. In turn, this
requires an expression for the IMU’s error-state transititatrix, defined in (6). Therefore, before
proceeding with the observability analysis, we must deaeexpression for this matrix. This is
the focus of the next section.

V. COMPUTING THE IMU ERROR-STATE TRANSITION MATRIX

Most existing methods for computing; stem from the integration of the differential equation
®;(t,t;) = F(t)®(t,t;), where F(t) is the Jacobian of the continuous-time system model
of the IMU motion (Trawny and Roumeliotis, 2005). For instean(Mourikis and Roumelio-
tis, 2007; Tardif et al., 2010) employ Runge-Kutta numedriogegration, (Weiss and Siegwart,
2011; Weiss et al., 2012) use a closed-form, approximatéisalto the differential equation, while
several algorithms (especially in the GPS-aided iner@afigation community) employ the simple
approximation®; ~ I+ FA¢ that is equivalent to using one-step Euler integration. (€karrell,
2008; Vu et al., 2012; Foxlin, 2005; Zachariah and JanssobQ2Lupton and Sukkarieh, 2012)).
All these methods for computin®}; have the disadvantage that, being numerical in nature afreey
not amenable to theoretical analysis. More importantlyydxer, when® ; is computed numerically
and/or approximately, we have no guarantees about its grepeAs a result, if; is computed in
this fashion, wecannotguarantee that the observability matrix of the linearizd® \gystem (21)
will have the desirable nullspace properties, a prerefgufsr consistent estimation.

In what follows, we describe how the IMU error-state traiositmatrix can be computed in
closed form, as a function of the state estimates. To this emdfirst examine what motion
information we can infer from the IMU data, and how this imf@tion can be used for state
propagation. This will enable us to derive an expressiondfgrthat holds independently of the



particular method used to integrate the IMU signals. We ttiodé the expression derived here can
be employed in any estimation problem that uses IMU measeméstfor state propagation (e.g.,
GPS-aided inertial navigation, vision-aided inertial igation, etc).

A. What information do the IMU measurements provide?

The IMU’s gyroscopes and accelerometers give sampled mezasuts of the following continuous-
time signals:

wn(t) = w(t) + bg(t) + ne(t) (22)

an(t) = GR(t) (“at) — g) + ba(t) +na(t) (23)
where/w(t) and“a(t) denote the IMU angular rate and linear acceleration, reisedg n,(t)
andn,(t) are white Gaussian noise processes, giigl the gravity vector expressed in the global
frame.

Equation (22) shows that the IMU gyroscopes provide measem¢s of the rotational velocity,
expressed in the IMU frame. Using these measurements, wertgrinfer therelative rotation of
the IMU between two time instants. Moreover, (23) shows thatIMU accelerometers measure
specific force, which includes both the body and gravitatiacceleration, expressed in the local
frame. These signals provide us with information about thlecity change expressed in theeal
IMU frame, and must be “gravity-compensated” before usestate propagation. In what follows,
we momentarily assume that we have access tac@imtinuous-timesignalsw,, (t) anda,,(t) in
the time intervallt,, t,, 1] (corresponding to the transition from time-stépo ¢ + 1), and show
how these signals can be used for state propagation. Thesfiéthe discrete-time sampling of
the IMU’s signals are discussed in Section V-B.

1) Gyroscope measurement§he orientation of the IMU frame at tim&,; with respect to
the IMU frame att, (i.e., the relative rotation) can be computed by integratn differential
equation, whose form depends on the selected representdtarientation. In the unit-quaternion
representation (Trawny and Roumeliotis, 2005), the redatotation of the IMU betweety, and
tyy1 is described by @ x 1 unit quaternionﬁj“q. To compute an estimate éjﬁlq usingw, (t),
we first obtain the estimated rotational velocity [ip, t,1] asw(t) = wy,(t) — Bg(t), and then
integrate the differential equation:

[ W e oo

with initial conditionﬁcﬁ =[0 0 0 1]7. The relative orientation estimaﬁ?la, computed from the
above differential equation, can be employed for propagatie IMU global orientation estimate
as follows:

I, _2

Ipiq2 Ipiq12 ~
¢la=1"avda (25)
2) Accelerometer measurementdsing a,,,(t) and an estimate of the accelerometer bias, we
can obtain an estimate of the IMU’s acceleration in the dldtzane as (see (23)):

%a(t) = TR (am(t) — ba(t)) + & (26)

Integrating this signal twice in the time intenj&l, ¢, 1] gives the velocity and position propagation
equations:

tot1
S :Gw+/ “a(r)dr
ty

toya . R
=G5+ [ GR (anr) — bulr) ) dr + g 27)
te

=¥+ YR8 + gAt (28)



and

G G e
Pey1 = "Pet+ / vrdr
to

Pe-l— VgAt—F Ryg—l— gAt (29)

whereAt = ty; — ty, and

A~

& / i R(am(T) — Ba(¢)> dr (30)

toy R
Vo= / / L R(am - ba(7)> drds (31)
te te

Note that the term§, andy, dependonly on the values oé,,(¢) andw,,(t) in the time interval
[te, ter1], @s well as on the IMU biases. These terms express the infamarovided by the IMU
about the change in the IMU velocity and position[in ¢, 1]. As shown in (28) and (29), to use
s, andy, to propagate the global velocity and position estimatespwest express them in the
global frame (via the rotation matrigf{), and account for the gravitational acceleration.

We note that in (Lupton and Sukkarieh, 2012) it is shown how MU measurements can be
“pre-integrated”, so that they can be used even without gialiguess for the state. While (Lupton
and Sukkarieh, 2012) follows a reasoning similar to the omsgnted here, we here go one step
further, and use this analysis to obtain a closed-form esgioe for the error-state transition matrix.

