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Abstract— In this paper, we perform a rigorous analysis
of EKF-based visual-inertial odometry (VIO) and present a
method for improving its performance. Specifically, we examine
the properties of EKF-based VIO, and show that the standard
way of computing Jacobians in the filter inevitably causes
inconsistency and loss of accuracy. This result is derived based
on an observability analysis of the EKF’s linearized system
model, which proves that the yaw erroneously appears to be
observable. In order to address this problem, we propose mod-
ifications to the multi-state constraint Kalman filter (MSCKF)
algorithm [1], which ensure the correct observability properties
without incurring additional computational cost. Extensive sim-
ulation tests and real-world experiments demonstrate that the
modified MSCKF algorithm outperforms competing methods,
both in terms of consistency and accuracy.

I. INTRODUCTION

In this work, we focus on the problem of tracking a
vehicle’s egomotion using a camera and an inertial measure-
ment unit (IMU). Cameras are small and lightweight sensors,
that provide very rich information about the environment.
However, if only visual measurements are used for motion
estimation, the resulting algorithms often lack robustness,
due to the challenging nature of the estimation problem.
Employing an IMU as an additional sensor can dramatically
improve both the reliability and the accuracy of motion
tracking, as demonstrated in recent work on vision-aided
inertial navigation [1]–[4].

Our focus is on the task of estimating the pose of a vehicle
moving in an unknown environment. Therefore, we do not
assume that a feature map is available in advance, as in
map-based localization methods (e.g., [3], [5]). Moreover,
we do not aim at building such a map, as in simultaneous
localization and mapping (SLAM) methods (e.g., [6], [7]).
Our goal is to estimate the vehicle trajectory only, using the
inertial measurements and the observations of static features
that are tracked in consecutive images. This task is similar
to the well-known visual odometry (VO) problem [8], with
the added characteristic that an IMU is available. We thus
term the approach visual-inertial odometry (VIO).

To date, the majority of algorithms proposed for real-time
VIO are either extended Kalman filter (EKF)-based methods
(e.g., [1], [2], [9]), or methods utilizing iterative minimiza-
tion over a window of states (e.g., [4], [10]–[12]). The latter
generally attain higher accuracy, as they re-linearize at each
iteration to better deal with their nonlinear measurement
models. However, the need for multiple iterations also in-
curs a higher computational cost, compared to EKF-based
methods. Ideally, one would like to obtain accuracy similar
to, or better than, that of an iterative-minimization algorithm,

but at the computational cost of an EKF algorithm. In this
paper, we show how this can be achieved.

Generally, two types of EKF algorithms can be employed
for real-time VIO. On one hand, one can employ EKF-SLAM
(e.g. [7], [13], [14] and references therein), in which the state
vector contains the IMU state as well as feature positions.
To maintain the computational cost bounded (a requirement
for real-time VIO), features that leave the field of view of
the camera can be removed from the state vector [14]. On
the other hand, EKF algorithms exist that only maintain a
sliding window of camera poses in the state vector, and use
the feature observations to apply probabilistic constraints
between these poses (e.g., [1], [15]). Out of this second
class of methods, the multi-state constraint Kalman filter
(MSCKF) [1] uses the feature measurements optimally [16],
and will be our focus here.

Both EKF-based SLAM and the MSCKF use the same
measurement information, and are optimal, except for the
inaccuracies due to linearization. In other words, if the VIO
system model was linear, then the estimation result produced
by an EKF-SLAM algorithm and by the MSCKF would be
identical, and equal to the optimal MAP estimate. However,
in the presence of nonlinearity the MSCKF outperforms
EKF-SLAM, as it does not approximate the feature’s position
pdf by a Gaussian. Features in the MSCKF are never
included in the state vector, so this is not necessary. As
a result, the MSCKF employs fewer approximations and
attains higher estimation accuracy. Moveover, the MSCKF
has computational complexity only linear in the number
of features, as opposed to EKF-SLAM’s cubic complexity.
Thus, in this paper, we focus on improving the performance
of the MSCKF, since it is a more accurate and computation-
ally efficient approach.

By analyzing the observability properties of the linearized
system model employed by the EKF, we prove that the
MSCKF is inconsistent, i.e., that the covariance matrix of
the estimation errors is larger than that computed by the
filter [17, Section 5.4]. In turn, this inconsistency leads to
inaccurate state updates and ultimately a loss of accuracy. We
show that the root cause of this inconsistency is the way in
which the Jacobians are computed in the EKF, which causes
the linearized system model to have incorrect observability
properties.

