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Abstract—In this paper we study the time evolution of the remains bounded [5]. This introduces the problem of Coopera-
position estimates’ covariance in Cooperative Simultaneous Lo- tive Simultaneous Localization And Mapping (C-SLAM) that
calization and Mapping (C-SLAM), and obtain analytical upper p,q yacently attracted the interest of many researchers. The
bounds for the positioning uncertainty. The derived bounds . L -
provide descriptions of the asymptotic positioning performance number °_f potentlal appllcat|0ﬂs that require robots tolperform
of a team of robots in a mapping task, as a function of the C-SLAMis continuously growing, as autonomous vehicles are
characteristics of the proprioceptive and exteroceptive sensors of employed for tasks ranging from planetary exploration and
the robots, and of the graph of relative position measurements environmental monitoring, to construction and transportation.
recorded by the robots. A study of the properties of the Riccati In this work, C-SLAM is considered within th&tochastic

recursion which describes the propagation of uncertainty through . .
time, yields (i) the guaranteed accuracyfor a robot team in a Mappingframework [6], [7]. We assume that the mobile robots

given C-SLAM application, as well as (i) the maximumexpected Move continuously and randomly in a planar environment,
steady-state uncertainty of the robots and landmarks, when the while recording measurements of the relative positions (i.e.,
spatial distribution of features in the environment can be modeled range and bearing) of other robots in the team, and of point
by a known distribution. The theoretical results are validated |3ngmarks that exist in the environment. A means of describing
both in simulation and experimentally. .
the exteroceptive measurements that are recorded at each
time step is the associatddelative Position Measurement
|. INTRODUCTION Graph (RPMG), i.e., the graph whose vertices represent the
In order for a multirobot team to coordinate while navigatrobots and landmarks, while its directed edges correspond to
ing autonomously within an area, all robots must be able tbe robot-to-robot and robot-to-landmarkmeasurements (cf.
determine their positions with respect to a common frame Bfg. 1(a)).
reference. In an ideal scenario, each robot would have direcfThis paper presents the first derivation of analyticpper
access to measurements of its absolute position, such as tHmsendson the positioning uncertainty during C-SLAM for
provided by a GPS receiver, or those inferred by detectimgpossibly heterogeneous team of mobile robots navigating
previously mapped features. However, reliance on GPSvigthin a 2D environment populated with point features. The
not feasible in a number of situations, since GPS signafsetric used to describe the localization uncertainty is the
are not available everywhere (e.g., indoors), or, triangulati@ovariance matrix associated with the errors in the position
technigues based on them may provide erroneous results dagmates for the robots and the mapped features. The closed-
to multiple reflections (e.g., in the vicinity of tall structureform expression of Lemma 4.3 establishie® guaranteed
and buildings). Moreover, compiling a detailed map of thaccuracy attainable by a robot team in a given mapping
environment is a tedious and time-consuming process, whépplication, as dunctional relationof the noise parameters
numerous applications require robots to operate in unknowh the robots’ sensors and the topology of the RPMG. Fur-
surroundings, whose structure cannot be determined in ddermore, the result of Lemma 4.5 demonstrates how prior
vance. This suggests that additional means are required ifdformation about the spatial density of landmarks can be
aiding odometry when groups of mobile robots localize.  utilized in order to compute a tight upper bound on the
In situations where absolute position information is naxpectedcovariance of the positioning errors. To the best
available, the robots of a team can still improve their locabf our knowledge, the proposed bounds constitute the only
ization accuracy, by recording robot-to-robot relative positioexistinganalytical toolsfor predicting the mapping precision,
measurements, and processing them in order to update tlasinvell as the accuracy of the robots’ localization in a given C-
position estimates (e.g., [1], [2], [3]). This method results iBLAM application. Hence, they facilitate the selection of the
a substantial improvement in estimation accuracy, companexjuired sensor parameters, in order to satisfy task-imposed
to simple Dead-Reckoning localization schemes. Howev@erformance constraints.
performing Cooperative Localization (CL) solely based on The rest of the paper is structured as follows: the next
relative position measurements has the limitation that tisection outlines the most relevant existing approaches, while in
uncertainty of the robots’ position estimates continuously irsection Il the problem formulation is described. In Section IV
creases [4], and the attained accuracy may not be sufficient fioee main results of the paper are presented, and are synopsized
certain applications. An alternative approach is for the robadts Lemmas 4.1, 4.3, 4.4, and 4.5. Section V presents results
to localize while concurrently building a map of the environpertaining to the case of eéhangingtopology of the RPMG.
ment, in which case the uncertainty in their position estimatés Sections VI and VII, simulation and experimental results



that validate the derived analytical expressions are presentedde. Under the additional assumption that the robots receive
Finally, in Section VIl the conclusions of this work are drawnnoise-free odometry measurements, it is proven that at steady
state, all of the vehicle and feature position estimates become
fully correlated andiower boundsfor the covariance of all
vehicles and features are derived. However, the proplosest

Most of the existing approaches to both single- and multbounds cannot be employed for determining the performance
robot SLAM have been inspired by the seminal papers of C-SLAM in the case of robotsn motion exploring an
Moutarlier and Chatila [7] and of Smith, Self, and Cheesemknown area. In such a scenario, the global coordinate frame
man [6], [8] that introduced the notion of titochastic Map can be arbitrarily defined, thus at least one of the robots has
and emphasized the importance of properly accounting for therfect knowledge of its initial position, and the described
correlations between all the robots’ and landmarks’ positidower bound reduces to zero.
estimates. However, maintaining all the cross-correlation ele-One of the tools employed in our work is the solution
ments of the covariance matrix in EKF-based SLAM results isf a constant-coefficient Riccati recursion, that corresponds
algorithms with computational complexity quadratic in the sizg a deduced Linear Time Invariant (LTI) C-SLAM model.
of the state vector. Thus, the majority of subsequent researah[22], the authors consider thene-dimensionalC-SLAM
on SLAM has focused on devising scalable algorithms, thgioblem, in which the robot and landmarks are all situated
achieve performance comparable to that of an EKF-basgiédng a single coordinate axis, and the state propagation
approach to SLAM, at a smaller computational cost. Particid measurement models are LTI. In that work, under the
filtering [9], use of local submaps [10], covariance intersectiaidditional assumptions that (&ll robots can observe all
techniques [11], and application of the extended informatigaindmarks, (ii)no robot-to-robot measurements occur, (iii)
filter [12] are examples of approaches suited for online implene initial covariance matrix of the feature mapdigonal
mentation. and (iv) the robots haveerfect initial knowledge of their

