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Abstract— All existing methods for vision-aided inertial nav-
igation assume a camera with a global shutter, in which all te
pixels in an image are captured simultaneously. However, #
vast majority of consumer-grade cameras use rolling-shutr
sensors, which capture each row of pixels at a slightly diffent
time instant. The effects of the rolling shutter distortion when
a camera is in motion can be very significant, and are not
modelled by existing visual-inertial motion-tracking methods.
In this paper we describe the first, to the best of our knowledg,
method for vision-aided inertial navigation using rolling-shutter
cameras. Specifically, we present an extended Kalman filter
(EKF)-based method for visual-inertial odometry, which fuses
the IMU measurements with observations of visual feature
tracks provided by the camera. The key contribution of this
work is a computationally tractable approach for taking into
account the rolling-shutter effect, incurring only minimal ap-
proximations. The experimental results from the applicatbn of
the method show that it is able to track, in real time, the posiion
of a mobile phone moving in an unknown environment with -
an error accumulation of approximately 0.8% of the distance  Fig. 1: An example image with rolling-shutter distortion.
travelled, over hundreds of meters.

. INTRODUCTION availability of smartphones, this would lower the barrier t

Modern smartphones have significant processing capabiﬁptry in robotics res_ear_ch and development. o
ties, and are equipped with a rich sensor suite that typicall Towards the realization of the above goals, in this pa-
includes multiple cameras, gyroscopes, accelerometersP@ W€ propose a method for motion estimation using a
compass, and a GPS receiver. This creates opportunities f§vice’s camera and its inertial sensors (gyroscope and
using these devices fdocation-based applications, which accelerometer). The use of visual and |ner.t|al sensing is
use the knowledge of a device’s position to provide usefigdvantageous, as both sensors are self-contained, caateper
information. To estimate the position, most approacheaytod iN MOSt environments of interest, and provide measurements
rely on GPS and signals from known transmitters (e.g@t high sample rates. In recent years, a significant body of
cellular network antennas, wireless network routers). Howfiterature has focused on the problem of motion estimation
ever, the estimates obtained by these methods are typicaff§ind cameras and inertial measurement units (IMUs) [1]-
quite coarse, and cannot track fine motions of the devick]- However, all prior work assumes that the camera has
By contrast, in this work we are interested in tracking® 9lobal shutter, i.e., that all the pixels in an image are
the motion of a smartphone (or similar device) with higtFaptured at the same time. By contrast, the cameras found
precision, without relying on any external infrastructare  ©ON Smartphones (as well as most consumer devices) typically
prior knowledge of the area where the motion takes placelS€ CMOS sensors withralling shutter, capturing each row

Endowing small handheld devices with the capability t@f Pixels at a slightly different time instant.
track their pose with high spatial and temporal fidelity in When a moving rolling-shutter camera captures an image,
non-instrumented environments will create a host of ne#pe changing camera pose during the capture can cause
opportunities. For instance, such devices can be used fgnificant visual distortions (Fig. 1). In the context of tioo
high-precision location-based services even indoors and @stimation, these distortions mean that the projections of
other areas where radio signals are unavailable; for aidirggene points on the image are at drastically different loca-
visually impaired persons navigate in unknown environtions, compared to the locations they would have if a global
ments; or for tracking a person’s gait with high fidelity,Shutter was used. Therefore, if one of the existing methods
to help diagnose medical conditions. Additionally, we pointhat assume a global shutter is used for motion estimation,
out that a smartphone capable of real-time, high-precisidis performance is severely degraded (see Section IV). Un-
pose estimation can be placed onboard a mobile robdgss the rolling-shutter effects are explicitly modellenda
micro aerial vehicle, or other robotic vehicle, to provideaccounted for, they can lead to outright algorithm failure.
an inexpensive localization solution. Given the widesgrea In this paper we describe the first, to the best of our



knowledge, method for vision-aided inertial navigatiomgs employed, but with a higher-order model for the motion. For
rolling-shutter cameras. Specifically, we present an eddn these methods to be applicable, the camera images must be
Kalman filter (EKF)-based method for visual-inertial odemerecorded at high frame rates, and the camera motion must be
try, which fuses the IMU measurements with observations @mooth, without any sudden changes in the motion profile.
visual feature tracks provided by the camera. No addition&8y contrast, by using inertial measurements to propagate th
external signals are used, and no prior knowledge of thstate estimates between images, our proposed method can
features’ position is required. The key contribution ofsthi operate with much lower frame rates (e.g., approximately
work is a computationally tractable approach for takingint5 Hz in our experiments) thus reducing computational load.
account the camera’s motion during each image’s capturgloreover, the use of IMU readings enables operation even
Specifically, we include the camera’s linear and rotationadith highly-varying motions, such as those observed when a
velocities at the time of image capture in the EKF statperson holds a device while walking.

