
Vision-aided Inertial Navigation for Resource-constrained Systems

Mingyang Li and Anastasios I. Mourikis
Dept. of Electrical Engineering, University of California, Riverside

E-mail: mli@ee.ucr.edu, mourikis@ee.ucr.edu

Abstract— In this paper we present a resource-adaptive
framework for real-time vision-aided inertial navigation. Specif-
ically, we focus on the problem of visual-inertial odometry
(VIO), in which the objective is to track the motion of a mobile
platform in an unknown environment. Our primary interest is
navigation using miniature devices with limited computational
resources, similar for example to a mobile phone. Our proposed
estimation framework consists of two main components: (i)
a hybrid EKF estimator that integrates two algorithms with
complementary computational characteristics, namely a sliding-
window EKF and EKF-based SLAM, and (ii) an adaptive
image-processing module that adjusts the number of detected
image features based on the availability of resources. By
combining the hybrid EKF estimator, which optimally utilizes
the feature measurements, with the adaptive image-processing
algorithm, the proposed estimation architecture fully utilizes
the system’s computational resources. We present experimental
results showing that the proposed estimation framework is
capable of real-time processing of image and inertial data on
the processor of a mobile phone.

I. INTRODUCTION

In this paper we focus on the problem of high-precision
real-time pose tracking, in unknown and GPS-denied envi-
ronments. Our aim is to estimate the trajectory of a moving
platform using inertial measurements and visual observations
of naturally-occurring point features. We do not assume that
a map of the area is available, nor do we aim to build such
a map. As a result, the problem we address is analogous to
visual odometry, with the added characteristic that an IMU
is available. We term the approach visual-inertial odometry
(VIO). We are specifically focusing on pose tracking for
miniature, resource-constrained devices, similar in size to a
mobile phone.

In contrast to medium- and large-scale systems, (e.g.
mobile robots, UAVs, autonomous cars), small devices have
limited computational capabilities and battery life, factors
which make real-time pose estimation a challenging task.
The problem becomes particularly acute when visual sensing
is used, for two main reasons. First, processing images to
extract and match corner features can take a considerable
amount of time. Even on desktop-grade CPUs, performing
image processing in real time can be a difficult task unless
highly optimized code is used. Second, most feature detec-
tion algorithms can typically detect and track hundreds of
features in images of natural scenes. Processing all these
measurements in an estimator in real time is a computation-
ally demanding task.

To date, most pose estimation algorithms have been de-
signed for and tested on computers with laptop- or desktop-
grade CPUs. On these systems, which can be easily carried
by medium- and large-sized mobile robots, the large amount

of computational power available can simplify the task of
estimator design. One can propose a given motion estimator
and feature extraction method (e.g., EKF-based SLAM using
Harris corners), and subsequently test whether the resulting
system attains real-time performance. If real-time perfor-
mance is achieved, no further action is typically necessary.
However, the situation is very different in small-scale sys-
tems, where processing resources are severely limited, and
battery life is a critical issue. First, in these systems it is
harder to meet real-time constraints, due to the less capable
CPUs available. Moreover, even if real-time performance is
achieved, to prolong battery life one must make sure that the
pose estimation algorithm requires as little computation as
possible.

To address these challenges, in this paper we describe
a resource-adaptive approach to VIO, consisting of two
main components. The first component is a hybrid extended
Kalman filter (EKF) estimator that integrates EKF-based
SLAM with a sliding-window VIO estimator [1]. These
two estimators process the same measurement information
in different ways, and have complementary computational
characteristics. The hybrid EKF adaptively chooses which
of the two estimators should be used to process each of the
available measurements, so as to minimize the required com-
putation. As explained in Section III-B, the optimal choice
of algorithm to process each individual feature depends on
the distribution of the feature-track lengths of all features
tracked in the images. Since this distribution is impossible
to predict in advance (it depends on the environment, the
camera motion, as well as the feature tracker used), we
learn it from the image sequence. Using this information,
the optimal strategy for processing the feature measurements
can be computed by solving, in real time, a one-variable
optimization problem.