As a key contribution of this work, we employ these
theoretical results to propose modifications to the original
MSCKF algorithm that substantially improve its perfor-
mance. Specifically, we here propose three key changes:
First, we propose a novel closed-form expression for com-



puting the elements of the IMU error-state transition matrix.
This expression can be used in any case where the EKF is
used for inertial navigation. Second, we adopt a different
parameterization of the orientation error, and third, we pro-
pose changing the way in which the filter Jacobians are com-
puted. Taken together, these three modifications ensure the
appropriate observability properties of the linearized system
model. Our simulation and experimental results in Section VI
show that the resulting algorithm is consistent, and that
it attains substantially higher accuracy than the original
MSCKF. More importantly, the results demonstrate that the
modified MSCKF algorithm outperforms, in terms of both
accuracy and consistency, even an iterative-minimization
based fixed lag smoother, an algorithm with substantially
higher computational cost.

II. OBSERVABILITY AND EKF CONSISTENCY

Our approach is motivated by recent results in the context
of 2D EKF-based SLAM [18], [19]. These proved that a
key factor degrading the accuracy of the EKF for 2D SLAM
is a mismatch between the observability properties of the
underlying nonlinear system and the linearized system-model
of the EKF. To illustrate the main idea, consider a physical
system described by the nonlinear model:

ẋ = f(x,u) + w (1)
z = h(x) + n (2)

where x is the system state, u is the control input, z is the
measurement vector, and finally w and n are noise processes.
To track the state vector x on a digital computer we must
discretize the continuous-time system model shown above.
Moreover, when an EKF is used for estimation, the filter
equations rely on a linearized version of the discrete-time
model, described by the equations:

x̃k+1 = Φkx̃k + wdk
(3)

z̃k = Hkx̃k + nk (4)

where x̃k represents the estimation error at time step k, and
Φk and Hk denote the error-state transition matrix and the
measurement Jacobian matrix, respectively.

Since the EKF equations (e.g., covariance propagation and
update, gain computation) are derived based on the linearized
system model in (3)-(4), the observability properties of this
model play a crucial role in determining the performance
of the estimator. Ideally, one would like these properties to
match those of the actual, nonlinear system in (1)-(2): if
a certain quantity is unobservable in the actual system, its
error should also be unobservable in the linearized model.
However, in [18] it was shown that this is not the case in 2D
EKF SLAM: due to the way the Jacobians are computed in
the EKF, the robot orientation appears to be observable in
the linearized system, while it is not in the actual, nonlinear
one. As a result of this mismatch, the filter produces too
small values for the state covariance matrix (i.e., the filter
becomes inconsistent), and this in turn degrades accuracy.
Our analysis in Section IV proves that the same problem
affects the MSCKF for VIO.

The observability properties of the nonlinear system for
visual-inertial navigation have recently been studied in [2],
[20]. It has been shown that when a camera/IMU system
navigates in an environment with a known gravitational
acceleration but no known features, four degrees of freedom
are unobservable: three corresponding to the global position,
and one corresponding to the rotation about the gravity vector
(i.e., the yaw). In our work, we examine the observability
properties of the MSCKF’s linearized system model by
analyzing the observability matrix:

O ,




Hk

Hk+1Φk

...
Hk+mΦk+m−1 · · ·Φk


 (5)

For the linearized system to have the correct observability
properties, the nullspace of O should be of dimension four,
in agreement with the four unobservable quantities discussed
above. In Section IV we show that this is generally not
the case: the yaw erroneously appears to be observable in
the linearized system model, with detrimental effects to the
filter’s consistency. Furthermore, in Section V we show how
small modifications to the MSCKF equations can ensure
appropriate properties of the matrix O, and substantially
improve the filter’s performance.

III. IMU PROPAGATION MODEL

As seen in (5), to analyze the observability properties of
the MSCKF’s linearized system model we must have an
expression for the error-state transition matrix, Φi. In previ-
ous work on inertial navigation, the discrete-time error-state
transition matrix for the IMU state has been computed in a
number of ways. Most existing methods stem from the inte-
gration of the differential equation Φ̇(t, ti) = F(t)Φ(t, ti),
where F(t) is the Jacobian of the continuous-time system
model (see (1) and (9)). For instance, [1] employs Runge-
Kutta numerical integration, [21] presents a closed-form,
approximate solution to the differential equation, while many
algorithms employ the simple approximation Φ ' I + F∆t
(which is equivalent to using one-step Euler integration)
(e.g., [22] and references therein). All these methods for
computing Φ have the disadvantage that, being numerical
in nature, they are not amenable to theoretical analysis.
More importantly, however, when Φ is computed numeri-
cally and/or approximately, we have no guarantee about the
properties of this matrix. Specifically, we cannot guarantee
that the observability matrix in (5) will have the desirable
nullspace, a prerequisite for consistent estimation.