B. Discrete-time IMU propagation

To derive equations (24)-(25) and (28)-(31), it was assuthatithe signalsv,,,(t) anda,,(t)
were available in the entire intervédy,t,.1]. In practice, however, the IMU provides samples
of a,,(t) and w,,(t) at the discrete timeg, and ¢,.;. To use these measurements for state
propagation, it is necessary to employ additional assumgtabout the time evolution ef,,(t)
andw,,(t) between the two times for which samples are available. Fsiaite, we can assume
that these signals remain constant for the entire periodaletp their values at eithet, or
ty11), Or that they change linearly between the sampled valuessd assumptions will introduce
approximations, which will be small if the sample rate isfigigntly high. We stress however,
that some approximation is unavoidable, since turning diltoous-time signal to a sampled one
leads to loss of informatidn

In what follows, we describe the integration approach feéd in our implementation. In our
work, the IMU biases are modelled as random-walk processeswe model the continuous-time
evolution of the biases bfog( ) = Ny, (t) andbg(t) = nya(t), wheren,,, andn,, are zero-
mean white Gaussian noise processes, with COV&I‘I&I’]CGCEI:HQLVg and Qwa Therefore, during
propagation the bias estimates remain consﬂa@ = bge and baw = bae To propagate the
IMU pose in time, at timé&, ; we use the IMU samples recordedatindt,,; and assume that the
signalsw,,(t) anda,,(t) change linearly between these two time instants. With te&ianption,
we numerically integrate (24) using fourth-order Runget&uo obtalnl’f“* and propagate the
IMU orientation using (25). For the position and velocitye vemploy equatlons (28) and (29),
where the quantitie§, andy, are computed using Simpson integration of (30) and (31).

“Note that, if the signals are known to be band-limited, mateaaced signal-reconstruction methods can be employed.
However this requires additional assumptions about theomatharacteristics and/or the sensor, which are not always
appropriate.



C. Computing®;,

We now turn our attention to computing the IMU error-stat@nsition matrix shown in (6),
which can be done by direct linearization of the state-pgapian equations (25), (28), and (29).
For clarity, we here show the derivation @&;, omitting the IMU biases, while the full result for
the case where the biases are included in the state vectboignsn Appendix A. Starting with
the orientation error, we note that the orientation-errefirdtion in (2)-(3) satisfies:

IR ~ LR (13 - LGéxJ) (32)
Moreover, the estimated rotation in the time interitalt,. ] is corrupted by an error due to the
inaccuracy of the gyroscope measurements as well as thepssas employed during integration.
We define this error based on the expres%idhq = ﬁ“é ® dqa¢, from which we obtain
R R (T (0] ) (33)

wheref, is a3 x 1 error vector. Substituting (33) and (32) into the exprassilating the true
rotation matricesy;"'R = Z“R 4R, and removing second-order terms, we obtain the following
linearized expression for the orientation-error propiagat

Gé@_’_l ~ Géé + RgéAt (34)
where we used the shorthand notatiii® = R,. For the velocity error, we linearize (28)
using (32), to obtain the linearized error-propagationagigum:
G\Nfg_,_l ~ —LR?@@XJGég + G\Nfg + R}éé (35)
The terms, = s, — §; is the error ins,, which depends only on the IMU measurement noise and
the assumptions employed during integration. Similady,the position we obtain:

Do = — Ry yex]90,+ VAt + by + R 3, (36)
wherey, =y, — y¢. By combining (34), (35) and (36), we can now write:
GOy I3 03 03 1[%, Rg N
Cpey1| = |—|RIyex] I3 AtI3| |%pe| + Rf)’é (37)
G\N’g_i_l — LRTSEXJ 03 13 G{’g RZ Sy
~ AN~ ——
Xigiy ®;, X1, W,

It is important to note that the above expressiond®gf has an intuitive explanation. We see that:
(i) The diagonal block elements are all identity matricebjoli shows that the errors in the IMU
state at time, “carry over” to the next time step, as expected. (i) The gioerror, multiplied
by At, affects the position error at timg, ;, and (iii) The orientation error at time is multiplied

by the “lever-arms ngg andRz S¢, causing accumulation of errors in position and velocity. T
write the state transition matrix as a function of the staténgates only, we solve (28) and (29)
for §, andy,, respectively, and substitute in (37) to obtain:

I3 03 03
D, (X1,,.,,%1,) = | Ppq(Xr,y,,%1,) I3 Atlg (38)
(I,Vq(&lg+1 ) >A(Ie) 03 :[3
N ~ N ~ N 1
®pq(%1,,,%1,) = —[(“Per1—“Pr GVzAt—ggN2) x|
Byq(X1,,,.%1,) = —[(FVe1—VgAL) x|

We stress that this matrix is a closed-form function of thegesestimatesnly. Thus, it can be
employed regardless of the way in which the integration &f),(230) and (31) is carried out.



Note that in different implementations of IMU propagatighe form of the equations being
integrated may be different from those shown above (for gtanfor velocity propagation one
may choose to numerically compute the integral in (27),eadtof breaking it into two terms
as in (28)). However, this does not change the nature of tfegnmation provided by the IMU
measurements, and thus does not (in felsguldnot) change the way in which the errors in a state
estimate propagate to future estimates. This way is dextiily the matrix in (38), as discussed
above.

V1. OBSERVABILITY PROPERTIES OF THEMSCKF SYSTEM MODEL

We now employ the closed-form expression #y, derived in the preceding section to analyze
the observability properties of the MSCKF's system modelsimplify the presentation, we here
carry out the analysis for the case where the IMU biases arénoluded in the estimated state
vector. These biases are known to be observable (Jones attd,S911), and thus their inclusion
would not change the key result of this analysis, which isetrteneous decrease in the dimension
of the nullspace of the observability mafrixhe fact that the analysis also holds for the case where
the biases are included in the state vector is demonstrgtdtelresults presented in Sections VIII
and IX. In the implementation used for all our simulation axgberimental results, the biases are
included in the state vector, as described in Section IlI-A.

