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Abstract— This paper addresses two key limitations of the
unscented Kalman filter (UKF) when applied to the simulta-
neous localization and mapping (SLAM) problem: the cubic,
in the number of states, computational complexity, and the
inconsistency of the state estimates. In particular, we introduce
a new sampling strategy that minimizes the linearization error
and whose computational complexity is constant (i.e., indepen-
dent of the size of the state vector). As a result, the overall
computational complexity of UKF-based SLAM becomes of the
same order as that of the extended Kalman filter (EKF) when
applied to SLAM. Furthermore, we investigate the observability
properties of the linear-regression-based model employed by the
UKF, and propose a new algorithm, termed the Observability-
Constrained (OC)-UKF, that improves the consistency of the
state estimates. The superior performance of the OC-UKF
compared to the standard UKF and its robustness to large
linearization errors are validated by extensive simulations.

I. INTRODUCTION

For autonomous vehicles exploring unknown environ-

ments, the ability to perform simultaneous localization and

mapping (SLAM) is essential. Among the algorithms de-

veloped thus far to solve the SLAM problem, the extended

Kalman filter (EKF) arguably remains a popular choice and

has been used in many SLAM applications. However, the

EKF is also known to be vulnerable to linearization errors,

which can cause poor performance or even divergence. A

well-known problem with EKF-based SLAM is that the

state estimates are typically inconsistent, which renders the

estimator unreliable. In order to address the problems caused

by linearization, the use of the unscented Kalman filter

(UKF) [1], appears to be an appealing option. The UKF

has been shown to generally perform better than the EKF in

nonlinear estimation problems, and one would expect similar

gains in the case of SLAM.

However, one of the main limitations of the original UKF

algorithm [1] is its computational complexity, which is cubic

in the size of the state vector. In the case of SLAM, where

hundreds of landmarks are typically included in the state

vector, this increased computational burden can preclude

real-time operation. Moreover, when applied to SLAM, the

performance gains of the UKF over the EKF are generally

not overwhelming (e.g., [2], [3]). Most importantly, empirical

evidence suggests that the UKF also results in inconsistent

estimates in SLAM, even though its performance is better

than the EKF in this respect.
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Our objective is to address the aforementioned limitations.

In particular, the main contributions of this work are the

following:

• We propose a new sampling strategy for UKF-based

SLAM that has constant computational cost, regardless

of the number of landmarks included in the state vector.

This sampling strategy is provably optimal, in the sense

that it minimizes the squared error between the nonlin-

ear function and its linear approximation employed by

the UKF. Using this strategy, the computational cost of

UKF-based SLAM becomes linear during propagation

and quadratic during update, which is in the same order

as the EKF.

• We analytically examine the consistency of UKF-based

SLAM, by studying the observability properties of the

statistically-linearized system model, which is employed

by the UKF. This analysis identifies a mismatch be-

tween the observability properties of this model and

those of the underlying nonlinear system, which is a

fundamental cause of inconsistency. Based on this the-

oretical analysis, we propose a novel UKF-based SLAM

algorithm, termed Observability-Constrained UKF (OC-

UKF). By imposing the appropriate observability con-

straints on the linear regression carried out by the

UKF, the proposed OC-UKF ensures that its system

model has observability properties similar to those of

the actual, nonlinear, SLAM system. As a result, the

OC-UKF outperforms the EKF and the standard UKF

both in terms of accuracy, and in terms of consistency,

as verified by simulation tests.

II. RELATED WORK

A number of previous approaches have applied the stan-

dard UKF algorithm to SLAM [2], [4], [5]. However, this

algorithm, which involves computing the square root of the

state covariance matrix at each time step, has computational

complexity cubic in the number of landmarks, and thus is

not suitable for real-time operation in large environments.

To address this problem, Holmes et al. [3] recently pro-

posed a square-root UKF (SRUKF) for monocular visual

SLAM that has computational complexity quadratic both

in the propagation and in the update phases. This approach

offers a significant improvement in terms of computational

complexity, at the cost of a significantly more complicated

implementation. Additionally, as shown in [3], the algorithm

is an order of magnitude slower than the standard EKF, due

to the need to carry out expensive numerical computations.