A number of estimation algorithms have been proposemsition, a closed form solution to tl@ntinuous-timeRiccati
specifically for the C-SLAM problem, as alternatives to thequation describing the time evolution of the covariance is
EKF estimator [13]. In [14], a Set Membership (SM) techniquderived. The aforementioned assumptions, which are clearly
is developed, based on the premise that all sensor errors @k constraining, are not necessary in our work, as we assume
bounded. This assumption allows for the definition of the setbitrary (connected) RPMG's, and arbitrary initial covariance
of feasible state vectors, which is propagated through timeatrices for the robots and landmarks. Furthermore, the results
using Linear Programming and set approximation methodsf. [22] are only valid for motion in 1D, which is of limited
SM provides guaranteed uncertainty regions for all robofsactical importance.
and landmarks at each time step. In the work of Thrun [15], The main contribution of the work presented in this paper
an algorithm that integrates Maximum Likelihood (ML) in-is the characterization of the steady-state accuracy of the
cremental map building with Monte Carlo localization igosition estimates in C-SLAM. This is achieved by deriving
proposed. The pose of the robots is propagated usingamalytical upper bounds$or the worst-case value as well as
particle filter representation of their belief functions, whilgor the expected value of the steady-state covariance matrix
the map is compiled in a distributed manner among robots, the position estimates. What distinguishes these results
using laser range data. In [16], the constrained local subm@gm previous ones is that the analysis is based oratheal
filter is employed, enabling each vehicle to build a map ghon-linear) system and measurement equations for robots
its surroundings independently from the rest of the teamavigating in 2D. Besides the naturally arising assumption
In this case, a global map is created by periodically fusingf connectedness (cf. Section Ill), no additional assumptions
the vehicles’ submaps. In [17], [18], an elevation map of an the structure of the RPMG are imposed. Furthermore, the
outdoor area is created using multiple robots that localize #malysis encompasses the case of a heterogeneous (in terms of
a common coordinate frame. Finally, in [19], [20] a manifol&ensor accuracy) group of robots and is thus applicable to the
representation of 2D space, and a ML estimator are employegidy of a broad class of applications.

This approach offers a method for alleviating the problem of
map inconsistency in environments containing loops, at the
expense of increased complexity.

Our work doesnot address the aforementioned implemen- Consider a group ofM mobile robots, denoted as;,
tation issues of C-SLAM. We assume perfect data association ..., ry;, moving on a planar surface, in an environment
and seek to characterize the theoretically attainable estimattbat containsNV landmarks, denoted ak,, Lo, ..., Ly. The
accuracy by providing bounds for the steady state covariamodots use proprioceptive measurements (e.g., from odometric
of the position estimates [21]. To the best of our knowledger inertial sensors) to propagate their state (position) estimates,
the properties of the estimates’ covariance matrix in C-SLAMNd are equipped with exteroceptive sensors (e.g., laser range
are only studied in the work of Fenwick et al. [5], [13]. In thafinders) that enable them to measure the relative position of
case, linear time-invariant models for both the propagation anther robots and landmarks. All the measurements are fused
measurement equations are employed, and it is shown thatdiseng an Extended Kalman Filter (EKF) in order to produce
determinant of any principal submatrix of the map’s covarian@stimates of the position of the robots and the landmarks. In
matrix decreases monotonically as successive observationsane formulation, it is assumed that an upper bound for the

II. RELATED WORK

Ill. PROBLEM FORMULATION



variance of the errors in the robots’ orientation estimates céf. Lemmas 4.1 and 4.4). These properties allow for the
be determined a priori. This allows us to decouple the tadrmulation of constant coefficienRiccati recursions, whose
of position estimation from that of orientation estimation ansolutions provide upper bounds for the positioning uncertainty
facilitates the derivation of an analytical upper bound on thie C-SLAM.

positioning uncertainty.

The robots’ orientation uncertainty is bounded when, fC')&
example, absolute orientation measurements from a coni-
pass [23], [24] or a sun sensor [25], [26] are available, or WhenThe discrete-time kinematic equations for thth robot are
the perpendicularity of the walls in an indoor environment
is used to infer orientation. In cases where neither approach Tri(b 1) = @y (k) + Vilk)ot cos(¢i(k)) (1)
is possible, our analysis still holds under the condition that Yri(k+1) = yr, (k) + Vi(k)dtsin(¢;(k)) )

a conservative upper bound for the orientation uncertan\%erevi(k) denotes the robot’s translational velocity at tikne

of each robot is determined by alternative means, e.g., Qxdét is the sampling period. In the Kalman filter framework,

estimating the maximum orientation error accumulated, OVRle estimates of the robot's position are propagated using
a certain period of time, due to the integration of noise

X fhe measurements of the robot's velociWy,,. (k), and the
the odometric measurements [27]. It should be noted ﬂl?sttimates of the robot's orientation; (k). By linearizing

the requirement for bounded orientation error covariance IJE%S. (1) and (2), the error propagation equation for the robot's
not too restrictive: In the EKF framework, the nonlinear staﬁ