To address this problem, in this section we provide a
closed-form expression for the IMU error-state transition
matrix, which can be used for theoretical analysis.

A. IMU State Modeling

We consider an IMU, to which we affix a coordinate frame
{I}, moving with respect to a global frame {G}. The IMU



(gyroscope and accelerometer) measurements are given by1

ωm = Iω + bg + nr (6)

am = I
GR

(
Ga− Gg

)
+ ba + na (7)

where Iω and Ga denote the IMU angular rate and linear
acceleration respectively, nr and na are white Gaussian noise
processes, bg and ba are measurement biases modeled as
random walk processes, and Gg is the gravity vector.

To use the IMU measurements for state propagation, we
define the IMU state vector as follows [1]

xI =
[

I
Gq̄

T GpT GvT bg
T ba

T
]T

(8)

where I
Gq̄ is the unit quaternion describing the rotation from

the global frame to the IMU frame (i.e., R(I
Gq̄) = I

GR),
and Gp and Gv denote the IMU position and velocity,
respectively.

The continuous-time motion dynamics of the IMU are
described by the following equations:

I
G

˙̄q(t) = 1
2Ω(Iω(t))I

Gq̄(t) Gṗ(t) = Gv(t)
Gv̇(t) = Ga(t) ḃg(t) = nwg(t) ḃa(t) = nwa(t)

(9)

where nwg and nwa are white Gaussian noise processes, and

Ω(Iω) =
[ −bIω×c Iω

−Iω
T 0

]
(10)

Following [1], [21], the IMU error-state is defined as:

x̃I =
[

I θ̃
T Gp̃T GṽT b̃T

g b̃T
a

]T

(11)

Here, for the position, velocity, and biases, the standard
additive error definition is used

(
e.g., Gp̃ = Gp−Gp̂

)
. On

the other hand, the orientation error I θ̃ satisfies the following
equation [21]:

I
GR '

(
I3 − bI θ̃×c

)
I
GR̂ (12)

B. Error Propagation

We now derive the state transition matrix ΦI`
that de-

scribes how the errors in the IMU state estimate evolve
during propagation. For simplicity, we first derive ΦI`

ignor-
ing the IMU biases, and the result including the bias terms
is shown in Section III-C. Due to limited space some of
the derivations in the remainder of the paper are omitted,
and the interested reader is referred to [23] for the detailed
intermediate steps.

At time step ` we use the IMU state estimate x̂I`|`
and the IMU measurements to compute the propagated
state estimate, x̂I`+1|` . Our goal is to derive an expression
for the IMU error-state transition matrix ΦI`

such that
x̃I`+1|` ' ΦI`

x̃I`|` + w`. Starting with the orientation error,

1The preceding superscript for vectors (e.g., G in Ga) denotes the frame
of reference with respect to which quantities are expressed. A

BR is the
rotation matrix rotating vectors from frame {B} to {A}, bc×c denotes the
skew symmetric matrix corresponding to vector c, 03 and I3 are the 3 by 3
zero and identity matrices respectively, â and ã represent the estimate and
error of the estimate of a variable a respectively, and âi|j is the estimate
of variable a at time step i given measurements up to time step j.

we note that, regardless of the method used to integrate the
continuous-time motion dynamics in (9), the estimates of the
rotation matrix at time-steps ` and ` + 1 satisfy:

R̂`+1|` = I`+1
I`

R̂ · R̂`|` (13)

where we have used the notation R̂`|` = R(I
G

ˆ̄q`|`) for
brevity. I`+1

I`
R̂ is the estimated rotation between timesteps

` and ` + 1, computed using the IMU measurements. This
estimate is corrupted by an error θ̃∆`, defined by:

I`+1
I`

R '
(
I− bθ̃∆`×c

)
· I`+1

I`
R̂ (14)

On the other hand, the true rotation matrices at ` and ` + 1
satisfy I`+1

G R = I`+1
I`

R · I`

GR. Substituting (12), (13) and (14)
in this equation, we obtain the following expression for the
linearized error propagation:

I θ̃`+1|` ' R̂`+1|` R̂T
`|` · I θ̃`|` + θ̃∆` (15)

To calculate the velocity error terms, we start with the
identity:

Gv̂`+1|` = Gv̂`|` +
∫ t`+1

t`

Gâτdτ (16)

= Gv̂`|` +
∫ t`+1

t`

(
G
Iτ

R̂Iτ am + Gg
)

dτ (17)

where we have used (7). By defining ŝ` =
∫ t`+1

t`

I`

Iτ
R̂Iτ amdτ ,

we can write the above equation as:

Gv̂`+1|` = Gv̂`|` + Gg∆t + R̂T
`|`ŝ` (18)

A key observation here is that ŝ` is a vector that depends
only on the measurements, and thus by linearizing (18) we
obtain:

Gṽ`+1|` ' −R̂T
`|`bŝ`×cI θ̃`|` + Gṽ`|` + R̂T

`|`s̃` (19)

where the error term s̃` depends only on the IMU measure-
ment noise. For the IMU position, we similarly write:

Gp̂`+1|` = Gp̂`|` +
∫ t`+1

t`

Gv̂τdτ

= Gp̂`|` + Gv̂`|`∆t +
1
2

Gg∆t2 + R̂T
`|`ŷ` (20)

where ŷ` =
∫ t`+1

t`

∫ s

t`

I`

Iτ
R̂Iτ amdτds. Proceeding to linearize

the above equation, we obtain:

Gp̃`+1|`'−R̂T
`|`bŷ`×cI θ̃`|`+Gṽ`|`∆t+Gp̃`|`+R̂T

`|`ỹ` (21)

By combining (15), (19) and (21), we can now write:




I θ̃`+1|`
Gp̃`+1|`
Gṽ`+1|`




︸ ︷︷ ︸
x̃I`+1|`

=




R̂`+1|` R̂T
`|` 03 03

−R̂T
`|`bŷ`×c I3 ∆tI3

−R̂T
`|`bŝ`×c 03 I3




︸ ︷︷ ︸
ΦI`




I θ̃`|`
Gp̃`|`
Gṽ`|`




︸ ︷︷ ︸
x̃I`|`

+




θ̃∆`

R̂T
`|`ỹ`

R̂T
`|`s̃`




︸ ︷︷ ︸
w`



To write the state transition matrix as a function of the
state estimates only, we solve (18) and (20) for ŝ` and ŷ`,
respectively, to obtain:

ŝ` = R̂`|`
(
Gv̂`+1|`−Gv̂`|`−Gg∆t

)
(22)

ŷ` = R̂`|`

(
Gp̂`+1|`−Gp̂`|`−Gv̂`|`∆t− 1

2
Gg∆t2

)
(23)

Therefore the IMU error-state transition matrix can be
written as:

ΦI`
(x̂I`+1|` , x̂I`|`)=




R̂`+1|` · R̂T
`|` 03 03

Φpq(x̂I`+1|` , x̂I`|`) I3 ∆tI3

Φvq(x̂I`+1|` , x̂I`|`) 03 I3


 ,

Φpq(x̂I`+1|` , x̂I`|`)=−b(Gp̂`+1|`−Gp̂`|`

−Gv̂`|`∆t−1
2

Gg∆t2
)×cR̂T

`|`

Φvq(x̂I`+1|` , x̂I`|`)=−b(Gv̂`+1|`−Gv̂`|`−Gg∆t)×cR̂T
`|`
(24)

Note that this matrix is a closed-form function of the state
estimates, and thus can be computed independently of the
way in which the IMU state is integrated.

C. Full State Transition Matrix

If the biases are included in the derivations, the error-state
transition matrix is given by [23]:

ΦIk
=




Φqq 03 03 Φqbg 03

Φpq I3 ∆tI3 Φpbg Φpa

Φvq 03 I3 Φvbg Φva

03 03 03 I3 03

03 03 03 03 I3




(25)

where

Φqbg =−R̂`+1|` · R̂T
`|`

∫ t`+1

t`

I`

Iτ
R̂ dτ

Φpbg =
∫ t`+1

t`

∫ w

t`

b(G ˙̂vτ −G g)×cR̂T
`|`

∫ τ

t`

I`

Is
R̂ ds dτ dw

Φpa =−R̂T
`|`

∫ t`+1

t`

∫ τ

t`

I`

Is
R̂ ds dτ

Φvbg =
∫ t`+1

t`

b(G ˙̂vτ −G g)×cR̂T
`|`

∫ τ

t`

I`

Is
R̂ ds dτ

Φva =−R̂T
`|`

∫ t`+1

t`

I`

Iτ
R̂ dτ (26)

IV. OBSERVABILITY ANALYSIS

In this section, we examine the observability properties of
the linearized system model used in the MSCKF. For clarity,
we here carry out the analysis for a state vector that does not
include the IMU biases. Note however that, as shown in [20],
these biases are observable for general motion. Therefore
their inclusion in the state vector would not change the
main result of this section, which is the artificial increase
in the number of observable states. This result holds also
when the biases are considered, as validated by the results
in Section VI, were the biases are included in the estimated
IMU state vector.

