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Abstract— A sliding window filter (SWF) is an appealing increases continuously over time, the processing and memor
smoothing algorithm for nonlinear estimation problems sué  requirements become too high for real-time operation in

as simultaneous localization and mapping (SLAM), since it _ ; i
is resource-adaptive by controlling the size of the sliding large SCtale_ﬂp])rok_)lllt_emS ((?.Ig.,da ront exploring a large envi
window, and can better address the nonlinearity of the probém ronment with mi |or?s 0_ gn _mar s). o ) )

by relinearizing available measurements. However, due to 10 overcome this limitation, a sliding window filter

the marginalization employed to discard old states from the (SWF) [4] (also called a fixed-lag smoother (FLS) [5]-
sliding window, the standard SWF has different parameter [7]) can be used to estimate the states over a sliding time
observability properties from the optimal batch maximum-a-  \yindow at a fixed computational cost. The SWF concurrently
posterior (MAP) estimator. Specifically, the nullspace of he .
Fisher information matrix (or Hessian) has lower dimension ,processe,s all the measurement constraints bet_Ween_ states
than that of the batch MAP estimator. This implies that in the window, and better addresses the nonlinearity of
the standard SWF acquires spurious information, which can the problem by iteratively relinearizing the process and
lead to inconsistency. To address this problem, we propose measurement equations. This approach is resource-agaptiv
an observability-constrained (OC)-SWF where the lineariation depending on the available computational resources, it can
points are selected so as to ensure the correct dimension dfet . S . .
nullspace of the Hessian, as well as minimize the linearizan scale. from. the_z iterated EKF .solutlon if only a smgle .tlme
errors. We present both Monte Carlo simulations and real- St€p is maintained, to the optimal batch-MAP solution if the
world experimental results which show that the OC-SWF's sliding window spans the entire time horizon.
performance is superior to the standard SWF, in terms of both  The key characteristic of the SWF is the marginalization
accuracy and consistency. of old states from the sliding window, a process that appro-
I. INTRODUCTION AND RELATED WORK priately models the uncertainty of these states [2], [4], [6

- o However, due to marginalizatiomwljfferent estimates of the
Among the existing approaches for robot localization, th(game states are used akinearization pointsin computing the

;x:;(;jdesd _mlsrq:n rfilrl;[learril(E;Te)z tlg i?snga(;]; tgfeir;n?es:ngﬂf;tlghessian matrix during estimation (see Section Il and [7]).
: P y b his results in different parameter observability projesrf8]

and relatively low processing requirements. However, thgs compared to the batch-MAP estimator. Specifically, the

EKF, as well as any linearization-based filtering approaChHessian (Fisher information matrix) of the standard SWF

may suffer from the accumulation of linearization errorsh(,%S a nullspace of lower dimension than that of the batch-

Th|§ IS pecause once Imean;anon pplnts are ;elected AP estimator. This implies that the estimator erroneously
a given time step for computing the filter Jacobians, the

cannot be updated at later times, when more measuremeg?”eves It_has information along more directions of the
b . A e space than those contained in the measurements. This
become available for improving them. In contrast, a batc

maximum a posteriori (MAP) estimator [1] can improve the ads to inconsistent estimates, i.e., estimates whosg acc
P P racy is worse than the one reported by the estimator. This

estimation accuracy by computing consistent state estgnat . . . . :
y by puling nconsistency is a serious problem, since when an estimator

for all time steps based on all available measurements.rUncig inconsistent, the accuracy of the produced estimates is

a Gaussmn_prlor ar_1d me_asgrement noise a;sump'uon (V.Vh'ucqunown, which in turn makes the estimator unreliable [8].
is common in practice), finding the MAP estimates requires In order to improve the consistency and accuracy of the

solving a nonlmear.Ieast-squares_probllem (see Section IgWF, in this paper we propose an observability-constrained
whose counterpart in computer vision is known as bundl

. : . : ) C)-SWF as a general smoothing framework. In particular,
adjustment [2]. A variety of iterative algorithms have beervc?e postulate that by ensuring the Hessian matrix has a
employed for this problem. For example, the square-rog

