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Abstract— A sliding window filter (SWF) is an appealing
smoothing algorithm for nonlinear estimation problems such
as simultaneous localization and mapping (SLAM), since it
is resource-adaptive by controlling the size of the sliding
window, and can better address the nonlinearity of the problem
by relinearizing available measurements. However, due to
the marginalization employed to discard old states from the
sliding window, the standard SWF has different parameter
observability properties from the optimal batch maximum-a-
posterior (MAP) estimator. Specifically, the nullspace of the
Fisher information matrix (or Hessian) has lower dimension
than that of the batch MAP estimator. This implies that
the standard SWF acquires spurious information, which can
lead to inconsistency. To address this problem, we propose
an observability-constrained (OC)-SWF where the linearization
points are selected so as to ensure the correct dimension of the
nullspace of the Hessian, as well as minimize the linearization
errors. We present both Monte Carlo simulations and real-
world experimental results which show that the OC-SWF’s
performance is superior to the standard SWF, in terms of both
accuracy and consistency.

I. I NTRODUCTION AND RELATED WORK

Among the existing approaches for robot localization, the
extended Kalman filter (EKF) is one of the most popular
methods. This is primarily due to its ease of implementation
and relatively low processing requirements. However, the
EKF, as well as any linearization-based filtering approach,
may suffer from the accumulation of linearization errors.
This is because once linearization points are selected at
a given time step for computing the filter Jacobians, they
cannot be updated at later times, when more measurements
become available for improving them. In contrast, a batch
maximum a posteriori (MAP) estimator [1] can improve the
estimation accuracy by computing consistent state estimates
for all time steps based on all available measurements. Under
a Gaussian prior and measurement noise assumption (which
is common in practice), finding the MAP estimates requires
solving a nonlinear least-squares problem (see Section II),
whose counterpart in computer vision is known as bundle
adjustment [2]. A variety of iterative algorithms have been
employed for this problem. For example, the square-root
smoothing and mapping (SAM) method [3] solves the SLAM
problem efficiently by using variable reordering, a well-
known technique for sparse linear systems. However, since
the size of the state vector in the batch-MAP estimator
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increases continuously over time, the processing and memory
requirements become too high for real-time operation in
large-scale problems (e.g., a robot exploring a large envi-
ronment with millions of landmarks).

To overcome this limitation, a sliding window filter
(SWF) [4] (also called a fixed-lag smoother (FLS) [5]–
[7]) can be used to estimate the states over a sliding time
window at a fixed computational cost. The SWF concurrently
processes all the measurement constraints between states
in the window, and better addresses the nonlinearity of
the problem by iteratively relinearizing the process and
measurement equations. This approach is resource-adaptive:
depending on the available computational resources, it can
scale from the iterated EKF solution if only a single time
step is maintained, to the optimal batch-MAP solution if the
sliding window spans the entire time horizon.

The key characteristic of the SWF is the marginalization
of old states from the sliding window, a process that appro-
priately models the uncertainty of these states [2], [4], [6].
However, due to marginalization,different estimates of the
same states are used aslinearization points in computing the
Hessian matrix during estimation (see Section III and [7]).
This results in different parameter observability properties [8]
as compared to the batch-MAP estimator. Specifically, the
Hessian (Fisher information matrix) of the standard SWF
has a nullspace of lower dimension than that of the batch-
MAP estimator. This implies that the estimator erroneously
believes it has information along more directions of the
state space than those contained in the measurements. This
leads to inconsistent estimates, i.e., estimates whose accu-
racy is worse than the one reported by the estimator. This
inconsistency is a serious problem, since when an estimator
is inconsistent, the accuracy of the produced estimates is
unknown, which in turn makes the estimator unreliable [8].

In order to improve the consistency and accuracy of the
SWF, in this paper we propose an observability-constrained
(OC)-SWF as a general smoothing framework. In particular,
we postulate that by ensuring the Hessian matrix has a
nullspace of appropriate dimension, we can avoid the influx
of spurious information in the unobservable directions of the
parameter (state) space, thus improving the consistency of
the estimates. Based on this, we develop an OC-SWF which
extends the observability-based methodology for designing
consistent EKFs [9]. The key idea behind our approach is to
select the linearization points for computing the Jacobians,
and hence the Hessian, so as to ensure that its nullspace
dimension does not arbitrarily decrease.

It should be pointed out that a prior-linearization (PL)-
SWF for motion estimation was proposed in [7]. In par-
ticular, the PL-SWF computes the Hessian using the prior,



instead of the current, estimates, for the states connectedvia
measurements to marginalized states. This ensures the same
estimates for the same states are used, and the appropriate
dimension of the Hessian’s nullspace is preserved. However,
if the prior estimates are inaccurate, the linearization errors
will be large and may degrade the estimator’s performance.
In contrast, the proposed OC-SWF selectsoptimal lineariza-
tion points for computing the Hessian, in the sense that they
not only ensure the correct dimension for the nullspace of
the Hessian, but also minimize the linearization errors. We
stress that apart from the SLAM problem treated in this
paper, the proposed OC-SWF is applicable to a large class
of nonlinear estimation problems in robotics and computer
vision, such as visual odometry [10] and vision-aided inertial
navigation [11].

