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Abstract— In this paper we study the time evolution of the
position estimates’ covariance in Cooperative Simultaneous Lo-
calization and Mapping (C-SLAM), and obtain analytical upper
bounds for the positioning uncertainty. The derived bounds
provide descriptions of the asymptotic positioning performance
of a team of robots in a mapping task, as a function of the
characteristics of the proprioceptive and exteroceptive sensors of
the robots, and of the graph of relative position measurements
recorded by the robots. A study of the properties of the Riccati
recursion which describes the propagation of uncertainty through
time, yields (i) the guaranteed accuracyfor a robot team in a
given C-SLAM application, as well as (ii) the maximumexpected
steady-state uncertainty of the robots and landmarks, when the
spatial distribution of features in the environment can be modeled
by a known distribution. The theoretical results are validated
both in simulation and experimentally.

I. I NTRODUCTION

In order for a multirobot team to coordinate while navigat-
ing autonomously within an area, all robots must be able to
determine their positions with respect to a common frame of
reference. In an ideal scenario, each robot would have direct
access to measurements of its absolute position, such as those
provided by a GPS receiver, or those inferred by detecting
previously mapped features. However, reliance on GPS is
not feasible in a number of situations, since GPS signals
are not available everywhere (e.g., indoors), or, triangulation
techniques based on them may provide erroneous results due
to multiple reflections (e.g., in the vicinity of tall structures
and buildings). Moreover, compiling a detailed map of the
environment is a tedious and time-consuming process, while
numerous applications require robots to operate in unknown
surroundings, whose structure cannot be determined in ad-
vance. This suggests that additional means are required for
aiding odometry when groups of mobile robots localize.

In situations where absolute position information is not
available, the robots of a team can still improve their local-
ization accuracy, by recording robot-to-robot relative position
measurements, and processing them in order to update their
position estimates (e.g., [1], [2], [3]). This method results in
a substantial improvement in estimation accuracy, compared
to simple Dead-Reckoning localization schemes. However,
performing Cooperative Localization (CL) solely based on
relative position measurements has the limitation that the
uncertainty of the robots’ position estimates continuously in-
creases [4], and the attained accuracy may not be sufficient for
certain applications. An alternative approach is for the robots
to localize while concurrently building a map of the environ-
ment, in which case the uncertainty in their position estimates

remains bounded [5]. This introduces the problem of Coopera-
tive Simultaneous Localization And Mapping (C-SLAM) that
has recently attracted the interest of many researchers. The
number of potential applications that require robots to perform
C-SLAM is continuously growing, as autonomous vehicles are
employed for tasks ranging from planetary exploration and
environmental monitoring, to construction and transportation.

In this work, C-SLAM is considered within theStochastic
Mappingframework [6], [7]. We assume that the mobile robots
move continuously and randomly in a planar environment,
while recording measurements of the relative positions (i.e.,
range and bearing) of other robots in the team, and of point
landmarks that exist in the environment. A means of describing
the exteroceptive measurements that are recorded at each
time step is the associatedRelative Position Measurement
Graph (RPMG), i.e., the graph whose vertices represent the
robots and landmarks, while its directed edges correspond to
the robot-to-robot and robot-to-landmarkmeasurements (cf.
Fig. 1(a)).

This paper presents the first derivation of analyticalupper
boundson the positioning uncertainty during C-SLAM for
a possibly heterogeneous team of mobile robots navigating
within a 2D environment populated with point features. The
metric used to describe the localization uncertainty is the
covariance matrix associated with the errors in the position
estimates for the robots and the mapped features. The closed-
form expression of Lemma 4.3 establishesthe guaranteed
accuracy attainable by a robot team in a given mapping
application, as afunctional relationof the noise parameters
of the robots’ sensors and the topology of the RPMG. Fur-
thermore, the result of Lemma 4.5 demonstrates how prior
information about the spatial density of landmarks can be
utilized in order to compute a tight upper bound on the
expectedcovariance of the positioning errors. To the best
of our knowledge, the proposed bounds constitute the only
existinganalytical toolsfor predicting the mapping precision,
as well as the accuracy of the robots’ localization in a given C-
SLAM application. Hence, they facilitate the selection of the
required sensor parameters, in order to satisfy task-imposed
performance constraints.

The rest of the paper is structured as follows: the next
section outlines the most relevant existing approaches, while in
Section III the problem formulation is described. In Section IV
the main results of the paper are presented, and are synopsized
in Lemmas 4.1, 4.3, 4.4, and 4.5. Section V presents results
pertaining to the case of achangingtopology of the RPMG.
In Sections VI and VII, simulation and experimental results
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that validate the derived analytical expressions are presented.
Finally, in Section VIII the conclusions of this work are drawn.

II. RELATED WORK

Most of the existing approaches to both single- and multi-
robot SLAM have been inspired by the seminal papers of
Moutarlier and Chatila [7] and of Smith, Self, and Cheese-
man [6], [8] that introduced the notion of theStochastic Map
and emphasized the importance of properly accounting for the
correlations between all the robots’ and landmarks’ position
estimates. However, maintaining all the cross-correlation ele-
ments of the covariance matrix in EKF-based SLAM results in
algorithms with computational complexity quadratic in the size
of the state vector. Thus, the majority of subsequent research
on SLAM has focused on devising scalable algorithms, that
achieve performance comparable to that of an EKF-based
approach to SLAM, at a smaller computational cost. Particle
filtering [9], use of local submaps [10], covariance intersection
techniques [11], and application of the extended information
filter [12] are examples of approaches suited for online imple-
mentation.

A number of estimation algorithms have been proposed
specifically for the C-SLAM problem, as alternatives to the
EKF estimator [13]. In [14], a Set Membership (SM) technique
is developed, based on the premise that all sensor errors are
bounded. This assumption allows for the definition of the set
of feasible state vectors, which is propagated through time
using Linear Programming and set approximation methods.
SM provides guaranteed uncertainty regions for all robots
and landmarks at each time step. In the work of Thrun [15],
an algorithm that integrates Maximum Likelihood (ML) in-
cremental map building with Monte Carlo localization is
proposed. The pose of the robots is propagated using a
particle filter representation of their belief functions, while
the map is compiled in a distributed manner among robots,
using laser range data. In [16], the constrained local submap
filter is employed, enabling each vehicle to build a map of
its surroundings independently from the rest of the team.
In this case, a global map is created by periodically fusing
the vehicles’ submaps. In [17], [18], an elevation map of an
outdoor area is created using multiple robots that localize in
a common coordinate frame. Finally, in [19], [20] a manifold
representation of 2D space, and a ML estimator are employed.
This approach offers a method for alleviating the problem of
map inconsistency in environments containing loops, at the
expense of increased complexity.