Position propagation

; _ : . osition is derived:
propagation and measurement equations are linearized around

the estimates of the robots’ orientation. If the errors in thesF %”M‘k ] 1 0 gwk
estimates are allowed to increase unbounded, the linearizati = { 01 } Urs
will unavoidably become erroneous and the estimates will d . HE
verge. Furthermore, large errors in the estimates for the robo'q;’[ ot cos(¢i(k))  —Vim, (k)8t sin(¢;(k)) ] [ wy, (k) }
orientation in SLAM result in erroneous data association, that | 0tsin(¢;(k)) Vi, (k)0t cos(¢s(k)) Gi(k)
may have detrimental effects on the filter’s stability. Thus, in . ¥ X + G ()Wik), i=1...M (3)
the vast majority of practical situations, provisions are made *
in order to constrain the robots’ orientation uncertainty withiwheré wy- (k) is a zero-mean white Gaussian noise sequence
given limits. of variancesy, , affecting the velocity measurements and)
As explained in the Introduction section, the Relative Posis the error in the robot’s orientation estimate at tifeThis
tion Measurement Graph (RPMG) is employed for describirig modeled as a zero-mean white Gaussian noise sequence of
the robot-to-robot and robot-to-landmark measurements. \}arianceo—ii,
the following we impose the constraint that the RPMG is a From Eq. (3), we deduce that the covariance matrix of the
connectedgraph, i.e., that there exists a path between amystem noise affecting thieth robot is:
two of its nodes. This constraint arises naturally and is not
a restrictive one, since if an RPMG is not connected, théd: (k) = E{G.,()Wi)W;" ()G (k)}
it can always be decomposed into smaller, connected sub- - St2o?, 0
graphs. Each of these sub-graphs corresponds to an isolated — C(ei(k)) { 0 5t2v,?“ (lc)ag_
group of robots and/or landmarks, whose position estimation N ' L
problem can be studied independently. We should also poereC(¢;) denotes the x 2 rotation matrix associated with
out at this point that the RPMG doest need to be complete i, i.€.,
(fully connected). As long as the connectedness constraint is 2 .o
satisfied, it isnot necessary that each robot can observe all Cl;) = { C.Ob(q?i(k)) — sin(¢;(k)) ]
landmarks or all other robots. An example of such an RPMG sin(i(k)  cos(di(k))
is shown in Fig. 1(a). The landmarks are modeled as static points in 2D space, and
In our formulation, the metric employed for describing theénherefore the state propagation equations are
accuracy of position estimation in C-SLAM is the covariance
matrix of the position estimates. It is well known that the time Xp,(k+1) = Xp,(k), for i=1...N
evolution of the covariance matrix in the EKF framework i%imilarly
described by the propagation and update equations (cf. Eqs.a{ ’
and (16)). Combining these equations yields the Riccati re- .
cursif)n )()cf. Eq. (17)g), whose qsolution ?/s the covariance ofﬁN wh|le.the errors are propagated B¥y 1 —
the error in the state estimate at each time step, right aftsfklk> for @ = 1...N. The state vector for the entire
the propagation phase of the EKF. In the case of C-SLAI\ﬁySt,e_m is defined as the stacked vector comprising of the
the matrix coefficients in this recursion atéme-varying positions of theM robots andV landmarks, i.e.,
and a general closed-form expression for the time evolution — y _ [ xT ... xT xT ... xT }T
of the covariance matrix does not exist. We thus resort to " ™ L L

defiVi”g upper bounds‘gri the covariance, by gxplqiting th? 1Throughout this papef)., x» denotes then x n matrix of zerosLy, xr,
convexity and monotonicity properties of the Riccati recursiadenotes then x n matrix of ones, and,, denotes the: x n identity matrix.

Tht1|k

) =X,
Tigti1)k 24y

} CT(biw) @)

the estimates for the landmark positions are prop-
Egted using the relation&;, , 1y = Xpppw, for i =



Hence, the state transition matrix for the entire system at timéere

stepk is ®;, = Ilop42n and the covariance matrix of the
system noise is:

Qr, (k) 0252
: 0
Qk) = : RN — GQ, (k)G
02><2 Q’l"]\/[ (k)
O2n x2m O2n %2
whereQ, (k) = Diag (Q,, (k)), with Diag(-) denoting a block
diagonal matrix, and
Iy
G =
[ O2nx2m }

The equation for propagating the covariance matrix of the staté;; (x + 1)

error is written as:

Piiik =Py + Q) =Py + GQ.(0)G"  (5)

where Pk+1|k = E{Xk+1|kX } and Pk|k =

k+1k

Hij(k+1) = CT(i(k +1)) H,, (9)
[ O2x2 —1I P 0252 ]
H,,, = —~ ~~
L T Tij
X xroooxp ]
an Ti Ti ’ }kJrllk
Ty = | I —CT(Gilk+1))JApy(k+1) ]
=[] e[
Apij(k—"_l) XTJ k+1lk _XTz‘ kt1lk
The covariance of the error in this measurement is given by
= ”(k+ VE{n;(k+ 1)nj(k+ D)}k +1)
= R, (k+1)+ R (k: + 1) (10)

This expression encapsulates aII sources of noise and uncer-
tainty that contribute to the measurement eg;@cx + 1). More
specifically,R2.. . (k + 1) is the covariance component attributed

B{Xy, X[ } are the covariance of the error in the estimat® the measurement noise.,; (k+ 1), and s _(k+1) is the

of X(k+ 1) and X (k) respectively, after measurements up t
time k£ have been processed.

B. Measurement Model

additional covariance term due to the erdfk +1) in the
orientation estimate of the measuring robot.