Andrade-Cetto et al. [6] presented a “hybrid” EKF/UKF

algorithm, where the EKF is employed in the update phase,
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while the UKF is used during propagation for computing

only the robot state and its covariance. The cross-correlation

terms during propagation are handled in a fashion identical to

the EKF. Even though this algorithm achieves computational

complexity linear during propagation and quadratic during

updates, the positive definiteness of the state covariance ma-

trix cannot be guaranteed during propagation. Moreover, the

use of the EKF for updates makes the approach vulnerable to

large linearization errors. In contrast to the aforementioned

approaches, the algorithm described in Section IV employs

the unscented transformation both in the propagation and

update phases, is simple to implement, and attains computa-

tional complexity linear during propagation, and quadratic

during updates.

The issue of the consistency of UKF-based SLAM has

not received considerable attention in the literature. In [2],

[3] the consistency of the UKF was empirically examined,

but, to the best of our knowledge, no theoretical results exist

to date. On the other hand, the consistency of EKF-based

SLAM has been studied in a number of publications [7]–

[10]. In our recent work [11], [12], we have presented an

analytical study of the issue, by focusing on the observability

properties of the EKF’s linearized system model. In this

work, we extend this analysis to the case of UKF-based

SLAM, and we analytically show that the implicit statistical

linearization, performed by the UKF, results in a system

model with “incorrect” observability properties, which is a

fundamental cause of inconsistency.

III. LRKF AND UKF

In this section, we present the UKF in the context of the

Linear-Regression Kalman Filter (LRKF). As shown in [13],

the UKF is a special case of the LRKF, and therefore, it can

be viewed as performing an implicit statistical linearization

of the nonlinear propagation and update models. We here

present the details of this linearization mechanism, which

will be instrumental in the development of the quadratic-

complexity UKF in Section IV.

A. Linear Regression

The LRKF approximates a nonlinear function y = g(x)
with a linear model y = Ax + b + e, where A and b

are a regression matrix and a regression vector, respectively,

and e denotes the additional error term due to linearization.

Once this linear approximation is computed, the LRKF

proceeds by applying the regular Kalman filter equations.

In computing the linear approximation of g(x), our goal is

to minimize the average squared error of the approximation,

which is defined as:

min
A,b

∫ +∞

−∞
[y − (Ax + b)]T [y − (Ax + b)]p(x)dx (1)

where p(x) is the prior pdf of the state x. Clearly, due to

the nonlinear nature of g(x), computing the solution of this

minimization problem in closed form is generally intractable.

Therefore, in the LRKF, r +1 regression points and weights

{Xi, wi}r
i=0 are selected, so that their sample mean and

covariance equals the mean and covariance of the pdf, i.e.,1

x̄ =
r∑

i=0

wiXi = E{x}

P̄xx =

r∑

i=0

wi (Xi − x̄) (Xi − x̄)
T

= E{(x− x̄)(x − x̄)T }

Using the approximation p(x) ≃
r∑

i=0

wiδ(x − Xi), (1) be-

comes:

min
A,b

r∑

i=0

wi[Yi − (AXi + b)
︸ ︷︷ ︸

ei

]T [Yi − (AXi + b)
︸ ︷︷ ︸

ei

] (2)

where {Yi = g(Xi)}r
i=0. This cost function is identical to

that presented in [13], and the optimal solution for A and b

is given by

A = P̄yxP̄
−1
xx , b = ȳ − Ax̄ (3)

where

ȳ =

r∑

i=0

wiYi , P̄yx =

r∑

i=0

wi (Yi − ȳ) (Xi − x̄)
T

(4)

During recursive estimation, the LRKF employs the above

statistical linearization procedure to approximate the nonlin-

ear process and measurement models. It is important to note

that, in this case, the regression matrices A and b serve as

inferred Jacobian matrices, in a fashion similar to the EKF.

The details are explained next.

B. Propagation

During propagation, the LRKF approximates the nonlinear

process model by a linear function:

xk+1 = f(xk, ok) (5)

= Φ̆kxk + Ğkok + bk + ek (6)

=
[

Φ̆k Ğk

]
[
xk

ok

]

+ bk + ek (7)

where xℓ is the system state vector at time ℓ, ℓ = k, k+1,

ok = omk
− wk is the control input (e.g., odometry), omk

is the corresponding measurement, and wk is the odometry

noise vector, assumed to be zero-mean, white, and Gaussian,

with covariance matrix Qk. The matrices Φ̆k and Ğk can be

viewed as inferred Jacobians, in an analogy to the linearized

approximation of the EKF.