Our work doesnot address the aforementioned implemen-
tation issues of C-SLAM. We assume perfect data association
and seek to characterize the theoretically attainable estimation
accuracy by providing bounds for the steady state covariance
of the position estimates [21]. To the best of our knowledge,
the properties of the estimates’ covariance matrix in C-SLAM
are only studied in the work of Fenwick et al. [5], [13]. In that
case, linear time-invariant models for both the propagation and
measurement equations are employed, and it is shown that the
determinant of any principal submatrix of the map’s covariance
matrix decreases monotonically as successive observations are

made. Under the additional assumption that the robots receive
noise-free odometry measurements, it is proven that at steady
state, all of the vehicle and feature position estimates become
fully correlated andlower boundsfor the covariance of all
vehicles and features are derived. However, the proposedlower
bounds cannot be employed for determining the performance
of C-SLAM in the case of robotsin motion exploring an
unknown area. In such a scenario, the global coordinate frame
can be arbitrarily defined, thus at least one of the robots has
perfect knowledge of its initial position, and the described
lower bound reduces to zero.

One of the tools employed in our work is the solution
of a constant-coefficient Riccati recursion, that corresponds
to a deduced Linear Time Invariant (LTI) C-SLAM model.
In [22], the authors consider theone-dimensionalC-SLAM
problem, in which the robot and landmarks are all situated
along a single coordinate axis, and the state propagation
and measurement models are LTI. In that work, under the
additional assumptions that (i)all robots can observe all
landmarks, (ii) no robot-to-robot measurements occur, (iii)
the initial covariance matrix of the feature map isdiagonal,
and (iv) the robots haveperfect initial knowledge of their
position, a closed form solution to thecontinuous-timeRiccati
equation describing the time evolution of the covariance is
derived. The aforementioned assumptions, which are clearly
too constraining, are not necessary in our work, as we assume
arbitrary (connected) RPMG’s, and arbitrary initial covariance
matrices for the robots and landmarks. Furthermore, the results
of [22] are only valid for motion in 1D, which is of limited
practical importance.

The main contribution of the work presented in this paper
is the characterization of the steady-state accuracy of the
position estimates in C-SLAM. This is achieved by deriving
analytical upper boundsfor the worst-case value as well as
for the expected value of the steady-state covariance matrix
of the position estimates. What distinguishes these results
from previous ones is that the analysis is based on theactual
(non-linear) system and measurement equations for robots
navigating in 2D. Besides the naturally arising assumption
of connectedness (cf. Section III), no additional assumptions
on the structure of the RPMG are imposed. Furthermore, the
analysis encompasses the case of a heterogeneous (in terms of
sensor accuracy) group of robots and is thus applicable to the
study of a broad class of applications.

III. PROBLEM FORMULATION

Consider a group ofM mobile robots, denoted asr1,
r2, ..., rM , moving on a planar surface, in an environment
that containsN landmarks, denoted asL1, L2, ..., LN . The
robots use proprioceptive measurements (e.g., from odometric
or inertial sensors) to propagate their state (position) estimates,
and are equipped with exteroceptive sensors (e.g., laser range
finders) that enable them to measure the relative position of
other robots and landmarks. All the measurements are fused
using an Extended Kalman Filter (EKF) in order to produce
estimates of the position of the robots and the landmarks. In
our formulation, it is assumed that an upper bound for the
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variance of the errors in the robots’ orientation estimates can
be determined a priori. This allows us to decouple the task
of position estimation from that of orientation estimation and
facilitates the derivation of an analytical upper bound on the
positioning uncertainty.

The robots’ orientation uncertainty is bounded when, for
example, absolute orientation measurements from a com-
pass [23], [24] or a sun sensor [25], [26] are available, or when
the perpendicularity of the walls in an indoor environment
is used to infer orientation. In cases where neither approach
is possible, our analysis still holds under the condition that
a conservative upper bound for the orientation uncertainty
of each robot is determined by alternative means, e.g., by
estimating the maximum orientation error accumulated, over
a certain period of time, due to the integration of noise in
the odometric measurements [27]. It should be noted that
the requirement for bounded orientation error covariance is
not too restrictive: In the EKF framework, the nonlinear state
propagation and measurement equations are linearized around
the estimates of the robots’ orientation. If the errors in these
estimates are allowed to increase unbounded, the linearization
will unavoidably become erroneous and the estimates will di-
verge. Furthermore, large errors in the estimates for the robots’
orientation in SLAM result in erroneous data association, that
may have detrimental effects on the filter’s stability. Thus, in
the vast majority of practical situations, provisions are made
in order to constrain the robots’ orientation uncertainty within
given limits.

As explained in the Introduction section, the Relative Posi-
tion Measurement Graph (RPMG) is employed for describing
the robot-to-robot and robot-to-landmark measurements. In
the following we impose the constraint that the RPMG is a
connectedgraph, i.e., that there exists a path between any
two of its nodes. This constraint arises naturally and is not
a restrictive one, since if an RPMG is not connected, then
it can always be decomposed into smaller, connected sub-
graphs. Each of these sub-graphs corresponds to an isolated
group of robots and/or landmarks, whose position estimation
problem can be studied independently. We should also point
out at this point that the RPMG doesnot need to be complete
(fully connected). As long as the connectedness constraint is
satisfied, it isnot necessary that each robot can observe all
landmarks or all other robots. An example of such an RPMG
is shown in Fig. 1(a).