A. Camera measurement model

Assuming a calibrated perspective camera, the measure-
ment of the i-th feature at time step ` is given by

zi,` = h
(
C`pfi

)
+ ni,`, with (27)

C`pfi
= C

I R R`

(
Gpfi

− GpI`

)
+ CpI (28)

In this expression {C
I R, CpI} are the known rotation and

translation between the camera and the IMU, h(·) is the
pinhole camera model, h(f) = [fx/fz, fx/fz]T , and ni,`

is the measurement noise vector. In the MSCKF features
are tracked for a number of frames, and then used for EKF
updates. If feature i is processed for an MSCKF update at
time-step αi + 1, the Jacobians of the measurement model
with respect to the IMU state and the feature position are

HIi,`
= Ji,`

C
I R

[ bR̂`|αi

(
Gp̂fi

− Gp̂`|αi

)×c −R̂`|αi
03

]

Hfi,`
= Ji,`

C
I R R̂`|αi

(29)

Ji,` =
∂h(f)

∂f

∣∣∣∣∣
f=C` p̂fi

=
1

C` ẑfi


1 0 −

C` x̂fi
C` ẑfi

0 1 −
C` ŷfi
C` ẑfi


 (30)

B. Structure of the observability matrix

To derive the observability matrix for MSCKF-based
VIO, we first note that the MSCKF and EKF-SLAM use
the same feature measurements, but use different estimates
for computing Jacobians. This means that to analyze the
observability properties of the MSCKF we can analyze the
equivalent SLAM system model, as long as we adjust the
linearization points [23]. Thus, we define the following state
vector, which contains the IMU state as well as the positions
of N features observed by the camera in the time interval
[k, k + m]:

xI =
[
I
Gq̄T GpT GvT GpT

1 · · · GpT
N

]T
(31)

If at time-step ` the camera observes n` features, the Jacobian
H` contains n` block rows of the form

H(i)
` =

[
HIi,`

, 03, · · · , Hfi,`
, · · · , 03

]
, i = 1, .., n`

where HIi,`
and Hfi,`

are shown in (29). Thus, the block row
of the observability matrix corresponding to the measurement
of feature i at time step ` has the following structure:

O(i)
` =M(i)

`

[
A(i)

` ΦI`−1 · · ·ΦIk
, 03, · · · , I3, · · · , 03

]
,

(32)

M(i)
` = Ji,`

C
I R R̂`|αi

(33)

A(i)
` =

[ bGp̂fi − Gp̂`|αi
×cR̂T

`|αi
−I3 03

]
(34)

C. Using “ideal” Jacobians

It is interesting to first examine the properties of the
observability matrix in the “ideal” case when the Jacobians
are evaluated using the true state values. If we compute
the state transition matrix as ΦI`

(xI`+1 ,xI`
) (see (24)), and



evaluate the Jacobian matrices in (29) using the true states,
substitution in (32) yields:

Ǒ(i)
` =M̌(i)

`

[
Γ̌

(i)

` ,−I3,−∆t`I3,03, · · · , I3, · · · ,03

]
, (35)

Γ̌
(i)

` =
⌊(

Gpfi − Gpk − Gvk∆t` − 1
2

Gg∆t2`
)× ⌋

RT
k (36)

In the above equations, ∆t` denotes the time interval between
time steps k and `, and we have used the symbol “̌ ” to denote
a matrix computed using the true state values.

If we now define the matrix N as:

N =




03 Rk
Gg

I3 −bGpk×cGg
03 −bGvk×cGg
I3 −bGpf1×cGg
I3 −bGpf2×cGg
...

...
I3 −bGpfN

×cGg




(37)

it is easy to verify that Ǒ(i)
` ·N = 02×4. Since this holds for

any i and any ` (i.e., for all block rows of the observability
matrix), we conclude that Ǒ ·N = 0, which in turn means
that all four columns of N belong to the nullspace of Ǒ.
Close inspection of the structure of N shows that the first
block column corresponds to a global translation of the state
vector, while the last column corresponds to rotations about
gravity. In other words, the nullspace of the matrix Ǒ, which
is the unobservable subspace of the linearized system model,
has properties that agree with those of the actual, nonlinear
system (in [23] we show that no additional basis vectors
can be found for the nullspace). Thus, if we were able to
estimate all the Jacobians using the true state estimates the
linearized system model would have the desired observability
properties.