A direct analysis of the observability properties of the M3 linearized system model is
cumbersome, due to the form of the MSCKF equations (seg,(@%)). To simplify the analysis,
we make use of the result of Appendix B, which shows that gigelinear (or, equivalently,
a linearized) model, the EKF-SLAM and MSCKF measurementaéqos are equivalent. This
means that we can study the observability of the MSCKF'saliized model by studying the
EKF-SLAM linearized model, butising the MSCKF'’s linearization pointslote that the MSCKF
and EKF-SLAM linearize the measurements using differeateststimates: in the MSCKF, a single
estimate for each feature is used for computing all the Janshbnvolving this feature (see (14)),
in contrast to EKF-SLAM, where the current estimate is udeelaah iteration. The details of the
observability analysis follow.

We consider an EKF-SLAM state vector containing the IMU otigion, position, and velocity,
as well as the positions of all the landmarks observed inithe interval|k, k + m/|. For this state
vector, the error-state transition matrix (using the MSGKlhearization point) at time step is
given by:

R ~ (I,I )A([ 1 7>A(I 0
‘I’Z(Xle+1\tfyxle\e): Z( Fbw EM) 13M><3]\/I (39)

where M is the number of landmarks. Turning to the feature measumasneve note that if
featurei is processed at time-steg + 1, then in the MSCKF the corresponding Jacobians are
evaluated with the state estimates computed using all memsmts up tow;, and the feature

position estimaté’f)fi computed via triangulation. Thus, the measurement Jacaidause in our
analysis becomes (see (10) and (13)):

Hi(7 4., “Dy,) = [Hr, (Fga,, ©Ds) 0 -+ Hg, (7o, “Dy) -+ 0] (40)
where the Jacobians of (7) with respect to the IMU pose ande#tire position are given by
Hy, (740, “By) = Jit(Fpj,. “Py,) TR Ry, (41)

Hy, (740, “Py,) = He, (700, D7) [(ODf, — “Prja) ¥ —TI3 03]

°If we include in the state additional quantities that arevikmdo be observable, this will augment the observability
matrix (21) with additional, linearly independent, colusnand will not affect the dimension of the nullspace(®f



e (42)

~ G
Jit(T g, "Py,) = Cezpolo 1 L
T C'[

with [“2;, Cegy ©24]7 being the estimate of the feature position with respect éoctimera:

Ceg .

g@ﬁ = YRRy, Dy, —“Prja,) +pr (43)
‘Z,

By substitution of (39) and (40) in (21), we can thereforedgtthe observability properties of
the linearized system model of the MSCKF. Before doing thawéver, it is interesting to first
examine what the observability matrix would look like in thdeal” case where thérue state
estimates were used in computing all Jacobians.

1) “Ideal” Observability Matrix: To derive the “ideal” observability matrix, we evaluate the
state transition matrix a®(x;,.,,xy,) (see (39)), and evaluate the Jacobian matrix in (40) using
the true states. Substituting these matrices in (21) yigldgollowing result for the block row of
the observability matrix corresponding to the observatibfeature: at time step/:

Oy =My [Ty I3 —Atd3; 03 -+ Iy -+ 03] (44)

M = Jie YRRy (45)
- 1

L= | (“py, — “pr — “vilAt, — §gAt§) x | (46)

In the above equationg\t, denotes the time interval between time stépand/, and we have
used the symbol™ to denote a matrix computed using the true state valueshi&tgoint, if we
define the matriXN as:

[ 03 Rig 1
I; —|“pix]g
03 —LGVkXJg
N=|IL —(°pnxlg (47)
I3 _Lpr2XJg
| I —[“ppx]e

it is easy to verify that);;- N = 05,4. Since this holds for anyand any/ (i.e., for all block rows
of the observability matrix), we conclude thé&: N = 0. In addition, the four columns dN are
linearly independent, which implies that they form a basisthe nullspace of the observability
matrix O (in (Li and Mourikis, 2011), we prove that no additional sagectors can be found for
the nullspace).

In other words, the above shows that the observability matrhen all Jacobians are computed
using the true states, has a nullspace of dimension fogralsb interesting to examine the physical
interpretation of the nullspace basis found above. We sagethie first three vectors correspond to
global translation of the state vector, while the last calurnrresponds to rotations about gravity
(i.e., the yaw) (Li and Mourikis, 2011). Thus, if we were albdeestimate all the Jacobians using
the true state estimates, the observability propertieb@flinearized system model would match
those of the nonlinear system, as desired.

2) MSCKF Observability MatrixUsing (39) and (40) in (21), the block row of the observayilit
matrix O corresponding to the observation of featurat time-step/ becomes:

Oie = My [Ty+ATyy —I3 —Atds 03 --- I3 --- 03] (48)



where

Mo = Jio(Xqa,. “Py) TR Ry, (49)

. R . 1
Ty = [(“Dp. — “Prp — Vit — igAti) x| (50)

-1 ' J
ATy = [“pge1— Prax] + Y (Bi+ > EJAL) (51)
j=k+1 s=k+1
with

E} = [“Djjj—1 — “bj;x) (52)
B} = %911 = “Vp%] (53)

By comparing (48)-(51) to (44)-(46) we see that the strietofrthe observability matrix in both
cases is similar. The key difference is that when the Jaoslaiee evaluated using the stastimates
instead of the true states, the “disturbance” tei®;, appears. WhileAT;, is quite complex,
we can observe that it contains terms that depend on the ctions (e.g.,Gf)jU — Gf)j‘j_l,
szj‘j — G\?ﬂj_l) that the filter applies at different time steps. Since thmmeections are random,
the termAT,, is a random one, and this “destroys” the special structutbebbservability matrix.
As a result, the propert;, - N = 0 does not hold.