The remainder of the paper is structured as follows:
After presenting the batch-MAP formulation of the SLAM
problem in the next section, we describe the standard SWF
and its parameter observability properties in Section III.
The proposed OC-SWF is presented in Section IV, whose
performance is compared against that of the standard SWF
and the PL-SWF through Monte Carlo simulations and real-
world experiments in Sections V and VI. Finally, Section VII
outlines the main conclusions of this work and possible
directions of future work.

II. SLAM B ATCH-MAP FORMULATION

In this section, we describe the batch-MAP formulation of
the SLAM problem, which forms the basis for the ensuing
derivations of the SWF. In particular, we aim at estimating
the entire robot trajectory up to the current time-stepk, as
well as the positions of all observed landmarks:1

x0:k =
[
xT
R0

xT
R1

· · · xT
Rk

pT
L1

. . . pT
LM

]T
(1)

wherexRk
= [pT

Rk
φRk

]T denotes the robot pose (position
and orientation) at time-stepk, andpLi

is the position of
the i-th landmark.

In what follows, we start by presenting the general motion
and measurement models that will be used throughout the
paper. Subsequently, we describe the batch-MAP estimator.

A. Motion Model

Consider a robot equipped with an odometry sensor mov-
ing on a plane. The odometry serves as the control input to
propagate the robot pose, according to the following motion
model:

pRk
= pRk−1

+C(φRk−1
) Rk−1pRk

(2)

φRk
= φRk−1

+ Rk−1φRk
(3)

whereC(·) denotes the2 × 2 rotation matrix, anduk−1 =
Rk−1xRk

= [Rk−1pT
Rk

Rk−1φRk
]T is the true odometry

(control input), i.e., the robot’s motion between time-steps

1Throughout this paper, the subscriptℓ|j refers to the estimate of a
quantity at time-stepℓ, after all measurements up to time-stepj have been
processed.̂x is used to denote the estimate of a random variablex, while
x̃ = x− x̂ is the error in this estimate.0m×n and1m×n denotem× n
matrices of zeros and ones, respectively, andIn is then×n identity matrix.

k − 1 and k, expressed with respect to the robot’s frame
at time-stepk − 1, {Rk−1}. The corresponding odometry
measurement,umk−1

, is assumed to be corrupted by zero-
mean, white Gaussian noise,wk−1 = uk−1 − umk−1

, with
covarianceQk−1. This motion model is described by the
following generic nonlinear function:

g(x0:k,uk−1) = xRk
− f(xRk−1

,umk−1
+wk−1) = 0 (4)

To employ a batch-MAP estimator, it is necessary to lin-
earize (4) and compute the Jacobians with respect to the
state vector (1) and the noise, respectively, i.e.,

Φk−1 ,
∂g

∂x0:k

∣
∣
∣
{x⋆

0:k,0}
(5)

=
[
03×3 · · · ΦRk−1

I3 03×2 · · · 03×2

]

Gk−1 ,
∂g

∂wk−1

∣
∣
∣
{x⋆

0:k,0}
=

[
C(φ⋆

Rk−1
) 02×1

01×2 1

]

(6)

with

ΦRk−1
= −

[

I2 J
(

p⋆
Rk

− p⋆
Rk−1

)

01×2 1

]

(7)

wherex⋆
0:k denotes the linearization point for the state (1),

while a zero vector is used as the linearization point for the

noise, andJ =

[
0 −1
1 0

]

. Clearly, the values of the Jacobian

matrices depend on the choice of linearization points, which
is the key fact our approach relies on. Note also that the
form of the motion model presented above is general, and
holds for any robot kinematic model (e.g., unicycle, bicycle,
or Ackerman model) [9].

B. Measurement Model

During SLAM, the robot-to-landmark measurements are
a function of the relative position of the observed landmark
with respect to the robot:

zij = hij(x0:k) + vij = h
(
RjpLi

)
+ vij (8)

whereRjpLi
= CT (φRj

)(pLi
− pRj

) is the position of the
i-th landmark with respect to the robot at time-stepj, andvij

is zero-mean Gaussian measurement noise with covariance
Rij . In this work, we allowh(·) to be any measurement
function (e.g., a direct measurement of relative position,
a pair of range and bearing measurements, bearing-only
measurements, etc.). In general, the measurement function
is nonlinear, and its Jacobian matrix is given by:

Hij ,
∂hij

∂x0:k

∣
∣
∣
{x⋆

0:k,0}
(9)

=
[
0 · · · HRij

0 · · · HLij
0 · · · 0

]

with

HRij
= (∇hij)C

T (φ⋆
Rj

)
[
−I2 −J(p⋆

Li
− p⋆

Rj
)
]

(10)

HLij
= (∇hij)C

T (φ⋆
Rj

) (11)

whereHRij
andHLij

are the Jacobians with respect to the
robot pose at time-stepj and thei-th landmark position, re-
spectively, and∇hij denotes the Jacobian ofhij with respect
to the robot-relative landmark position,RjpLi

, evaluated at
the linearization point,x⋆

0:k.