In the LRKF propagation step, r + 1 sample points

{Xi(k)}r
i=0 are selected based on the augmented vector

that comprises the filter state and the control input. The

1Throughout this paper, ᾱ and P̄αα denote the sample mean and
covariance of regression points Ai, drawn from the pdf of the variable
α. P̄αβ denotes the sample cross-correlation between sets of samples Ai

and Bi, drawn from the pdf of the variables α and β, respectively. x̂ is
used to denote the estimate of a random variable x, and x̃ = x − x̂ is the
error in this estimate. Finally, the subscript ℓ|j refers to the estimate of a
quantity at time-step ℓ, after all measurements up to time-step j have been
processed.
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sample mean and sample covariance, respectively, of the set

{Xi(k)}r
i=0 is:

x̄k|k =

[
x̂k|k
omk

]

, P̄xxk|k
=

[
Pk|k 0

0 Qk

]

(8)

Then the LRKF produces the regression points, {Yi(k) =
Xi(k+1)}r

i=0, by passing the sample points through the non-

linear process function (5). The sample mean and covariance

of the Yi points is used as the mean and covariance matrix

of the propagated state estimates. Moreover, the inferred

Jacobian matrices Φ̆k and Ğk can be computed from the

expression (cf. [13], [14]):
[

Φ̆k Ğk

]
= P̄yxk|k

P̄−1
xxk|k

(9)

C. Update

During update, the LRKF employs statistical linearization

in order to approximate the nonlinear measurement function:

zk+1 = h(xk+1) + vk+1 (10)

= H̆k+1xk+1 + b′
k+1 + vk+1 + e′k+1 (11)

where zk+1 is the measurement and vk+1 is the measurement

noise vector, assumed to be zero-mean, white, and Gaussian,

with covariance matrix Rk+1. A set of r + 1 points with

sample mean and covariance equal to x̂k+1|k and Pk+1|k,

respectively, are selected, and then passed through the non-

linear measurement function (10), to obtain r + 1 regression

points: {Zi(k+1) = h(Xi(k+1))}r
i=0. The regression matrix

(i.e., the inferred Jacobian) H̆k+1 can then be obtained as

(cf. (3)):

H̆k+1 = P̄zxk+1|k
P−1

k+1|k (12)

Subsequently, the state and covariance are updated using the

filter update equations:

Sk+1 = P̄zzk+1|k
+ Rk+1 (13)

Kk+1 = Pk+1|kH̆
T
k+1S

−1

k+1
(14)

x̂k+1|k+1 = x̂k+1|k + Kk+1(zk+1 − z̄k+1) (15)

Pk+1|k+1 = Pk+1|k − Kk+1Sk+1K
T
k+1 (16)

D. UKF

As argued in [13], the UKF is a special case of the LRKF.

It deterministically chooses r + 1 = 2n + 1 so-called sigma

points Xi in the n-dimensional state space, with weights wi,

i = 1, . . . , n, according to the equations:

X0(ℓ|k) = x̂ℓ|k , w0 =
2κ

2(n + κ)
(17)

Xi(ℓ|k) = x̂ℓ|k +
(√

(n + κ)Pℓ|k
)

i
, wi =

1

2(n + κ)

Xi+n(ℓ|k) = x̂ℓ|k −
(√

(n + κ)Pℓ|k
)

i
, wi+n =

1

2(n + κ)

where
(√

(n + κ)Pℓ|k
)

i
is the ith column of

√
(n + κ)Pℓ|k,

and ℓ = k or k+1. κ is a degree of freedom in the choice of

the sigma points Xi, usually chosen so that n + κ = 3. This

set of sigma points captures the moments of the underlying

distribution up to the third-order for the Gaussian case.

IV. QUADRATIC-COMPLEXITY UKF-BASED SLAM

In this section, we show how the computational cost of the

UKF, when applied to the SLAM problem, can be optimized.