vector, and use them to model the rolling-shutter effechent  We note that, to the best of our knowledge, the only
camera’s measurement model. To avoid the computationakethod that fuses visual measurements from a rolling-shutt
burden normally incurred by including the rotational véfpc camera and inertial sensors can be found in [21]. In that
in the state vector (in which case EKF updates normally neadork, the visual feature observations are combined with
to take place at the IMU sample rate), a novel formulatiogyroscope readings to estimate the camera’s rotatitp.

for IMU propagation is derived. By contrast, in our work we estimate the full 6-D pose of

The proposed method has been tested on real-world ddkee moving platform (i.e., position and orientation), adlwe
on a Samsung Galaxy S2 mobile phone. The attained aas the platform’s velocity.
curacy is comparable to that obtained by high-end global-
shutter cameras (e.g. [6], [9]), despite the lower qualtty o !ll. M OTION ESTIMATION WITH AN IMU AND A
the sensors and the limited capabilities of the device’s CPU ROLLING-SHUTTERCAMERA
In datasets involving 610-m and 900-m long trajectories, Our goal is to estimate the pose (position and orientation)
the final position errors were in the order of 0.8% of thexf a device equipped with an IMU and a rolling-shutter
distance traveled. This high level of accuracy is achievecamera. To this end, we affix a coordinate frafg to
even though the method operates, at real-time speed, @@ IMU, and track its motion with respect to a fixed global
the resource-constrained processor of the mobile phongordinate frame{G}. The spatial transformation between
Moreover, simulation tests confirm that this level of aceyra the IMU frame and the coordinate frame of the camée€ay,
is typical, and that the estimator is consistent. In whdofeé  is constant and known, for example from prior calibration.
we describe the details of our work, after a discussion of thehis transformation is described by the rotation quaterhio
related literature. ¢q and the position vectorpc. Moreover, we assume that
the intrinsic parameters of the camera are also known from
an offline calibration procedure.

Most work on rolling-shutter cameras has focused on Our interest is in motion estimation in unknown, unin-
image rectification for compensating the visual distodionstrumented environments, and therefore we assume that the
caused by the rolling shutter. The majority of methodgamera observes naturally-occurring visual features,seho
in this category use the images in a video to obtain positions are not knowa priori. The visual measurements
parametric representation of the distortion, and use this are fused with measurements from a 3-axis gyroscope and
generate an undistorted video stream [10], [11]. Gyroscofe3-axis accelerometer, which provide measurements of the
measurements have also been employed for this task, simogational velocityw.,,, and acceleratiom,,,, respectively:
the most visually significant distortions are caused by ro- I
tational motion [12], [13]. In contrast to these methods, Wm ="w + bg + 1, @)
our goal is not to undistort the images (which is primarily a, =R (“a—9g) +ba+n, (2)
done to creat_e visually appe_almg v_|deo_s), but rather tq US¥here w is the IMU’s rotational velocity vector®g is
the recorded images for motion estimation. By comparisoty, o .

gravitational acceleration vectds, and b, are the

this a less-explored topic. To the best of our knowledgeg roscope and accelerometer biases, respectively, winich a
all existing approaches rely exclusively on visual datal an y P » Tesp Y,

do not use any inertial sensors. For example, [14], [1 odelled as random-walk processes, and finallyandn,

; ; . : re zero-mean white Gaussian noise vectors affecting the
present algorithms for bundle adjustment with rolling-tséiu 9
. . . rneasurements.

cameras, [16] describes an implementation of the well-
known PTAM algorithm [17] using a rolling-shutter sensor, iNotation: The preceding superscript for vectors (egin “a) denotes
while [18]_[20] propose methods for estimating the motiomhe frame (_)f referer_me Wlt!’l respect to which quantities ameﬁsquR
of objects by exploiting the rolling shutter distortion. is the rotation matrix rotating vectors from fra&8} to {A}, 5q is the