In our formulation, the metric employed for describing the
accuracy of position estimation in C-SLAM is the covariance
matrix of the position estimates. It is well known that the time
evolution of the covariance matrix in the EKF framework is
described by the propagation and update equations (cf. Eqs. (5)
and (16)). Combining these equations yields the Riccati re-
cursion (cf. Eq. (17)), whose solution is the covariance of
the error in the state estimate at each time step, right after
the propagation phase of the EKF. In the case of C-SLAM,
the matrix coefficients in this recursion aretime-varying
and a general closed-form expression for the time evolution
of the covariance matrix does not exist. We thus resort to
deriving upper boundsfor the covariance, by exploiting the
convexity and monotonicity properties of the Riccati recursion

(cf. Lemmas 4.1 and 4.4). These properties allow for the
formulation of constant coefficientRiccati recursions, whose
solutions provide upper bounds for the positioning uncertainty
in C-SLAM.

A. Position propagation

The discrete-time kinematic equations for thei-th robot are

xri
(k + 1) = xri

(k) + Vi(k)δt cos(φi(k)) (1)

yri (k + 1) = yri (k) + Vi(k)δt sin(φi(k)) (2)

whereVi(k) denotes the robot’s translational velocity at timek
andδt is the sampling period. In the Kalman filter framework,
the estimates of the robot’s position are propagated using
the measurements of the robot’s velocity,Vmi (k), and the
estimates of the robot’s orientation,̂φi(k). By linearizing
Eqs. (1) and (2), the error propagation equation for the robot’s
position is derived:
[

x̃rik+1|k
ỹrik+1|k

]
=

[
1 0
0 1

] [
x̃rik|k
ỹrik|k

]

+
[

δt cos(φ̂i(k)) −Vmi (k)δt sin(φ̂i(k))
δt sin(φ̂i(k)) Vmi (k)δt cos(φ̂i(k))

] [
wVi

(k)

φ̃i(k)

]

⇔ X̃rik+1|k
= I2X̃rik|k

+ Gri (k)Wi(k), i = 1 . . . M (3)

where1 wVi (k) is a zero-mean white Gaussian noise sequence
of varianceσ2

Vi
, affecting the velocity measurements andφ̃i(k)

is the error in the robot’s orientation estimate at timek. This
is modeled as a zero-mean white Gaussian noise sequence of
varianceσ2

φi
.

From Eq. (3), we deduce that the covariance matrix of the
system noise affecting thei-th robot is:

Qri (k) = E{Gri (k)Wi(k)WT
i (k)GT

ri
(k)}

= C(φ̂i(k))
[

δt2σ2
Vi

0
0 δt2V 2

mi
(k)σ2

φi

]
CT (φ̂i(k)) (4)

whereC(φ̂i) denotes the2×2 rotation matrix associated with
φ̂i, i.e.,

C(φ̂i) =
[

cos(φ̂i(k)) − sin(φ̂i(k))
sin(φ̂i(k)) cos(φ̂i(k))

]

The landmarks are modeled as static points in 2D space, and
therefore the state propagation equations are

XLi (k + 1) = XLi (k), for i = 1 . . . N

Similarly, the estimates for the landmark positions are prop-
agated using the relationŝXLik+1|k = X̂Lik|k, for i =
1 . . . N while the errors are propagated bỹXLik+1|k =
X̃Lik|k, for i = 1 . . . N . The state vector for the entire
system is defined as the stacked vector comprising of the
positions of theM robots andN landmarks, i.e.,

X =
[

XT
r1

· · · XT
rM

XT
L1

· · · XT
LN

]T

1Throughout this paper,0m×n denotes them×n matrix of zeros,1m×n

denotes them×n matrix of ones, andIn denotes then×n identity matrix.
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Hence, the state transition matrix for the entire system at time
step k is Φk = I2M+2N and the covariance matrix of the
system noise is:

Q(k) =




Qr1 (k) · · · 02×2

...
. . .

...
02×2 · · · QrM

(k)

02M×2N

02N×2M 02N×2N


 = GQr(k)GT

whereQr(k) = Diag (Qri
(k)), with Diag(·) denoting a block

diagonal matrix, and

G =
[

I2M

02N×2M

]

The equation for propagating the covariance matrix of the state
error is written as:

Pk+1|k = Pk|k + Q(k) = Pk|k + GQr(k)GT (5)

where Pk+1|k = E{X̃k+1|kX̃T
k+1|k} and Pk|k =

E{X̃k|kX̃T
k|k} are the covariance of the error in the estimate

of X(k + 1) and X(k) respectively, after measurements up to
time k have been processed.

B. Measurement Model

At every time step, the robots perform robot-to-robot and
robot-to-landmark relative position measurements. The relative
position measurement between robotsri andrm is given by:

zrirm = CT (φi) (Xrm −Xri) + nzrirm
(6)

whereri (rm) is the observing (observed) robot, andnzrirm

is the noise affecting this measurement. Similarly, the mea-
surement of the relative position betweenri andLn is given
by:

zriLn = CT (φi) (XLn −Xri) + nzriLn
(7)

The similarity of the preceding two measurement equations
allows us to treat both types of measurements in a uniform
manner. We denote byTij the target of thej-th measurement
performed by roboti, i.e.,

Tij ∈ {r1, r2, · · · , rM , L1, L2, · · · , LN} \ {ri}

Thus, the general form of the relative position measurement
equation is:

zij = CT (φi)
(
XTij −Xri

)
+ nzij (8)

Assuming that thei-th robot performsMi relative position
measurements, the indexj assumes integer values in the range
[1,Mi] to describe these measurements. By linearizing the last
expression, the measurement error equation is obtained:

z̃ij(k + 1) = zij(k + 1)− ẑij(k + 1)

= Hij(k + 1)X̃k+1|k + Γij(k + 1)nij(k + 1)

where

Hij(k + 1) = CT (φ̂i(k + 1)) Hoij
(9)

Hoij
=

[
02×2 . . . −I2︸︷︷︸

ri

. . . I2︸︷︷︸
Tij

. . . 02×2
]

X̃k+1|k =
[
· · · X̃T

ri
· · · X̃T

Tij
· · ·

]T

k+1|k

Γij(k) =
[

I2 −CT (φ̂i(k + 1))J∆̂pij(k + 1)

]

J =
[

0 −1
1 0

]
, nij(k) =

[
nzij

(k)

φ̃i(k)

]

∆̂pij(k + 1) = X̂Tij k+1|k − X̂ri k+1|k

The covariance of the error in this measurement is given by
iRjj(k + 1) = Γij(k + 1)E{nij(k + 1)nT

ij(k + 1)}ΓT
ij(k + 1)

= Rzij (k + 1) + Rφ̃ij
(k + 1) (10)

This expression encapsulates all sources of noise and uncer-
tainty that contribute to the measurement errorz̃ij(k + 1). More
specifically,Rzij

(k + 1) is the covariance component attributed
to the measurement noisenzij (k + 1), and Rφ̃ij

(k + 1) is the

additional covariance term due to the errorφ̃i(k + 1) in the
orientation estimate of the measuring robot.

