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Abstract— All existing methods for vision-aided inertial nav-
igation assume a camera with a global shutter, in which all the
pixels in an image are captured simultaneously. However, the
vast majority of consumer-grade cameras use rolling-shutter
sensors, which capture each row of pixels at a slightly different
time instant. The effects of the rolling shutter distortion when
a camera is in motion can be very significant, and are not
modelled by existing visual-inertial motion-tracking methods.
In this paper we describe the first, to the best of our knowledge,
method for vision-aided inertial navigation using rolling-shutter
cameras. Specifically, we present an extended Kalman filter
(EKF)-based method for visual-inertial odometry, which fuses
the IMU measurements with observations of visual feature
tracks provided by the camera. The key contribution of this
work is a computationally tractable approach for taking int o
account the rolling-shutter effect, incurring only minimal ap-
proximations. The experimental results from the application of
the method show that it is able to track, in real time, the position
of a mobile phone moving in an unknown environment with
an error accumulation of approximately 0.8% of the distance
travelled, over hundreds of meters.

I. I NTRODUCTION

Modern smartphones have significant processing capabili-
ties, and are equipped with a rich sensor suite that typically
includes multiple cameras, gyroscopes, accelerometers, a
compass, and a GPS receiver. This creates opportunities for
using these devices forlocation-based applications, which
use the knowledge of a device’s position to provide useful
information. To estimate the position, most approaches today
rely on GPS and signals from known transmitters (e.g.,
cellular network antennas, wireless network routers). How-
ever, the estimates obtained by these methods are typically
quite coarse, and cannot track fine motions of the device.
By contrast, in this work we are interested in tracking
the motion of a smartphone (or similar device) with high
precision, without relying on any external infrastructureor
prior knowledge of the area where the motion takes place.

Endowing small handheld devices with the capability to
track their pose with high spatial and temporal fidelity in
non-instrumented environments will create a host of new
opportunities. For instance, such devices can be used for
high-precision location-based services even indoors and in
other areas where radio signals are unavailable; for aiding
visually impaired persons navigate in unknown environ-
ments; or for tracking a person’s gait with high fidelity,
to help diagnose medical conditions. Additionally, we point
out that a smartphone capable of real-time, high-precision
pose estimation can be placed onboard a mobile robot,
micro aerial vehicle, or other robotic vehicle, to provide
an inexpensive localization solution. Given the widespread

Fig. 1: An example image with rolling-shutter distortion.

availability of smartphones, this would lower the barrier to
entry in robotics research and development.

Towards the realization of the above goals, in this pa-
per we propose a method for motion estimation using a
device’s camera and its inertial sensors (gyroscope and
accelerometer). The use of visual and inertial sensing is
advantageous, as both sensors are self-contained, can operate
in most environments of interest, and provide measurements
at high sample rates. In recent years, a significant body of
literature has focused on the problem of motion estimation
using cameras and inertial measurement units (IMUs) [1]–
[8]. However, all prior work assumes that the camera has
a global shutter, i.e., that all the pixels in an image are
captured at the same time. By contrast, the cameras found
on smartphones (as well as most consumer devices) typically
use CMOS sensors with arolling shutter, capturing each row
of pixels at a slightly different time instant.

When a moving rolling-shutter camera captures an image,
the changing camera pose during the capture can cause
significant visual distortions (Fig. 1). In the context of motion
estimation, these distortions mean that the projections of
scene points on the image are at drastically different loca-
tions, compared to the locations they would have if a global
shutter was used. Therefore, if one of the existing methods
that assume a global shutter is used for motion estimation,
its performance is severely degraded (see Section IV). Un-
less the rolling-shutter effects are explicitly modelled and
accounted for, they can lead to outright algorithm failure.

In this paper we describe the first, to the best of our



knowledge, method for vision-aided inertial navigation using
rolling-shutter cameras. Specifically, we present an extended
Kalman filter (EKF)-based method for visual-inertial odome-
try, which fuses the IMU measurements with observations of
visual feature tracks provided by the camera. No additional
external signals are used, and no prior knowledge of the
features’ position is required. The key contribution of this
work is a computationally tractable approach for taking into
account the camera’s motion during each image’s capture.
Specifically, we include the camera’s linear and rotational
velocities at the time of image capture in the EKF state
vector, and use them to model the rolling-shutter effect in the
camera’s measurement model. To avoid the computational
burden normally incurred by including the rotational velocity
in the state vector (in which case EKF updates normally need
to take place at the IMU sample rate), a novel formulation
for IMU propagation is derived.