The hybrid EKF estimator is able to extract the maximum
possible accuracy from the available measurements, at the
minimum possible cost. However, when the number of
available feature measurements is too large, it may still be
impossible for the algorithm to operate in real time. For
this reason, the hybrid EKF is coupled with an adaptive
feature extraction algorithm, in which the number of detected
features is actively controlled to meet real-time constraints.
This is accomplished by measuring the estimator’s CPU
usage and using it to adjust the sensitivity threshold of feature
extraction. This is a general approach, and can be used
with any feature detection method (e.g., SIFT [2], Harris
corners [3], Shi-Tomasi features [4], or FAST features [5]).
For any choice of method, it will adapt to the computational
requirements of the feature extractor, and automatically de-

0 100 200 300 400 500 600 700
0

50

100

150

m
Position RMSE (average track length 3)

Feat./image: 25

Feat./image: 50

Feat./image: 100

Feat./image: 200

Feat./image: 400

0 100 200 300 400 500 600 700
0

20

40

60
Position RMSE (average track length 4)

m

0 100 200 300 400 500 600 700
0

20

40
Position RMSE (average track length 5)

m

Time (sec)

Fig. 1: Position accuracy using VIO with varying numbers of
features and average track lengths. Note the different scale
of the y axis in the three subplots.

termine the maximum number of features that can be pro-
cessed in real time. When a more computationally efficient
feature detector is employed, more features can be used, and
thus higher precision is attained. Our testing showed that (as
expected) the most computationally efficient algorithm out
of those mentioned above is FAST, and its use leads to the
highest estimation precision.

To test the computational efficiency of the proposed
resource-adaptive VIO estimator, we have used it to carry
out pose estimation on the processor of a mobile phone
(Samsung Galaxy S2). Our results show that the estimator
can easily attain real-time operation, being able to process
images containing an average of 250 FAST features at 10 Hz
using a single processor core, and yielding position error of
0.55% of the travelled distance, in a 5.8-km-long trajectory.

II. RELATED WORK

Methods that seek to optimize, in some sense, the com-
putational efficiency of pose estimation can be categorized
broadly as follows. First, a number of approaches exist that
try to re-organize the computations in an estimator so as
to minimize the total processing required. Typical methods
involve decomposing the computations into smaller parts,
and selectively carrying out the necessary computations at
each time instant (see e.g., [6], [7]). In these methods the
currently visible features are updated normally at every
time step, while the remaining ones are updated only “on
demand” or when re-visited. In VIO, however, where the
state vector contains only the actively tracked features and
no loop-closure is considered, these methods are not appli-
cable. The methods discussed above usually employ exact
reformulations of the estimator equations, which lead to no
loss of accuracy. On the other hand, several methods exist
that employ approximations (e.g., [8]–[10] and references
therein), to reduce the required computations. In contrast to
these methods, which trade-off information for efficiency,
the hybrid estimator described in Section III involves no

approximations, other than the inaccuracies due to the EKF’s
linearization.

The computational cost of localization can alternatively
be lowered by reducing the number of feature measurements
processed. For instance, several pose estimation algorithms
only track features for two or three consecutive frames,
use these tracks to estimate displacement, and fuse the
displacement estimates with the inertial measurements, if
available (see e.g., [11], [12]). So-called keyframe methods
only process measurements from a subset of spatially dis-
tributed camera poses, and discard all other measurements
(e.g., [13], [14]). Finally, one can select a subset of all
available features to process, for example by identifying the
most valuable ones in terms of pose information (e.g., [15],
[16]). While all these are reasonable ways to lower the
computational cost of an estimator, it should be clear that
discarding measurements results in loss of information, and
thus reduced accuracy.

To demonstrate the effect of discarding feature measure-
ments on the localization accuracy, we briefly present the
results of a Monte-Carlo simulation test. In this test, a
camera/IMU system moves in a feature-rich environment
and the measurements are processed for state estimation
using the algorithm in [17]. The trajectory of the camera
and the features’ spatial distribution are designed to emulate
the characteristics of a vehicle moving in an urban environ-
ment. Fig. 1 shows the average position-estimation accuracy
(averaged over 50 Monte-Carlo trials), with varying average
number of features tracked per image and varying average
feature-track lengths. This figure shows that, as expected,
using more features, or features with longer tracks, leads
to increased accuracy. What is important, however, is to
observe that even when a large number of features is tracked,
increasing the number of features can still result in significant
improvement (e.g., increasing the average number of features
per image from 200 to 400 leads to a 37.1% reduction in
RMSE, when the average feature-track length is 4). Similar
comments can be made regarding the average track length.