Assuming that each relative position measurement is com-
prised of a distance measurementρij and a bearing mea-
surementθij , affected by two independent white zero-mean
Gaussian noise sequencesnρij andnθij respectively, the term
Rzij (k + 1) can be expressed as [28]:

Rzij (k + 1) = E{nzij (k + 1)nT
zij

(k + 1)}

= CT (φ̂i)

(
σ2

ρi

ρ̂2
ij

∆̂pij∆̂p
T

ij + σ2
θi

J∆̂pij∆̂p
T

ijJ
T

)
C(φ̂i)

where time indices have been dropped for simplicity. The vari-
ances of the noise in the distance and bearing measurements
are denoted asσ2

ρi
= E{n2

ρi
} andσ2

θi
= E{n2

θi
} respectively.

The error in the orientation estimate of the measuring
robot introduces an additional error component to all relative
position measurements recorded by this robot, and renders
them correlated. As shown in [28], the additional covariance
term for each measurement is equal to:

Rφ̃ij
(k + 1) = CT (φ̂i)J∆̂pijE{φ̃i

2}∆̂p
T

ijJ
T C(φ̂i)

= σ2
φi

CT (φ̂i)J∆̂pij∆̂p
T

ijJ
T C(φ̂i) (11)

while the matrix of correlation between the errors in the
measurementszij(k + 1) andzi`(k + 1) is:

iRj`(k + 1) = Γij(k)E{nij(k + 1)nT
i`(k + 1)}ΓT

i`(k)

= σ2
φi

CT (φ̂i)J∆̂pij∆̂p
T

i`J
T C(φ̂i) (12)

Since thei-th robot performsMi relative position measure-
ments at each time step, the covariance matrix of these
measurements,Ri(k + 1), is defined as a block matrix whose
`m-th 2 × 2 submatrix isiR`m(k + 1), for `,m = 1 . . .Mi,
defined in Eqs. (10)-(12). Substitution from these equations
and simple algebraic manipulation yields

Ri(k + 1) = ΞT
φ̂i

Roi (k + 1)Ξφ̂i
(13)
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whereΞφ̂i
= IMi ⊗ C(φ̂i), with ⊗ denoting the Kronecker

matrix product, and

Roi
(k + 1) = σ2

ρi
I2Mi

−Di diag

(
σ2

ρi

ρ̂2
ij

)
DT

i

+ σ2
θi

DiD
T
i + σ2

φi
Di1Mi×MiD

T
i (14)

In this last expression,Di = Diag
(
J∆̂pij

)
is the block

diagonal matrix with diagonal elementsJ∆̂pij , j = 1 . . .Mi.
The measurement matrix describing the relative position

measurements performed by roboti at each time step is a
matrix whose block rows areHij , j = 1 . . . Mi, i.e.:

Hi(k + 1) = ΞT
φ̂i

Hoi
(15)

whereHoi
is a constantmatrix with block rowsHoij

, j =
1 . . . Mi (cf. Eq. (9)).

The measurement matrix for the entire system,H(k + 1),
is defined as the block matrix with block rowsHi(k + 1).
Since the measurements performed by different robots are
independent, the associated covariance matrix,R(k + 1), is a
block diagonal matrix with elementsRi(k + 1). The covariance
update equation of the EKF is written as

Pk+1|k+1 = Pk+1|k −Pk+1|kHT
(k + 1)S−1H(k + 1)Pk+1|k

with S = H(k + 1)Pk+1|kHT (k + 1) + R(k + 1). Substitution
from Eqs. (13) and (15) and simple algebraic manipulation
leads to the orientation-dependent terms being cancelled out,
and yields the expression

Pk+1|k+1 = Pk+1|k −Pk+1|kHT
o S−1

o HoPk+1|k (16)

with So = HoPk+1|kHT
o + Ro(k + 1). In these equationsHo

is a matrix whose block rows areHoi while Ro is a block
diagonal matrix with elementsRoi .

IV. SLAM POSITIONING ACCURACY CHARACTERIZATION

The time evolution of the covariance matrix of the position
estimates in C-SLAM is described by the Riccati recursion,
which can be derived by substituting the expression from
Eq. (16) into Eq. (5). The resulting expression is:

Pk+1 = Pk −PkHT
o

(
HoPkHT

o + Ro(k + 1)
)−1

HoPk

+ GQr(k + 1)GT (17)

where we use the substitutionsPk = Pk+1|k and Pk+1 =
Pk+2|k+1 to simplify the notation. We note that the matrices
Qr(k + 1) and Ro(k + 1) in this Riccati recursion are time
varying, and thus a closed form expression forP cannot
be derived for the general case. However, by exploiting the
monotonicity and concavity properties of the Riccati recursion,
we are able to deriveupper boundsfor the worst-case value, as
well as for the average value of the covariance matrix at steady
state. At this point we note that in the ensuing derivations, the
initial covariance matrix of the position estimates is assumed
to be equal to

P0 =
[

Prr0 02M×2N

02N×2M PLL0

]
(18)

i.e., we assume that the position estimates for the robots and
the map features are initially uncorrelated, which is the case
at the onset of a mapping task within an unknown area.

A. Bound on Worst-Case Steady State Covariance

In this section, we derive an upper bound for the steady
state covariance matrix in C-SLAM. It can be shown [28]
that the right-hand side of Eq. (17) is a matrix-increasing
function of the covariance matricesQ(k + 1) and Ro(k + 1),
as well as of the state covariance matrixPk. These properties
allow us to prove the following lemma [28]:

Lemma 4.1:If Ru andQru
are matrices such thatRu º

Ro(k) and Qru º Qr(k), for all k ≥ 0, then the solution to
the Riccati recursion

Pu
k+1 = Pu

k −Pu
kH

T
o

(
HoPu

kH
T
o + Ru

)−1
HoPu

k

+ GQruGT (19)

with the initial conditionPu
0 = P0, satisfiesPu

k º Pk for all
k ≥ 0.