The proposed method has been tested on real-world data
on a Samsung Galaxy S2 mobile phone. The attained ac-
curacy is comparable to that obtained by high-end global-
shutter cameras (e.g. [6], [9]), despite the lower quality of
the sensors and the limited capabilities of the device’s CPU.
In datasets involving 610-m and 900-m long trajectories,
the final position errors were in the order of 0.8% of the
distance traveled. This high level of accuracy is achieved
even though the method operates, at real-time speed, on
the resource-constrained processor of the mobile phone.
Moreover, simulation tests confirm that this level of accuracy
is typical, and that the estimator is consistent. In what follows
we describe the details of our work, after a discussion of the
related literature.

II. RELATED WORK

Most work on rolling-shutter cameras has focused on
image rectification for compensating the visual distortions
caused by the rolling shutter. The majority of methods
in this category use the images in a video to obtain a
parametric representation of the distortion, and use this to
generate an undistorted video stream [10], [11]. Gyroscope
measurements have also been employed for this task, since
the most visually significant distortions are caused by ro-
tational motion [12], [13]. In contrast to these methods,
our goal is not to undistort the images (which is primarily
done to create visually appealing videos), but rather to use
the recorded images for motion estimation. By comparison,
this a less-explored topic. To the best of our knowledge,
all existing approaches rely exclusively on visual data, and
do not use any inertial sensors. For example, [14], [15]
present algorithms for bundle adjustment with rolling-shutter
cameras, [16] describes an implementation of the well-
known PTAM algorithm [17] using a rolling-shutter sensor,
while [18]–[20] propose methods for estimating the motion
of objects by exploiting the rolling shutter distortion.

The fact that these methods use images alone, without iner-
tial sensing, introduces limitations. For example, to estimate
the linear and rotational velocity of the camera, in [14] the
camera motion is assumed to vary linearlybetween the time
instants images are recorded. In [15], similar assumptionsare

employed, but with a higher-order model for the motion. For
these methods to be applicable, the camera images must be
recorded at high frame rates, and the camera motion must be
smooth, without any sudden changes in the motion profile.
By contrast, by using inertial measurements to propagate the
state estimates between images, our proposed method can
operate with much lower frame rates (e.g., approximately
5 Hz in our experiments) thus reducing computational load.
Moreover, the use of IMU readings enables operation even
with highly-varying motions, such as those observed when a
person holds a device while walking.

We note that, to the best of our knowledge, the only
method that fuses visual measurements from a rolling-shutter
camera and inertial sensors can be found in [21]. In that
work, the visual feature observations are combined with
gyroscope readings to estimate the camera’s rotationonly.
By contrast, in our work we estimate the full 6-D pose of
the moving platform (i.e., position and orientation), as well
as the platform’s velocity.

III. M OTION ESTIMATION WITH AN IMU AND A

ROLLING-SHUTTERCAMERA

Our goal is to estimate the pose (position and orientation)
of a device equipped with an IMU and a rolling-shutter
camera. To this end, we affix a coordinate frame{I} to
the IMU, and track its motion with respect to a fixed global
coordinate frame,{G}. The spatial transformation between
the IMU frame and the coordinate frame of the camera,{C},
is constant and known, for example from prior calibration.
This transformation is described by the rotation quaternion1

C
I q̄ and the position vectorIpC . Moreover, we assume that
the intrinsic parameters of the camera are also known from
an offline calibration procedure.

Our interest is in motion estimation in unknown, unin-
strumented environments, and therefore we assume that the
camera observes naturally-occurring visual features, whose
positions are not knowna priori. The visual measurements
are fused with measurements from a 3-axis gyroscope and
a 3-axis accelerometer, which provide measurements of the
rotational velocity,ωm, and acceleration,am, respectively:

ωm = I
ω + bg + nr (1)

am = I
GR

(

Ga− Gg
)

+ ba + na (2)

where I
ω is the IMU’s rotational velocity vector,Gg is

the gravitational acceleration vector,bg and ba are the
gyroscope and accelerometer biases, respectively, which are
modelled as random-walk processes, and finallynr andna

are zero-mean white Gaussian noise vectors affecting the
measurements.