In particular, in this paper we focus on 2-D SLAM, in

which case the state vector xk comprises the robot pose and

landmark positions, i.e.,

xT
k =

[
xT

Rk
pT

L1
· · · pT

LM

]
(18)

where xT
Rk

= [pT
Rk

φRk
] denotes the robot pose (position

and orientation), and pLi
, i = 1 . . .M , are the positions of

the M landmarks.

In the UKF algorithm presented in the preceding section,

the main bottleneck is the computation of the square root

matrix of the covariance, which has complexity O(M3).
Clearly, in a scenario where hundreds of landmarks are

included in the state vector, carrying out this operation

during each propagation and update step would incur an

unacceptable computational burden. To address this problem,

we here propose a new sampling scheme for the UKF, which

has computational cost O(1), during both propagation and

update. The derivation of this sampling scheme is based

on the observation that, during SLAM, only a small subset

of the filter states appear in the nonlinear propagation and

measurement models. In particular, during propagation only

the robot state changes, while each measurement involves

only the robot pose and one landmark. To take advantage of

this important property, we employ the following lemma:

Lemma 4.1: Let the vector x be partitioned as xT =
[
xT

1 xT
2

]
, and let g(x) = g(x1) (i.e., only the state entries

of x1 appear in g(x)). Moreover, let the linear regression

matrix A be partitioned as A = [A1 A2], i.e.,

y = Ax + b + e = A1x1 + A2x2 + b + e (19)

Then the optimal solution to (2) is:

A1 = P̄yx1
P−1

x1x1
, A2 = 0, b = ȳ − A1x̂1 (20)

Proof: The linearization error is written as

e(x) = y − (Ax + b) = y − A1x1 − A2x2 − b

Substituting in the expression for the expected value of the

quadratic linearization error, we have:

c =

∫ +∞

−∞
e(x)

T
e(x)p(x)dx =

∫ +∞

−∞
e∗(x1)

T
e∗(x1)p(x)dx

+

∫ +∞

−∞
xT

2 AT
2 A2x2p(x)dx − 2

∫ +∞

−∞
e∗(x1)

T
A2x2p(x)dx

(21)

with

e∗(x1) = y − A1x1 − b (22)

p(x) = N (x̂,P) (23)

where

x̂ =

[
x̂1

x̂2

]

, P =

[
Px1x1

Px1x2

Px2x1
Px2x2

]

(24)
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Using the identity p(x) = p(x2|x1)p(x1) and the approx-

imation p(x1) ≃ ∑

i wiδ(x1 − X1i
), the cost function (21)

becomes [14]:

c ≃
∑

i

wi(Yi − A1X1i
− b)T (Yi − A1X1i

− b) +

tr
[
A2(Px2x2

+ x̂2x̂
T
2 )AT

2

]
−

2
∑

i

wi(Yi − A1X1i
− b)T A2X̂2i

(25)

where X̂2i
:= x̂2 + Px2x1

P−1
x1x1

(X1i
− x̂1), X1i

are sample

points drawn from the distribution p(x1) = N (x̂1,Px1x1
),

and Yi = g(X1i
).

Setting the derivatives of the cost function (25) with

respect to b, A1, and A2 to zero, we obtain (20).

This result means that, in order to minimize the expected

error of the statistical linearization (cf. (2)), it suffices to

draw sample points from the pdf of x1. In SLAM, the

number of states participating in the nonlinear propagation

and measurement models is constant, and thus we can reduce

the cost of UKF sampling to O(1), by applying the unscented

transformation only to the pertinent state entries, instead of

sampling over the full state. Compared to EKF-SLAM, the

proposed UKF-SLAM only incurs a small computational

overhead (for computing the square roots of constant-size

matrices), and has the same complexity. The details of the

new sampling strategy are presented in the following.

A. Propagation

During propagation, only the robot pose and the control

input (odometry) participate in the process model. Therefore,

we are able to reduce the computational complexity by

applying the unscented transformation only to the part of the

state comprising the robot pose and the control input, instead

of the full state vector. Specifically, we draw the sigma points

based on the vector with mean and covariance:

x̄k|k =

[
x̂Rk|k

omk

]

, P̄xxk|k
=

[
PRRk|k

0

0 Qk

]

(26)

where PRRk|k
is the covariance matrix corresponding to

the robot pose, obtained by partitioning the state covari-

ance matrix as Pk|k =

[
PRRk|k

PRLk|k

PT
RLk|k

PLLk|k

]

. Note that the

vector x̄k|k is of dimension 5 (assuming that the odometry

measurement omk
is 2-dimensional), and thus the compu-

tational cost of computing the sigma points is very small.