In order to derive an upper bound forQr(k), we note
that sinceC(φ̂i) is an orthonormal matrix, the eigenvalues
of Qri (k) are equal toδt2σ2

Vi
andδt2V 2

mi
(k)σ2

φi
(cf. Eq. (4)).

Assuming that the velocity of each robot is approximately
constant and equal toVi, we denote

qi = max
(
δt2σ2

Vi
, δt2V 2

mi
(k)σ2

φi

) ' max
(
δt2σ2

Vi
, δt2V 2

i σ2
φi

)
(20)

This definition states thatqi is the largest eigenvalue of
Qri (k + 1), and therefore

Qri (k) ¹ qiI2 ⇒ Qr(k) ¹ Diag (qiI2) = Qru (21)

An upper bound forRo(k + 1) can be derived by consid-
ering the maximum distance,ρoi , at which relative position
measurements can be recorded by roboti. This distance can,
for example, be determined by the maximum range of the
robots’ relative position sensors, or, by the size of the area to
be mapped. It can be shown that [28]:

Ri(k + 1) ¹ (
σ2

ρi
+ Miσ

2
φi

ρ2
o + σ2

θi
ρ2

o

)
I2Mi = riI2Mi

and thus an upper bound onRo(k + 1) is computed as

Ro(k + 1) ¹ Diag (riI2Mi) = Ru

Having derived upper bounds forQr(k) andRo(k + 1), mere
substitution in Eq. (19) and numerical evaluation of the
solution to the resulting recursion, yields an upper bound on
the maximum possible uncertainty of the position estimates
in C-SLAM, at any time instant after the deployment of the
robot team. However, for many applications it is important
to evaluate the performance of SLAM at steady state, i.e.,
when the covariance of the map has converged to a constant
value ([5]). To this end, it is necessary to evaluate the solution
to the recursion in Eq. (19) after sufficient time, i.e., as
k → ∞. This computation is simplified by employing the
following Lemma, adapted from [29]:

Lemma 4.2:SupposePu(0)
k is the solution to the discrete

time Riccati recursion in Eq. (19) with initial valuePu
0 = 0.

Then the solution to the same Riccati recursion but with an
arbitrary initial conditionP0 is given by the identity

Pu
k+1 −Pu(0)

k+1 = Φ(0, k + 1) (Iξ + P0Jk+1)
−1 P0ΦT

(0, k + 1)
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whereξ = 2M + 2N , andΦ(0, k + 1) is given by

Φ(0, k + 1) = (Iξ −KpHo)k+1 (Iξ + PJk+1)

In these expressions,P is any solution to the Discrete Alge-
braic Riccati Equation (DARE):

P = P + GQru
GT −PHT

o (HoPHT
o + Ru)−1HoP,

andKp = PHT
o

(
Ru + HoPHT

o

)−1
. Jk denotes the solution

to thedual Riccati recursion:

Jk+1 = Jk − JkG(Q−1
ru

+ GT JkG)−1GT Jk + HT
o R−1

u Ho

with zero initial condition,J0 = 0.

Lemma 4.2 simplifies the evaluation of the steady-state value
of Pu

k , since the solution to the Riccati recursion with zero
initial condition is easily derived. We note that the Riccati
recursion in Eq. (19) describes the time evolution of the
covariance for a deduced C-SLAM scenario, in which both the
robots’ kinematic equations and the measurement equations
are time invariant. Zero initial covariance of the landmarks’
position estimates corresponds to a perfectly known map. In
this case the robots essentially perform cooperative localiza-
tion, while the robot-to-landmark measurements are equivalent
to absolute position measurements. Thus, the resulting system
is observable and the steady-state solution to the Riccati
equation is of the form [4]:

Pu(0)
∞ =

[
Pu

rr∞ 02M×2N

02N×2M 02N×2N

]
(22)

The value of the termPu
rr∞ is computed in [28], and is shown

to be

Pu
rr∞ = Q1/2

ru
Udiag

(
1
2

+
√

1
4

+
1
λi

)
UT Q1/2

ru

In the last expression the quantitiesU and λi, i = 1 . . . 2M
are defined as the matrix of eigenvectors and the eigenvalues
of C = Q1/2

ru IrQ
1/2
ru respectively, where

Ir = [I2M 02M×2N ]HT
o R−1

u Ho

[
I2M

02N×2M

]

It is interesting to note thatHT
o R−1

u Ho represents the informa-
tion matrix associated with the measurements in the deduced
linear time-invariant system andIr is the submatrix expressing
the information about the robots’ positions.

The rest of the derivations for the upper bound on the steady
state covariance matrix involve only algebraic manipulations,
and are not included here, since they offer only little intuition
about the properties of the problem. The interested reader is
referred to [28] for the details of the intermediate steps. The
final result is stated in the following lemma:

Lemma 4.3:The worst-case covariance matrix in C-SLAM
is bounded above by the matrix

Pu
∞ = Pu(0)

∞ + 1(M+N)×(M+N) ⊗Θ−1 (23)

wherePu(0)
∞ is defined in Eq. (22) and

Θ = (11×N ⊗ I2)P−1
LL0

(1N×1 ⊗ I2)

+ (11×M ⊗ I2)
(
J−1

rr∞ + Prr0

)−1
(1M×1 ⊗ I2) (24)

with

Jrr∞ = Q−1/2
ru

Udiag

(
λi

2
+

√
λ2

i

4
+ λi

)
UT Q−1/2

ru
(25)

Note that the first term in Eq. (23) depends only on the
RPMG and the accuracy of the robots’ sensors, while the
second term also encapsulates the effect of the initial uncer-
tainty. Additionally, it is worth mentioning only the second
term affects the accuracy of the computed map while both
terms determine the localization accuracy of the robots.