1Notation: The preceding superscript for vectors (e.g.,G in Ga) denotes
the frame of reference with respect to which quantities are expressed.A

B
R

is the rotation matrix rotating vectors from frame{B} to {A}, A
B
q̄ is the

corresponding unit quaternion [22], andApB is the position of the origin
of frame {B} with respect to{A}. ⊗ denotes quaternion multiplication,
⌊c×⌋ is the skew symmetric matrix corresponding to vectorc, while 0
and I are the zero and identity matrices, respectively.â is the estimate of
a variablea, and ã = a − â its error. Finally, âi|j is the estimate of the
statea at time stepi, when all EKF updates up to time stepj have been
performed.



Our approach to motion estimation is based on the
modified multi-state-constraint Kalman filter algorithm
(MSCKF 2.0), presented in [6], [23]. This is an EKF-
based visual-inertial odometry algorithm for global-shutter
cameras, which has been shown to produce high-precision
motion estimates in real-world settings. Before presenting
our approach to motion estimation with rolling-shutter cam-
eras, we first briefly discuss the global-shutter MSCKF 2.0
algorithm, to highlight its key components and introduce the
notation used in the rest of the paper.

A. The MSCKF 2.0 algorithm for global-shutter cameras

The key idea of the MSCKF method, originally proposed
in [5], is to maintain a state vector comprising a sliding win-
dow of camera poses, and to use the feature measurements
to impose constraints on these poses, without explicitly
including the features in the state vector. Specifically, the
state vector of the MSCKF algorithm at time-stepk is given
by:

xk =
[

xT
Ik

π
T
Ck−m

· · · π
T
Ck−1

]T
(3)

where xT
Ik

is the current IMU state, andπCi
=

[Ci

G q̄T GpT
Ci
]T , for i = k −m, . . . , k − 1, are the camera

poses at the time instants the lastm images were recorded.
The IMU state is defined as:

xI =
[

I
Gq̄

T GpT
I

GvT
I bT

g bT
a

]T

(4)

whereI
Gq̄ is the unit quaternion describing the rotation from

the global frame to the IMU frame, whileGp andGvI denote
the IMU position and velocity with respect to the global
frame. Note that the gyroscope and accelerometer biases are
also included in the state vector, since their values slowly
change in time and need to be estimated online.
Propagation: Every time an IMU measurement is received,
it is used to propagate the IMU state [23]. Additionally, the
covariance matrix of the state estimate is propagated as:

Pk+1|k =

[

ΦIkPIIk|k
ΦT

Ik
+Qd ΦIkPICk|k

PT
ICk|k

ΦT
Ik

PCCk|k

]

(5)

whereΦIk is the error-state transition matrix for the IMU,
computed in closed form as shown in [6], [23],Qd is the
process-noise covariance matrix, andPIIk|k

, PCCk|k
, and

PICk|k
are the partitions of the filter covariance matrix for

the IMU state, the camera states, and the cross-terms between
them, respectively.
State augmentation: When a new image is recorded, the state
vector of the filter is augmented with a copy of the current
camera pose. Specifically, if a new image is recorded at time-
stepk, we augment the state vector with the estimate of the
current camera pose:

π̂Ck|k−1
=
[

C
G
ˆ̄qT
k|k−1

Gp̂T
Ck|k−1

]

, with

C
G
ˆ̄qk|k−1 = C

I q̄⊗
I
G
ˆ̄qk|k−1 (6)

Gp̂Ck|k−1
= Gp̂Ik|k−1

+ I
GR̂

T
k|k−1

IpC (7)

and augment the state covariance matrix as:

Pk|k−1 ←

[

Pk|k−1 Pk|k−1J
T
π

JπPk|k−1 JπPk|k−1J
T
π

]

(8)

whereJπ is the Jacobian ofπCk
with respect to the state

vector. Once augmentation is performed, an EKF update
takes place.
MSCKF measurement model: In the MSCKF approach, all
the measurements of each feature are employed simultane-
ously for an EKF update, once the track of this feature
is complete (e.g., when the feature goes out of the field
of view). Specifically, with a global-shutter camera, the
observation of a feature by the camera at time stepj is given
by:

zj = h(Cjpf ) + nj (9)

where h(·) is the perspective camera model:h(f) =
[fx/fz fy/fz]