These results show that for high-precision VIO it is
essential to use as many features as possible. To achieve
this, in this paper we employ a hybrid EKF estimator
that adaptively determines the optimal way to process the
feature measurements, so that the algorithm’s computational
requirements are minimized. This estimator is coupled with
a feature extraction method that adaptively determines the
maximum number of features that can be processed in real
time. As shown in the results of Section V the combination
of the adaptive estimator back-end with the adaptive image-
processing front-end can result in real-time, high-precision
VIO, even on the less-capable processor of a mobile phone.
We note that in recent years, there has been significant
interest in the augmented-reality research community in
developing methods for real-time tracking using mobile
phones (see [18] for a review). These methods typically
require known 3D positions of the features being tracked. In
contrast, in our work we use naturally occurring features with
unknown positions, and fuse their observations with inertial
measurements. We use the mobile phone as a convenient

resource-constrained computing platform, but our methods
can be used in any computing system.

III. THE HYBRID MSCKF/SLAM ALGORITHM

We now present the hybrid EKF estimator, which adap-
tively determines the optimal way to process the available
feature measurements to minimize computation [1]. This
estimator integrates two different approaches for processing
the feature measurements: the multi-state-constraint Kalman
filter (MSCKF) [17], [19] and EKF-based SLAM. These
two algorithms use the feature measurements’ information in
very different ways. On the one hand the MSCKF explicitly
marginalizes out the features, and maintains a state vector
comprising a sliding window of poses. On the other hand,
EKF-SLAM marginalizes out all but the current pose, and
maintains a state vector comprising the visible landmarks
(since we are interested in VIO, and not loop closing, all
landmarks that fall out of the field of view are discarded).

Both the MSCKF and EKF-SLAM use exactly the same
information; if the measurement models were linear, both
methods would yield exactly the same result, equal to the
MAP estimate of the IMU pose [17]. The methods differ in
the assumptions they make about the feature-error pdf (more
on this in Section III-B), and crucially, in terms of their
computational properties. For the EKF-SLAM algorithm the
cost at each time-step is cubic in the number of features
(since all features in the state vector are observed). On the
other hand, the MSCKF has computational cost that scales
linearly in the number of features, but cubically in the length
of the feature tracks [19]. Therefore, if many features are
tracked in a small number of frames the MSCKF approach
is preferable, but if few features are tracked over long image
sequences, EKF-SLAM results in lower computational cost.

We thus see that EKF-SLAM and the MSCKF algorithm
are complementary, with each being superior in different
circumstances. By integrating both algorithms in a single
hybrid filter, we are able to decide, in real time, which
algorithm will be used to process each of the available
features in order to minimize the computational cost. To
improve the estimation accuracy and consistency, the hybrid
filter, employs fixed linearization points for each state, in
both the MSCKF and EKF-SLAM Jacobians. This ensures
the correct observability properties of the linearized model,
as discussed in [17].

A. Description of the hybrid MSCKF/SLAM algorithm
We here briefly describe the hybrid estimator (see Algo-

rithm 1), and the interested reader is referred to [1] for more
details. The state vector of the hybrid estimator at time-step
k contains the current IMU state, a sliding window of m
camera poses, and s features:

xk =
[
xT

Ik
xT

C1
· · · xT

Cm
fT
1 · · · fT

s

]T
(1)

where xIk
is the current IMU state, xCj , j = 1 . . .m are the

camera poses (positions and orientations) at the times the last
m images were recorded, and fi, i = 1 . . . s are the features,
represented using an inverse-depth parameterization. The
IMU state, xI , contains the IMU pose, velocity, and the
gyroscope and accelerometer biases.

Algorithm 1 Hybrid MSCKF/SLAM algorithm
Propagation: Propagate the state vector and covariance
matrix using the IMU readings.

Update: When camera measurements become available:
• Augment the state vector with the latest camera pose,

and begin image processing.
• For each of the features to be processed in the MSCKF

(features whose tracks are complete after m or fewer
images), do the following

– Triangulate the feature using all its observations.
– Compute the feature-reprojection residuals, and

project the residual vector onto the left nullspace of
the feature Jacobian matrix, to obtain the MSCKF
residual and Jacobian.

– Perform a Mahalanobis gating test.
• Stack the residuals and Jacobians of all the MSCKF fea-

tures that passed the gating test, and form the combined
MSCKF residual vector and the Jacobian matrix.

• For the SLAM features included in the state vector,
compute the residuals and measurement Jacobians.