D. Using the actual Jacobians

We now examine the observability properties of the lin-
earized system when the state transition matrix and all
Jacobians are computed using the latest available state es-
timates. Using the Jacobians in (29), the block row of O
corresponding to the observation of feature i at time-step `
becomes

O(i)
` =M(i)

`

[
Γ(i)

` +∆Γ(i)
` ,−I3,−∆t`I3,03, · · · , I3, · · · ,03

]

(38)
where

Γ(i)
` =

⌊
Gp̂fi−Gp̂k|k−Gv̂k|k∆t`−1

2
Gg∆t2`×

⌋
R̂T

k|k (39)

and

∆Γ(i)
` =

(
bGp̂fi−Gp̂`|αi

×cĒq+Ēp+
`−1∑

j=k+1

( j∑

s=k+1

Es
v∆t

+ Ej
p +

j−1∑

s=k+1

Φvq(x̂Is+1|s , x̂Is|s)R̂s|sEs
q∆t+

Φpq(x̂Ij+1|j , x̂Ij|j )R̂j|jEj
q

))
R̂T

k|k (40)

with

Ēq = I3 −
(
R̂T

`|αi
R̂`|`−1

) `−1∏

n=k+1

(
R̂T

n|nR̂n|n−1

)

Ej
q = I3 −

j∏

n=k+1

(
R̂T

n|nR̂n|n−1

)

Ej
p = bGp̂j|j−1 − Gp̂j|j×c, Ēp = bGp̂`|`−1−Gp̂`|αi

×c
Ej

v = bGv̂j|j−1 − Gv̂j|j×c (41)

By comparing (38) and (39) to (35) and (36) we see that
the structure of the observability matrix in both cases is
similar. The key difference is that when the Jacobians are
evaluated using the state estimates, the “disturbance” term
∆Γ(i)

` appears. While ∆Γ(i)
` is quite complex, we can

observe that it contains terms that depend on the corrections
(e.g., Gp̂j|j−Gp̂j|j−1, Gv̂j|j−Gv̂j|j−1) that the filter applies
at different time steps. Since these corrections are random,
the term ∆Γ(i)

` is a random one, and this “destroys” the
special structure of the observability matrix. As a result, the
property O(i)

` ·N = 0 does not hold, and it can be shown that
the nullspace of O is now of dimension only three [23]. This
nullspace is spanned by the first three column vectors (the
first block column) of N in (37), which means that the global
yaw erroneously appears to be observable. As a result the
MSCKF underestimates the uncertainty of the yaw estimates,
which, in turn, leads to loss of accuracy.

It is important to note that this problem is not specific to
the MSCKF. In [23], we show that EKF-SLAM using visual
and inertial measurements suffers from the same increase in
the rank of the observability matrix. Thus, the EKF-SLAM
also fails to correctly report the uncertainty of the state
estimates in VIO.

V. IMPROVING THE PERFORMANCE OF THE MSCKF
In this section, we propose modifications to the original

MSCKF algorithm that ensure that the linearized system
model has appropriate observability properties. As shown in
the preceding section, the root cause of the problem is the
fact that different estimates of the same states appear in the
Jacobians. These estimates result in nonzero values for the
terms Ēq, Ej

q, Ej
p, Ēp, Ej

v, and lead to incorrect properties
for the observability matrix. The modifications proposed in
this section aim at removing these terms, to restore the
appropriate dimension of the unobservable subspace.

A. Global orientation error parametrization

We first address the orientation-dependent terms, Ēq and
Ej

q. Specifically, we propose a simple re-parameterization
of the IMU orientation error: instead of using the error
definition in (12), we employ the following one:

I
GR ' I

GR̂
(
I3 − bGθ̃×c

)
(42)

Note that here the matrix I3−bGθ̃×c is a rotation matrix (to
first-order approximation) that describes the rotation from the
estimated global frame to the true one. Thus, the 3×1 vector
Gθ̃ is the orientation error expressed in the global frame,



while the original error parameterization in (12) expresses
the error in the local frame. With this parameterization, and
following analogous steps as in Section III, we obtain the
following IMU error-state transition matrix:

Φ?
I (̀x̂I`+1|` , x̂I`|`)=




I3 03 03

Φ?
pq(x̂I`+1|` , x̂I`|`) I3 ∆tI3

Φ?
vq(x̂I`+1|` , x̂I`|`) 03 I3




Φ?
pq(x̂I`+1|` , x̂I`|`)=−bGp̂`+1|`−Gp̂`|`−Gv̂`|`∆t− 1

2
Gg∆t2×c

Φ?
vq(x̂I`+1|` , x̂I`|`)=−b(Gv̂`+1|`−Gv̂`|`−Gg∆t)×c

Moreover, the measurement Jacobian matrices become

H?
Ii,`

=M(i)
`

[ b(Gp̂fi
− Gp̂`|αi

)×c −I3 03×3

]
= M(i)

` A(i)?

`

H?
fi,`

=M(i)
` (43)

The key advantage of this parameterization is that both
Φ?