T , nj is the measurement noise vector,
modelled as zero-mean Gaussian with covariance matrix
σ2I2, andCjpf is the position of the feature with respect to
the camera. This is a function of the camera poseπCj

and
the feature positionGpf :

Cjpf (πCj
,Gpf ) =

Cj

G R
(

Gpf −
GpCj

)

(10)

To use the feature for an update, we wait until all its
measurements are collected (i.e., until the feature track is
complete). Then, using all the measurements we triangulate
a feature position estimateGp̂f , and compute the residuals

rj
.
= zj − h(π̂Cj

, Gp̂f )

for j = 1 . . . ℓ whereℓ is the number of poses from which
the feature was observed. In the above, we have explicitly
expressed the fact that these residuals depend on both the
camera pose estimates, and the feature position estimate. By
linearizing, we can write the following expression forrj :

rj ≃ Hjπ̃Cj
+Hfj

Gp̃f + nj , j = 1 . . . ℓ (11)

where π̃Cj
and Gp̃f are the estimation errors of thej-th

camera pose and the feature respectively, and the matri-
ces Hj and Hfj are the corresponding Jacobians. In the
MSCKF 2.0 algorithm, all the Jacobians are evaluated using
the first estimate of each camera position, to ensure that the
observability properties of the system model are maintained,
and that the estimator remains consistent [6], [23].

Note that, since the feature errors are not included in the
state vector, the residualrj in (11) cannot be directly used for
an EKF update. We therefore proceed to marginalize out the
feature. For this purpose, we first form the vector containing
the ℓ residuals:

r
.
=
[

rT1 rT2 . . . rTℓ
]T

(12)

≃ Hx̃+Hf
Gp̃f + n (13)

wheren is a block vector with elementsnj , and H and
Hf are matrices with block rowsHj andHfj , respectively.
Subsequently, we define the residual vectorro

.
= VT ri,

whereV is a matrix whose columns form a basis of the
left nullspace ofHf . From (13), we obtain:

ro
.
= VT r ≃ VTHx̃+VTn = Hox̃+ no (14)



Note that (14) does not contain the feature error, and
describes a residual in the standard EKF form. Thus, the
residualro and the Jacobian matrixHo = VTH can now
be used for an EKF update.

In the update that occurs after each image, all the features
whose feature tracks just ended are processed to obtain
residualsroi , and then all these residuals are used together to
update the state vector and covariance matrix (details on how
this update can be implemented in a computationally efficient
way are given in [5]). Finally, the oldest camera poses, for
which all the features have been processed, are removed from
the state vector to keep the computational cost bounded.

B. Rolling-Shutter Camera Model

We now turn our attention to the use of a rolling-shutter
camera for motion estimation. These cameras capture the
rows of the image sequentially: if the first row in an image
is captured at timet, then-th row is captured at timet+ntd,
where td is the time interval between the reading of two
consecutive rows of pixels. Thus, each image is captured
over a time interval of non-zero duration, called the readout
time of the image,tr. For typical cameras found in consumer
devices such as smartphones,tr is usually in the order of a
few tens of milliseconds, which is enough to cause significant
distortions as shown in Fig. 1.

If a point feature is projected on then-th row of thej-th
image, its measurement is described by:

z
(n)
j = h(Cpf (tj + ntd)) + n

(n)
j (15)

wheren(n)
j is the image measurement noise,tj is the time

instant the image capture began, andCpf (tj + ntd) is the
position of the feature with respect to the camera frame at
time tj + ntd:

Cpf (tj + ntd) =
C
GR(tj + ntd)

(

Gpf −
GpC(tj + ntd)

)

(16)

By comparing (15)-(16) to (9)-(10), the difference between
a global-shutter and a rolling-shutter camera becomes clear.
While previously the feature measurements in an image
only depended on a single camera pose (i.e.πCj

), with a
rolling shutter the image measurements in asingle image
depend on the camera pose atmultiple time instants. To use
these measurements in the MSCKF approach described in
Section III-A, one would have to augment the sliding window
with one camera pose per row of the image. This would
require hundreds of poses to be included in the state vector,
and would be computationally intractable.