• Perform an EKF update, using all the SLAM-feature
residuals and the combined MSCKF residual.

• Initialize into the state vector features that are still
actively tracked after m images.

State Management:
• Remove SLAM features that are no longer tracked.
• Remove the oldest camera pose from the state vector. If

no feature is currently tracked for more than mo poses
(with mo < m− 1), remove the oldest m−mo poses.

When an IMU measurement is received, it is used to
propagate the filter state and covariance. For processing the
feature tracks, two possibilities exist: if a feature’s track is
lost after m or fewer images, it is used for an MSCKF update,
while if it still being tracked after m frames, it is initialized
in the state vector and used for SLAM. We have shown
that, for any given m, this is the optimal feature-processing
policy in terms of computation. At each time step, the
hybrid filter processes a number of features by the MSCKF
approach, and others with the EKF-SLAM approach. For
each of these types of features, the appropriate residuals and
Jacobian matrices are computed, and a Mahalanobis gating
test is performed. All the features that pass the gating test
are then employed for an EKF update. At the end of this
process, SLAM features that are no longer visible, and older
camera poses, all of whose features have been processed, are
removed.

B. Optimizing the computational cost of the hybrid EKF
As explained, the motivation for integrating the MSCKF

and EKF-SLAM formulations is to leverage the computa-
tional advantages of both methods, by processing each of
the available features with the best suited algorithm. Since
for a given sliding window size, m, the optimal policy of
processing features is known (i.e., process feature tracks of

length up to m by the MSCKF, and initialize longer-tracked
features in the state vector), the only design parameter that
determines the computation cost of the filter is m.

To demonstrate how m affects the performance of the
method, Fig. 2 shows the timing and position accuracy
attained for different values of m. To obtain these plots, we
generated simulated data with properties (trajectory, sensor
noise characteristics, feature number, spatial distribution, and
track lengths) similar to those observed in a real-world
dataset. These data were processed on a Samsung Galaxy
S2 phone using a single-threaded C++ implementation, in
which the value of m was a parameter. The blue lines in
Fig. 2 show the timing and accuracy results, averaged over
50 Monte-Carlo trials for each choice of m. We point out that
when m is very large, all features are processed using the
MSCKF, therefore the right-most parts of the curves show
the performance of the “pure” MSCKF. Similarly, the left-
most parts of the curves show the performance of pure EKF-
SLAM.

Two main conclusions can be drawn from Fig. 2. First,
it becomes clear that by appropriately choosing m we can
obtain an algorithm that is faster than both the MSCKF and
EKF-SLAM, by a significant margin. Second, we note that
the MSCKF yields higher accuracy than EKF-SLAM, since
MSCKF features are explicitly marginalized and thus no
Gaussianity assumptions are needed for the pdf of the feature
position errors (as is the case in SLAM). By combining the
MSCKF with EKF-SLAM some accuracy may be lost, as the
errors for those features included in the state vector are now
assumed to follow a Gaussian distribution. However, we can
see that if the size of the sliding window increases above
a moderate value (e.g., 10 in this case), the change in the
accuracy is almost negligible. Intuitively, when a sufficient
number of observations is used to initialize features, the
feature errors’ pdf becomes “Gaussian enough” and the
accuracy of the hybrid filter is very close to that of the
MSCKF.

The results of Fig. 2 show that an optimal value of m
exists, which minimizes the computation of the hybrid filter.
To determine this optimal value, it is necessary to have an
expression for the filter’s computational cost, as a function
of m. In [1] it is shown that an analytical expression for
the cost (flop count) of the filter can be obtained, if the
distribution of the feature-track lengths is known. Therefore,
we collect statistics during the filter’s operation that allow us
to learn the probability mass function (pmf) of the feature-
track lengths. Using this learned pmf, the optimization of
the analytical cost function can be performed very efficiently
by simple exhaustive search (note that this is a one-variable
optimization problem, in a very limited domain). Since the
statistical properties of the feature tracks will change over
time, we perform the learning of the pmf as well as the se-
lection of the optimal threshold in consecutive time windows
spanning a few seconds (15 sec in our implementation). In
Fig. 2 the red dashed line shows the time requirements of the
hybrid filter when the size of the sliding window is adaptively
controlled via this learning and optimization approach. We
can observe that (as expected) the adaptive algorithm is faster

5 10 15 20 25 30
30

40

50

60

70

80

T
im

e
 (

m
s
e
c
)

Fixed sliding window size

Adaptive sliding window size

5 10 15 20 25 30
0

10

20

30

40

P
o
s
it
io

n
 e

rr
o
r

(m
)

Sliding window size

Fig. 2: Monte-Carlo simulation results: Timing performance
and RMS position accuracy of the hybrid filter, for changing
values of m. Timing measured on a Samsung Galaxy S2
mobile phone.

than any choice of a fixed m.