It can be shown that the nullspace @f(i.e., the unobservable subspace) is now of dimension
only three (Li and Mourikis, 2011). This nullspace is spahthg the first three column vectors
(the first block column) ofN in (47), which means that the global yasroneously appeart be
observable. As a result, the MSCKF underestimates the tamesr of the yaw estimates. Since
the yaw uncertainty affects the uncertainty of other statgables (e.g., the position), eventually
the uncertainty of all states will be underestimated, areddhktimator will be inconsistent. This
helps to explain the results observed in the NEES plot of Fig.

It is important to point out that the incorrect observapiliiroperties of the linearized system
model do not affect only the MSCKF algorithm. In Appendix & thbservability matrix of the
linearized model of EKF-SLAM is shown. This matrix has a spdice of dimension three as well,
similarly to the MSCKF. In fact, for the EKF-SLAM methods etfdisturbance” term appearing
in the observability matrix contains additional terms dadhe corrections in the feature position
estimates. Such terms do not appear in the MSCKF, which udg®oe estimate for each feature
in all Jacobians.

VII. MSCKF 2.0

In the preceding section, we proved that the linearizedesyshodel employed by the MSCKF
has incorrect observability properties, which cause therfib become inconsistent. In this section,
we propose a simple method by which the increase in the chlsliernsubspace of the filter can
be avoided. Moreover, we propose an extension of the basiCH#Salgorithm, which serves to
improve the algorithm’s performance in real-world sceosriSpecifically, in our analysis to this
point it was assumed that the IMU-to-camera transformgjiasition and orientation) is perfectly
known. In practice, this is typically not the case: while atireate for the transformation may
be known from a CAD plot or manual measurements, this is glfyidnexact. For example, the
coordinate frames of the sensors are typically not peyfeditined with the sensor housing, which
makes manual measurements less useful. If the transfamiatiassumed to be perfectly known,
even though the available estimates are not exact, thisleall to a degradation of both the
consistency and the accuracy of the filter estimates. Toeaddhis issue, we propose to include
the camera-to-IMU transformation in the estimated stattoreof the MSCKF.



A. Enforcing correct dimension of the unobservable subspac

As shown in Section VI, the fact that in the MSCKdifferent estimates of the same states
are used for computing Jacobians leads to an infusion ofitidies” information about the yaw.
Specifically, the use of different estimates for the IMU piosi and velocity result in nonzero
values for the disturbance terndsI';, (see (51)), which change the dimension of the nullspace
of the observability matrix. To remove thead";, terms, a simple solution is to ensure that only
one estimate of each IMU position and velocity is used in attabians involving it. A causal
approach to achieve this is to always use fingt available estimate for each state. Specifically,
we compute the filter Jacobians as follows:

« Compute the IMU error-state transition matrix at time-stegs:

¢}g (f(-[lﬁ»l\@’f{[lw—l) (54)

« Calculate measurement Jacobians as:
Hj, = Jiu(Xpja,, “Py,) TR Ryja, (55)
H;, =H; [ [(“D;—"Pre-1)x] —I5 03] (56)

As a result of the above changes, only the “propagated” astisnfor the position and velocity
(e.g.,GfW_l and G\?W_l) are used in computing Jacobians. It is easy to show that thith
change, the observability matrix regains the correct patte dimension, and thus the infusion of
“fictitious” information for the yaw is avoided. We stressathwe allow the state estimates to be
updated normally; the only change we make to the MSCKF egusitis that we do not use the
updated estimates of the position and velocity in compulimgpbians. This change, which incurs
no additional computational cost, substantially improvegfiggenance, as shown in the simulation
and experimental results presented in Sections VIII and IX.

The idea of using the first estimates of all states to ens@redirect observability properties of
the linearized system model can also be employed for EKFMDNAQO. In this case, in addition
to the IMU position and velocity estimates, we must also uee same (first) estimate of each
feature when computing all Jacobians involving it. As shawiSection VIII, the resulting EKF-
SLAM algorithms outperform the standard ones, yet cannathehe accuracy or consistency of
the MSCKF 2.0.

B. Camera-to-IMU Calibration

To estimate the camera-to-IMU transformation in the MSCK&nfework, we include the
transformation parameters in the filter state vector. Sjgatly, we augment the IMU state by
adding the pose of the camera with respect to the IMd; = {¢p,Yq}:

Xt = {;QT GpT GyT b, T b,T CpT ICqT}T (57)
where we have used the symbadi”“to distinguish this state vector from the original IMU
state in (1). During propagation, the estimates for the cart@IMU parameters as well as
their covariance remain unchanged. For the updates, ontjnral modifications of the MSCKF
equations are required to account for the inclusionref; in the state vector. Specifically, the
linearized residual equations (13) for each feature measemnt now become:

Tij = Zi5 — h(ﬁ-jw—la frCIE\Z—l? fz) (58)
o~ Hz’j'ﬁ'j\f—l + Hcl.jﬁ'c[““l + Hfijfi + ny; (59)