I`
and the term A(i)?

` are independent of the orientation
estimates. Substituting the above values in (32) we obtain the
following for each block row of the observability matrix:

O(i)?

` =M(i)
`

[
Γ(i)?

` +∆Γ(i)?

` ,−I3,−∆t`I3,03, · · · , I3, · · · ,03

]

where

Γ(i)?

` =
⌊(

Gp̂fi − Gp̂k|k − Gv̂k|k∆t` − 1
2

Gg∆t2`
)× ⌋

∆Γ(i)?

` = Ēp+
`−1∑

j=k+1

(Ej
p+

j∑

s=k+1

Es
v∆t) (44)

We thus see that now the “disturbance” term ∆Γ(i)?

` is
simplified, and does not contain any elements due to the
orientation estimates. Next, we show how the remaining
terms due to the position and velocity can also be removed.

B. Use of first-estimate Jacobians

The disturbance term ∆Γ(i)?

` is a function of the dif-
ferences between the estimates of the IMU position and
velocity that are available at different time instances (see (41)
and (44)). If we ensure that all Jacobians are computed
using the same estimate for each of these states, the dis-
turbance terms will vanish. Specifically, we here propose to
use the first estimate of each IMU position and velocity
when computing the filter Jacobian matrices [18]. This
requires two changes. First, the state transition matrix at
time-step ` is computed as Φ?

I`
(x̂I`+1|` , x̂I`|`−1), instead of

Φ?
I`

(x̂I`+1|` , x̂I`|`). Second, the measurement Jacobians are
computed as follows:

H?
Ii,

=̀M(i)
`

[ b(Gp̂fi
−Gp̂`|`−1

)×c −I3 03

]
, H?

fi,`
=M(i)

`

As a result of these two changes, only the estimate Gp̂`|`−1

(the first that becomes available) is used in all the Jacobians
that involve Gp`, and the same holds for the velocity vectors
Gv`, for all `. In turn, it is easy to show that the term ∆Γ(i)?

`

in (44) becomes identically zero, and the observability matrix
regains the correct rank. As shown in the next section, the
modified MSCKF algorithm attains substantially improved
performance, both in terms of consistency and accuracy.

This occurs despite the fact that it uses older, and thus less
accurate, estimates in computing Jacobians.

VI. RESULTS

A. Simulation tests

We first present the results of Monte-Carlo simulation
tests, which allow us to examine the statistical properties
of the modified MSCKF algorithm. To build a realistic
simulation setting, we generate our simulation environment
based on a real-world dataset, collected at the Cheddar Gorge
area in the UK [24]. This dataset involves a 29.6-km long
trajectory, travelled over 57 minutes. For our simulations,
we generate a ground truth trajectory (position, velocity,
orientation) that matches the vehicle’s actual trajectory, as
computed by a high-precision INS system. Using this trajec-
tory, we subsequently generate IMU measurements corrupted
with noise and bias characteristics similar to those of the
Xsens MTi-G sensor used in the dataset. Moreover, we gen-
erate monocular feature tracks with statistical characteristics
(feature number and distance, average track length, noise
variance) similar to those of the actual dataset. Specifically,
225 features are observed in each image on average, and
each feature’s track length is sampled from an exponential
distribution with a mean of 4.1 frames. The IMU measure-
ments are available at 100 Hz, while the camera frame rate
is 20 Hz, as in the actual dataset.

In each Monte-Carlo trial, the IMU measurements and fea-
ture tracks are randomly generated, and this data is processed
by the following three algorithms: (i) The original MSCKF
algorithm [1], (ii) The modified MSCKF algorithm described
in the previous section (denoted as m-MSCKF), and (iii) A
fixed-lag smoother (FLS) in information form [11]. The FLS
employs the same feature-marginalization approach as in the
MSCKF, but uses iterative minimization, which enables it
to re-linearize the measurement models at each iteration. To
ensure a fair comparison all three algorithms process the
same data, and use a sliding window of the same length.

Before presenting the cumulative results for all the Monte-
Carlo trials, it is useful to examine the results of the three
competing methods on a single trial. Specifically, the most
interesting results are those for the estimates of the rotation
about gravity (the yaw). Fig. 1 shows the yaw errors for the
three algorithms, as well as the ±3σ envelopes computed
using the reported covariance of each method (these are
the reported 99.7% confidence regions). The most important
observation here is that the reported standard deviation for
both the MSCKF and the FLS fluctuates about a constant
value, as if the yaw was observable. In contrast, the reported
standard deviation for the m-MSCKF continuously increases,
which is what we expect given that the yaw is not actually
observable. Moreover, this plot shows that the yaw errors of
the MSCKF and FLS lie outside the ±3σ bounds, which in-
dicates inconsistency. Fig. 1 clearly demonstrates the effects
of the incorrect observability properties of the MSCKF’s
linearized system model. These cause the yaw uncertainty
to be underestimated, and lead to errors larger than those
the filter expects. It is important to point out that the FLS
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also suffers from the same problem, even though it employs
iterative re-linearization [10].