C. Batch-MAP Estimator

The batch-MAP estimator utilizes all the available infor-
mation to estimate the state vector (1). The information used
includes: (i) the prior information about the initial state,
described by a Gaussian pdf with meanx̂0|0 and covariance
P0|0, (ii) the motion information (4), and (iii) the sensor
measurements (8). In particular, the batch-MAP estimator
seeks to determine the estimatex̂0:k|k that maximizes the
posterior pdf:

p(x0:k|Z0:k) ∝ p(xR0)

k∏

κ=1

p(xRκ
|xRκ−1)

∏

zij∈Z0:k

p(zij |xRj
,pLi

)

(12)

whereZ0:k denotes all the available measurements in the
time interval [0, k]. For Gaussian state and measurement
noise (see (4), and (8), respectively), maximizing (12) is
equivalent to minimizing the following cost function [12]:

c(x0:k) =
1

2
||xR0−x̂0|0||

2
P0|0

(13)

+

k∑

κ=1

1

2
||xRκ

−f(xRκ−1 ,umκ−1)||
2
Q′

κ−1

+
∑

zij∈Z0:k

1

2
||zij − hij(x0:k)||

2
Rij

where||a||2M = aTM−1a andQ′
k = GkQkG

T
k (see (4)).

c(x0:k) is a nonlinear function, and a standard approach to
determine its minimum is to employ Guass-Newton iterative
minimization [2]. Specifically, at theℓ-th iteration of this
method, a correction,δx(ℓ)

0:k, to the current estimate,̂x(ℓ)
0:k|k,

is computed by minimizing the second-order Taylor-series
approximation of the cost function which is given by:

c(x̂
(ℓ)
0:k|k+δx

(ℓ)
0:k) ≃ c(x̂

(ℓ)
0:k|k)+b

(ℓ)T

b δx
(ℓ)
0:k+

1

2
δx

(ℓ)T

0:k A
(ℓ)
b δx

(ℓ)
0:k

(14)

where

b
(ℓ)
b ,∇x0:k

c(·)
∣
∣
∣
{x⋆

0:k=x̂
(ℓ)

0:k|k
}

(15)

A
(ℓ)
b ,∇2

x0:k
c(·)

∣
∣
∣
{x⋆

0:k=x̂
(ℓ)

0:k|k
}

(16)

are the gradient and Hessian ofc(·) with respect tox0:k,
evaluated at the current state estimatex̂

(ℓ)
0:k|k.

Specifically, at theℓ-th iteration,b(ℓ)
b is (see (5) and (9)):

b
(ℓ)
b = ΠTP−1

0|0

(

x̂
(ℓ)
R0|k

−x̂0|0
)

(17)

−
∑

zij∈Z0:k

H
(ℓ)T

ij R−1
ij

(

zij−hij(x̂
(ℓ)
0:k|k)

)

+

k∑

κ=1

Φ
(ℓ)T

κ−1Q
′−1

κ−1

(

x̂
(ℓ)
Rκ|k

−f(x̂
(ℓ)
Rκ−1|k

,umκ−1)
)

whereΠ =
[
In 0 · · · 0

]
, andn = dim(xR0). On the

other hand, the Hessian matrix,A
(ℓ)
b , is approximated in the

Gauss-Newton method by (see (5) and (9)):

A
(ℓ)
b = ΠTP−1

0|0Π + (18)

∑

zij∈Z0:k

H
(ℓ)T

ij R−1
ij H

(ℓ)
ij +

k∑

κ=1

Φ
(ℓ)T

κ−1 Q′−1

κ−1Φ
(ℓ)
κ−1

which is a good approximation for small-residual prob-
lems [2]. Due to the sparse structure of the matricesH

(ℓ)
ij

andΦ
(ℓ)
κ (see (5) and (9)), the matrixA(ℓ)

b is also sparse,
which can be exploited to speed-up the solution of the linear
system in (19) [2]. The valueδx(ℓ)

0:k that minimizes (14) is
found by solving the following linear system:

A
(ℓ)
b δx

(ℓ)
0:k = −b

(ℓ)
b (19)

Onceδx(ℓ)
0:k is found, the new state estimate is computed as:

x̂
(ℓ+1)
0:k|k = x̂

(ℓ)
0:k|k + δx

(ℓ)
0:k (20)

Given an initial estimatêx(0)
0:k|k that resides within the at-

traction basin of the global optimum, this iterative algorithm
will compute the global minimum (i.e., MAP estimate) for
the entire state given all measurements up to time-stepk.