The fact that th thod . | ithout i corresponding unit quaternion [22], arftb 5 is the position of the origin
) e a_c a ese me_ O S_use Images alone, wi 09 INGF-frame {B} with respect to{ A}. ® denotes quaternion multiplication,
tial sensing, introduces limitations. For example, toreate  [cx | is the skew symmetric matrix corresponding to veatorwhile 0

the linear and rotational velocity of the camera. in [14] th@nd I are the zero and identity matrices, respectivalys the estimate of
' a variablea, anda = a — a its error. Finally,a;|; is the estimate of the

Famera motlon is assumed to vary "”e_ah’!*lween the t'me statea at time step;, when all EKF updates up to time stgphave been
instants images are recorded. In [15], similar assumpto@s performed.

II. RELATED WORK



Our approach to motion estimation is based on thand augment the state covariance matrix as:
modified multi-state-constraint Kalman filter algorithm T
. _ Prir—1 Prjp—1Jx
(MSCKF 2.0), presented in [6], [23]. This is an EKF- Prjr—1 < T (8)
. ) B . JaPrir—1 JxPrp_1Jx
based visual-inertial odometry algorithm for global-gbut . . _
cameras, which has been shown to produce high-precisi¥fi€r€J~ is the Jacobian ofrc, with respect to the state
motion estimates in real-world settings. Before presentin’€Ctor- Once augmentation is performed, an EKF update

our approach to motion estimation with rolling-shutter eamt@kes place.

eras, we first briefly discuss the global-shutter MSCKF 2./SCKF measurement model: In the MSCKF approach, all
algorithm, to highlight its key components and introduoe thh€ measurements of each feature are employed simultane-
notation used in the rest of the paper. ously for an EKF update, once the track of this feature

is complete (e.g., when the feature goes out of the field

A. The MSCKF 2.0 algorithm for global-shutter cameras of view). Specifically, with a global-shutter camera, the
' ' observation of a feature by the camera at time gtepgiven

The key idea of the MSCKF method, originally proposedy:
in [5], is to maintain a state vector comprising a sliding win c.
dow of camera poses, and to use the feature measurements zj =h("ps) +n, ©)
to impose constraints on these poses, without explicitiwhere h(-) is the perspective camera modék(f) =
including the features in the state vector. Specificallg th[f,/f. fy/f-)*, n; is the measurement noise vector,
state vector of the MSCKF algorithm at time-stejis given modelled as zero-mean Gaussian with covariance matrix

by: o215, and®ip ¢ Is the position of the feature with respect to
7 the camera. This is a function of the camera pase and
= [xT =#T .o @k ] 3) it .
xp = X5, 7, Cr the feature positio p:
vghere xG}Fk is the current IMU state, andro, = “ipp(me,,%py) = ng (“ps — “pc;) (10)
imT T s . . .
['a pe, | fori=k—m,....k—1, are the camera 14 yse the feature for an update, we wait until all its
poses at the time instants the lastimages were recorded. neasurements are collected (i.e., until the feature track i
The IMU state is defined as: complete). Then, using all the measurements we triangulate
T a feature position estimatep ¢, and compute the residuals
xi=|ta “pf Vi bl bi] (4) P b P

rj = z; —h(@c,, “py)

wherel.q is the unit quaternion describing theGrotation froMor j = 1...¢ where? is the number of poses from which
the global frame to the IMU fr_ame,_wm%p and™v; denote  he feature was observed. In the above, we have explicitly
the IMU position and velocity with respect to the globalgypressed the fact that these residuals depend on both the
frame. Note that the gyroscope and accelerometer biases gignera pose estimates, and the feature position estimate. B

change in time and need to be estimated online. ~ G- , '
rj~H;wc, +Hy,"py+mj, j=1...4 (11)