) . ullspace of appropriate dimension, we can avoid the influx
smoothing a_n_d mapping (S.AM) m(_athod [3] SOIV(?S the SLANEf spurious information in the unobservable directionshef t
problem efficiently by using variable reordering, a well-

X . . parameter (state) space, thus improving the consistency of
known technique for sparse linear systems. However, smﬁgI ( ) sp b 9 y

. . . e estimates. Based on this, we develop an OC-SWF which
the size of the state vector in the batch-MAP estlmatoéxtends the observability-based methodology for desgynin
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instead of the current, estimates, for the states conne@ed £ — 1 and k, expressed with respect to the robot's frame
measurements to marginalized states. This ensures the sahdime-stepk — 1, {Rx_1}. The corresponding odometry
estimates for the same states are used, and the appropriagasurementy,,,, ,, is assumed to be corrupted by zero-
dimension of the Hessian’s nullspace is preserved. Howevenean, white Gaussian noisey,_; = ugz_1 — Wy, _,, With

if the prior estimates are inaccurate, the linearizationrer covarianceQj_;. This motion model is described by the
will be large and may degrade the estimator’'s performanctallowing generic nonlinear function:

In contrast, the proposed OC-SWF selemtimal lineariza-
tion points for computing the Hessian, in the sense that the
not only ensure the correct dimension for the nullspace dio employ a batch-MAP estimator, it is necessary to lin-
the Hessian, but also minimize the linearization errors. Wearize (4) and compute the Jacobians with respect to the
stress that apart from the SLAM problem treated in thistate vector (1) and the noise, respectively, i.e.,

f(x(m, up—1) =xg, — f(Xg,_,,Um, , +Wi—1) =0 (4)

paper, the proposed OC-SWF is applicable to a large class A Og

of nonlinear estimation problems in robotics and computer P = Oxo: {xz.,.0) ®)

vision, such as visual odometry [10] and vision-aided iaért — o ' & L. 0 0 ]

navigation [11]. (053 Hi 3* x2 x2
The remainder of the paper is structured as follows: g, , 2 g _ [C( Re 1) 02“} (6)

After presenting the batch-MAP formulation of the SLAM OWp—1 1{x,,,0} 012 1

problem in the next section, we describe the standard SWith

and its parameter observability properties in Section Ill. I J( s )

The proposed OC-SWF is presented in Section IV, whose ®br, , =— [ 2 Pr. 7 PR, ] @)

performance is compared against that of the standard SWF O1x2 1

and the PL-SWF through Monte Carlo simulations and realwherexj,, denotes the linearization point for the state (1),
world experiments in Sections V and VI. Finally, Section Vllwhile a zero vector is used as the linearization point for the

outlines the main conclusions of this work and pOSSibI%oise and — 0 -1 Clearly, the values of the Jacobian

directions of future work. 1 0
matrices depend on the choice of linearization points, Wwhic
Il. SLAM BATCH-MAP FORMULATION is the key fact our approach relies on. Note also that the

In this section, we describe the batch-MAP formulation oform of the motion model presented above is general, and
the SLAM problem, which forms the basis for the ensuindpolds for any robot kinematic model (e.g., unicycle, bieycl
derivations of the SWF. In particular, we aim at estimatin@’ Ackerman model) [9].
the entire robot trajectory up to the current time-si@S B, Measurement Model

well as the positions of all observed landmatks: During SLAM, the robot-to-landmark measurements are

]T (1) @ function of the relative position of the observed landmark

) - " d he rob ( with respect to the robot:
wherexg, = [Pr, ¢r enotes the robot pose (position ,
and orierllctationfkat tin’;e-steb, andpy, is the position of zi; = hij(xox) + vi; =h ("pr,) +vi; ®)
the i-th landmark. whereflip,, = CT(¢g,)(pL, — Pr,) is the position of the

In what follows, we start by presenting the general motior-th landmark with respect to the robot at time-sjepndv;;
and measurement models that will be used throughout tli® zero-mean Gaussian measurement noise with covariance
paper. Subsequently, we describe the batch-MAP estimatd;;. In this work, we allowh(-) to be any measurement