TABLE Il
AVERAGERMSEAND NEESRESULTS FOR ALL THEEKF-BASED VIO ALGORITHMS TESTED IN THE SIMULATIONS

K=2 =4 k=06
Algorithm Pos. RMSE (m)| Ori. RMSE () NEES Pos. RMSE (m)| Ori. RMSE ) | NEES || Pos. RMSE (m)| Ori. RMSE () | NEES
XYZ N/A N/A N/A 78.447 5.609 4.910° 53.469 3.974 1.310°
IDP 69.502 3.731 2205.101 26.193 1.916 268.141 22.878 1.803 167.261
AHP 67.061 4.795 273.247 52.355 4.531 129.602 36.858 3.129 48.236
m-XYZ 60.564 3.160 116.721 19.297 1.512 9.185 12.477 1.238 7.385
m-IDP 40.912 2.057 57.346 18.144 1.400 8.600 15.498 1.211 7.156
m-AHP 38.288 2.311 38.932 18.010 1.385 8.357 15.494 1.205 7.160
Pos. RMSE (m)| Ori. RMSE () | NEES
MSCKF 14.401 1.102 7.741
MSCKF 2.0 12.840 1.008 5.890
“Ideal” MSCKF 12.720 1.001 5.816

forj = ¢ —-N...¢ -1, whereH¢,, is the Jacobian of the measurement with respect to the
camera-IMU pose:

He, =Ji I3 YRyo1|Roe—1 (“Dy, — “Peje—1) x]]

The equations (59) can still be stacked to obtain an equatafogous to (14), as the errdg;,,
is now a part of the state vector. Thus, the MSCKF’s methodeafaving the feature error to
create a residual suitable for an EKF update (see (15)) cappked with no further changes.
Estimating the camera-to-IMU transformation in the MSCK&nfiework offers two key advan-
tages over alternative EKF-based algorithms for the sasie farst, it can operate in unknown
environments, with naa priori known features (in contrast to methods such as (Mirzaei and
Roumeliotis, 2008; Kelly et al., 2008)). Second, since ib@sed on the MSCKF, it shares all the
advantages of the MSCKF over SLAM-based methods (e.g. $Jand Soatto, 2011; Kelly and
Sukhatme, 2011)), as outlined in Section IlI-D. For insigrits computational cost is significantly
lower, and it is less sensitive to the nonlinear nature oestenation problem. Moreover, based on
the analysis of (Jones and Soatto, 2011; Kelly and Sukhd&tfitel), we know that the camera-to-
IMU transformation is observable for general trajectarigsus, by including it in the MSCKF state
vector, we do not run the risk of introducing additional eétes that may become “erroneously
observable”. We term the algorithm that uses the first eséisn@f each state in computing
Jacobians and includes the IMU-to-camera calibrationrpatars in the state vector MSCKF 2.0.
In the following sections, we present simulation and experital results that demonstrate the
performance of the method.

VIIl. SIMULATION RESULTS

In this section we present simulation results that illustthe analysis presented in the preceding
sections, and demonstrate the performance of the MSCKFI@oGitam compared to alternatives.
All the simulation data is generated based on real-worl@skds, as explained in Section 111-D,
and all the results reported are averages over 50 Monte @ls.

A. Comparison to EKF-based SLAM

We first compare the performance of the MSCKF and MSCKF 2.0rdlgns to EKF-SLAM
based methods for VIO. For the results presented here, theraato-IMU calibration parameters
are assumed to be known without uncertainty. In the resutssgmted in Section IlI-D, it was
shown that the original MSCKF algorithm outperforms the EBFAM algorithms using either
XYZ, IDP, or AHP feature parameterizations. We thus hereu$oon comparing the performance
of the MSCKF-based algorithms to that of the “modified” EKEAB/A versions, where the first
estimate of each state is used in computing Jacobians taectigicorrect rank of the linearized
system’s observability matrix. These modified algorithmes @entified as m-XYZ, m-IDP, and
m-AHP. Additionally, in this simulation we include an “idéaMSCKF algorithm, in which the
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Fig. 2. Simulation results: The average position and oaigon RMSE over 50 Monte-Carlo trials. The algorithms
compared are the MSCKF (blue dash-dotted line), the “idB&SCKF (red line with x-marks), the MSCKF 2.0 (black
line with squares), the m-XYZ SLAM (green solid line), thelBP SLAM (cyan dashed line), and the m-AHP SLAM
(magenta line with “plus”-marks).

true IMU states and feature positions are used for compaatlirte filter Jacobians. This algorithm
(which is only realizable in a simulation environment), c@ive as a benchmark of performance
for the MSCKF-based methods. For the results presented eeaetly the same simulation data
as in Section 1lI-D are used, to facilitate comparison.

Fig. 2 shows the average IMU pose NEES as well as the IMU posénd orientation RMSE
over time, for the three MSCKF based methods, as well as frtlhee EKF-SLAM methods
(with k = 4 for the SLAM methods). Moreover, Table Il provides the nuicedrvalues for the
NEES and RMSE for all the algorithms (this table includesrésults of Section IlI-D for easier
comparison).

We can conclude that all the “modified” algorithms, which tise first estimates of each state
in Jacobian computation, outperform their counterpass tise the standard approach for Jacobian
computation. Not only are these algorithms more consigtent they have smaller NEES), but also
more accurate (i.e., smaller RMSE). These results showethiircing the correct observability
properties of the linearized system is crucially importanthe performance ddll EKF-based VIO
methods, and validate the analysis of Section VI. Despédrtiprovement that the modified EKF-
SLAM algorithms offer, however, they are all less accurai@ntall the MSCKF-based methods.
This shows the advantages of the MSCKF approach to progesrfeature measurements, which
copes better with nonlinearities by not making Gaussianrapions about the feature pdfs.

Additionally, we can observe that the performance of the MBQ.0 algorithm is almost
indistinguishable from that of the “ideal” MSCKF, both inrties of accuracy and consistency.
This indicates that, as long as the correct observabiliyperties are ensured, using slightly
less accurate linearization points in computing the Jaswbidoes not significantly degrade the



estimation performance. Based on the simulation resuftd (aven that the “ideal” MSCKF is
not realizable), we can conclude that the MSCKF 2.0 is théeped VIO method out of all the
EKF-based approaches considered.