Propagation: Every time an IMU measurement is received,
it is used to propagate the IMU state [23]. Additionally, theyhere 7c, and “p; are the estimation errors of theth
covariance matrix of the state estimate is propagated as: camera pose and the feature respectively, and the matri-
5 P & & P cesH; and Hy, are the correspon.ding Jacobians. In the
Priin = T fémk IkT+ Qua T F 10k (5) MSC_KF 2.0_ algorithm, all the Jacobla_n_s are evaluated using
chk‘kq’zk Pce,,, the first estimate of each camera position, to ensure that the
) . ) observability properties of the system model are mainthine
where®;, is the error-state transition matrix for the IMU, 5nd that the estimator remains consistent 6], [23].
computed in closed form as shown in [6], [2%D, is the Note that, since the feature errors are not included in the
process-noise covariance matrix, aRdz,,, Pccy,, and  state vector, the residusy in (11) cannot be directly used for

P;c, , are the partitions of the filter covariance matrix foryy pkF update. We therefore proceed to marginalize out the
the IMU state, the camera states, and the cross-terms bletWggayre. For this purpose, we first form the vector contajnin

them, respectively. the ¢ residuals:

Sate augmentation: When a new image is recorded, the state St T

vector of the filter is augmented with a copy of the current r=[r{ rj ... r{] (12)
camera pose. Specifically, if a new image is recorded at time- ~ Hx + Hfo)f +n (13)

stepk, we augment the state vector with the estimate of t

Nfheren is a block vector with elementa;, and H and
current camera pose:

H; are matrices with block rowkl; andHy,, respectively.
Subsequently, we define the residual veatér= V'r;,
where V is a matrix whose columns form a basis of the
k-1 = FA4® L1 (6) left nullspace ofH ;. From (13), we obtain:

By = “Prn + 6RE1 PO (7) =Vir~VTHx + Vin=H% +n° (14)

~ caT GAT .
TCrik—1 = qu|k71 ka‘k,l} ,  with



Note that (14) does not contain the feature error, anghere®v. is the velocity of the camera in the global frame,

describes a residual in the standard EKF form. Thus, trendR.(nt,) is the rotation of the camera in the time interval

residualr® and the Jacobian matril® = VTH can now [t;,¢; + ntq], which can be computed by integration of the

be used for an EKF update. differential equation:

In the update that occurs after each image, all the features c

whose fegture tracks just ended are prgcessed to obtain R(t)=—[Tw(t)x]R{), €t +ntd (18)

residualsr?, and then all these residuals are used together wdth initial conditionIs. In this equation®w(t) denotes the

update the state vector and covariance matrix (details wn hgotational velocity of the camera.

this update can be implemented in a computationally efficien Equation (17) is a function of the camera pasg, and

way are given in [5]). Finally, the oldest camera poses, foof the linear and rotational velocity of the camera in the

which all the features have been processed, are removed fréime interval[t;, t; +nt,). Since none of these quantities are

the state vector to keep the computational cost bounded. perfectly known, they have to be estimated. However, the
camera velocities defined over a tinmerval are infinite-

B. Rolling-Shutter Camera Model dimensional quantities, and thus (17) cannot be direciydus

We now turn our attention to the use of a roIIing-shutteFO define a practically useful measurement model. To obtain a

camera for motion estimation. These cameras capture tﬁgmputatlonally tractable formulation, we employ additd

rows of the image sequentially: if the first row in an image.;lssumptions on the time-evolgtion of the camera velo_cities
is captured at time, then-th row is captured at time+nt,, >Pecifically, we modef v and®w as being constant during

where t; is the time interval between the reading of twothe readout time of each image. This has the advar]tage that
ntq) and the integral appearing in (17)

consecutive rows of pixels. Thus, each image is capturéBE rotation lma;trDR(l di )
over a time interval of non-zero duration, called the reado@€ & simple form, leading to:
time of the imaget,.. For typical cameras found in consumercpf(thrntd) — e nta “w;x] ij (pr —Gpcj— ntg Gch)

devices such as smartphonesjs usually in the order of a (19)
few tens of milliseconds, which is enough to cause significan _ _ o o
distortions as shown in Fig. 1. The matrix exponential— "t ~«;*J can be written in closed
If a point feature is projected on theth row of thej-th ~ form, as shown in [24]. _ _
image, its measurement is described by: Note that, by assuming constant linear and rotational
velocity for the camera during the capture of each image,
z§”) =h(%p;(t; +nta)) + nE-") (15) we are introducing an approximation. However, this approx-
n) - _ o _ imation is used for a much shorter time period (the readout
wheren;"’ is the image measurement noi¢g,is the time  time, ¢,) than what is needed in vision-only methods such