Fig. 2 plots the average NEES and RMS error for the IMU
pose (position and orientation), averaged over 50 Monte-
Carlo trials. Regarding the NEES, it becomes immediately
clear that the m-MSCKF exhibits substantially higher con-
sistency than the two competing methods. Specifically, the
average NEES is 58.7 for the MSCKF, 52.7 for the FLS,
and 6.8 for the m-MSCKF. We therefore see that the m-
MSCKF obtains an NEES value close to the theoretically
expected one for a consistent estimator, which is 6 (equal
to the size of the error state). These results validate the
theoretical analysis of Section V, and demonstrate that the
proposed modifications to the MSCKF significantly improve
its consistency.

In addition to the consistency improvement, the results in
Fig. 2 show that the m-MSCKF outperforms the two other
methods in terms of accuracy. Specifically, the RMS error
for the position (averaged over all trials and through time) is
148.9 m for the MSCKF, 129.1 m for the FLS, and 94.2 m for
the m-MSCKF. For the orientation errors we obtain 3.55o for
the MSCKF, 2.79o for the FLS, and 2.06o for the m-MSCKF.
In both cases, the m-MSCKF attains smaller overall errors.
We attribute this to the fact that, by ensuring the correct
observability properties for the linearized system model, the
m-MSCKF is capable of more accurately representing the
uncertainty of the different states. In turn, this makes it
possible to compute more suitable values for the Kalman gain
and the state corrections, leading to overall better accuracy.

B. Real-world experiment
We also present results from a real-world experiment, dur-

ing which an IMU/camera platform was mounted on top of
a car and driven on the streets of Riverside, CA. The sensors
consisted of an Inertial Science ISIS IMU and a PointGrey
Bumblebee2 stereo pair (only a single camera’s images are
used). The IMU provides measurements at 100 Hz, while the
camera images were stored at 10 Hz. Harris feature points are
extracted, and matching is carried out by normalized cross-
correlation. The vehicle trajectory is approximately 5.5 km
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Fig. 3. Sample images recorded during the experiment.

long, and a total of 7922 images are processed. Some sample
images from the experiment are shown in Fig. 3.

Fig. 4 shows the trajectory estimates computed by the
three algorithms (MSCKF, FLS, and m-MSCKF) on a map
of the area where the vehicle drove. While a precise GPS
ground truth is not available for this experiment, by closely
examining the trajectory, we can observe that the m-MSCKF
estimate closely follows the streets in the map. By contrast,
the trajectories computed by the two other methods deviate
from the street layout (this is most prominent in the south-
east corner of the map). Moreover, Fig. 5 plots the reported
standard deviation of the yaw for the three algorithms (since
orientation ground truth is not available, the errors cannot be
plotted). Similarly to what was observed in Fig. 1, we see that
only the standard deviation for the m-MSCKF continuously
increases, as predicted by the observability properties of the
system. In contrast, the MSCKF and the FLS underestimate
the yaw uncertainty, and obtain less accurate trajectory
estimates. Thus, we see that the experimental results agree
with the findings of the simulations, as well as the theoretical
analysis.

VII. CONCLUSION

In this paper we have presented a detailed theoretical
analysis of the properties of the linearized system model used
in EKF-based visual-inertial odometry. This analysis proved
that this model has incorrect observability properties, which
cause the global orientation to appear to be observable. In
turn, this causes the filter to underestimate the uncertainty
of the orientation estimates, i.e., to become inconsistent.
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Our results showed that this inconsistency also degrades the
accuracy of the estimates. Based on the theoretical analysis,
we proposed three modifications of the MSCKF algorithm
for visual-inertial odometry [1]. These modifications, which
incur no additional computational cost, include (i) A closed-
form computation of the EKF error-state transition matrix,
(ii) A new parameterization of the orientation error, and
(iii) A new method of selecting the linearization points in
the filter. Taken together, these modifications ensure that the
resulting algorithm remains consistent. Our simulation and
experimental results demonstrate that the modified MSCKF
substantially outperforms the original algorithm, as well as
iterative-minimization based fixed-lag smoothing. Overall,
the theoretical and experimental results of the paper show
that the modified MSCKF algorithm is capable of long-term,
high-precision, consistent visual-inertial odometry.
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