III. SLIDING WINDOW FILTER (SWF)-BASED SLAM
AND OBSERVABILITY PROPERTIES

It is clear from the preceding section that, as the robot
continuously moves and observes new landmarks, the size
of the state vector of the batch-MAP estimator,x0:k, in-
creases. Consequently, the computational cost of obtaining
a state estimate continuously increases, and at some point
it will inevitably become too high for real-time operation.
In order to adapt to the available computational resources,
marginalization [4], [6], [7] can be used to discard old,
matured states. This results in a constant-cost SWF which
maintains a constant-size window of states [4], [13]. In
this section, we describe the effects of the marginalization
used by the standard SWF on the system’s observability
properties. This analysis forms the basis for our proposed
algorithm (see Section IV). For more details on the derivation
of the marginalization equations, the interested reader is
referred to [7].

We consider the scenario where marginalization of old
states is carried out at time-stepko, when all the mea-
surements during the time interval[0, ko] are available.
Subsequently the robot keeps moving and collects new
measurements in the time interval[ko+1, k], and estimation
takes place again at time-stepk. The old states that are
marginalized out at time-stepko are denoted by:

xM ,

[

xT
R0:km

pT
LM1

· · · pT
LMm

]T

Note that it is not necessary to sequentially marginalize out
the old robot poses,xR0:km

; instead, we can selectively
discard the most matured (i.e., accurately estimated) ones.
The remaining states that stay active in the sliding window
after marginalization are denoted by:

xR ,

[

xT
Rkm+1:ko

pT
LR1

· · · pT
LRr

]T



Upon marginalization, all the states inxM, as well as all the
measurements that involve these states (denoted byZM) are
discarded. In their place, we maintain a Gaussian pdf, that
describes the information that the discarded measurements
convey about the active states,xR. The information matrix
of this Gaussian is given by:

Ap(ko)=ARR(ko)−ARM(ko)A
−1
MM(ko)AMR(ko) (21)

where the matrices appearing in the above equation are
defined as partitions of the following matrix:

Am(ko) = ΠTP−1
0|0Π+

km−1∑

κ=0

ΦT
κ (ko)Q

′−1
κ Φκ(ko)

+
∑

zij∈ZM

HT
ij(ko)R

−1
ij Hij(ko) (22)

=

[
AMM(ko) AMR(ko)
ARM(ko) ARR(ko)

]

(23)

Close inspection reveals thatAm(ko) is the matrix describing
the information contained in all the discarded measurements
(odometry, robot-to-landmark, and prior). Thus,Ap(ko),
which is the Schur complement ofAMM(ko) in Am(ko),
describes the information that the discarded measurements
give us aboutxR. We also note that, in the above, the time
index (ko) has been added to denote the fact that all the
Jacobians are computed using the estimatex̂0:ko|ko

as the
linearization point.

After marginalization the robot continues moving in its
environment, and new states are added to the state vector
during [ko + 1, k]. These are denoted by:

xN ,

[

xT
Rko+1:k

pT
LN1

· · · pT
LNn

]T

Now, at time stepk, the “active states” arexR andxN. In
order to compute estimates for the active states, the SWF
employs the “active” measurements,ZA = Z0:k \ ZM,
along with the motion model and the information from the
marginalized states (expressed byAp(ko) (21)) [7].

As described above, the key idea in the SWF is that
the information of all the marginalized measurements is
represented using a single Gaussian. While this entails an
approximation, it also enables the SWF to maintain constant
computational complexity, that depends only on the number
of currently active states, and not on the past history of
marginalized states.

A. Parameter Observability Properties

We now examine the parameter observability properties [8]
of the standard SWF-based SLAM, which, for the time being,
is considered as a parameter (instead of state) estimation
problem. The study of parameter observability examines
whether the information provided by the available measure-
ments is sufficient for estimating the parameters without
ambiguity. When parameter observability holds, the Fisher
information matrix (i.e., the Hessian matrix) is invertible.
Since the Fisher information matrix describes the information
available in the measurements, by studying its nullspace we
can gain insight about the directions in the parameter (state)

space along which the estimator acquires information. In
what follows, we will compare the parameter observability
properties of the standard SWF with those of the batch-
MAP estimator, to draw conclusions about the estimator’s
consistency.

We first notice that the nullspace of the Hessian matrix of
the batch-MAP estimator (18) at time-stepk, is given by:2

null (Ab(k)) = span
col.

















I2 Jp̂R0|k

01×2 1
...