Assuming that each relative position measurement is com-
prised of a distance measuremeni and a bearing mea-

surementd;;, affected by two independent white zero-mean

At every time step, the robots perform robot-to-robot an@aussmn noise sequenaes; andny,, respectively, the term

robot-to-landmark relative position measurements. The relat
position measurement between robotsandr,, is given by:

Britm = CT(@') (Xr,, (6)

wherer; (r;,) is the observing (observed) robot, and_, |

is the noise affecting this measurement. Similarly, the m
surement of the relative position betweenand L,, is given

by:

- Xy, + Nzrirm

= CT(@') (XL

The similarity of the preceding two measurement equatio

- Xh) + nzriLn

I%U(k +1) can be expressed as [28]

R,

Zij

(k+1) = E{n., (k+ Hnt

o[ ST o o T o ?
=C" (94) 52 Apz’jApij +Ua,iJAp1:jApijJ C(9:)

2, (k+ 1)}

3
\A/here time indices have been dropped for simplicity. The vari-
ances of the noise in the distance and bearing measurements
are denoted as?, = E{n? } andoj = E{nj } respectively.

The error in the orientation estimate of the measuring
robot introduces an additional error component to all relative
position measurements recorded by this robot, and renders
them correlated. As shown in [28], the additional covariance

allows us to treat both types of measurements in a unifori@erm for each measurement is equal to:

manner. We denote b¥;; the target of thg-th measurement
performed by robot, i.e.,

T 7 — ~2 —~T T ~

c (¢z‘)JAPijE{¢z‘ }Apijj C(¢4)

2 AT AN TR AT A

Umc (¢z)JApijApijJ C(9:) (11)

R;

$ii (k+1)

T;j € {ri,ra,- -

sy Ly Loy - -

s L\ {ri}

while the matrix of correlation between the errors in the
Thus, the general form of the relative position measurementasurements;;(k + 1) and z;¢(k + 1) is:

equation is: Ly () E{ni;(k + 1)nly(k + 1)1 (k)
zij = CT () (X, ®) 2 CT ()T Rpy;ApyJ"C(d:)  (12)

Assuming that thei-th robot performsi/; relative position Since thei-th robot performsi/; relative position measure-
measurements, the indéxassumes integer values in the rang@ents at each time step, the covariance matrix of these
[1, M;] to describe these measurements. By linearizing the |8¢asurements;(k + 1), is defined as a block matrix whose
expression, the measurement error equation is obtained: ¢m-th 2 x 2 submatrix is’ Ry, (k + 1), for £,m = 1... M;,
defined in Eqgs. (10)-(12). Substitution from these equations
and simple algebraic manipulation yields

"Rjo(k +1)

o XW) + Nz,

vaij(k-l- 1) = Zij(k-l- 1) — ,?Afij(k—l- 1)

= Hij(k+ 1) X1 + Ty (k + Dy +1) Ri(k+1) =B} R, (k+1)E;, (13)



whereE; = Iy, ® C(¢;), with @ denoting the Kronecker A. Bound on Worst-Case Steady State Covariance

matrix product, and o2 In this section, we derive an upper bound for the steady
R, (k+1) = 0'12” I, — Dy d1ag< ) DT state covariance matrix in C-SLAM. It can be shown [28]
Pu that the right-hand side of Eq. (17) is a matrix-increasing
+ ggl D;DT + gii D1y s, DT (14) function of the covariance matriceQ(k + 1) and R, (k + 1),
e as well as of the state covariance matitx. These properties
In this last expressionD; = Diag (JApij) is the block allow us to prove the following lemma [28]:

diagonal matrix with diagonal eIemenVsApl yj=1...M,.
The measurement matrix describing the relative positionLemma 4.1:f R, andQ,., are matrices such th&,
measurements performed by robogt each time step is a Ro(k) and Q.. = Q. (k), for all k > 0, then the solution to

matrix whose block rows arél;;, j = 1... M;, i.e.: the R'Ccat' recursion
u u u u -1 u
Hic+1) =E! H,, a5  Pin = P{-P{H] (H,P{H] +R.) H,Pj
1 + GQ,,G" (19)

where H,,, is a constantmatrix with block rowsH,, , j =

1...M; (cf. Eq. (9)). with the initial conditionPy = Py, satisfiesP} > P, for all
The measurement matrix for the entire systdihy+1), k> 0.

is defined as the block matrix with block rowH;(k + 1).

Since the measurements performed by different robots ardn order to derive an upper bound f&®,(k), we note

independent, the associated covariance maRig; + 1), is a that sinceC(gEi) is an orthonormal matrix, the eigenvalues

block diagonal matrix with elemen®; (k + 1). The covariance of Q. (k) are equal toit*cy, anddt’V;> (ko (cf. Eq. (4)).

update equation of the EKF is written as Assuming that the velocity of each robot is approximately

constant and equal tb;, we denote

_ 2 2 2 2y/2 2
with S = H(k+ )Py 41 H” (k + 1) + R(k +1). Substitution %~ ™ (0t%07,, 0°V,5, ()05, ) = max (30, 687 Vo 23
from Eqgs. (13) and (15) and simple algebraic manipulatiog]. (20)
0

Priijptt = Pryip — Prarpe H (k+ DS Hk + )Pry)e

leads to the orientation-dependent terms being cancelled !S defmltlog trs]:tatefs that; is the largest eigenvalue of
and yields the expression ri(k+1), and therefore

_ (k) 2 gl = k) < Di iI) = Q. 21
Prpijert = Prpap — PropHO S, " HoPrye (16) Qs (k) = gil2 = Qu(k) = Diag (¢il2) = Qr, (21)

with S, = HoP 1, HZ + Ro(k +1). In these equationH,
is a matrix whose block rows arEl ,, while R, is a block
diagonal matrix with element#,,.