instant the image capture began, dng¢(¢; + nt,) is the as [14], which assumes constant velocities for the entine ti
position of the feature with respect to the camera frame #iterval between images (e.g. in our experiments the readout

time t; 4+ ntq: time wast, = 32 msec, while the average time between
images was approximate})0 msec). The key benefit from
Co (4. _C _ G, _ @ _ > k . - .
ps(tj +nta) = gR(; + nta) ( Py Pt + ntd()26) assuming constant linear and rotational velocity duripng

is that we can express the measurement of each feature as
By comparing (15)-(16) to (9)-(10), the difference betwee function of just four quantities (see (15) and (19)): the

a global-shutter and a rolling-shutter camera becomes. clegamera position and orientation at the time instant the first
While previously the feature measurements in an imag@w was captured, and the two velocity vectors.

only depended on a single camera pose @ke,), with a Using the measurement model described by (15) and (19),
rolling shutter the image measurements irsiagle image We can now employ a method for using the feature mea-
depend on the camera posenatitiple time instants. To use Surements analogous to the MSCKF. To make this possible,
these measurements in the MSCKF approach describeditgtead of maintaining a sliding window of camepases in
Section l1I-A, one would have to augment the sliding windowthe state vector, we maintain a sliding window of camera
with one camera pose per row of the image. This woulgtates (cf. (3)):

require hundreds of poses to be included in the state vector, _ [T T . T 1T
and would be computationally intractable. xi =[x, Xc’fjm . Xy (20)
In order to obtain a practical algorithm, we introducevhere each camera state is defined as:
. . . . B -
the rota‘uqnal and trg_nslatlonal velocity of _the camera int xc, = [8(1;! Gpa Gvgj Cwﬂ (1)
the equations. Specifically, (16) can be written without any
approximation as: With this change, the way of processing the features in
o the MSCKF, described in Section Ill-A, can still be em-
“py(t; +ntq) = R(nta) 'R ployed. The only difference is that now in (11)-(13) the

tj+ntq Jacobians with respect to the camera page are replaced

(pr — “pc; —/ Svo(r)dr by Jacobians with respect to the camera state. These
2 Jacobians can be computed by differentiation of (15), using
(17  the expression in (19). After this change, the MSCKF's



-~ > Image capture start ime To address these problems, we propose a new, “hybrid”
—> IMU sampling time . .
DY) mage readout time way of using the IMU measurements: most of the time
the IMU is used for propagating the state, as regular in
the MSCKF, while every time a new image needs to be

processed, a state-based propagation takes place. Toaileus
A

-~ l the procedure, consider the situation shown in Fig. 2, where

% j j l l ‘%’ l l ‘ for simplicity we depict the camera’s readout time to be équa
3

|
Regular IMU : Regular IMU
ropagation 1 propagation
prop: g\ !

, toonelIMU period (see Section IlI-D for the implementation

12 4 5 6 7 8 9 1011 12 13 14 15 16 17 details in the general case). The IMU measurements that are
\ ] / recorded in the time between image capture (i.e., timeg&eps
7,9-14 and 16-17 in Fig. 2), are used for regular propagation
state-based propagation as described in Section IlI-A. On the other hand, when a
Fig. 2: lllustration of the times at which the two IMU- New image begins to be captured (i.e., timesteps 1, 8, and
propagation methods are used. 15), the following steps are taken: (i) the state vector and

filter covariance matrix are augmented with a new camera

technique of feature marginalization described in Sedtien State, (ii) a filter update takes place once the image becomes

A can be followed. available, and (iii) a special state-propagation takeselto
. . propagate the state estimate to the next timestep. Thdgetai
C. Sate augmentation and IMU propagation are described next.