...
I2 Jp̂Rk|k

01×2 1
I2 Jp̂L1|k

...
...

I2 Jp̂LM|k

















(24)

which is of dimension three. This agrees with the fact that in
SLAM, three degrees of freedom corresponding to the global
translation and rotation are unobservable [9]. However, as
shown below, this is not the case for the standard SWF.

In the standard SWF, the matrix that describes the
information for the entire history of states,x0:k =
[
xT
M xT

R xT
N

]T
, is given by [7]:

A(k) =

km−1∑

κ=0

ΦT
κ (ko)Q

′−1
κ Φκ(ko) +

∑

zij∈ZM

HT
ij(ko)R

−1
ij Hij(ko)

︸ ︷︷ ︸

A1(ko)

+

k−1∑

κ=km

ΦT
κ (k)Q

′−1
κ Φκ(k)

∑

zij∈ZA

HT
ij(k)R

−1
ij Hij(k)

︸ ︷︷ ︸

A2(k)

(25)

where the matrixA1(ko) contains all the information per-
taining to the marginalized states, andA2(k) the information
pertaining to the active states at time-stepk. Again, we note
that the time indices(ko) and(k) indicate the state estimates
(x̂0:ko|ko

andx̂0:k|k, respectively) used as linearization points
in computing each of the above terms. The HessianA(k)
in (25) has the following interesting structure:

A(k) =




AMM(ko) AMR(ko) 0

ARM(ko) ARR(ko) 0

0 0 0





︸ ︷︷ ︸

A1(ko)

+





0 0 0

0 ARR(k) ARN(k)
0 ANR(k) ANN(k)





︸ ︷︷ ︸

A2(k)

=





AMM(ko) AMR(ko) 0

ARM(ko) ARR(ko) +ARR(k) ARN(k)
0 ANR(k) ANN(k)



 (26)

It is clear now that different estimates,x̂R(ko) and x̂R(k),
are used in computing the Hessian matrix. This occurs be-
cause some of the states inxR are involved in measurements
both inZM andZA. As a result of the above structure, it can

2Since we are interested in the information contained in the available
measurements, the case without prior (i.e.,P0|0 → ∞) is considered here.



be shown that the last column of the matrix in (24) doesnot
belong in the nullspace ofA(k) [7]. Instead, the nullspace
of A(k) is spanned by only the first two columns of (24),
which in turn shows that the rank of the Hessian in the SWF
is higher than the rank of the Hessian of the batch MAP.
Clearly, this difference is not desirable, since both estimators
process the same measurements, and thus have access to the
same amount of information.

IV. OBSERVABILITY CONSTRAINED (OC)-SWF

As seen from the preceding section, due to marginal-
ization, the standard SWF possesses different parameter
observability properties from the batch-MAP estimator, since
its Hessian has a nullspace of lower dimension than that of
the batch-MAP estimator. This implies that the standard SWF
acquires spurious information along one direction of the state
space (the one corresponding to global orientation), which
can lead to inconsistency. To address this issue, we adopt the
idea of observability-based rules for choosing linearization
points that was originally proposed in our previous work [9],
and develop a new observability constrained (OC)-SWF.

The key idea of the proposed approach is that the lineariza-
tion points used in computing the Hessian matrix are selected
so as to ensure that the Hessian has a nullspace of the same
dimension as that of the batch MAP estimator (see (24)).
Different approaches for selecting linearization points are
possible to satisfy this observability condition. For example,
the prior-linearization (PL)-SWF proposed in [7] employs
a simple linearization scheme to achieve this goal based
on [14]. Specifically, when computing the Hessian, it uses
the prior estimates,̂xR(ko), instead of the current estimates
x̂R(k), for the states inxR that are connected to marginal-
ized states. By doing so, it is guaranteed that the same
estimate is used as the linearization point for each of these
states. However, even though the PL-SWF typically performs
substantially better than the standard SWF (see Section V),
the prior estimateŝxR(ko) used as linearization points could
be inaccurate, and thus can result in large linearization errors,
which can degrade the estimator’s performance. Therefore,in
the proposed OC-SWF, we select the linearization points for
the statesxR andxN (i.e., the states that are still “active” in
the minimization), in a way that not only ensures the correct
dimension for the nullspace of the Hessian matrix, but also
minimizes their difference from the current best available
estimates (see [9]). This can be formulated as the following
constrained minimization problem:3

min
x⋆
R
,x⋆

N

||x⋆
R − x̂R(k)||2 + ||x⋆

N − x̂N(k)||2 (27)

subject to A(k)Nk = 0 (28)

In this formulation,Nk is a design choice that defines the
desired nullspace with correct dimension. Ideally, we would
like to have the same nullspace as (24). However, this is
not possible, as in the SWF some of the old states have

3For the clarity of presentation, hereafter the superscript(ℓ) is dropped,
since, without loss of generality, we consider the(ℓ + 1)-th iteration in
Gauss-Newton given that the results from theℓ-th iteration are available.