IV. IMAGE PROCESSING MODULE

In this section, we present the image-processing module
of our proposed VIO estimator. Specifically, we first discuss
the choice of possible feature extraction algorithms, and
then describe the controller used to adaptively determine the
number of features detected.

A. Feature extraction algorithms

Several feature extraction algorithms have been proposed
to date. For this paper, we have evaluated the following
ones: (i) the FAST detector [5], (ii) the Shi-Tomasi feature
detection algorithm [4], (iii) the Harris corner detector [3],
and (iv) the SIFT keypoint detection algorithm [2]. Besides
feature detection accuracy and repeatability, the most impor-
tant characteristic of the feature detection algorithm, in the
context of real-time VIO, is computational efficiency. There-
fore, we first evaluated the time requirements of each of the
methods on the Samsung Galaxy S2 mobile phone on which
the experimental testing was done. Table I shows the average
time needed by the different feature extraction methods per
image. In this test the images are of size 640×480 pixels,
and for a fair comparison between different algorithms, their
thresholds and parameters are adjusted so that each extracts
approximately 500 features. All algorithms (except Opt-ST)
were implemented using the built-in OpenCV functions. For
efficiency, we used only one octave for the SIFT algorithm.
In Table I, ST refers to the Shi-Tomasi feature detector,
while Opt-ST is an optimized version of this detector that
we developed as described in the Appendix.

In Table I, we observe that SIFT is significantly slower
than the other algorithms, and it is not eligible for real-

TABLE I: Average feature extraction time for the different
algorithms

FAST Harris ST Opt-ST SIFT
Time (msec) 11.3 69.9 72.7 43.1 1015.0

time navigation at a high frame rate1. On the other hand,
FAST is the fastest one (as expected, based on the results
of [5]), while the optimized version of the ST detector is
approximately 40% faster than the original algorithm. From
these results we conclude that for real-time image processing
(e.g., for being able to process images at 10 Hz at least),
the eligible algorithms are FAST, Opt-ST, ST, and Harris.
Even though the features detected in the images by these
algorithms are not exactly the same, our tests have shown that
when they are used in conjunction with the hybrid filter, the
estimation accuracy does not exhibit significant differences
(if the same number of features is used).

For feature matching we employ normalized cross-
correlation, since it is computationally efficient. When visual
navigation is carried out at a high frame rate, the fea-
ture templates’ scaling and perspective deformation between
consecutive images are not significant. Thus, costly feature
matching algorithms based on invariant feature detectors
(e.g., those provided by SIFT) are not considered. Our tests
have shown that the features detected by FAST, Harris, and
Opt-ST result in almost identical feature-track distributions
(differences are in the order of 3%). This suggests that,
at least for the image sequences in our experiments, the
properties of the feature tracks are determined mostly by
the scene and trajectory, rather than by the method used for
feature detection (similar conclusions were reached in [20]).

B. Adaptive threshold selection
As discussed in Section III-B, the hybrid MSCKF/SLAM

filter is able to optimize the computational time given the
available feature characteristics. Ideally, we would like to
be able to use all features that our extraction algorithm
can detect, as increasing the number of features increases
accuracy (see Fig. 1). However, if thousands of features are
tracked per image, the hybrid filter will eventually become
too slow for real-time pose estimation. Thus, in this section,
we describe a control approach that ensures that the number
of features processed is the maximum possible for a given
environment, under the real-time constraints. This approach
is applicable to any of the feature extraction algorithms
described in the previous section.

Our approach employs a proportional controller (p-
controller) to adaptively control the sensitivity threshold
used by the feature extraction algorithm. The input to this
controller is the average time, ta, needed by the entire
estimation process (image processing, feature matching, and
filter update) in the last N timesteps. The controller is
expressed as:

∆Tc = Kp(ta − ttarget) (2)

1We note that the SIFT algorithm can be optimized, and it has been used
for real time feature extraction on a mobile phone [18]. However, since scale
invariance (a key advantage of SIFT over the other algorithms considered)
is not required in our application, this was not pursued in our work.