B. Comparison to iterative-optimization methods

We next compare the performance of the MSCKF-based algasitto that of an iterative-
minimization based method. Specifically, we use an infoimnafiorm fixed-lag smoother (FLS),
based on (Sibley et al., 2010) for comparison. This is argligiindow bundle adjustment method
that marginalizes older states to maintain a constant ctatipoal cost. The FLS is essentially
the counterpart of the MSCKF within the class of iteratividimization methods, which allows
for a meaningful comparison. In our implementation, thelisli window contains a number of
IMU poses corresponding to the times images were recordediedl as the features observed in
these poses. The IMU measurements are used to provide theegg-model” information between
the poses of the window, while the feature observationsigeothe “sensor-model” information
(see Section 2.1 in (Sibley et al., 2010)). Every time a newgenis recorded, Gauss-Newton
minimization is employed to update the state estimates énstlding window, and subsequently
the oldest pose, and features that are no longer obsenednanginalized out. All the methods
tested (MSCKF, “ideal” MSCKF, MSCKF 2.0, and FLS) use a sligdivindow of the same length.

For these tests we employ a much longer dataset as our bagjerierating simulated data.
Specifically, we use the Cheddar Gorge dataset (Simpson.,eR@l1), which involves a 29-
km-long trajectory, collected in 56 minutes of driving. Rbis dataset an Xsens IMU provided
measurements at 100 Hz, and images are available at 20 Hachimage, 240 features were
tracked on average, and the average track length was 4.tdr@mote that this is due to the fact
that a very large percentage of features are tracked fot pedods in this dataset, which involves
a fast-moving vehicle. The longest track lengths exceed&@ds).

Before examining the averaged results of all the MonteCaidls, it is interesting to examine
the results of estimation for the rotation about gravitye(§yaw) in a single trial. Fig. VIII-B
shows the estimation errors in the yaw for the four algorghms well as thet3o envelopes
computed using the reported covariance of each methode(#resthe reported 99.7% confidence
regions). The most important observation here is that tiperted standard deviation for both
the MSCKF and the FLS fluctuates about a constant vaseif the yaw was observable. By
contrast, in the “ideal” MSCKF and the MSCKF 2.0 algorithntise standard deviation of the
yaw increases over time, as theoretically expected, givanthe yaw is unobservable. This figure
clearly demonstrates the importance of the observabitibp@rties of the linearized system: when
these do not match the properties of the underlying nonliegstem, the estimation results (e.g.,
reported uncertainty) exhibit fundamentally incorrectuccteristics. We note here that the FLS
also suffers from the same inconsistency problem, evergthdwemploys iterative re-linearization,
as shown in (Dong-Si and Mourikis, 2011).

The three subplots in Fig. 4 show the average NEES for the IMkepas well as the RMSE
for the IMU orientation and position, averaged over 50 Me@#lo trials. Table Il lists the
average NEES and RMSE values for the four algorithms. Fivst,note that the performance
of the MSCKF 2.0 is similar to that of the “ideal” MSCKF, andathboth algorithms clearly
outperform the standard MSCKF. These results once agaiw #fat by enforcing the correct
observability properties, the filter's performance can lgmificantly improved. Additionally, in
this simulation environment, we see that the performanierdnce between the standard MSCKF
and the MSCKF 2.0 is more pronounced than before. This is dube fact that the Cheddar
Gorge dataset is significantly longer (both in trajectonygiin and duration). As a result, more
“spurious” information about the yaw is accumulated, duthincorrect observability properties
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TABLE Il
AVERAGE NEESAND RMSEFORFIG. 4.
Pos. RMSE (m)| Ori. RMSE () | NEES
FLS 1334 2.83 50.97
MSCKF 146.2 3.40 51.72
MSCKF 2.0 97.7 221 6.53
“Ideal” MSCKF 100.2 2.35 6.45

of the filter's linearized model. In turn, this causes a largegradation in the estimates of the
standard MSCKF.

More importantly though, we see that the MSCKF 2.0 (as welhas‘ideal” MSCKF) attains
substantially better accuracy and consistency even thaitatative FLS method. This occurs even
though the latter uses approximately 5 times more computditne. The performance difference
between the MSCKF 2.0 and the FLS demonstrates that (atitethe case examined here) having
a linearized system model with appropriate observabilitypprties is more important than using
re-linearization to better approximate the nonlinear mearsent models.

C. Performance of the online camera-to-IMU calibration

To test the performance of the online camera-to-IMU catibra we conducted a second Monte-
Carlo simulation test based on the Cheddar Gorge dataseackm Monte-Carlo trial, the IMU-to-
camera translation and orientation were set equal to knanimal values with the addition of
random errorgp andd@, respectively. In each triap andd@ were randomly drawn from zero-
mean Gaussian distributions with standard deviationsleiqua, = 0.01 m andoy = 0.5° along
each axis, respectively. This setup models the scenaridiohwthe transformation parameters are
approximately, but not exactly, known (e.g., through mami@asurement).
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In this simulation, we compared the performance of four algms: (i) The MSCKF 2.0
algorithm with the online calibration enabled, (i) The M&E 2.0 algorithm with the online
calibration disabled, and assuming the camera-to-IMUsfiamation is equal to its nominal value.
This will help demonstrate the effect of incorrect transfation estimates on the estimator’'s
accuracy and consistency. (iii) The m-AHP algorithm, withlioe camera-to-IMU calibration
implemented. Out of all the EKF-SLAM algorithms considerg m-AHP is the one with the best
performance, and thus is the “best-case scenario” for erdalibration in the SLAM framework.
(iv) Finally, we run the MSCKF 2.0 algorithm with perfectiyn&wn calibration, as a benchmark
of performance. We term this the “precise” scenario.