been marginalized, and thus we do not maintain estimates
for them. We next describe our choice of estimates used for
constructingNk, and denote these estimates by the symbol
“ ¯ ”. Specifically, during the(ℓ + 1)-th Gauss-Newton
iteration, we use the following estimates to construct the
matrixNk: (i) For the new states,xN, as well as those states
in xR for which no prior exists, we use the estimates from the
ℓ-th iteration, i.e.,̄xi = x̂i(k); (ii) For all marginalized states,
xM, as well as for states inxR for which a prior exists, we
use the prior estimate, i.e.,̄xi = x̂i(ko). By replacing the
pertinent state estimates in (24) by the estimates selected
above, x̄0:k =

[
x̄T
M x̄T

R x̄T
N

]T
, we obtain the desired

nullspace,Nk = Nk(x̄0:k).

By construction, the nullspaceNk(x̄0:k) always satis-
fies the equalityA1(ko)Nk = 0. Thus, the condition
A(k)Nk(x̄0:k) = 0 can be written as (see (25)):

A2(k)Nk = 0

⇒





k−1∑

κ=km

ΦT
κQ

′−1
κ Φκ +

∑

zij∈ZA

HT
ijR

−1
ij Hij



Nk = 0

⇒

{

ΦκNk = 0 , ∀κ = km, . . . , k − 1

HijNk = 0 , ∀zij ∈ ZA

(29)

Using the structure of the JacobiansΦk and Hij (see (5)
and (9)) and that of the matrixNk (24), the above con-
straints (29) can be written as follows [12]:

ΦκNk = 0 ⇒ p⋆
Rκ

−p̄Rκ
+p̄Rκ+1−p⋆

Rκ+1
= 0 (30)

HijNk = 0 ⇒ p⋆
Rj

− p̄Rj
+ p̄Li

− p⋆
Li

= 0 (31)

Therefore, the problem (27)-(28) can be simplified as:

min
x⋆
R
,x⋆

N

||x⋆
R − x̂R(k)||2 + ||x⋆

N − x̂N(k)||2 (32)

s.t.

{

p⋆
Rκ

−p̄Rκ
+p̄Rκ+1−p⋆

Rκ+1
= 0 , ∀κ = km, . . . , k−1

p⋆
Rj

−p̄Rj
+p̄Li

−p⋆
Li

= 0 , ∀zij ∈ ZA

(33)

We now derive an analytical solution to the constrained
minimization problem (32)-(33). In particular, the approach
of Lagrangian multipliers [15] is employed. The Lagrangian
function is constructed as follows:

L = ||x⋆
R − x̂R(k)||2 + ||x⋆

N − x̂N(k)||2 (34)

+

k−1∑

κ=km

µT
κ

(

p⋆
Rκ

− p̄Rκ
+ p̄Rκ+1 − p⋆

Rκ+1

)

+
∑

(i,j),zij∈ZA

λT
ij

(

p⋆
Rj

− p̄Rj
+ p̄Li

− p⋆
Li

)

By setting the derivatives with respect to the state and



Lagrangian-multiplier variables equal to zero, we have:

∂L

∂p⋆
Rκ

= (35)







2(p⋆
Rκ

−p̂Rκ|k
)+µκ+

∑

i,ziκ∈ZA

λiκ = 0 , if κ = km

2(p⋆
Rκ

−p̂Rκ|k
)−µκ−1+

∑

i,ziκ∈ZA

λiκ = 0 , if κ = k

2(p⋆
Rκ

−p̂Rκ|k
)+µκ−µκ−1+

∑

i,ziκ∈ZA

λiκ = 0 , else

∂L

∂p⋆
Li

= 2(p⋆
Li
−p̂Li|k

)−
∑

j,zij∈ZA

λij = 0 (36)

∂L

∂µκ

= p⋆
Rκ

− p̄Rκ
+ p̄Rκ+1 − p⋆

Rκ+1
= 0 (37)

∂L

∂λij

= p⋆
Rj

− p̄Rj
+ p̄Li

− p⋆
Li

= 0 (38)

∂L

∂x⋆
other

= 2(x⋆
other − x̂other(k)) = 0 (39)

wherexother denotes all the state variables except the ones
involved in (35)-(38). Solving (35), (36), and (39) yields the
following optimal solutions:

p⋆
Rκ

= p̂Rκ|k
−

1

2



δµκ +
∑

i,ziκ∈ZA

λiκ



 (40)

p⋆
Li

= p̂Li|k
+

1

2




∑

j,zij∈ZA

λij



 (41)

x⋆
other = x̂other(k) (42)

where

δµκ =







µκ , if κ = km

−µκ−1 , if κ = k

µκ − µκ−1 , else

Substituting (40)-(42) into (37) and (38) yields the following
linear equations in terms of the Lagrangian multipliers:

∆µκ +
∑

i,ziκ∈ZA

λiκ −
∑

i,zi(κ+1)∈ZA

λi(κ+1)

= 2
(
p̂Rκ|k

− p̄Rκ
+ p̄Rκ+1 − p̂Rκ+1|k

)
(43)

δµκ +
∑

i,ziκ∈ZA

λiκ +
∑

j,zij∈ZA

λij

= 2
(
p̂Rκ|k

− p̄Rκ
+ p̄Li

− p̂Li|k

)
(44)

where

∆µκ =







2µκ − µκ+1 , if κ = km

2µκ − µκ−1 , if κ = k − 1

−µκ−1 , if κ = k

2µκ − µκ−1 − µκ+1 , else

In order to determine the Lagrangian multipliers,µκ andλij ,
we stack equations (43)-(44) for all the measurements (con-
straints) into matrix-vector form and solve the resulting linear
system. Once the Lagrangian multipliers are specified, the

optimal linearization points can be obtained based on (40)-
(42). Subsequently, the Jacobian and Hessian matrices are
computed using the optimal linearization points, and then the
standard Gauss-Newton steps are carried out (see Section II-
C). It should be pointed out that, as compared to the
standard SWF and the PL-SWF, the OC-SWF only requires
an additional computational overhead of linearly solving
for the Lagrangian multipliers, which in general is cubic
in the number of active proprioceptive and exteroceptive
measurements.

V. SIMULATION RESULTS

A series of Monte Carlo simulations were conducted under
different conditions, in order to validate the capability of the
proposed OC-SWF to improve estimation performance. The
metrics used to evaluate the estimator’s performance were:
(i) the average root mean squared error (RMSE), and (ii) the
normalized (state) estimation error squared (NEES) [8]. Both
metrics are computed by averaging over all Monte Carlo
runs. The average RMSE provides us with a concise metric of
the accuracy of a given estimator, while the NEES is a metric
for evaluating the estimator’s consistency. By studying both
the RMSE and NEES, we obtain a comprehensive picture of
the estimator’s performance.

In simulation tests presented in this section, we conducted
50 Monte Carlo simulations, and compared four different
estimators: (i) the batch-MAP estimator, (ii) the standard
SWF, (iii) the PL-SWF [7], and (iv) the proposed OC-SWF.
In the simulation setup, a robot with a simple 3-wheel (2
active and 1 caster) kinematic model moves on a planar
surface, at a constant velocity ofv = 0.5 m/sec. The two
active wheels are equipped with encoders, which measure
their revolutions and provide measurements of velocity (i.e.,
right and left wheel velocities,vr and vl, respectively),
with standard deviation equal toσ = 1%v for each wheel.
These measurements are used to obtain linear and rotational
velocity measurements for the robot, which are given by:

v =
vr + vl

2
, ω =

vr − vl

a

wherea = 0.5 m is the distance between the active wheels.
The standard deviation of the linear and rotational velocity
measurement noise is thus equal toσv = σ√

2
and σω =

√
2σ
a

, respectively. We considered a SLAM scenario where a
robot moves along a circular trajectory of total length of
about 500 m, and measures bearing angles to landmarks
that lie within its sensing range of 10 m. There are 50
landmarks in total which are randomly generated along the
robot trajectory. This can arise, for example, in the case in
which a robot moves inside corridors and tracks its position
and corners (landmarks) using a monocular camera. At each
time step, approximately 10 landmarks are visible. In the
SWFs we chose to maintain a sliding window comprising
20 robot poses and at most 10 active landmarks. To ensure
a fair comparison among the SWF algorithms, all three
of them process the same data and maintain the same
states in their windows. In this simulation, the landmarks
to be marginalized are chosen such that at least two “old”



0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

200

Time (sec)

R
o

b
o

t 
p

o
se

 N
E

E
S

 

 
Batch−MAP
Std−SWF
PL−SWF
OC−SWF

(a)

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

R
o

b
o

t 
p

o
si

ti
o

n
 R

M
S

E
 (

m
)

 

 
Batch−MAP
Std−SWF
PL−SWF
OC−SWF

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (sec)

R
o

b
o

t 
h

ea
d

in
g

 R
M

S
E

 (
ra

d
)

(b)
Fig. 1. Monte-Carlo simulation results: (a) NEES of the latest robot pose, (b) average RMSE of the latest robot pose (position and orientation). It is clear
that both the PL-SWF and OC-SWF perform significantly betterthan the standard SWF, in terms of both consistency (NEES) and accuracy (RMSE). Note
also that the OC-SWF attains better performance than the PL-SWF.