In order to obtain a practical algorithm, we introduce
the rotational and translational velocity of the camera into
the equations. Specifically, (16) can be written without any
approximation as:

Cpf (tj + ntd) = R(ntd)
Cj

G R
(

Gpf −
GpCj

−

∫ tj+ntd

tj

GvC(τ)dτ

)

(17)

whereGvC is the velocity of the camera in the global frame,
andR(ntd) is the rotation of the camera in the time interval
[tj , tj + ntd], which can be computed by integration of the
differential equation:

Ṙ(t)= −⌊Cω(t)×⌋R(t), t ∈ [tj , tj + ntd] (18)

with initial conditionI3. In this equation,Cω(t) denotes the
rotational velocity of the camera.

Equation (17) is a function of the camera poseπCj
and

of the linear and rotational velocity of the camera in the
time interval[tj , tj+ntd]. Since none of these quantities are
perfectly known, they have to be estimated. However, the
camera velocities defined over a timeinterval are infinite-
dimensional quantities, and thus (17) cannot be directly used
to define a practically useful measurement model. To obtain a
computationally tractable formulation, we employ additional
assumptions on the time-evolution of the camera velocities.
Specifically, we modelGvC andC

ω as being constant during
the readout time of each image. This has the advantage that
the rotation matrixR(ntd) and the integral appearing in (17)
take a simple form, leading to:

Cpf (tj+ntd)=e−⌊ntd
C
ωj×⌋ Cj

G R
(

Gpf−
GpCj

− ntd
GvCj

)

(19)

The matrix exponentiale−⌊ntd
C
ωj×⌋ can be written in closed

form, as shown in [24].
Note that, by assuming constant linear and rotational

velocity for the camera during the capture of each image,
we are introducing an approximation. However, this approx-
imation is used for a much shorter time period (the readout
time, tr) than what is needed in vision-only methods such
as [14], which assumes constant velocities for the entire time
intervalbetween images (e.g. in our experiments the readout
time was tr = 32 msec, while the average time between
images was approximately200 msec). The key benefit from
assuming constant linear and rotational velocity duringtr
is that we can express the measurement of each feature as
a function of just four quantities (see (15) and (19)): the
camera position and orientation at the time instant the first
row was captured, and the two velocity vectors.

Using the measurement model described by (15) and (19),
we can now employ a method for using the feature mea-
surements analogous to the MSCKF. To make this possible,
instead of maintaining a sliding window of cameraposes in
the state vector, we maintain a sliding window of camera
states (cf. (3)):

xk =
[

xT
Ik

xT
Ck−m

· · · xT
Ck−1

]T
(20)

where each camera state is defined as:

xCj
=
[

C
Gq̄

T
j

GpT
Cj

GvT
Cj

C
ω

T
j

]T
(21)

With this change, the way of processing the features in
the MSCKF, described in Section III-A, can still be em-
ployed. The only difference is that now in (11)-(13) the
Jacobians with respect to the camera poseπCj

are replaced
by Jacobians with respect to the camera statexCj

. These
Jacobians can be computed by differentiation of (15), using
the expression in (19). After this change, the MSCKF’s



Fig. 2: Illustration of the times at which the two IMU-
propagation methods are used.

technique of feature marginalization described in SectionIII-
A can be followed.

C. State augmentation and IMU propagation

The preceding discussion shows that, by augmenting each
camera state to include the linear and rotational velocity,
we are able to process the measurements of the rolling-
shutter camera for EKF updates. We now show how state
augmentation can be performed, and how state augmentation
affects the way in which the IMU is propagated. Let us
consider the case where an image begins to be captured
at time tk (corresponding to time-stepk in the EKF). At
this time, the filter state vector must be augmented with a
new camera state, containing the current camera pose and
velocities. While the camera pose can be computed directly
from the state estimates as shown in (6), the situation for the
camera velocities is more complex. Specifically, the camera’s
velocity vectors are given by:

GvCk
= GvIk + I

GR
T
k ⌊

I
ωk×⌋

IpC (22)
C
ωk = C

I R
I
ωk (23)

The above equations contain the known camera-to-IMU
transformation, the IMU velocity and orientation,and the
IMU rotational velocity. The latter is not contained in the
state vector, which introduces complications.