The preceding discussion shows that, by augmenting eachl) State augmentation: If an image begins to be captured
camera state to include the linear and rotational velocityt timet,, we compute the following estimate for the camera
we are able to process the measurements of the rollingtate, using the current filter estimates (i.e., the esémat
shutter camera for EKF updates. We now show how state,,—;) and the current IMU measurement:
augmentation can be performed, and how state augmentation T G G AT
affects the way in which the IMU is propagated. Let us XCrjx—1 = [qu\k—l PCiioy Ve “hlk—1
consider the case where an image begins to be captu
at time ¢, (corresponding to time-step in the EKF). At
this time, the filter state vector must be augmented with §{;CWH = G{flk‘kfl + éRakflL(wmk — ng‘kq)XJIPC
new camera state, containing the current camera pose and. c -
velocities. While the camera pose can be computed directly Wik-1 = 1 R (Wi, — by,
from the state estimates as shown in (6), the situation for thn addition to the state, the covariance matrix of the filter
camera velocities is more complex. Specifically, the cafmeramust be augmented. To this end, we linearizg, with

r\ﬁﬂeregakw,l and“pc, ,_, are defined as in (6), and

velocity vectors are given by: respect to the state estimate and the gyroscope measuyement
Gy, = %y + LR Twy,x | pe (22) to obtain the following expression for the errorsu, |, ,:
ka = ?R Iwk (23) ick\k—l = [Jq Jp Jv Jbg 0} ik|k71 +anrk

The above equations contain the known camera-to-IMU = JxXpp-1 + Jonr,

transformation, the IMU velocity and orientatioand the wheren,, is the noise in the measurement,, ; Jq, Jp,
IMU rotational velocity. The latter is not contained in they  andJ, are the Jacobians ofc, with respect to the
. . . . ! g
state vector, which introduces complications. IMU orientation, position, velocity, and gyroscope biasga
To see why, imagine that we use the IMU measurement s the Jacobian with respect s,,, . Based on the above

at time stepk to obtain an estimate fofwy, and use this expression, we can augment the covariance matrix as:
estimate in (23) for state augmentation. Now, having alyead

used the IMU measurement, we should not re-use it for Pijp1 < Prjr—1 Pk\kflTJ::C (24)
propagating the state estimate between timestepwli+1. IxPrik-1 IxPrip—1Jx +Qry

Doing so would be using the same information twice, thuwith Q,, being the covariance matrix of the noisg, .
introducing unmodelled correlations which degrade aagura  2) State-based propagation: After state augmentation, we
The most straightforward solution to this problem would bevait for the image to be fully captured, and perform an
to explicitly include the IMU’s rotational velocity in the EKF update as described in Section Ill-A, to obtaip,.
state vector (as, for example, in [3], [25]). In this caseDnce the update is complete, the next operation that must
the gyroscope measurements are direct measurements of ltlkee performed is to propagate the IMU state, to obtain
state (see (1)), and must be used for EKF updates, insteggl, ,;,, wheret;, is the time instant the image capture
of propagation. This is undesirable, as it would necessitais complete (e.g., 2, 9, or 16 in Fig. 2). Normally, we would
carrying out EKF updates (whose computational complexityse the IMU measurements,,, and w,,, for this step;

is quadratic in the size of the state vector) at the IMUhowever, as we mentioned,,, has already been used for
sample rate — typically in the order of 100 Hz. This wouldhe state augmentation, and should not be re-used, to avoid
likely be infeasible on the resource-constrained progesso unmodelled correlations. Instead, for propagation we hee t

a handheld device. accelerometer measuremeny,, and the estimate of the



Algorithm 1

Processing IMU measurements When an IMU
measurement is received at a time when an image 15
not being captured, use it to propagate the IMU state [5
[6] and the covariance matrix (see (5)).

200

South—-North (

Processing images

« When an image starts to be captured, initialize a ne
camera state using the current IMU state estimate at

gyroscope measurement (Section 11I-C.1). Proposed method
. . Global-shutter method
« Once the image becomes available, perform an MSCK — Approx. ground truth )
update using all features whose tracks are comple -200 -150 -100 -50 0 50 100
. West-East (m)
(Section IlI-A).

. State management: Remove from the state vector ofdg. 3 The_ e§timation results on the first dataset. The
camera states, whose feature measurements have S@rt/end point is denoted by a green square.

been used. 40 o — "
. . . : = Proposed method
« Propagate the state vector and covariance matrix usii i - = Global-shutter method
the accelerometer reading and the angular velocity ¢ 20 ¥ ! . : = e

the latest camera state (Section IlI-C.2).