Batch MAP Std-SWF PL-SWF OC-SWF

RMSE for Landmark Position (m)

0.5184 2.7449 2.6713 2.6235

NEES for Landmark Position

3.7769 42.1306 12.3615 9.5719

TABLE I

LANDMARK POSITION ESTIMATION PERFORMANCE

landmarks always remain in the window, to ensure that the
uncertainty does not continuously increase. The batch MAP
estimator processes all measurements, and is used as the
benchmark.

For the results presented here, we considered a case with
relatively large measurement noise, compared to what is
typically encountered in practice, since larger noise levels
can lead to larger estimation errors, and thus less accurate
linearization, which will make the effects of inconsistency
more apparent. Specifically, the standard deviation of the
bearing measurement noise was set to 10 deg. Fig. 1
shows the results for the robot pose based on the com-
pared estimators, while Table I depicts the average NEES
and RMSE for the landmark positions (averaged over all
the landmarks). First notice that as expected, the batch-
MAP estimator attains the best performance, since it utilizes
all the available information, while the SWFs discard the
measurements belonging to the inactive measurement set,
ZM, due to marginalization. More importantly, the two
observability-constrained smoothers (i.e., PL-SWF and OC-
SWF) perform substantially better than the standard SWF,
in terms of both consistency (NEES) and accuracy (RMSE).
This is attributed to the fact that the appropriate parame-
ter observability properties are preserved in the proposed
observability-based smoothing framework. We also note that
the OC-SWF achieves better performance than the PL-SWF.

This is due to the fact that when the noise is large, the prior
estimates used as linearization points in the PL-SWF are
inaccurate (i.e., the linearization errors become significant),
which degrades the estimator’s performance. In contrast, the
OC-SWF employs, by construction, the optimal linearization
points and thus yields better estimation accuracy.

VI. EXPERIMENTAL RESULTS

To experimentally validate the performance of the OC-
SWF, the estimator was tested on the Victoria Park data set
courtesy of Nebot and Guivant4. The experimental platform
was a 4-wheeled vehicle equipped with a kinematic GPS,
a laser sensor, and wheel encoders. The GPS system was
used to provide ground truth for the robot position. Wheel
encoders were used to provide odometric measurements, and
propagation was carried out using the Ackerman model. In
this particular application, since the most common feature
in the environment were trees, the profiles of trees were
extracted from the laser data, the centers of the trunks were
then used as the point landmarks, and distance and bearing
measurements to them were used for estimation [16].

In this test, we compared the same four estimators as in the
preceding simulation: (i) the batch-MAP estimator, (ii) the
standard SWF, (iii) the PL-SWF [7], and (iv) the proposed
OC-SWF. Since in this experiment, both true landmark
positions and true robot orientations were unavailable, we
only compared the robot position estimation performance,
which is shown in Fig. 2. Specifically, Fig. 2(a) depicts
the trajectory estimates produced by the four estimators as
compared to the GPS ground truth, while Fig. 2(b) shows
the estimation errors of the robot position over time. Note
that since the GPS had different frequency (up to 5 Hz)
from the other exteroceptive sensors and its satellite signal

4The data set is available at:http://www-personal.acfr.usyd.
edu.au/nebot/victoria_park.htm. Note that in order to ensure
the comparison to the batch MAP estimator, we here considered the first
half of the data set.
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Fig. 2. Experimental results: (a) The robot trajectory estimates as compared to the GPS data, (b) estimation errors of robot position. It is clear that the
OC-SWF performs more accurately than the standard SWF and the PL-SWF.

was not always available, we interpolated the estimates of
the four compared estimators, and computed the estimation
errors only at the times when the GPS was available. As
evident from Fig. 2, the OC-SWF performs significantly
better than the standard SWF and the PL-SWF [7]. These
results, along with those of the simulations presented in the
previous section, show that it is essential for an estimator
to ensure appropriate observability properties in order to
improve its performance.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we addressed the consistency issue of
the standard SWF. Even though the SWF is an appealing
smoothing algorithm well-suited for real-time applications
where the effects of nonlinearity of the measurements are
significant, it can suffer from inconsistency. In particular,
due to marginalization, the standard SWF uses different
estimates for the same states as linearization points when
computing the Hessian matrix, which results in its Hessian
having a nullspace of lower dimension than the batch-
MAP estimator. This implies that the standard SWF acquires
spurious information and thus may become inconsistent. To
address this issue, we have introduced an observability-based
smoothing framework, which extends the method presented
in [9] for EKFs to the case of the SWF. Specifically, we select
the linearization points at which the Hessian is evaluated,
so as to ensure that the nullspace of the Hessian is of
the same dimension as that of the batch-MAP estimator,
while minimizing the linearization errors. Both simulation
and experimental results have shown that the proposed OC-
SWF performs substantially better than the standard SWF
as well as the PL-SWF [7], in terms of both accuracy and
consistency. In our future work, we plan to extend this
approach to the case of robots navigating in 3D.
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