A case of particular interest in C-SLAM is that of a robot
team building a map of an area for which no prior knowledge
exists. We model this scenario by settingPLL0 = µI, with
µ →∞, which yields the following simplified expression for
matrix Θ:

Θ = (11×M ⊗ I2)
(
J−1

rr∞ + Prr0

)−1
(1M×1 ⊗ I2)

If additionally, the initial position of all robots is perfectly
known, which is often the case in many mapping applications,
the previous equation further simplifies to

Θ = (11×M ⊗ I2)Jrr∞ (1M×1 ⊗ I2)

It becomes clear in this case that the topology of the RPMG
has a significant impact on the positioning accuracy of the
robots and the quality of the map. As one would expect, for a
given set of robots and landmarks, theλi’s receive their lowest
values when the RPMG corresponds to a complete graph while
higher values are assumed for sparser graphs [30]. Intuitively,
the best C-SLAM results are obtained for groups of robots
that can detect all landmarks and all other robots at every
time instant. Finally, by observing Eq. (24) we should also
note that the eigenvalues of the RPMG also affect the way
that the initial uncertainty about the position of the landmarks
and the robots is diffused via the C-SLAM process.

B. Bound on the average steady state covariance

The expression in Eq. (23) provides an upper bound on
the covariance matrix of C-SLAM for a robot team with
a given set of sensors and a known RPMG. This bound
holds under any possible configuration of the landmarks in
space, and regardless of the trajectories of the robots within
the area. However, when considering the type of features
of the environment to be treated as landmarks (e.g., visual
features, prominent geometric features), it is beneficial to
select them so that they are abundant in the environment and
evenly distributed throughout it. This way, a more detailed
and accurate map of an area can be created. In such cases, the
density of landmarks in the environment can be modeleda
priori , for example, by a uniform probability density function
(pdf). Knowledge of the distribution of the relative positions
between the robots and landmarks allows us to compute the
averagevalue of the matrixRo(k + 1). This information can
be exploited in order to compute a tighter upper bound for the
expectedsteady state covariance of the position estimates.

Specifically, it can be shown that the right hand side
of Eq. (17) is a concave function of the matricesPk and
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Ro(k + 1). This property enables us to employ Jensen’s
inequality ([31]) to prove, by induction, the following
lemma [28]:

Lemma 4.4:If R̄ = E{Ro(k)} and Q̄r = E{Qr(k)} then
the solution to the following Riccati recursion

P̄k+1 = P̄k − P̄kHT
o

(
HoP̄kHT

o + R̄
)−1

HoP̄k

+ GQ̄rGT (26)

with initial condition P̄0 = P0, satisfiesP̄k º E{Pk} for
all k ≥ 0.

The average value of the system noise covariance matrix is
easily computed by averaging over all values of orientation of
the robots:

E{Qri
} =

δt2σ2
Vi

+ δt2V 2
i σ2

φi

2
I2 = q̄iI2 (27)

and thus

Q̄r = E{Qr(k + 1)} = Diag (q̄iI2) (28)

In order to evaluate the expected value ofRo(k + 1), we
assume a uniform distribution for the positions of the robots
and landmarks in a rectangular area of sideα. Using the
definition of Roi (k + 1) in Eq. (14), it can be shown that [28]

R̄i = E{Roi} =
(

σ2
ρi

α2

2
+ σ2

θi

α2

6
+ σ2

φi

α2

12

)
I2Mi

+ σ2
φi

α2

12
12Mi×2Mi

and thusR̄ = E{Ro} = Diag(R̄i). At this point, we note
that the uniform distribution employed in the calculation of
R̄, was deemed an appropriate model for the positions of the
robots and landmarks in the simulation experiments presented
in Section VI. However, the analysis holds for any pdf. If a
different pdf is used, the value of̄R will not, in general, be
given by the preceding expression.

The upper bound for theexpectedsteady-state covariance
can be computed by evaluating the solution to the recursion in
Eq. (26) after sufficient time. The derivation process followed
is analogous to the one presented in the previous section. The
only difference is that matrices̄R andQ̄r, instead ofRu and
Qru , respectively, are used. The final result is synopsized in
the following lemma:

Lemma 4.5:The expectedsteady-state covariance of the
position estimates in C-SLAM, when the spatial density of
landmarks is described by a known pdf, is bounded above by
the matrix

P̄∞ =
[

P̄rr∞ 02M×2N

02N×2M 02N×2N

]
+ 1(M+N)×(M+N) ⊗ Θ̄−1

with
P̄rr∞ = Q̄1/2

r Ūdiag
(

1
2

+
√

1
4

+
1
λ̄i

)
ŪT Q̄1/2

r

and

Θ̄ = (11×N ⊗ I2)P−1
LL0

(1N×1 ⊗ I2)

+ (11×M ⊗ I2)
(
J̄−1

rr∞ + Prr0

)−1
(1M×1 ⊗ I2)

The quantityJrr∞ appearing in this last expression is:

J̄rr∞ = Q̄−1/2
r Ūdiag

(
λ̄i

2
+

√
λ̄2

i

4
+ λ̄i

)
ŪT Q̄−1/2

r (29)

where Ū and λ̄i, i = 1 . . . 2M are defined based on the
singular value decomposition of the matrixĪr:

Īr = [I2M 02M×2N ]HT
o R̄−1Ho

[
I2M

02N×2M

]

= Ūdiag(λ̄i)ŪT

In the special case where the map is initially unknown, matrix
Θ̄ assumes the value

Θ̄ = (11×M ⊗ I2)
(
J̄−1

rr∞ + Prr0

)−1
(1M×1 ⊗ I2)

In the special case where the robots have perfect initial
knowledge of their position, the preceding expression reduces
to:

Θ̄ = (11×M ⊗ I2) J̄rr∞ (1M×1 ⊗ I2)

The comments made at the end of Section IV.A for the inter-
pretation of these relations and the effect of the connectivity
of the RPMG on the robot and landmark position accuracy are
valid for this case as well.

V. RPMG RECONFIGURATIONS

Up to this point, we have assumed that the topology of the
RPMG remains constant. However, it is interesting to study the
behavior of the covariance matrix of the position estimates
in the case of RPMG reconfigurations. In this section, we
derive upper bounds for the steady-state covariance matrix
of C-SLAM, after the RPMG changes. The following results
are only presented for the worst-case bounds, but it is clear
that analogous results hold for the bounds on the average
covariance.