Table IV shows the results of Monte-Carlo trials, listingpamately the RMSE errors along the
three axes (the: andy axes are parallel to the ground, while theaxis is parallel to gravity).
Three key observations can be made here. First, we obseatveviien the camera calibration is
falsely assumed to be known (calibration “off”), the fileegccuracy and consistency are severely
degraded, particularly along the axis. This happens even though the errors of the calibration
parameters are relatively small in these simulations. &&cae can observe that the accuracy of
the IMU pose estimates computed when the calibration ioopaeéd online with the MSCKF 2.0 is
almost identical to the accuracy that is achieved witpriori perfectly known calibration. This is
practically significant, as it indicates that more sopbé&td (and expensive) calibration processes
involving specialized equipment may not be required for nagplications. Third, by comparing
the performance of m-AHP to MSCKF 2.0, we observe that the [8thfased approach attains
lower accuracy and consistency for the IMU pose, as wellasi@recision for the camera-to-IMU
calibration. This result, which agrees with those of Seclifdll-A, demonstrates the advantage of
performing the camera-to-IMU calibration in the MSCKF 2r@rhework.



TABLE IV
PERFORMANCE OF THE ONLINE CAMERAIMU CALIBRATION

Transformation imprecise precise

Calibration on on off N/A

Estimator m-AHP MSCKF 2.0
86.2 | 59.6 | 59.6 59.0 x (M)
113.2 | 80.3| 84.9 | 79.9 y (m)
6.4 55 | 117.0| 25 z (m)

IMU pose RMSE | 511 | 910| 015 | 0.10 roll (°)

0.12 | 0.11| 015 | 0.10 pitch ()
327 | 226 2.26 2.25 yaw (°)

IMU pose NEES| 8.24 | 7.45| 2591 | 7.02
0.03 0.03| N/A N/A position (m)

Calib. RMSE . ;
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Fig. 5. Trajectory estimates plotted on a map of Canyon CRiserside, CA. The initial vehicle position is shown
by a green circle, and the end position by a red circle. Thekbsmlid line corresponds to the ground truth, the green
dash-dotted to the MSCKEF, the red dashed line to the MSCKF&h@ the blue dotted line to the FLS.

IX. REAL-WORLD EXPERIMENT

We next describe the results of a real-world experimenindguwhich an IMU/camera platform
was mounted on top of a car and driven on the streets of Rdesr€lA. The sensors consisted of
an Xsens MTi-G unit, and a PointGrey Bumblebee2 stereo paly @ single camera’s images are
used). The IMU provided measurements at 100 Hz, while theecaimages were stored at 20 Hz.
For position ground truth we used a GPS-INS estimate of thjedtory. For image processing,
Shi-Tomasi feature points were extracted (Shi and Tom&§84). and matching was carried out
by normalized cross-correlation. On average, approxipn&@0 features were tracked per image.
The experiment lasted about 37 minutes, during which thécleedrove approximately 21.5 km.
Some sample images from the experiment are shown in Fig. 7.

Fig. 5 shows the ground truth trajectory on a map of the arezrevtine vehicle drove, as well as
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Fig. 7. Sample images recorded during the experiment.

the estimates computed by three algorithms: the MSCKEF, t& Bnd the proposed MSCKF 2.0.
These are the three most accurate estimators tested, andlypresent their results for clarity.
Fig. 6 plots the estimation error as well as the reporteddstahdeviation of the yaw and they
position for the three algorithms. Similarly to what was ebv&d in Fig. VIII-B, we see that the
MSCKF 2.0 (plots on the left) offers a better character@abf the actual uncertainty. By contrast,
the uncertainties of both the yaw and the IMU position areenestimated by the MSCKF and the
FLS (plots on the right). The estimation errors for theseodlgms are also significantly larger
than those of the MSCKF 2.0. The elevation (altitude) edtmaf the MSCKF 2.0 are also more
accurate, having worst-case errors 20f m, compared t®27 m for the MSCKF and33 m for
the FLS. The largest position error for the MSCKF 2.0 aldwntis approximatelys8 m, which
corresponds to onl9.28% of the travelled distance. In contrast, the trajectorynestes reported
by the MSCKF and the FLS are much less accurate, with largestign errors of abou230 m
and 202 m, respectively.

Since the precise IMU-to-camera parameters were not phrfeocown, they were estimated
online by the MSCKF 2.0 algorithm, using manual measuremtmtinitialization. Fig. 8 shows
the orientation estimates between the IMU and the cameragente roll, pitch, and yaw angles
describe the camera orientation expressed in the IMU frarhe.final standard deviation of the
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Fig. 8. Orientation estimates of the camera expressed inMhkeframe. Note that the estimation uses a quaternion
representation, and the results are transformed to rmhpiaw for visualization purposes only.

orientation estimates i.008° 0.008° 0.039°] about the three axes, while for the position we
obtain[0.008 0.008 0.005] m, showing the high accuracy attainable by the online casteerU
calibration process.

As a final remark, we note that in this experiment, the avemgeessing time per update of
the MSCKF 2.0 (including image processing and estimatisnl® msec measured on a Core
i7 processor at 2.66 GHz, with a single-threaded C++ impfeat@on. Since the image period
is 50 msec, the algorithm’s performance is comfortably initthe requirements for real-time
operation.