Subsequently, we transform each of the sigma points using

the process model (5), to obtain samples of the propagated

robot pose, Yi = XRi
(k + 1|k), i = 0, . . . , 10. This enables

us to compute the mean and covariance of the propagated

robot state, in the same way as in the standard LRKF/UKF

(cf. Section III-B). Moreover, we can evaluate the inferred

propagation Jacobian:

A = P̄yxk|k
P̄−1

xxk|k
=

[

Φ̆Rk
ĞRk

]
(27)

In order to compute the cross-correlation between the prop-

agated robot state and the landmarks, we note that:

PRLk+1|k
= E

{

x̃Rk+1|k
x̃T

Lk|k

}

= E
{(

Φ̆Rk
x̃Rk|k

+ ĞRk
wk + ek

)

x̃T
Lk|k

}

= Φ̆Rk
PRLk|k

(28)

Thus the propagated SLAM covariance matrix is given by:

Pk+1|k =

[

P̄yyk|k
Φ̆Rk

PRLk|k

PT
RLk|k

Φ̆T
Rk

PLLk|k

]

(29)

Clearly, the computational cost of propagation is linear in

the size of the state vector.

B. Update

Any measurement used for updating involves only the
robot pose and the position of the observed landmark.
Therefore, we can apply the unscented transformation only
to this subset of the states, to reduce the computational cost.
In particular, assume the jth landmark is observed at time
step k + 1. Then, the set of sigma points {Xi}10

i=0 is drawn
with mean and covariance:

x̄k+1|k =

»

x̂Rk+1|k

x̂Lj,k+1|k

–

, P̄xxk+1|k
=

»

PRRk+1|k
PRLj,k+1|k

PLjR
k+1|k

PLjL
j,k+1|k

–

(30)

Note that this process involves a matrix with constant size,

regardless of the number of landmarks in the state vector.

Once the set of sigma points is generated, the procedure of

the LRKF update (cf. Section III-C) is applied, to obtain the

inferred measurement Jacobian:

A = P̄zxk+1|k
P̄−1

xxk+1|k
=

[

H̆Rk+1
H̆Lj,k+1

]
(31)

where the submatrix H̆Rk+1
corresponds to the robot pose,

while H̆Lj,k+1
corresponds to the jth landmark. To construct

the inferred measurement Jacobian for the entire state vector,

we note that all terms corresponding to the landmarks

not currently observed are zero. Thus, the entire inferred

measurement Jacobian is obtained as:

H̆k+1 =
[
H̆Rk+1

0 · · · 0 H̆Lj,k+1
0 · · · 0

]
(32)

Once this matrix is available, equations (13)-(16) are applied

to update the state and covariance in the UKF. It is important

to point out that the computational complexity of these

equations is determined by the covariance update equation,

and is quadratic in the number of landmarks, similarly to the

EKF.

V. SLAM OBSERVABILITY ANALYSIS

As discussed in Section III, the UKF (as a special case of

the LRKF) relies on a linear approximation of the nonlinear

system, in order to carry out the recursive estimation. The

system model employed by the UKF is given by equa-

tions (7) and (11). Thus, the properties of this system

model are important for determining the performance of

the estimator. As shown in [11] for the case of the EKF,

when a linearized system model is employed for estimation,

the observability properties of this model are crucial in
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determining filter consistency. The observability properties

of the UKF’s linear-regression-based model can be studied

by examining the observability matrix for the time interval

between time-steps ko and ko + k, defined as:

M =








H̆ko

H̆ko+1Φ̆ko

...

H̆ko+kΦ̆ko+k−1 · · · Φ̆ko








(33)

We see that M is a function of the regression matrices used

in the UKF, and thus the structure of these matrices will

in turn determine the observability properties of the system

model. Ideally, we would require these properties to match

those of the underlying nonlinear SLAM system, which has 3

unobservable degrees of freedom corresponding to the global

position and orientation of the state vector. In [11], it was

shown that this would be the case, if we could create an

“oracle” or “ideal” EKF, where linearization is carried out

using Jacobians evaluated at the true values of the state.