Fig. 3: Sample images from the dataset used for testing

where ttarget is the desired time for estimation at each step,
Kp is the control gain, and ∆Tc is the change in the image
extraction threshold. Intuitively, if the time needed by the
estimation process is lower than ttarget, the threshold can be
lowered, which will result in more features being detected.
In our implementation, we do not allow the threshold to fall
below a minimum value, under which the detected features
are due to image noise. Moreover, we choose ttarget to be
slightly smaller than the image period, to allow for variations
in the runtime due to the inherent randomness.

By combining the hybrid MSCKF/SLAM estimator, which
optimally utilizes the feature measurements, with the adap-
tive image-processing algorithm, which at each time instant
detects the maximum number of features that can be pro-
cessed in real time, the proposed estimator fully utilizes the
system’s computational resources. Clearly, a more efficient
feature extraction algorithm is preferable, as it will allow
more time to be allocated to the estimator, which in turn
means that a higher number of features will be processed,
and the accuracy will be increased. Therefore, out of the
algorithms discussed in the preceding section, the FAST
feature detector is better suited for real-time VIO. In the
next section, we present experimental results demonstrating
the performance of the system with real-world data.

V. REAL-WORLD EXPERIMENT

To evaluate our proposed VIO estimation architecture, we
tested its performance and compared it against alternative
approaches, by processing data on a Samsung Galaxy S2
mobile phone. To be able to test different methods on the
same data, for these tests we recorded a dataset using a
camera/IMU platform mounted on top of a car, and processed
the data off-line. The sensors used for data recording consist
of an Inertial Science ISIS IMU, a PointGrey Bumblebee2
stereo pair (only a single camera’s images are used), and
a Xsens MTi-G unit (used to record ground truth only).
The IMU provides measurements at 100 Hz, while the
camera images are stored at 10 Hz. The vehicle trajectory is
approximately 5.78 km long, and a total of 4825 images
are recorded. Sample images from the dataset are shown
in Fig. 3.

In our testing, we compared the following four estima-
tor/feature extraction combinations: 1) the MSCKF filter with
FAST features, 2) the EKF-SLAM filter with FAST features,
3) the hybrid MSCKF/SLAM filter with FAST features, and
4) the hybrid MSCKF/SLAM filter with Opt-ST features.
Since the Harris “cornerness” function is an approximation
to that computed by ST, and its implementation is slower
than the Opt-ST algorithm, we do not consider this feature
detector in our tests. For all the above algorithms, we

−1000 −800 −600 −400 −200 0
−400

−200

0

200

400

600

800

1000

N
o
rt

h
−

S
o
u
th

(m

)

East−West (m)

Ground Truth

MSCKF & FAST

SLAM & FAST

Hybrid & FAST

Hybrid & Opt−ST

Fig. 4: Trajectory estimates computed by the different VIO
methods, and GPS/INS ground truth. The green square is
the starting point of the trajectory, and the red circle is the
ending point.

TABLE II: Statistics for different filter and feature detector
combinations

Filter Features Avg. feat. number RMS Position error (m)
MSCKF FAST 76.7 19.85
SLAM FAST 61.5 34.52
Hybrid FAST 250.1 11.57
Hybrid Opt-ST 176.6 18.84

employed the adaptive feature-threshold selection algorithm
described in Section IV-B to ensure that they all utilize the
same amount of CPU resources. Since the image sampling
period is 100 msec, we set ttarget = 80 msec in the
controller. All implementations are single-threaded in C++,
ported to Android using the Android NDK.

Fig. 4 shows the vehicle trajectory estimates computed by
the different algorithms, as well as the ground truth reported
by the GPS/INS unit. From this figure, we observe that the
proposed hybrid filter with the FAST feature detector, and the
hybrid filter with the Opt-ST detector obtain more accurate
trajectory estimates than the other approaches tested here. To
provide a more detailed analysis of the results, in Table II
we show the average number of features per-frame that can
be used in each method within the time allotted, as well as
the average position errors for the duration of the trajectory.