X. CONCLUSION

In this paper, we have presented a detailed analysis of tpepies and performance of different
EKF-based VIO algorithms. We show that the MSCKF algorithttaias better accuracy and
consistency than EKF-based SLAM algorithms, due to its $#sst probabilistic assumptions and
delayed linearization. In addition, we performed a rigaretudy of the consistency properties of
EKF-based VIO algorithms, and showed that the filters’ liiesl system models have incorrect
observability properties, which result in inconsistenty. address this problem, we developed
the MSCKF 2.0 algorithm, which uses a novel closed-form eggion for the IMU error-state
transition matrix and fixed linearization states to enshee dppropriate observability properties.
Moveover, the MSCKF 2.0 algorithm is capable of performimdiree camera-to-IMU calibration.
Extensive Monte-Carlo simulations and real-world expenial testing provide strong validation
of our theoretical analysis, and demonstrate that the pegpdISCKF 2.0 algorithm is capable
of performing long-term, high-precision, consistent VI@ rieal time. In fact, the MSCKF 2.0
algorithm is shown to outperform even an iterative-miniatian based fixed-lag smoother, an
algorithm with substantially higher computational reguirents.
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APPENDIXA
If the biases are included, the IMU error-state transiticatrin is given by:
Is 03 03 P, O3
g I3 Atly Ppp, Ppa
Dyq 03 I3 Dy, Pya (60)
03 03 O3 I3 03

where

t[+1 T R
Do, _/ / JRT/ IR ds dr dw
te te te °
. beta .
pa:—Rg/ / ?R ds dr
te te

tg+1 . R T R
@ng:/ |GV, — g)xJR{/ IR ds dr
t[ tl
A t£+1 A
va=—RT / ‘Rdr (61)
to

The detailed derivation of this result is provided in (Li akiurikis, 2011).

APPENDIX B

We here prove that, in a linear-Gaussian system, the stdimads and covariance matrix
computed by the MSCKF is identical to the MAP estimate for lfki&) pose. Since EKF-SLAM
is also a MAP estimator, this means that the MSCKF and EKF8L#ould be identical in a
linear-Gaussian system. Due to limited space, we here geaa outline of the main steps of the
proof, and the full details are provided in (Li and Mourik&)11).

Let us consider the following linear system:

x; =Pix;_1 +w;_1 (62)
zij =Hx, x; + Hg, py, + nyj (63)

wherex;, i = 0... N are the IMU stategyy,, j = 1... M are the feature positions;; andn;; are
zero-mean white Gaussian noise processes with covariaatEesQ; ando>I,, respectively, and
®;, Hy,, andHf are known matrices. We denote the vector containing alllthig states ax =

[x{ xff ... x%]", the vector containing all the feature positiongas [f7 7 .- f5]",
and the vector contalnlng all measurements as

z =Hyx+ H¢f +n

whereH, and H¢, are matrices with block rowbl,,, andHyg, , respectively.

Using the prior estimate for the first statg;, as well as the state propagation equation, we
can obtain an estimate for, which we denote by,, along with its covariance matri® . This
estimate uses all the information from the prior and theegtabpagation model. The MAP estimate



for the entire state vector, which uses all the availablermftion (prior, propagation model, and
measurements) is given by:

|:§5MAP] _ Al [P;lfcf "’J%sz_
fvap —~H;z

where A is the information matrix;
A [P+ pHIH, mHIH]
#=H{H,  H{H;]

and A~! is the covariance matrix of the MAP estimate. Using the stashcproperties of the
inversion of a partitioned matrix, we can show that the esté®\;ap and its covariance matrix
equal:

1 -
*nap =Puap <Ps‘1§<s+;H£ (- B (0 H;) " 'HY) z>

_ 1 —1 B
Pyap = <Ps 1y ﬁﬂz (I — H¢(HY Hy) HfT) HX>

On the other hand, in the MSCKF algorithm, if we use the IMU sugaments to propagate the
state estimates, and then employ the camera measuremeats tipdate, the update is performed
based on the residual:

r, = V7' (z - HL%,) = (VI Hy) %, +n, (64)

whereV is a matrix whose columns form an orthonormal basis for tlftenigllspace ofHg, and
n, is a noise vector with covariance mataXI. Using the Kalman filter equations, the state and
covariance update can be written as:

XMsc = Xs + Kr, (65)
Puisc = (P;l + % (VTH,)" (VTHX)> B (66)

whereK is the Kalman gain, which can be written as (Maybeck, 1979):
K = %PMSC (VTHx)T (67)

Our goal is to show thakysc = xmap, and Pysc = Puap. To this end, we note that the
matrix I — Hy (Hfo)_lH'{ is the orthogonal projector onto the left nullspaceld, and thus

I- Hf(Hfo)_lH'{ = VVT (Meyer, 2000). Using this result, the equalBaisc = Paap
follows immediately, and we can also write:

1
xmap = Pusc <P§ X+ —QHEVVTz> (68)
g
Substitution of (64) and (67) in (65) yields:
1
XMSC =X, + EPMSC (VTHx)T V7T(z — HL%,)
1 1
—1 TvvTaT ) < Ty T
=Pusc <<PMSC —;HX \AY% Hx> Xs —|—§ H,VV z)

Showing that the last equation is equal to (68) follows imiaedy by use of (66).



APPENDIXC

In EKF-based SLAM, the current feature estimates are used¢dmputing the measurement
Jacobians at each time step. Thus, we have:

Hy, =Ju§RRy [L(Gﬁfw,l—Gf)m—DXJ —1I3 03]

He, = Ju YRRy, (69)
where the matrixJ;,; is evaluated using the estimate:

“bry. = TRRy1(“Dr ., —“Pye—r) +pr (70)

Using these Jacobians, we obtain the block row of the obb#ityamatrix corresponding to the
observation of featuré at time-step/. This matrix has the same structure as (48), with:

R R R 1
Iy = [prw,] - ka:\k - Gvkz\kAté - §gAt? x |

/-1
ATy = > (EL+ 2]: ESAt) + |A%py, x | (71)
j=k+1 s=k+1
M= Ju TR Ry
Aprvz = LGﬁfi\e—1 - Gf)fﬂkfl x| (72)
B} = [“Djj—1 — “Dy;x) (73)
B = 9950 — 9] (74)

Similarly to the MSCKF, the observability matrix of EKF-tetsSLAM also contains a disturbance
term AT;,, which decreases the dimension of the unobservable suspac
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