An upper bound forR,(k + 1) can be derived by consid-
ering the maximum distance,,, at which relative position
measurements can be recorded by rabdthis distance can,
for example, be determined by the maximum range of the
IV. SLAM POSITIONING ACCURACY CHARACTERIZATION robots’ relative position sensors, or, by the size of the area to

The time evolution of the covariance matrix of the positioHe mapped. It can be shown that [28]:
estimates in C-SLAM is described by the Riccati recursion, R;(k+1) < (g + M% P2+ g, po) Loy, = rilang,
which can be derived by substituting the expression from

Eg. (16) into Eq. (5). The resulting expression is: and thus an upper bound i, (k + 1) is computed as

Pip1 = Py PHT (H,PH? + Roh+1)  H,Py _ _ Ro(k+1) < Diag (rilza;) = Ru
+ GQ,k+1)GT 17) Havm_g Qerlvgd upper bounds f&,. (k) _and Ro(k+ 1_), mere
o substitution in Eg. (19) and numerical evaluation of the
where we use the substitutiod®, = P, andP,1 = solution to the resulting recursion, yields an upper bound on

P ojx41 to simplify the notation. We note that the matriceghe maximum possible uncertainty of the position estimates
Q- (k+1) and R,(k+1) in this Riccati recursion are timein C-SLAM, at any time instant after the deployment of the
varying, and thus a closed form expression Brcannot rohot team. However, for many applications it is important
be derived for the general case. However, by exploiting thg evaluate the performance of SLAM at steady state, i.e.,
monotonicity and concavity properties of the Riccati recursiogshen the covariance of the map has converged to a constant
we are able to derivepper boundsor the worst-case value, asvalue ([5]). To this end, it is necessary to evaluate the solution
well as for the average value of the covariance matrix at stea@dy the recursion in Eq. (19) after sufficient time, i.e., as
state. At this point we note that in the ensuing derivations, the . ~o. This computation is simplified by employing the
initial covariance matrix of the position estimates is assumegliowing Lemma, adapted from [29]:
to be equal to

Lemma 4.2:SupposePZ(O) is the solution to the discrete
time Riccati recursion in Eq. (19) with initial valuBg = 0.

Then the solution to the same Riccati recursion but with an
i.e., we assume that the position estimates for the robots an
itrary initial conditionP is given by the identity

the map features are initially uncorrelated, which is the case
at the onset of a mapping task within an unknown area. hl — PZSfl) =®0,k+1) (I + POJ;CH)’ Po®(0,k+1)

P, 0207 x2N
Py = 0 18
0 Oanxom Prr, (18)



where¢ = 2M + 2N, and®(0,k + 1) is given by with
®(0,k+1) = (Ic — K,H,) (I + PJy11)

In these expression®, is any solution to the Discrete Alge-
braic Riccati Equation (DARE):

P=P+GQ, G -PH!/(H,PH! +R,)"'H,P,

2

Ai by -
Jrr, = Qr—ul/2U diag (2 + Zl + )\i> UTQrul/Q (25)

Note that the first term in Eqg. (23) depends only on the
RPMG and the accuracy of the robots’ sensors, while the
andK, = PHY (Ru + HOPHZ)_l. Ji. denotes the solution second term also encapsulates the effect of the initial uncer-
to the dual Riccati recursion: tainty. Additionally, it is worth mentioning only the second

-1 T 1T Tp-1 term affects the accuracy of the computed map while both
Tent =Jh = JkG(Q, [+ G JG) G I + Ho R, H, terms determine the Ioca?i/zation accurzgcy of theprobots.
with zero initial condition,Jo = 0. A case of particular interest in C-SLAM is that of a robot
team building a map of an area for which no prior knowledge
Lemma 4.2 simplifies the evaluation of the steady-state valdgists. We model this scenario by settily,;, = pI, with

of P}, since the solution to the Riccati recursion with zerg —, ~o, which yields the following simplified expression for
initial condition is easily derived. We note that the Riccainatrix ©:

recursion in Eq. (19) describes the time evolution of the . 1
covariance for a deduced C-SLAM scenario, in which both the © = (Lixar ® I) (I, +Prpy)  (Luxa @ I)

robots’ kinematic equations and the measurement equat'qpﬁdditionally, the initial position of all robots is perfectly

are time invariant. Zero initial covariance of the Iandmark§(’nown which is often the case in many mapping applications
position estimates corresponds to a perfectly known map. (|, prévious equation further simplifies to '
this case the robots essentially perform cooperative localiza-

tion, while the robot-to-landmark measurements are equivalent O =Qixm L) Trr, (Lyrx1 ®I2)

to absolute position measurements. Thus, the resulting syst]

e L
is observable and the steady-state solution to the Riccé{Becomes. glear n this case that th('e'topology of the RPMG
equation is of the form [4]: has a significant impact on the positioning accuracy of the

robots and the quality of the map. As one would expect, for a
PuO) — [ Pl Oaxen ] (22) 9given set of robots and landmarks, thes receive their lowest

> Oanx2m  O2nx2n values when the RPMG corresponds to a complete graph while

The value of the teriP?,_ is computed in [28], and is shownhigher values are assumed for sparser graphs [30]. Intuitively,

to be the best C-SLAM results are obtained for groups of robots
s 1 1 1 1/ that can detect all landmarks and all other robots at every
P! =Q)/’Udiag (2 tyzt A») urQ)/ time instant. Finally, by observing Eq. (24) we should also

7

note that the eigenvalues of the RPMG also affect the way

in the I_ast expression the qua_ntitiés and i, i =1.. 2M - that the initial uncertainty about the position of the landmarks
are defined as the matrix of eigenvectors and the eigenvalues; ihe robots is diffused via the C-SLAM orocess,
of C = QY°1,Q}/? respectively, where