Several interesting observations can be made based on
these results. First, note that the average number of features
that each algorithm can process varies by a factor of four
from the lowest one (EKF SLAM with FAST) to the highest
one (hybrid filter with FAST). The number of features
processed has direct implications on the accuracy attained by
the different methods. For example, for the two approaches
that are based on the hybrid filter, the accuracy increases with
the number of features, corroborating the results of Fig. 1.
It is worth pointing out that this result occurs due to the
adaptive nature of the proposed architecture: when a more
computationally efficient feature extraction method is used,
the CPU time that is “freed up” is automatically allocated to

the estimator. As a result, the estimator can now process a
larger number of features, and obtain higher accuracy.

The benefits of the adaptive nature of the proposed esti-
mation architecture are also seen in the comparison of the
performance between the MSCKF and the hybrid EKF. As
shown in Fig. 2, when the filters process the same data, the
MSCKF is slightly more accurate. However, when the two
algorithms are allocated the same amount of CPU time the
hybrid filter is clearly preferable, as it is able to optimally
utilize the limited amount of resources available, and process
more features. Note that in this experiment, the hybrid filter
with the FAST feature extractor is able to attain worst-case
position errors of just 0.55% of the travelled distance, even
though it is implemented on a resource-constrained mobile
device.

The results of Fig. 4 and Table II demonstrate that the
combination of the hybrid MSCKF/SLAM estimator with
the FAST feature detector outperforms the other methods in
terms of accuracy. For this estimator, in Fig. 5a we plot the
size of the sliding window, m, in the hybrid filter for the
duration of the experiment. This figure demonstrates that,
due to the changing properties of the feature number and
the feature tracks’ distribution, the optimal value varies over
time, justifying the need for periodic re-optimization.

Fig. 5b shows the number of features processed at every
timestep by the MSKCF/SLAM filter using the FAST feature
detector, while Fig. 5c shows the time needed for each image
update (combined time for image extraction, matching, and
EKF update). Although the run time sometimes exceeds the
image period (100 ms), the adaptation performed via the
controller described in Section IV-B rapidly reduces it within
a few timesteps. As a result, the measured average time for
updates is 83 msec in this dataset. Note that, if it was required
that no update take more than 100 msec, that could be easily
implemented by either choosing a more conservative ttarget
in the controller, or by simply ignoring certain features in
the EKF update.

VI. CONCLUSION

In this work we presented a framework for real-time
visual-inertial odometry on resource-constrained devices.
The proposed estimation architecture couples two compo-
nents, each of which adaptively determines the best possible
way to utilize the available resources. On one hand, we
employ a hybrid EKF estimator that integrates a sliding-
window EKF filter with EKF-based SLAM, and determines,
in real time, which of the two approaches is best suited to
process each of the available features. On the other hand,
we designed an adaptive feature-extraction algorithm, which
controls the number of features detected, depending on the
available computing resources and the characteristics of the
environment. Our experimental results demonstrate that the
proposed approach is capable of high-precision VIO in real
time, even when the data is processed by the less-capable
processor of a mobile phone.

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation (grant no. IIS-1117957), the UC Riverside Bourns

0 100 200 300 400 500
9

10

11

12

13

14

15

Time (sec)

S
lid

in
g
 w

in
d
o
w

 s
iz

e

(a)

0 1000 2000 3000 4000
0

100

200

300

400

500

600

700

800

N
u

m
b

e
r

o
f

fe
a

tu
re

s

Update number

(b)

0 1000 2000 3000 4000
0

50

100

150

200

250

T
im

e
 (

m
s
e

c
)

Update number

(c)
Fig. 5: Results from the hybrid MSCKF/SLAM filter with FAST features: (a) The size of the sliding window chosen by the
hybrid filter during the experiment. (b) Number of features extracted per image. (c) Combined per-update time for the filter
and image processing.

College of Engineering, and the Hellman Family Foundation.

APPENDIX

We here describe the optimized Shi-Tomasi (Opt-ST)
feature extraction algorithm. Recall that the ST algorithm
forms the following matrix for each pixel:

M =
[∑

I2
x

∑
IxIy∑

IxIy

∑
I2
y

]
(3)

where Ix and Iy denote the horizontal and vertical image
derivatives, and summation occurs in a window centered
at the pixel. The “cornerness” measure used by the ST
algorithm is the minimum eigenvalue, λmin, of the matrix
M, which is quite computationally expensive to compute.
The points that are local maxima and have value above a pre-
specificed threshold Tc are chosen as features. Our optimized
version of the algorithm does not compute λmin at each pixel.
To see which pixels can be ignored, we note that for any
unit vector v, the term vT Mv is an upper bound to λmin.
Therefore we can first evaluate the easily-computed bounds
vT Mv for v = [0 1]T , v = [1 0]T , v = [

√
2/2

√
2/2]T

and v = [−√2/2
√

2/2]T , and if all these bounds are above
Tc, only then do we compute λmin. In this way, we can
typically eliminate about 95% of an image’s pixels, and the
computational cost is significantly decreased.