A. Reconfiguration before convergence

We first address the case where the topology of the RPMG
changesbefore steady state has been reached. At the time
instant when the change in the graph’s topology occurs,ko, the
covariance matrix of the position estimates of the robots and
landmarks will be a positive definite matrixPko . This matrix
can be viewed as the initial covariance matrix of C-SLAM,
with the new RPMG topology. Thus an analysis similar to
that presented in the previous section can be employed, to
evaluate bounds on the steady state uncertainty. Compared to
the preceding section, the difference in this case lies in that the
initial covariance matrix is not block-diagonal, as the one in
Eq. (18), and therefore the expressions of Lemmas 4.3 and 4.5
are not directly applicable. It can be shown, that the upper
bound on the asymptotic steady-state covariance matrix of C-
SLAM with the newRPMG topology is given by [28]:

Pu′
∞ = Pu(0)′

∞ + 1(M+N)×(M+N) ⊗Θ′−1 (30)
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wherePu(0))′
∞ is defined as in Eq. (22), but with all quantities

corresponding to the new RPMG, and

Θ′ = (11×N ⊗ I2)WLL (1N×1 ⊗ I2)
+ (11×M ⊗ I2)J′rr∞ (1M×1 ⊗ I2)

− A
(
J′rr∞ + Wrr

)−1
AT (31)

where

A = (11×N ⊗ I2)WLr − (11×M ⊗ I2)J′rr∞

and we have introduced the partitioning:

P−1
ko

=
[
Wrr WrL

WLr WLL

]

The matrix J′rr∞ that appears in the preceding equations
is defined similarly to Eq. (25), but with all the quantities
corresponding to the new RPMG.

B. Reconfigurations after convergence

A special case of interest arises when the RPMG reconfig-
uration occursafter steady state has been reached. In order
to obtain an upper bound on the asymptotic covariance after
the topology change, we can once again view the covariance
matrix Pko as the initial covariance matrix of C-SLAM with
the new RPMG. However, since we are only interested in
an upper boundon the steady-state covariance, a simpler
approach can be followed. In particular, instead of theactual
covariance matrix of the position estimates at timeko, its
upper bound, given by Eq. (23), can be employed as the
initial condition for the covariance in the deduced LTI C-
SLAM model. It can be shown that the covariance of this LTI
system model will also be an upper bound on the covariance
of the actual system [28]. In this case, the upper bound of
the asymptotic covariance after the reconfiguration, is given
by [28]:

Pu′
∞ = Pu(0)′

∞ + 1(M+N)×(M+N) ⊗Θ−1 (32)

wherePu(0))′
∞ is defined as in Eq. (22), but with all quantities

corresponding to the new RPMG, andΘ is defined in Eq. (24).
It should be stressed at this point that, while the upper bound

on the robots’ uncertainty depends on the structure of the
new RPMG, the upper bound on the landmarks’ covariance is
identicalto the value of the bound prior to the RPMG topology
change. This result implies that once steady state has been
reached and in the absence of any new external positioning
information (e.g., from GPS),no measurement strategy can
reduce the uncertainty of the map features’ positions. This is
a consequence of the fact that, at steady state, the uncertainty
of the map lies entirely in the unobservable subspace of the
system, whose basis comprises the column vectors of the
matrix 1N×1⊗ I2 [32]. This becomes clear from the structure
of Eq. (23). Since the unobservable subspace of the system
does not change when the topology of the RPMG changes,
unless absolute positioning information becomes available
(e.g., in the form of GPS measurements), it is impossible to
improve the accuracy of the landmarks’ position estimates.

VI. SIMULATION RESULTS

A series of experiments in simulation were conducted, in
order to validate the preceding theoretical analysis. The four
simulated robots move in an arena of dimensions10 × 10m,
within which point landmarks are located. The velocity of
the robots is kept constant atV = 0.25m/s, while their
orientation changes randomly, using samples drawn from a
uniform distribution. To simplify the presentation, a homoge-
neous robot team is assumed. The standard deviation of the
velocity measurement noise is equal toσV = 0.05V and the
standard deviation of the errors in the orientation estimates is
equal toσφ = 2◦, for all robots. Similarly, the values selected
for the standard deviations of the exteroceptive measurements
of the robots areσθ = 2◦, for the bearing measurements,
andσρ = 0.05m, for the range measurements. For the results
presented in this section, the RPMG shown in Fig. 1(a) is
used. For this experiment, it is assumed that initially the robots
have perfect knowledge of their positions, while the landmark
positions are unknown.

In order to demonstrate the validity of the bound on the
worst-case covariance of C-SLAM, provided in Lemma 4.3,
a particularly adverse scenario for the placement of the land-
marks is considered. Specifically, all the landmarks form a
cluster at one corner of the arena, while the robots begin their
exploration at the opposite corner (Fig. 1(b)). In this case the
exteroceptive measurements provide only a small amount of
positioning information during the crucial first few updates. In
Fig. 1(c), the time evolution of the covariance of the position
estimates for the robots and landmarks is shown and compared
to the theoretically-derived steady-state performance bound.
Clearly, the upper bound is indeed larger than the steady-
state covariance of the landmarks and robots. It is also worth
noting that the covariance of the position estimates converges
to the samevalue for all landmarks, while the accuracy of
the position estimates varies between robots. These differences
result from the non-symmetric topology of the RPMG, which
causes each robot to have access to positioning information of
different quality.

Although the bound of Lemma 4.3 accounts for the worst-
case accuracy of C-SLAM, it does not yield a sufficient per-
formance description when the map features are more evenly
distributed in space. In such cases, employing Lemma 4.5 re-
sults in a tighter bound on the average positioning uncertainty,
as demonstrated in Fig. 2. In this plot, the average values (over
50 runs) of the covariance in C-SLAM, are compared against
the theoretically derived bounds on the expected uncertainty.
For each run of the algorithm, the locations of the landmarks,
as well as the initial positions for the robots, were selected
using samples from a uniform distribution. Note that the scale
of the axes in Fig. 2 has been changed compared to Fig. 1(c),
in order to preserve clarity. Mere comparison of the values
for the covariance of the robots’ and landmarks’ position
estimates with the corresponding bounds demonstrates that
when available information about the distribution of the land-
marks is exploited, i.e., by employing the expressions from
Lemma 4.5, a better characterization of the expected accuracy
of the position estimates is achieved.
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Fig. 1. (a) The RPMG used for the simulation experiments (b) The initial positions and part of the trajectories of the robots for an adverse C-SLAM
scenario. (c) Comparison of the actual covariance of the position estimates against the worst-case performance bound, for the scenario in (b). The plotted
lines correspond to the mean of the covariance along the two coordinate axes.
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Fig. 2. Comparison of the average true covariance of the position estimates
against the corresponding upper bound. Landmark positions and the initial
robot positions are selected using samples from a uniform distribution.
Averages over 50 runs of C-SLAM are computed.