I, = [Ly Ouron] HIR;'H, [ Lom } B. Bound on the average steady state covariance

021211 The expression in Eq. (23) provides an upper bound on
Itis interesting to note thad; R, ' H,, represents the informa-the covariance matrix of C-SLAM for a robot team with
tion matrix associated with the measurements in the dedu(@%iven set of sensors and a known RPMG. Th|s bound
linear time-invariant system arldl is the submatrix expressingholds under any possible configuration of the landmarks in
the information about the robots’ positions. space, and regardless of the trajectories of the robots within
The rest of the derivations for the upper bound on the steaggé area. However, when considering the type of features
state covariance matrix involve only algebraic manipulationgf the environment to be treated as landmarks (e.g., visual
and are not included here, since they offer only little intuitiofeatyres, prominent geometric features), it is beneficial to
about the properties of the problem. The interested readelsigect them so that they are abundant in the environment and
referred to [28] for the details of the intermediate steps. Tlge,emy distributed throughout it. This way, a more detailed
final result is stated in the following lemma: and accurate map of an area can be created. In such cases, the
. o density of landmarks in the environment can be modeled
Lemma 4.3:The worst-case covariance matrix in C-SLAMyyiori ‘for example, by a uniform probability density function

is bounded above by the matrix (pdf). Knowledge of the distribution of the relative positions
Py = Pg(gO) + L4 M) x (M N) ® o1 (23) between the robots and landmarks allows us to compute the
w(0) - ] ] averagevalue of the matrixR,(k + 1). This information can
wherePo:" is defined in Eg. (22) and be exploited in order to compute a tighter upper bound for the
O =(11xnv®L)Pr] (I ® I2) expectedsteady state covariance of the position estimates.

. 1 Specifically, it can be shown that the right hand side
+ L ® 1) (I, +Prry) (Ixa ® 1) (24) of Eq. (17) is a concave function of the matricBs, and



R,(k+1). This property enables us to employ JensenBhe quantityJ,,  appearing in this last expression is:
inequality ([31]) to prove, by induction, the following
. \; A2 o\ o
lemma [28]: 3o = QY20 diag (;t + % + A,») UrQ2 (29)
Lemma 4.4:1f R = E{R,(k)} andQ, = E{Q,(k)} then

the solution to the following Riccati recursion whereU and \;, i = 1...2M are defined based on the
P = P PHT (Hol_’kHoT n R)A H,P, singular value decomposition of the matiix
R ) B 7
+ GQrcj' ) (26) Ir — [I2M 02M><2N] HZ"R—lHO |: 02NQI\/IzM :l
with initial condition Py = Py, satisfiesP, = E{P} for N .
all £ > 0. = Udiag(\;)U

In the special case where the map is initially unknown, matrix

The average value of the system noise covariance matrix9sassumes the value

easily computed by averaging over all values of orientation of - = 1
Y P Y ging O=Mixu®Db) (I, +Pry)  (luxi ® D)

the robots:
E{Q,.} = 5t20’\2/,i + 5f2V¢203>i I —al @7) In the special case where the robots have perfect initial
e 2 27 Wi knowledge of their position, the preceding expression reduces
and thus to:
QT’ :E{Qr(kJrl)} = Diag (QiIQ) (28) 6= (11><M®12)jrroo (1M><1®12)

In order to e_valuate_ the _expected valug .BLUH b, we The comments made at the end of Section IV.A for the inter-
assume a uniform distribution for the positions of the robots : ) .
. ; . pretation of these relations and the effect of the connectivity

and landmarks in a rectangular area of sideUsing the .

- . . of the RPMG on the robot and landmark position accuracy are
definition of R, (k + 1) in Eq. (14), it can be shown that [28] _ . .

i valid for this case as well.
B ) Oz2 0 a2 ) a2
R; :E{Roi}: Upi?+09i€+a¢iﬁ IQJWi
5 V. RPMG RECONFIGURATIONS

2 4
+ % 12 Laasixams, Up to this point, we have assumed that the topology of the

and thusR = E{R,} = Diag(R;). At this point, we note RPMG remains constant. However, it is interesting to study the

that the uniform distribution employed in the calculation opehavior of the covariance matrix of the position estimates
R, was deemed an appropriate model for the positions of thethe case of RPMG reconfigurations. In this section, we
robots and landmarks in the simulation experiments presenfi&five upper bounds for the steady-state covariance matrix
in Section VI. However, the analysis holds for any pdf. If f C-SLAM, after the RPMG changes. The following results
different pdf is used, the value @ will not, in general, be aré only presented for the worst-case bounds, but it is clear
given by the preceding expression. that gnalogous results hold for the bounds on the average
The upper bound for thexpectedsteady-state covariancecovariance.
can be computed by evaluating the solution to the recursion in
Eq. (26) after sufficient time. The derivation process followed
is analogous to the one presented in the previous section. ﬁ1e
only difference is that matriceR andQ.., instead ofR,, and We first address the case where the topology of the RPMG
Q. respectively, are used. The final result is synopsized ¢hangesbefore steady state has been reached. At the time
the following lemma: instant when the change in the graph’s topology ocdussthe
covariance matrix of the position estimates of the robots and
Lemma 4.5:The expectedsteady-state covariance of thdandmarks will be a positive definite matrRy,_ . This matrix
position estimates in C-SLAM, when the spatial density afan be viewed as the initial covariance matrix of C-SLAM,
landmarks is described by a known pdf, is bounded above Wjth the new RPMG topology. Thus an analysis similar to
the matrix that presented in the previous section can be employed, to
_ P.r.  Ooarxon _— evaluate bounds on the steady state uncertainty. Compared to
Poo = Oonxon  Oanxon } T 1 N)x(m+N) © O the preceding section, the difference in this case lies in that the
initial covariance matrix is not block-diagonal, as the one in