) function (e.g., a direct measurement of relative position,

A. Motion Model a pair of range and bearing measurements, bearing-only

Consider a robot equipped with an odometry sensor moweasurements, etc.). In general, the measurement function
ing on a plane. The odometry serves as the control input t® nonlinear, and its Jacobian matrix is given by:

_ [T T ... T T T
X0:k = [xRo XR, Xr, PrL, -+ PLy

propagate the robot pose, according to the following motion . Ohy

model: ij = Oxour, | (x50} )
Pr, = Pr,_, + C(¢r,_,) ™ 'pr, (2) =[0 -+ Hg, 0 -~ Hy, 0 - 0
GRy = PRy, + 1 OR, ()  with

where C(-) denotes the x 2 rotation matrix, anduy_; = Hp, = (Vhy)C'(¢%,) [-12 —J(PL, —PR,)] (10)

Ricixp, = [B-1ph  Re19p 17 s the true odometry Hy, = (Vhij)CT(gb}w_) (11)

(control input), i.e., the robot’s motion between timepste ) _
whereHp,, andH_,, are the Jacobians with respect to the
LThroughout this paper, the subscriffj refers to the estimate of a robot pose at time-stepand thei-th landmark position, re-
quantity at time-sted, after all measurements up to time-stgpave been spectively, and7hij denotes the Jacobian hfj with respect

processedz is used to denote the estimate of a random variablahile . s D
% —x — 4 is the error in this estimatd,, ., and1,,», denotem x n (O the robot-relative landmark positioff p,,, evaluated at

matrices of zeros and ones, respectively, Bads then x n identity matrix. ~ the linearization pointxj.,. .



C. Batch-MAP Estimator Gauss-Newton method by (see (5) and (9)):

The batch-MAP estimator utilizes all the available infor- Al(f) -n’p o+ (18)
mation to estimate the state vector (1). The informatiorduse ! .
includes: (i) the prior information about the initial state OT 5 —1¢7(0) DT ~1 5 (0)
described by a Gaussian pdf with me&y), and covariance ; Hij Ry Hy + Zl Pa Q1P
Zij 0:k K=

Pyo, (ii) the motion information (4), and (iii) the sensor " o _
measurements (8). In particular, the batch-MAP estimatdyhich is a good approximation for small-residual prob-
seeks to determine the estimatg,;, that maximizes the lems [2]. Due to the sparse structure of the matriEEs
posterior pdf: and " (see (5) and (9)), the matriAl(f)) is also sparse,
which can be exploited to speed-up the solution of the linear
system in (19) [2]. The valuéxé?C that minimizes (14) is
found by solving the following linear system:

k

p(x0:k| Z0:x) o p(xr,)[ [ (x5, xR, _,) [] p(zii|%r,. pL)
k=1 Zij €20:k

(12) ALsx), = —b{f (19)
v_vhere_ Zo, denotes all the avz_;ulable measurements in th@nce&x(‘f) is found, the new state estimate is computed as:
time interval [0, k]. For Gaussian state and measuremen 0:k
noise (see (4), and (8), respectively), maximizing (12) is gy;? :f‘(()%k +ox) (20)
equivalent to minimizing the following cost function [12]: ' ' '

1 Given an initial estimateié?,ilk that resides within the at-
c(xo:) = 5||xRU—>‘<0‘0||f3m0 (13) traction basin of the global optimum, this iterative algjom
will compute the global minimum (i.e., MAP estimate) for
the entire state given all measurements up to time-ktep