To see why, imagine that we use the IMU measurement
at time stepk to obtain an estimate forIωk, and use this
estimate in (23) for state augmentation. Now, having already
used the IMU measurement, we should not re-use it for
propagating the state estimate between timestepsk andk+1.
Doing so would be using the same information twice, thus
introducing unmodelled correlations which degrade accuracy.
The most straightforward solution to this problem would be
to explicitly include the IMU’s rotational velocity in the
state vector (as, for example, in [3], [25]). In this case,
the gyroscope measurements are direct measurements of the
state (see (1)), and must be used for EKF updates, instead
of propagation. This is undesirable, as it would necessitate
carrying out EKF updates (whose computational complexity
is quadratic in the size of the state vector) at the IMU
sample rate – typically in the order of 100 Hz. This would
likely be infeasible on the resource-constrained processor of
a handheld device.

To address these problems, we propose a new, “hybrid”
way of using the IMU measurements: most of the time
the IMU is used for propagating the state, as regular in
the MSCKF, while every time a new image needs to be
processed, a state-based propagation takes place. To illustrate
the procedure, consider the situation shown in Fig. 2, where
for simplicity we depict the camera’s readout time to be equal
to one IMU period (see Section III-D for the implementation
details in the general case). The IMU measurements that are
recorded in the time between image capture (i.e., timesteps2-
7, 9-14 and 16-17 in Fig. 2), are used for regular propagation,
as described in Section III-A. On the other hand, when a
new image begins to be captured (i.e., timesteps 1, 8, and
15), the following steps are taken: (i) the state vector and
filter covariance matrix are augmented with a new camera
state, (ii) a filter update takes place once the image becomes
available, and (iii) a special state-propagation takes place, to
propagate the state estimate to the next timestep. The details
are described next.

1) State augmentation: If an image begins to be captured
at timetk, we compute the following estimate for the camera
state, using the current filter estimates (i.e., the estimate
x̂k|k−1) and the current IMU measurement:

x̂Ck|k−1
=
[

C
G
ˆ̄qT
k|k−1

Gp̂T
Ck|k−1

Gv̂T
Ck|k−1

C
ω̂

T
k|k−1

]

whereC
G
ˆ̄qk|k−1 andGp̂Ck|k−1

are defined as in (6), and

Gv̂Ck|k−1
= Gv̂Ik|k−1

+ I
GR̂

T
k|k−1⌊(ωmk

− b̂gk|k−1
)×⌋IpC

C
ω̂k|k−1 = C

I R (ωmk
− b̂gk|k−1

)

In addition to the state, the covariance matrix of the filter
must be augmented. To this end, we linearizexCk

with
respect to the state estimate and the gyroscope measurement,
to obtain the following expression for the error in̂xCk|k−1

:

x̃Ck|k−1
≃
[

Jq Jp Jv Jbg
0
]

x̃k|k−1 + Jωnrk

= Jxx̃k|k−1 + Jωnrk

wherenrk is the noise in the measurementωmk
; Jq, Jp,

Jv, andJbg
are the Jacobians ofxCk

with respect to the
IMU orientation, position, velocity, and gyroscope bias; and
Jω is the Jacobian with respect toωmk

. Based on the above
expression, we can augment the covariance matrix as:

Pk|k−1 ←

[

Pk|k−1 Pk|k−1J
T
x

JxPk|k−1 JxPk|k−1J
T
x +Qrk

]

(24)

with Qrk being the covariance matrix of the noisenrk .
2) State-based propagation: After state augmentation, we

wait for the image to be fully captured, and perform an
EKF update as described in Section III-A, to obtainx̂k|k.
Once the update is complete, the next operation that must
be performed is to propagate the IMU state, to obtain
x̂k+1|k, where tk+1 is the time instant the image capture
is complete (e.g., 2, 9, or 16 in Fig. 2). Normally, we would
use the IMU measurementsamk

and ωmk
for this step;

however, as we mentionedωmk
has already been used for

the state augmentation, and should not be re-used, to avoid
unmodelled correlations. Instead, for propagation we use the
accelerometer measurementamk

and the estimate of the



Algorithm 1
Processing IMU measurements: When an IMU
measurement is received at a time when an image is
not being captured, use it to propagate the IMU state [5],
[6] and the covariance matrix (see (5)).

Processing images:
• When an image starts to be captured, initialize a new

camera state using the current IMU state estimate and
gyroscope measurement (Section III-C.1).