Reconfiguration before convergence

with = AL/2TT 4 1 I 1\ &ra1e Eq. (18), and therefore the expressions of Lemmas 4.3 and 4.5
P =Q/"Udiag <2 Ty 5\2-) uQ, are not directly applicable. It can be shown, that the upper
and bound on the asymptotic steady-state covariance matrix of C-
0 = (Lixn®I) Pgio Iy @ I) SLAM with the newRPMG topology is given by [28]:

J— -1 u’ u(0)’ —
+ (Lixm®L) (I +Pry) (Luxa ®1L2) PY = PUY 410 nxariny @O (30)



wherePZéO))' is defined as in Eg. (22), but with all quantities V1. SIMULATION RESULTS

corresponding to the new RPMG, and
A series of experiments in simulation were conducted, in

0 = (Lixn®IL)Wip(lyx ®1o) order to validate the preceding theoretical analysis. The four
+ (Lixm @) I, (1yxi @ 1Io) simulated robots move in an arena of dimensidfis< 10m,
/ -1 7 within which point landmarks are located. The velocity of
B A<J”oo +W”) A (31) the robots is kept constant & = 0.25m/s, while their
where orientation changes randomly, using samples drawn from a
uniform distribution. To simplify the presentation, a homoge-
A=1ixn@ L)W, — (Lixy ®12) T, neous robot team is assumed. The standard deviation of the

velocity measurement noise is equaldp = 0.05V and the
standard deviation of the errors in the orientation estimates is
W,.., W, equal toos = 2°, for _alllrobots. Similarly, the yalues selected
Wi, Wi for the standard deviations of the exteroceptive measurements

o ) ) ~ of the robots aresy = 2°, for the bearing measurements,
The matrix J;, ~that appears in the preceding equationgng,, — 0.05m, for the range measurements. For the results

is defined similarly to Eq. (25), but with all the quantitiespresemed in this section, the RPMG shown in Fig. 1(a) is

and we have introduced the partitioning:

P, '=

o

corresponding to the new RPMG. used. For this experiment, it is assumed that initially the robots
have perfect knowledge of their positions, while the landmark
B. Reconfigurations after convergence positions are unknown.

In order to demonstrate the validity of the bound on the

uration occursafter steady state has been reached. In order rst-case covariance of C-SLAM, provided in Lemma 4.3,

1o obtain an upper bound on the asympotic covariance af?epartlcularly adverse scenario for the placement of the land-

N . marks is considered. Specifically, all the landmarks form a
the topology change, we can once again view the covariance

) o . . .. Cluster at one corner of the arena, while the robots begin their
matrix P, as the initial covariance matrix of C-SLAM with exploration at the opposite comer (Fig. 1(b)). In this case the
the new RPMG. However, since we are only interested AP PP 9. '

. . exteroceptive measurements provide only a small amount of
an upper boundon the steady-state covariance, a simplef

approach can be followed. In particular, instead of dlctual p_osmonmg qurma‘uon dgrlng the cruuallﬁrst few updates-.. In
. : D : . . Fig. 1(c), the time evolution of the covariance of the position
covariance matrix of the position estimates at tifg its ; .
) estimates for the robots and landmarks is shown and compared
upper bound given by Eq. (23), can be employed as th

initial condition for the covariance in the deduced LTI C© the theoretically-derived steady-state performance bound.

SLAM model. It can be shown that the covariance of this Lﬁ:learly, the upper bound is indeed larger ihan the steady-

. . _ state covariance of the landmarks and robots. It is also worth
system model will also be an upper bound on the covariance

of the actual system [28]. In this case, the upper bound ré?tlng that the covariance of the posmon estimates converges
to the samevalue for all landmarks, while the accuracy of

g;e[gg])( mptotic covariance after the reconfiguration, is giv he position estimates varies _between robots. These differe_nces
' result from the non-symmetric topology of the RPMG, which
P’;; — P&SO)’ + 1 N x (M N) @ 0! (32) causes each robot to have access to positioning information of
) different quality.
wherePZ;‘éO)) is defined as in Eqg. (22), but with all quantities Although the bound of Lemma 4.3 accounts for the worst-
corresponding to the new RPMG, afdis defined in Eq. (24). case accuracy of C-SLAM, it does not yield a sufficient per-
It should be stressed at this point that, while the upper boufatmance description when the map features are more evenly
on the robots’ uncertainty depends on the structure of théstributed in space. In such cases, employing Lemma 4.5 re-
new RPMG, the upper bound on the landmarks’ covariancessilts in a tighter bound on the average positioning uncertainty,
identicalto the value of the bound prior to the RPMG topologys demonstrated in Fig. 2. In this plot, the average values (over
change. This result implies that once steady state has b&@nruns) of the covariance in C-SLAM, are compared against
reached and in the absence of any new external positionthg theoretically derived bounds on the expected uncertainty.
information (e.g., from GPS)ho measurement strategy carfFor each run of the algorithm, the locations of the landmarks,
reduce the uncertainty of the map features’ positiofisis is as well as the initial positions for the robots, were selected
a consequence of the fact that, at steady state, the uncertairgiyng samples from a uniform distribution. Note that the scale
of the map lies entirely in the unobservable subspace of thethe axes in Fig. 2 has been changed compared to Fig. 1(c),
system, whose basis comprises the column vectors of iheorder to preserve clarity. Mere comparison of the values
matrix 1«1 ® Iz [32]. This becomes clear from the structurdor the covariance of the robots’ and landmarks’ position
of Eq. (23). Since the unobservable subspace of the systestimates with the corresponding bounds demonstrates that
does not change when the topology of the RPMG changegen available information about the distribution of the land-
unless absolute positioning information becomes availabtgarks is exploited, i.e., by employing the expressions from
(e.g., in the form of GPS measurements), it is impossible kemma 4.5, a better characterization of the expected accuracy
improve the accuracy of the landmarks’ position estimates.of the position estimates is achieved.