In order to illustrate the effect ofreconfigurationsof the
RPMG topology, we examine a scenario in which the mea-
surement graph is initially the one shown in Fig. 1(a), but after
1000sec changes to a denser graph, where every robot observes
every landmark, as well as every other robot (i.e., the RPMG
corresponds to a complete graph). The time evolution of the
covariance of the position estimates for this case is shown
in Fig. 3, along with the theoretically computed bounds. We
note that after 1000sec the covariance of the landmarks has
(practically) converged to its steady-state value, and therefore
the result of Section V-B is applicable. From this plot we
observe that, as expected, the covariance of the landmarks’
position estimates doesnot change after the RPMG changes.
On the other hand, the robots’ position estimates become more
accurate, as a result of the increased positioning information
that is available to each robot, in the new dense RPMG.
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Fig. 3. The time evolution of the covariance vs. the computed bounds for a
C-SLAM scenario where the RPMG topology changes after convergence.

VII. E XPERIMENTAL RESULTS

In the simulation results presented in the preceding section,
the RPMG remained unchanged throughout the duration of
each experiment. However, due to occlusions and data asso-
ciation failures, this is usually not the case in practice. In
order to demonstrate the validity of the theoretical analysis
in a more realistic setting, we have also conducted real-
world experiments. A team comprising two Pioneer 3 robots,
each equipped with two opposite-facing SICK LMS200 laser
scanners to provide a 360o field of view, was employed (cf.
Fig. 4). The robots move randomly at a constant velocity of
0.1m/sec, while performing C-SLAM in an area of approxi-
mate dimensions 10m×4m. The estimated trajectories of the
robots are shown in Fig. 5(a). In the same figure, a sample
laser scan acquired by robot 1 is superimposed (after being
transformed to the global frame), in order to illustrate the
geometry of the area where the robots operate.

Since the indoor environment where the experiment takes
place is rectilinear, absolute orientation measurements can be
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Fig. 4. The robots used in the experiments. Two laser range-finders are
installed on each of the robots, to provide a 360o field of view.

obtained by employing line-fitting on the laser scans. The
upper bound for the standard deviation of these measurements
is σφ = 1o. Moreover, the laser scans are processed for
detecting corners in the area, which are used as landmarks,
and for obtaining relative position measurements. The RPMG
that was employed in this experiment is shown in Fig. 5(b).
We note that 8 landmarks were reliably detected; of these,
6 are observed by robot 1, and 4 are observed by robot 2.
Moreover, robot 1 measures the relative position of robot 2 at
every time step. In order to avoid introducing correlations in
the measurements, each laser scan point is used at most once,
while computing the robot-to-robot, robot-to-landmark, and
absolute orientation measurements. The robots are equipped
with wheel encoders that provide velocity measurements, with
standard deviationσV = 5 × 10−3m/sec. The odometry
measurements are available at a rate of 10Hz, while the laser
scanners provide measurements at a frequency of 2Hz.

In Figs. 6(a) and 6(b) the time evolution of the diagonal
elements of the covariance matrix of position estimates is
shown, and compared to the upper bounds on the worst-case
and average covariance, respectively. We note at this point
that, due primarily to the existence of occlusions, the robot-
to-landmark measurements described in the RPMG shown in
Fig. 5(b) were not possible at every time instant. As a result
the RPMG didnot remain constant for the entire duration of
the experiment. On the average, the measurements described
by the edges of the RPMG were successfully detected 85%
of the time. We observe that despite the changing topology of
the RPMG in this case, the theoretical bounds still provide a
quite accurate characterization of the positioning accuracy of
C-SLAM.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we have presented a method for predicting
the positioning performance of C-SLAM, without the need to
resort to extensive simulations or experimentation. This was
achieved through a theoretical study of the time evolution
of the position estimates’ covariance, that allowed for the
derivation of analytical upper boundsfor the positioning

uncertainty. The derived expressions enable us to determine
guaranteed steady-state accuracyvalues for a robot team with
a given set of sensors, mapping an area of known size (cf.
Lemma 4.3). Moreover, when a model of the distribution of the
landmarks in the area is available, application of Lemma 4.5
yields a tight upper bound for theexpectedvalue of the steady-
state covariance of the position estimates of the robots and
landmarks. The aforementioned Lemmas providefunctional
relations for the positioning accuracy in terms of the number
of landmarks, the size of the robot team, the accuracy of the
robots’ sensors, and the topology of the RPMG. Thus, they
facilitate thepredictionof the performance of a robot team in
a mapping application.

The results we have presented address the cases of constant
(cf. Section IV) or intermittently-changing (cf. Section V)
graphs. Additionally, in the experimental results presented in
Section VII it is shown that the bounds, even if they are derived
assuming a constant RPMG, offer an acceptable description of
the positioning accuracy, when the RPMG undergoes relatively
small changes from its assumed topology. However, a detailed
study of the effects of a dynamically changing RPMG topol-
ogy is necessary. In our future research, we plan to employ
the results of this paper as a basis for extensions to cases
where the topology of the RPMG changes in intervals that are
comparable to the time-constant of the transient behavior of
the covariance. Such short-term topology changes are caused
both by occlusions, as well as by data association failures, that
prevent us from detecting the landmarks at every time-step.
An approach towards modelling these effects is to employ
in the analysis thefrequency, or theprobability of observing
each individual landmark. Recent work has shown that the
Riccati recursion assumes analytically tractable forms in both
of these formulations [33], [34]. Our preliminary studies in this
direction have yielded promising results, that warrant further
investigation.
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the robot coordinates’ covariance, the solid lines to the landmark coordinates’ covariance, the lines with asterisks to the robots’ covariance bounds, and the
lines with circles to the landmarks’ covariance bounds.
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