• Once the image becomes available, perform an MSCKF
update using all features whose tracks are complete
(Section III-A).

• State management: Remove from the state vector old
camera states, whose feature measurements have all
been used.

• Propagate the state vector and covariance matrix using
the accelerometer reading and the angular velocity of
the latest camera state (Section III-C.2).

IMU’s rotational velocity, computed asICR
C
ω̂k|k (note that

C
ω̂k|k is included in the EKF’s state vector). Using these,

the IMU kinematic state can be propagated as:

I
G
ˆ̄qk+1|k = e
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while all remaining quantities in the state vector stay un-
changed. In the above equationsΩ is a 4 × 4 matrix given
in [22]. In our implementation, the integrals in the position
and velocity propagation are computed numerically using the
trapezoid rule. To propagate the state covariance, we compute
the state transition matrix by computing Jacobians of the
above expressions with respect to all state variables (which
now includeCωk), obtaining an expression analogous to (5).

D. Algorithm and implementation details

The entire algorithm for vision-aided inertial navigation
with a rolling-shutter camera is described in Algorithm 1.
Note that, to maintain the clarity of the presentation, in Sec-
tion III-C it was assumed that, at the time an image’s capture
begins, an IMU measurement is simultaneously available. In
practice, however, the sensor measurements are not sampled
at the same time. In fact, in consumer-grade devices, where
the gyroscope and accelerometer are usually separate units,
even these two sensors’ data arrive at different time instants.
For these reasons, in our implementation we interpolate the
inertial measurements, so that (i) the gyroscope and ac-
celerometer measurements are available simultaneously, and
(ii) an inertial measurement is available at the time an image
capture begins. Moreover, since the image readout time is
not, in general, equal to one IMU period, the measurement
used for the state augmentation and state-based propagation
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Fig. 3: The estimation results on the first dataset. The
start/end point is denoted by a green square.
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Fig. 4: The estimation results on the second dataset. The
start/end point is denoted by a green square.

is computed by averaging the inertial measurements that
arrive during the readout time.

IV. EXPERIMENTAL RESULTS

A. Real-World Experiments

To test the performance of our proposed algorithm, we
collected data using a mobile phone (Samsung Galaxy S2)
that is equipped with a rolling-shutter camera, a 3-axis
gyroscope and a 3-axis accelerometer. We here report results
in two datasets collected while a person walked, holding the
phone with the camera facing forward. The device provides
gyroscope measurements at106 Hz and accelerometer mea-
surements at93 Hz. Both data streams were resampled to
90 Hz as described in Section III-D. On the other hand,
images were captured at15 Hz, and the readout time for
the sensor was32 msec. To reduce the computational load,
we only use a new image whenever the device has moved
by at least 20 cm from the location the last image was
recorded (the motion distance is determined via the IMU
propagation). This results in an effective average frame rate
of 5.05 Hz in both datasets. In fact, we noticed that using
images more frequently does not result in any meaningful
performance improvement. For feature extraction we used
an optimized version of the Shi-Tomasi algorithm, and per-
formed normalized cross-correlation for feature matching, as



0 100 200 300 400 500 600
0

2

4

6

8
m

Position standard deviation

0 100 200 300 400
0

1

2

3

m

Time (sec)

Fig. 5: The reported standard deviation for the position
estimates (along the axis of largest uncertainty) in the two
real-world datasets.

described in [26]. The data was stored onboard the cellphone,
and processed offline on the same device.

The first dataset was collected walking on the streets of
a residential area. The trajectory was approximately 900-m
long, lasting approximately11 minutes. The second dataset
consists of a loop around the Engineering building at the
University of California Riverside, in an approximately 610-
m long trajectory over 8 minutes. The trajectory estimation
results for both datasets are shown in Fig. 3 and Fig. 4.
In these plots, we compare the estimates computed by the
proposed method to the estimates computed by the approach
of [6], which assumes a global shutter. Note that due to the
nature of the datasets, a precise ground truth is difficult to
obtain. For visualization purposes, we manually drew the
approximate ground-truth path on the same figures.