IMU’s rotational velocity, computed agRCd:Hk (note that
%k‘k is included in the EKF’s state vector). Using these
the IMU kinematic state can be propagated as:

LQ(LR @y t,)

South-North (m)
N
o

I = _ Iz
GUAk+11k = € GYk|k

X - . 1
Gp1k+1\k = prk\k + Gvfk\ktT + Ethg—i_

fert (7 IHT N _8% — 0 50 s 100 150 ‘ 200 ) o
GR (S) (amk—bak‘k)deT West-East (m)
th th

thpr . Fig. 4: The estimation results on the second dataset. The
G\A’IHW :G‘A’Ik‘k‘i‘cgﬁr'i‘/ R (s) (amk—bak‘k)ds start/end point is denoted by a green square.

ty
while all remaining quantities in the state vector stay un- . L
changed. In the above equatiofisis a4 x 4 matrix given IS _compufced by averaging the inertial measurements  that
. : . : . .. arrive during the readout time.
in [22]. In our implementation, the integrals in the pogitio
and velocity propagation are computed numerically usiig th IV. EXPERIMENTAL RESULTS
trapezoid rule. 'I_'(_) propagate the state covariance, we ctympg&. Real-World Experiments
the state transition matrix by computing Jacobians of the
above expressions with respect to all state variables fwhic To test the performance of our proposed algorithm, we
now include®wy,), obtaining an expression analogous to (5)collected data using a mobile phone (Samsung Galaxy S2)
) ) ) ) that is equipped with a rolling-shutter camera, a 3-axis

D. Algorithm and implementation details gyroscope and a 3-axis accelerometer. We here reportsesult

The entire algorithm for vision-aided inertial navigationin two datasets collected while a person walked, holding the
with a rolling-shutter camera is described in Algorithm 1phone with the camera facing forward. The device provides
Note that, to maintain the clarity of the presentation, ic-Se gyroscope measurementsléi Hz and accelerometer mea-
tion llI-C it was assumed that, at the time an image’s captuurements ap3 Hz. Both data streams were resampled to
begins, an IMU measurement is simultaneously available. B0 Hz as described in Section 1lI-D. On the other hand,
practice, however, the sensor measurements are not sampledges were captured a6 Hz, and the readout time for
at the same time. In fact, in consumer-grade devices, whetfee sensor wa82 msec. To reduce the computational load,
the gyroscope and accelerometer are usually separate unite only use a new image whenever the device has moved
even these two sensors’ data arrive at different time instanby at least 20 cm from the location the last image was
For these reasons, in our implementation we interpolate thecorded (the motion distance is determined via the IMU
inertial measurements, so that (i) the gyroscope and apropagation). This results in an effective average frante ra
celerometer measurements are available simultaneously, af 5.05 Hz in both datasets. In fact, we noticed that using
(ii) an inertial measurement is available at the time an imagmages more frequently does not result in any meaningful
capture begins. Moreover, since the image readout time performance improvement. For feature extraction we used
not, in general, equal to one IMU period, the measuremeah optimized version of the Shi-Tomasi algorithm, and per-
used for the state augmentation and state-based propagafarmed normalized cross-correlation for feature matchasy
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Fig. 5: The reported standard deviation for the positiol. Time (sec)
estimates (along the axis of largest uncertainty) in the twpBig. 6: The average RMS error and NEES over 50 Monte-
real-world datasets. Carlo simulations.

TABLE I: Simulation statistics
described in [26]. The data was stored onboard the cellphone

and processed offline on the same device. Global Shutter Rolling Shutter
The first dataset was collected walking on the streets of Orient. Pos. Ortent. Fos.

- - . g . RMS error | 1.43 (deg)| 6.25 (m) | 0.83 (deg)| 3.30 (m)
a residential area. The trajectory was approximately 900-m NEES %29 14.23 221 351

long, lasting approximately1 minutes. The second dataset
consists of a loop around the Engineering building at the
University of California Riverside, in an approximately®1 that the proposed method can obtain high-precision positio
m long trajectory over 8 minutes. The trajectory estimatioestimates, without the use of any external reference signal
results for both datasets are shown in Fig. 3 and Fig. dote that, as expected of a visual-inertial odometry method
In these plots, we compare the estimates computed by ttee position uncertainty gradually increases with time. In
proposed method to the estimates computed by the approaeh application where GPS measurements, or other absolute
of [6], which assumes a global shutter. Note that due to thgosition information (e.g., from a feature map database) ca
nature of the datasets, a precise ground truth is difficult the obtained intermittently, they can be used in conjunction
obtain. For visualization purposes, we manually drew theith the proposed method to prevent long-term drift.
approximate ground-truth path on the same figures. . )