A special case of interest arises when the RPMG reconfi\%
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Fig. 1. (a) The RPMG used for the simulation experiments (b) The initial positions and part of the trajectories of the robots for an adverse C-SLAM
scenario. (¢) Comparison of the actual covariance of the position estimates against the worst-case performance bound, for the scenario in (b). The plotted
lines correspond to the mean of the covariance along the two coordinate axes.
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Fig. 2. Comparison of the average true covariance of the position estima?e_sSLAM scenario where the RPMG topology changes after convergence.

against the corresponding upper bound. Landmark positions and the initial
robot positions are selected using samples from a uniform distribution.
Averages over 50 runs of C-SLAM are computed. VIl. EXPERIMENTAL RESULTS

In the simulation results presented in the preceding section,
the RPMG remained unchanged throughout the duration of
In order to illustrate the effect ofeconfigurationsof the each experiment. However, due to occlusions and data asso-
RPMG topology, we examine a scenario in which the meatation failures, this is usually not the case in practice. In
surement graph is initially the one shown in Fig. 1(a), but afterder to demonstrate the validity of the theoretical analysis
1000sec changes to a denser graph, where every robot obseirved more realistic setting, we have also conducted real-
every landmark, as well as every other robot (i.e., the RPM@orld experiments. A team comprising two Pioneer 3 robots,
corresponds to a complete graph). The time evolution of teach equipped with two opposite-facing SICK LMS200 laser
covariance of the position estimates for this case is showeanners to provide a 360ield of view, was employed (cf.
in Fig. 3, along with the theoretically computed bounds. Weig. 4). The robots move randomly at a constant velocity of
note that after 1000sec the covariance of the landmarks lasm/sec, while performing C-SLAM in an area of approxi-
(practically) converged to its steady-state value, and thereforate dimensions 10mdm. The estimated trajectories of the
the result of Section V-B is applicable. From this plot wa&obots are shown in Fig. 5(a). In the same figure, a sample
observe that, as expected, the covariance of the landmarkser scan acquired by robot 1 is superimposed (after being
position estimates doe®t change after the RPMG changestransformed to the global frame), in order to illustrate the
On the other hand, the robots’ position estimates become mgeometry of the area where the robots operate.
accurate, as a result of the increased positioning informationSince the indoor environment where the experiment takes
that is available to each robot, in the new dense RPMG. place is rectilinear, absolute orientation measurements can be
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uncertainty. The derived expressions enable us to determine
guaranteed steady-state accuragjues for a robot team with

a given set of sensors, mapping an area of known size (cf.
Lemma 4.3). Moreover, when a model of the distribution of the
landmarks in the area is available, application of Lemma 4.5
yields a tight upper bound for thexpected/alue of the steady-
state covariance of the position estimates of the robots and
landmarks. The aforementioned Lemmas providaectional
relationsfor the positioning accuracy in terms of the number
of landmarks, the size of the robot team, the accuracy of the
robots’ sensors, and the topology of the RPMG. Thus, they
facilitate thepredictionof the performance of a robot team in

a mapping application.

The results we have presented address the cases of constant
(cf. Section IV) or intermittently-changing (cf. Section V)
graphs. Additionally, in the experimental results presented in
Section VIl it is shown that the bounds, even if they are derived
assuming a constant RPMG, offer an acceptable description of
the positioning accuracy, when the RPMG undergoes relatively
obtained by employing line-fitting on the laser scans. Thgnall changes from its assumed topology. However, a detailed
upper bound for the standard deviation of these measuremefiifly of the effects of a dynamically changing RPMG topol-
is 0y = 1°. Moreover, the laser scans are processed fggy is necessary. In our future research, we plan to employ
detecting corners in the area, which are used as landmagk® results of this paper as a basis for extensions to cases
and for obtaining relative position measurements. The RPMghere the topology of the RPMG changes in intervals that are
that was employed in this experiment is shown in Fig. 5(bomparable to the time-constant of the transient behavior of
We note that 8 landmarks were reliably detected; of thesie covariance. Such short-term topology changes are caused
6 are observed by robot 1, and 4 are observed by robotpgth by occlusions, as well as by data association failures, that
Moreover, robOt 1 measures the relative pOSitiOI’l of rObot 2 @tevent us from detecting the |andmarks at every time-step_
every time step. In order to avoid introducing correlations iAn approach towards modelling these effects is to employ
the measurements, each laser scan point is used at most ofcghe analysis thdrequency or the probability of observing
while computing the robot-to-robot, robot-to-landmark, angach individual landmark. Recent work has shown that the
absolute orientation measurements. The robots are equippgétati recursion assumes analytically tractable forms in both
with wheel encoders that provide velocity measurements, Wiithese formulations [33], [34]. Our preliminary studies in this

standard deviationry = 5 x 10~%m/sec. The odometry direction have yielded promising results, that warrant further
measurements are available at a rate of 10Hz, while the lagffestigation.

scanners provide measurements at a frequency of 2Hz.

In Figs. 6(a) and 6(b) the time evolution of the diagonal
elements of the covariance matrix of position estimates is
shown, and compared to the upper bounds on the worst-casghis work was supported by the University of Minnesota
and average covariance, respectively. We note at this poiptrC), the Jet Propulsion Laboratory (Grant No. 1263201),

that, due primarily to the existence of occlusions, the robojnd the National Science Foundation (ITR-0324864, MRI-
to-landmark measurements described in the RPMG showngii20836).

Fig. 5(b) were not possible at every time instant. As a result
the RPMG didnot remain constant for the entire duration of
the experiment. On the average, the measurements described
by the edges of the RPMG were successfully detected 8591 R. kurazume, S. Nagata, and S. Hirose, “Cooperative positioning with

Fig. 4.
installed on each of the robots, to provide a 36ield of view.

The robots used in the experiments. Two laser range-finders
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