The results of both experiments show that the proposed
method computes trajectory estimates that accurately follow
the (approximate) ground truth. These estimates are sig-
nificantly more accurate than those of the method in [6],
which demonstrates the importance of modelling the rolling-
shutter effects. Even though precise ground truth for the
entire trajectories is not known, it is known that in both cases
the final position is identical to the starting one. Using this
knowledge we can compute the final error to be 5.30 m, or
0.58% of the trajectory length in the first dataset, and 4.85 m,
or 0.80% of the trajectory, in the second. These figures are
comparable to the accuracy obtained in our previous work,
with high-quality global-shutter cameras, and significantly
more expensive IMUs [6]. In addition, we stress that the
algorithm is capable of real-time operation: the average
processing needed per image (including image processing
and estimation) is 146 msec on the cellphone’s processor, as
compared to an average image period of 198 msec.

In addition to the trajectory estimates, in Fig. 5 we plot
the reported standard deviation of the position estimates,
along the axis on the plane with largest uncertainty. The
top plot in this figure corresponds to the first dataset,
while the bottom plot to the second. These plots show
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Fig. 6: The average RMS error and NEES over 50 Monte-
Carlo simulations.

TABLE I: Simulation statistics

Global Shutter Rolling Shutter
Orient. Pos. Orient. Pos.

RMS error 1.43 (deg) 6.25 (m) 0.83 (deg) 3.30 (m)
NEES 4.29 14.23 2.21 3.51

that the proposed method can obtain high-precision position
estimates, without the use of any external reference signal.
Note that, as expected of a visual-inertial odometry method,
the position uncertainty gradually increases with time. In
an application where GPS measurements, or other absolute
position information (e.g., from a feature map database) can
be obtained intermittently, they can be used in conjunction
with the proposed method to prevent long-term drift.

B. Monte-Carlo simulations

To examine whether the results obtained in our real-world
data are typical, and whether the estimates provided by the
proposed method are consistent, we performed Monte-Carlo
simulation tests. In these, we model a scenario similar to
that of the real-world data, in which a person uses a hand-
held mobile phone for pose estimation while walking fast.
To simulate the periodical pattern of human walking, we
designed linear acceleration and angular velocity trajectories
following sinusoidal curves, similar to what we observed
in the real-world data. In addition, we randomly generated
features in front the camera with characteristics (e.g., depths,
feature track lengths) similar to those of the real datasets. The
sensor characteristics were chosen to be identical to thoseof
the mobile phone used in the real-world experiments, and
the trajectory is 10-minutes, 870-m long.

We carried out 50 Monte-Carlo simulation trials, and
in each trial our proposed method and the method of [6]
process the same data. To evaluate the performance of the
two methods, we computed both the RMS error and the
normalized estimation error squared (NEES) for the position
and orientation, averaged over all trials at each time step.
The RMS error gives as a measure of accuracy, while the



NEES is a measure of the consistency of the methods [27].
If an estimator is consistent, i.e., if it reports an appropriate
covariance matrix for its state estimates, the average NEES
should be close to the dimension of the variable being
estimated (i.e., equal to 3 for the position and orientation).

Fig. 6 plots the RMS and NEES values over the duration
of the trajectory, while Table I gives the average values for
the entire trajectory for both methods tested. These results
agree with the results observed in the real world data:
when the rolling-shutter effect is properly accounted for,
the estimation accuracy is significantly better. At the end of
the trajectory, the RMS position error is8.33 m, or 0.96%
of the trajectory length, in the same order of magnitude as
what was observed in the real-world experiments. In addition,
the average NEES values for the position and orientation in
the proposed approach are significantly smaller than that of
the global-shutter MSCKF, and are close to the theoretically
expected values for a consistent estimator.

V. CONCLUSION

In this paper, we have presented an algorithm for visual-
inertial odometry using a rolling-shutter camera. To model
the rolling-shutter effects the proposed method includes the
camera’s linear and rotational velocities at the time of image
capture in the EKF state vector. This makes it possible to
explicitly model the camera motion’s effect on the projec-
tions of points in the images. The proposed approach has
computational complexity linear in the number of features,
which makes it suitable for real-time estimation on devices
with limited resources, such as cellphones. Our experimental
testing has shown that the method is capable of producing
high-precision state estimates in real time: in our tests, the
algorithm tracked the motion of a walking person with
errors of up to 0.8% of the traveled distance, in trajectories
that were hundreds of meters long, while running on a
mobile phone’s processor. These results indicate that the
proposed approach is suitable for real-time pose estimation
of miniature devices.
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