w=1 [1l. SLIDING WINDOW FILTER (SWF)-BASED SLAM
1
+ Z §||Zij — hij (x0:8) ||, AND OBSERVABILITY PROPERTIES

i, € Zoun It is clear from the preceding section that, as the robot
continuously moves and observes new landmarks, the size
where|la|[3; = a"M™'a and Q) = Gy QiG] (see (4).  of the state vector of the batch-MAP estimat&y, ;, in-
¢(xo:) is @ nonlinear function, and a standard approach tgreases. Consequently, the computational cost of obtainin
determine its minimum is to employ Guass-Newton iterativg state estimate continuously increases, and at some point
minimization [2]. Specifically, at the-th iteration of this it il inevitably become too high for real-time operation.
method, a correctiorﬁng,)c, to the current estimate‘;glf,)dk, In order to adapt to the available computational resources,
is computed by minimizing the second-order Taylor-seriearginalization [4], [6], [7] can be used to discard old,
approximation of the cost function which is given by: matured states. This results in a constant-cost SWF which
. T maintains a constant-size window of states [4], [13]. In
0(5‘(()?@|k+ OXG0) = C()A(((Jlil)dk)—i_bl(f) (Sx((fl)ﬁ—i_%éxéz:l)c AY5x() this section, we describe the effects of the marginalizatio
(14) used by the standard SWF on the system’s observability
properties. This analysis forms the basis for our proposed

k
1
+ 3 5lxn —fcn, Iy

where algorithm (see Section IV). For more details on the derbrati
b 2V, () (15) of the marginalization equations, the interested reader is
b N g =20 ) referred to [7].
AD ay2 o) (16) We c_onside_r the scena_rio where marginalization of old
b X0k (g =%50 states is carried out at time-stdp, when all the mea-

) _ ) surements during the time intervédl, k,] are available.
are the gradient and Hessian f) with respect toxox,  Subsequently the robot keeps moving and collects new
evaluated at the current state estlmﬁé%k. measurements in the time interJal, + 1, k|, and estimation

Specifically, at the/~th iteration,bl(f) is (see (5) and (9)): takes place again at time-stép The old states that are
marginalized out at time-stef, are denoted by:

¢ INONT N
b ="y} (ngg‘k_xo‘o) (17) i . I
T XM = [xRo:km Pry, pLMm}
- Y YRS (- 350) N _ o
= R 0:kl Note that it is not necessary to sequentially marginalize ou
Zij 0:k

. the old robot posesxg,,, ; instead, we can selectively
n Z ‘I)(E)T -1 (}2(@) B f(i(z) u, )) discard th_e_most matured (i.e., ac_curgtely est_imated).ones
~ AN Ry 7w =1 The remaining states that stay active in the sliding window
after marginalization are denoted by:
whereII = [I, 0 --- 0], andn = dim(xg,). On the .

T
. . . . . T T
other hand, the Hessian matrlA,ff), is approximated in the Xg £ [XkaH:ko Prp, ° Pig,



Upon marginalization, all the statesin, as well as all the space along which the estimator acquires information. In
measurements that involve these states (denoteghlpyare what follows, we will compare the parameter observability
discarded. In their place, we maintain a Gaussian pdf, thptoperties of the standard SWF with those of the batch-
describes the information that the discarded measuremeM#P estimator, to draw conclusions about the estimator’s
convey about the active statesg. The information matrix consistency.

of this Gaussian is given by: We first notice that the nullspace of the Hessian matrix of

_ the batch-MAP estimator (18) at time-stépis given by?
A, (ko) = Arr (ko) — Arm (ko) Apg (ko) Anr (o) (21) (18) Pis given by

. L . ! Jp i
where the matrices appearing in the above equation are 0 2 pf""‘
defined as partitions of the following matrix: I_XQ _
Fo —1 : :
A (ko) = TTTPGTT+ 3 - @ (ko) Q' @i (ko) null (A, (k)) = span 012 prk‘k (24)
k=0 col. 1x2
+ ) HE (k)R H (k) (22) Iz Jb,
zijEZM
_ [AMMU%) AMR(’%)] (23) L Io JDr,,,
Arm(ko)  Arr(ko)

which is of dimension three. This agrees with the fact that in
Close inspection reveals that,, (k,) is the matrix describing SLAM, three degrees of freedom corresponding to the global
the information contained in all the discarded measuremeriranslation and rotation are unobservable [9]. However, as
(odometry, robot-to-landmark, and prior). Thua,,(k,), shown below, this is not the case for the standard SWF.
which is the Schur complement &y (ko) In Ay (ko). In the standard SWF, the matrix that describes the
describes the information that the discarded measurememtformation for the entire history of states,xp.. =
give us aboukg. We also note that, in the above, the time[x}; x& xﬂT, is given by [7]:

index (k,) has been added to denote the fact that all the

h . . Fom—1
Jacobians are computed using the estimaig |, as the AT 1 T ey
linearization point. A(k) = Z;J@n(ko)Qn P (ko) + 2 Hj (ko) Ry Hij (ko)
After marginalization the robot continues moving in its " Zij €EM
environment, and new states are added to the state vector A (ko)
during [k, + 1, k]. These are denoted by: k—1
i ., . T +Y_@L()Q (k) Y HE(KRH(k)  (25)
XN = XRkD+1:k pLN] o pLNn,:| k=km Zzi;CZA
Now, at time stepk, the “active states” arearg and xy. In Az (k)

order to compute estimates for the active states, the SWfnere the matrixA+ (k,) contains all the information per-
employs the “active” measurement&a = Zo. \ Zm,  taining to the marginalized states, aAd (k) the information
along WI'Fh the motion model and the information from thepertaining to the active states at time-stepAgain, we note
marginalized states (expressed Ay(k,) (21)) [7l. ~ that the time indice$k,) and (k) indicate the state estimates
As described above, the key idea in the SWF is thak  andsg,,,, respectively) used as linearization points
the information of all the marginalized measurements ig, coom?)uting each of the above terms. The Hessht)

represented using a single Gaussian. While this entails #1(25) has the following interesting structure:
approximation, it also enables the SWF to maintain constant

computational complexity, that depends only on the numberA (k) =

of currently active states, and not on the past history of [Aym(k,) Amr(ko) 0 0 0 0

marginalized states. Arm(k,) Agrr(ko) O|+|0 Agrr(k) Arn(k)

A. Parameter Observability Properties 0 0 0 0 Anr(k) Ann(k)
We now examine the parameter observability properties [8] A (ko) As (k)

of the standard SWF-based SLAM, which, for the time being, Aniv (ko) Anr (ko) 0

is considered as a parameter (instead of state) estimation= | Agn(k,) Arr(ko) + Arr(k) Arn(k)| (26)

problem. The study of parameter observability examines 0 ANr(k) Ann(k)

whether the information provided by the available measure- . . : .

ments is sufficient for estimating the parameters Withojf Is clear now that (_1|fferent estmateﬁR(k_o) an_de(k:),
ambiguity. When parameter observability holds, the Fishét © used in computing th_e Hesglan matr_lx. This occurs be-
information matrix (i.e., the Hessian matrix) is invergbl cause some of the statesig are involved in measurements
Since the Fisher information matrix describes the inforamat bothinZy; andZ,. As a result of the above structure, it can

ava"ablle .m Fhe measurements* Py St_Udymg its nullspace Wexsjnce we are interested in the information contained in welable
can gain insight about the directions in the parametergstatmeasurements, the case without prior (iR, — co) is considered here.



be shown that the last column of the matrix in (24) does been marginalized, and thus we do not maintain estimates
belong in the nullspace oA (k) [7]. Instead, the nullspace for them. We next describe our choice of estimates used for
of A(k) is spanned by only the first two columns of (24),constructingNy, and denote these estimates by the symbol
which in turn shows that the rank of the Hessian in the SWF ~ ". Specifically, during the(¢ + 1)-th Gauss-Newton

is higher than the rank of the Hessian of the batch MAPiteration, we use the following estimates to construct the
Clearly, this difference is not desirable, since both eastors  matrix Ny: (i) For the new statexn, as well as those states
process the same measurements, and thus have access tantlg for which no prior exists, we use the estimates from the

same amount of information. (-th iteration, i.e.x; = %X;(k); (ii) For all marginalized states,
xM, as well as for states irg for which a prior exists, we
IV. OBSERVABILITY CONSTRAINED (OC)-SWF use the prior estimate, i.ex; = %;(k,). By replacing the