REFERENCES

[1] M. Li and A. I. Mourikis, “Optimization-based estimator design for
vision-aided inertial navigation,” in Proceedings of Robotics: Science
and Systems, Sydney, Australia, Jul. 2012.

[2] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 260, no. 2,
pp. 91–110, Nov. 2004.

[3] C. Harris and M. Stephens, “A combined corner and edge detector,”
in Proceedings of the 4th Alvey Vision Conference, Manchester, UK,
Aug. 31 - Sep. 2 1988, pp. 147–151.

[4] J. Shi and C. Tomasi, “Good features to track,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Seattle, WA, June 1994, pp. 593–600.

[5] E. Rosten, R. Porter, and T. Drummond, “Faster and better: a machine
learning approach to corner detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 1, pp. 105–119, 2010.

[6] J. E. Guivant and E. M. Nebot, “Optimization of the simultaneous
localization and map building algorithm for real time implementation,”
IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp.
242–257, June 2001.

[7] L. M. Paz, J. D. Tardos, and J. Neira, “Divide and conquer: EKF
SLAM in O(n),” IEEE Transactions on Robotics, vol. 24, no. 5, pp.
1107 –1120, Oct. 2008.

[8] E. Nerurkar and S. Roumeliotis, “Power-SLAM: a linear-complexity,
anytime algorithm for SLAM,” The International Journal of Robotics
Research, vol. 30, no. 6, pp. 772–788, May 2011.

[9] S. J. Julier, “A sparse weight Kalman filter approach to simultaneous
localisation and map building,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Maui,
HI, Oct. 29-Nov. 3 2001, pp. 1251–1256.

[10] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-
Whyte, “Simultaneous localization and mapping with sparse extended
information filters,” International Journal of Robotics Research,
vol. 23, no. 7-8, pp. 693–716, Aug. 2004.

[11] D. D. Diel, P. DeBitetto, and S. Teller, “Epipolar constraints for vision-
aided inertial navigation,” in IEEE Workshop on Motion and Video
Computing, Breckenridge, CO, Jan. 2005, pp. 221–228.

[12] S. I. Roumeliotis, A. E. Johnson, and J. F. Montgomery, “Aug-
menting inertial navigation with image-based motion estimation,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, Washington D.C, May 2002, pp. 4326–4333.

[13] K. Konolige and M. Agrawal, “FrameSLAM: From bundle adjustment
to real-time visual mapping,” IEEE Transactions on Robotics, vol. 24,
no. 5, pp. 1066 –1077, Oct. 2008.

[14] G. Klein and D. Murray, “Parallel tracking and mapping for small
AR workspaces,” in The International Symposium on Mixed and
Augmented Reality, Nara, Japan, Nov. 2007, pp. 225–234.

[15] H. Strasdat, C. Stachniss, and W. Burgard, “Which landmark is useful?
Learning selection policies for navigation in unknown environments,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, Kobe, Japan, May 2009, pp. 1410 –1415.

[16] A. J. Davison and D. W. Murray, “Simultaneous localisation and map-
building using active vision,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 24, no. 7, pp. 865–880, July 2002.

[17] M. Li and A. I. Mourikis, “Improving the accuracy of EKF-based
visual-inertial odometry,” in Proceedings of the IEEE International
Conference on Robotics and Automation, St Paul, MN, May 2012, pp.
828–835.

[18] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmal-
stieg, “Real-time detection and tracking for augmented reality on
mobile phones,” IEEE Transactions on Visualization and Computer
Graphics, vol. 16, no. 3, pp. 355–368, May 2010.

[19] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” in Proceedings of the IEEE
International Conference on Robotics and Automation, Rome, Italy,
Apr. 2007, pp. 3565–3572.

[20] J. Klippenstein and H. Zhang, “Performance evaluation of visual
SLAM using several feature extractors,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
St. Louis, MO, Oct. 2009, pp. 1574–1581.