The results of both experiments show that the proposétl Monte-Carlo smulations
method computes trajectory estimates that accuratelgwioll To examine whether the results obtained in our real-world
the (approximate) ground truth. These estimates are sigata are typical, and whether the estimates provided by the
nificantly more accurate than those of the method in [6proposed method are consistent, we performed Monte-Carlo
which demonstrates the importance of modelling the rollingsimulation tests. In these, we model a scenario similar to
shutter effects. Even though precise ground truth for thghat of the real-world data, in which a person uses a hand-
entire trajectories is not known, it is known that in bothesas held mobile phone for pose estimation while walking fast.
the final position is identical to the starting one. Usingsthi To simulate the periodical pattern of human walking, we
knowledge we can compute the final error to be 5.30 m, afesigned linear acceleration and angular velocity trajées
0.58% of the trajectory length in the first dataset, and 4.85 nfollowing sinusoidal curves, similar to what we observed
or 0.80% of the trajectory, in the second. These figures ane the real-world data. In addition, we randomly generated
comparable to the accuracy obtained in our previous workeatures in front the camera with characteristics (e.gpttue
with high-quality global-shutter cameras, and signifitant feature track lengths) similar to those of the real data3éts
more expensive IMUs [6]. In addition, we stress that th&ensor characteristics were chosen to be identical to thfose
algorithm is capable of real-time operation: the averagge mobile phone used in the real-world experiments, and
processing needed per image (including image processittge trajectory is 10-minutes, 870-m long.
and estimation) is 146 msec on the cellphone’s processor, asie carried out 50 Monte-Carlo simulation trials, and
compared to an average image period of 198 msec. in each trial our proposed method and the method of [6]

In addition to the trajectory estimates, in Fig. 5 we ploprocess the same data. To evaluate the performance of the
the reported standard deviation of the position estimatesyo methods, we computed both the RMS error and the
along the axis on the plane with largest uncertainty. Theormalized estimation error squared (NEES) for the pasitio
top plot in this figure corresponds to the first datasefind orientation, averaged over all trials at each time step.
while the bottom plot to the second. These plots showwhe RMS error gives as a measure of accuracy, while the



NEES is a measure of the consistency of the methods [27]6]
If an estimator is consistent, i.e., if it reports an appiater
covariance matrix for its state estimates, the average NEES
should be close to the dimension of the variable being7]
estimated (i.e., equal to 3 for the position and orientdtion
Fig. 6 plots the RMS and NEES values over the duration[8
of the trajectory, while Table | gives the average values for
the entire trajectory for both methods tested. These esult
agree with the results observed in the real world data:
when the rolling-shutter effect is properly accounted for,[9]
the estimation accuracy is significantly better. At the efd o
the trajectory, the RMS position error &33 m, or 0.96% [10]
of the trajectory length, in the same order of magnitude as
what was observed in the real-world experiments. In additio
the average NEES values for the position and orientation i
the proposed approach are significantly smaller than that of
the global-shutter MSCKF, and are close to the theoreyicthz]
expected values for a consistent estimator.

V. CONCLUSION [13]

In this paper, we have presented an algorithm for visual-
inertial odometry using a rolling-shutter camera. To model
the rolling-shutter effects the proposed method includies t [14]
camera’s linear and rotational velocities at the time ofgma
capture in the EKF state vector. This makes it possible to
explicitly model the camera motion’s effect on the projecf15]
tions of points in the images. The proposed approach has
computational complexity linear in the number of features,
which makes it suitable for real-time estimation on devicegé]
with limited resources, such as cellphones. Our experiatent
testing has shown that the method is capable of producing,
high-precision state estimates in real time: in our tests, t
algorithm tracked the motion of a walking person with 18]
errors of up to 0.8% of the traveled distance, in trajectorie[
that were hundreds of meters long, while running on a
mobile phone’s processor. These results indicate that t eg]
proposed approach is suitable for real-time pose estimati

of miniature devices.
[20]
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