As seen from the preceding section, due to marginapertinent state estimates in (24) by the estimates selected
ization, the standard SWF possesses different paramesove, %o, = [Xi; Xk )‘('{,]T, we obtain the desired
observability properties from the batch-MAP estimatarcsi  nullspace N = Ny (Xo.x ).
its Hessian has a nullspace of lower dimension than that of By construction, the nullspac® . (Xo.;) always satis-
the batch-MAP estimator. This implies that the standard SWfes the equality A, (k,)N, = 0. Thus, the condition
acquires spurious information along one direction of tlagest A (k)N (Xo.x) = 0 can be written as (see (25)):
space (the one corresponding to global orientation), which
can lead to inconsistency. To address this issue, we adept th

idea of observability-based rules for choosing linearrat Az(k)Ni =0

points that was originally proposed in our previous work [9] k-1

and develop a new observability constrained (OC)-SWF. = ®IQ @, + Z H;‘-Z-R{leij Ny =0
The key idea of the proposed approach is that the lineariza- =k zi;€ZA

<N, Vi =Ky ki — 1

- (29)
iij =0 s VZij (S ZA

so as to ensure that the Hessian has a nullspace of the sante
dimension as that of the batch MAP estimator (see (24)).
Different approaches for selecting linearization pointe a
possible to satisfy this observability condition. For exden Using the structure of the Jacobiafs, and H;; (see (5)
the prior-linearization (PL)-SWF proposed in [7] employsand (9)) and that of the matriN;, (24), the above con-
a simple linearization scheme to achieve this goal bas&traints (29) can be written as follows [12]:

on [14]. Specifically, when computing the Hessian, it uses
the prior estimateszgr (k,), instead of the current estimates
xr(k), for the states irkg that are connected to marginal-
ized states. By doing so, it is guaranteed that the same
estimate is used as the linearization point for each of these
states. However, even though the PL-SWF typically perforniherefore, the problem (27)-(28) can be simplified as:
substantially better than the standard SWF (see Section V),

the prior estimate&r (k,) used as linearization points could _ . N 2 v oA 5

be inaccurate, and th(us can resultin large linearizaticorgr xgl,gl;, IR = Zr (k)7 + [ = ()] (32)
which can degrade the estimator’s performance. Therefore, {

tion points used in computing the Hessian matrix are sedecte {cp
H

®,Ny =0= pi_—Pr.+Pr.;1 Pk, =0 (30)
H;jN, =0= pg, —Pr, + P, — P, =0 (31)

* ~ ~ * — —
the proposed OC-SWF, we select the linearization points fart. pf“ E’RN +_pR”“ *pR““ =0, V& =k, k=1
the statescg andxy (i.e., the states that are still “active” in PR, ~Pr; +Pr,—P7, =0, Vzi; € Za
the minimization), in a way that not only ensures the correct (33)
dimension for the nullspace of the Hessian matrix, but also
minimizes their difference from the current best available we now derive an analytical solution to the constrained
estimates (see [9]). This can be formulated as the followingjnimization problem (32)-(33). In particular, the apptba
constrained minimization probleh: of Lagrangian multipliers [15] is employed. The Lagrangian

. . - function is constructed as follows:
min - ||xg — r(K)|” + | — *n(R)|* (27)

R’'™N
subject to A(K)N) =0 (28) L= b = xm(B)IF + e —=n(B)F - (39)
In this formulation, N, is a design choice that defines the i - N B .
desired nullspace with correct dimension. Ideally, we wloul + Z Hr (pR~ ~PR. T PRy — pRKH)

k=km

like to have the same nullspace as (24). However, this is
not possible, as in the SWF some of the old states have + > AL (p};j — DR, + P, — pzi)

(i,4),2i; EZA
SFor the clarity of presentation, hereafter the supersddptis dropped,
since, without loss of generality, we consider tife+ 1)-th iteration in . o .
Gauss-Newton given that the results from thih iteration are available. By setting the derivatives with respect to the state and



Lagrangian-multiplier variables equal to zero, we have:
oL

— = 35
. (35)
2(Ph, —PR. ) et X Aiw=0, ifk=kn
1,2 €EZA
2(Pk, —PR. )~ -1t D> AXie=0, ifs=k
,2ix €EZA
2(p§‘c,\. —IA)R,{‘,C)-HLR—/LHA-I— > Ak =0, else
0,2, €EZA
oL R
e 2(PL, —Pr,)— Z Aij =0 (36)
PL; J,2zij EZA
oL _ _
o Pk, — Pr, + Pr.;, — Pk, =0 (37)
K
oL _ _
ij
oL R
ax* = 2(X;thcr - Xother(k)) =0 (39)

other

wherex.he, denotes all the state variables except the on

involved in (35)-(38). Solving (35), (36), and (39) yieldeet
following optimal solutions:

N . 1
Ph, =Py — 5 (St D Xis|  (40)
1,2 EZA
N . 1
PL, =Pr, t+3 Z Aij (41)
J,zij €ZA
Xother = Xother (K) (42)
where
HI{ 9 lf R = km
6"'% = 9§ " Hse-1 if k="F
M — Myx—1 , else

Substituting (40)-(42) into (37) and (38) yields the foliogy
linear equations in terms of the Lagrangian multipliers:

A""I{ + Z )\in - Z Ai(ﬁ+l)

1,2 €EEA  Zi(nt1)E2A
= 2(PRy, — PR. T PRoys — DRoyy)  (43)
op + Z Air + Z Aij
1,2in €ZA J,2i; EZA
= 2(Pr,, — Pr, + Pz, —DPr,,) (44)
where
20k — Prt1 if k=ky
Ap, = 2 — Bi—1 %f/@:k—l
—Hr-1 ifk==k
20 — P—1 — Prt1 , else

In order to determine the Lagrangian multipliets, andA;;,

optimal linearization points can be obtained based on (40)-
(42). Subsequently, the Jacobian and Hessian matrices are
computed using the optimal linearization points, and tien t
standard Gauss-Newton steps are carried out (see Section |l
C). It should be pointed out that, as compared to the
standard SWF and the PL-SWF, the OC-SWF only requires
an additional computational overhead of linearly solving
for the Lagrangian multipliers, which in general is cubic
in the number of active proprioceptive and exteroceptive
measurements.

V. SIMULATION RESULTS

A series of Monte Carlo simulations were conducted under
different conditions, in order to validate the capabilifytioe
proposed OC-SWF to improve estimation performance. The
metrics used to evaluate the estimator’s performance were:
(i) the average root mean squared error (RMSE), and (ii) the
normalized (state) estimation error squared (NEES) [8thBo
metrics are computed by averaging over all Monte Carlo
runs. The average RMSE provides us with a concise metric of
fRe accuracy of a given estimator, while the NEES is a metric
for evaluating the estimator’'s consistency. By studyinthbo
the RMSE and NEES, we obtain a comprehensive picture of
the estimator’s performance.

In simulation tests presented in this section, we conducted
50 Monte Carlo simulations, and compared four different
estimators: (i) the batch-MAP estimator, (ii) the standard
SWEF, (iii) the PL-SWF [7], and (iv) the proposed OC-SWF.
In the simulation setup, a robot with a simple 3-wheel (2
active and 1 caster) kinematic model moves on a planar
surface, at a constant velocity of = 0.5 m/sec. The two
active wheels are equipped with encoders, which measure
their revolutions and provide measurements of velocisy. (i.
right and left wheel velocitiesy,. and v;, respectively),
with standard deviation equal t® = 1%w for each wheel.
These measurements are used to obtain linear and rotational
velocity measurements for the robot, which are given by:

(O ] o Ur — U]
a 2 ’ a a
wherea = 0.5 m is the distance between the active wheels.
The standard deviation of the linear and rotational vejocit

measurement noise is thus equaldp = % and o, =

%, respectively. We considered a SLAM scenario where a
robot moves along a circular trajectory of total length of
about 500 m, and measures bearing angles to landmarks
that lie within its sensing range of 10 m. There are 50
landmarks in total which are randomly generated along the
robot trajectory. This can arise, for example, in the case in
which a robot moves inside corridors and tracks its position
and corners (landmarks) using a monocular camera. At each
time step, approximately 10 landmarks are visible. In the
SWFs we chose to maintain a sliding window comprising
20 robot poses and at most 10 active landmarks. To ensure
a fair comparison among the SWF algorithms, all three

we stack equations (43)-(44) for all the measurements (coaf them process the same data and maintain the same

straints) into matrix-vector form and solve the resultiimgar

states in their windows. In this simulation, the landmarks

system. Once the Lagrangian multipliers are specified, the be marginalized are chosen such that at least two “old”
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Fig. 1. Monte-Carlo simulation results: (a) NEES of the $at@bot pose, (b) average RMSE of the latest robot poseti@osind orientation). It is clear
that both the PL-SWF and OC-SWF perform significantly bettan the standard SWF, in terms of both consistency (NEE&yanuracy (RMSE). Note
also that the OC-SWF attains better performance than th&\WE:

Batch MAP Std-SWF PL-SWF OC-SWF  This is due to the fact that when the noise is large, the prior
estimates used as linearization points in the PL-SWF are
inaccurate (i.e., the linearization errors become siganifi}

RMSE for Landmark Position (m)

0.5184 2.7449 2.6713 2.6235 ! . )
which degrades the estimator’s performance. In contrast, t
NEES for Landmark Position OC-SWF employs, by construction, the optimal linearizatio
3.7769 42.1306 12.3615  9.5719 points and thus yields better estimation accuracy.
TABLE | VI. EXPERIMENTAL RESULTS
LANDMARK POSITIONESTIMATION PERFORMANCE To experimentally validate the performance of the OC-

SWEF, the estimator was tested on the Victoria Park data set
courtesy of Nebot and GuivahtThe experimental platform
landmarks always remain in the window, to ensure that thgas a 4-wheeled vehicle equipped with a kinematic GPS,
uncertainty does not continuously increase. The batch MA® |aser sensor, and wheel encoders. The GPS system was
estimator processes all measurements, and is used as dBed to provide ground truth for the robot position. Wheel
benchmark. encoders were used to provide odometric measurements, and
For the results presented here, we considered a case witftopagation was carried out using the Ackerman model. In
relatively large measurement noise, compared to what tRis particular application, since the most common feature
typically encountered in practice, since larger noise llevein the environment were trees, the profiles of trees were
can lead to larger estimation errors, and thus less accuraberacted from the laser data, the centers of the trunks were
linearization, which will make the effects of inconsistgnc then used as the point landmarks, and distance and bearing
more apparent. Specifically, the standard deviation of thmeasurements to them were used for estimation [16].
bearing measurement noise was set to 10 deg. Fig. 1In this test, we compared the same four estimators as in the
shows the results for the robot pose based on the comreceding simulation: (i) the batch-MAP estimator, (iieth
pared estimators, while Table | depicts the average NEESfandard SWF, (iii) the PL-SWF [7], and (iv) the proposed
and RMSE for the landmark positions (averaged over aDC-SWF. Since in this experiment, both true landmark
the landmarks). First notice that as expected, the batcpesitions and true robot orientations were unavailable, we
MAP estimator attains the best performance, since it esliz only compared the robot position estimation performance,
all the available information, while the SWFs discard thevhich is shown in Fig. 2. Specifically, Fig. 2(a) depicts
measurements belonging to the inactive measurement sie trajectory estimates produced by the four estimators as
Znm, due to marginalization. More importantly, the twocompared to the GPS ground truth, while Fig. 2(b) shows
observability-constrained smoothers (i.e., PL-SWF and OGhe estimation errors of the robot position over time. Note
SWEF) perform substantially better than the standard SWHEat since the GPS had different frequency (up to 5 Hz)
in terms of both consistency (NEES) and accuracy (RMSEJrom the other exteroceptive sensors and its satelliteasign
This is attributed to the fact that the appropriate parame-
ter observability properties are preserved in the proposedf The data setis available 4tt t p: // www- personal . acfr. usyd.
e . edu. au/ nebot/vi ctori a_par k. ht m Note that in order to ensure
Observab”'ty'based SmOOthmg framework. We also note tha‘]e comparison to the batch MAP estimator, we here considére first
the OC-SWF achieves better performance than the PL-SWHalf of the data set.
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Fig. 2. Experimental results: (a) The robot trajectorymates as compared to the GPS data, (b) estimation errorsdof position. It is clear that the
OC-SWF performs more accurately than the standard SWF an@thkSWF.
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