Specifically, if instead of the regression matrices H̆k and

Φ̆k we employ the “ideal” Jacobians:

Hk = ∇xk
h

∣
∣
∣
xktrue

, Φk = ∇xk
f

∣
∣
∣
xktrue

(34)

then the observability matrix, in the case where a single

landmark is included in the state vector, is equal to [11]:

Mideal = D ×








−I2 −J(pL − pRko
) I2

−I2 −J(pL − pRko
) I2

...
...

...

−I2 −J(pL − pRko
) I2








(35)

where D is a block-diagonal matrix with full row-rank, I2 is

the 2×2 identity matrix, and J ,

[
0 −1
1 0

]

. The rank of this

observability matrix is two, which implies that the system

model of the ideal EKF has three unobservable directions.

A basis for the unobservable subspace (i.e., a basis for the

right nullspace of Mideal) is:

N (Mideal) = span
col.





I2 JpRko

01×2 1
I2 JpL



 , span
col.

[
n1 n2 n3

]

(36)

We observe that the vectors n1 and n2 correspond to a

“shifting” of the x−y plane, while the vector n3 corresponds

to a rotation of the x − y plane. These are precisely the

unobservable directions of the underlying, nonlinear SLAM

system, which shows that the ideal EKF offers a good

approximation to the nonlinear system (from the perspective

of observability). We point out that even though the above

analysis only addresses the case of a single landmark,

analogous results are obtained for the general case where

M > 1 landmarks are included in the state vector [14].

Since the UKF employs the linearization of (7) and (11)

to approximate the nonlinear SLAM system, we would re-

quire that the corresponding system model has observability

properties similar to those of the nonlinear system, and

consequently, identical to those of the ideal EKF. A necessary

and sufficient condition for this to occur is that the vectors

ni, i = 1, 2, 3, lie within the nullspace of each of the block

rows of the observability matrix, i.e.,

ni ∈ N (H̆ko
) , . . . , ni ∈ N (H̆ko+kΦ̆ko+k−1 · · · Φ̆ko

)

for i = 1, 2, 3. However, this is generally not the case. In fact,

when numerically computing the dimension of the nullspace

of the observability matrix, we find that it is less than three.

This implies that the UKF obtains “spurious” information,

in directions of the state space where no information is

available. This, in turn will lead to an unjustified reduction

of the covariance matrix of the estimates, thus causing

inconsistency. This fact, which has been generally over-

looked in the literature, can cause a significant degradation

in filter performance, as shown in the simulation results of

Section VII.

VI. OBSERVABILITY-CONSTRAINED UKF SLAM

In this section, we propose a novel UKF that employs

a system model with observability properties similar to

those of the actual nonlinear SLAM system. In our previous

work [11], we proposed the conjecture that the observabil-

ity properties of the linearized error-state model in EKF-

SLAM play a fundamental role in determining consistency.

Motivated by this conjecture, we derived the First-Estimate

Jacobian (FEJ)-EKF, which always employs the first state

estimates in computing the Jacobians, thus achieving the

desired observability properties. This filter outperforms the

standard EKF in SLAM, even though it uses “older” (and

thus less accurate) state estimates for Jacobian evaluation.

We here propose an analogous approach, within the UKF

framework. Specifically, we construct the “inferred” Jaco-

bians of the UKF in such a way that the resulting system

model has an unobservable subspace of dimension three.

Even though these regression matrices do not generally

minimize the expected squared error of linearization (cf. (2)),

we have verified in simulation that the resulting filter,

termed Observability Constrained (OC)-UKF, outperforms

the standard UKF in terms of both accuracy and consistency

(cf. Section VII). This further supports our conjecture about

the importance of the observability properties of the filter’s

system model in determining consistency.

To maintain clarity, we here present the OC-UKF for the

case where a single landmark is included in the SLAM state

vector. The more general case is handled in the same way,

and the interested reader is referred to [14] for details.

The propagation phase of the OC-UKF is identical to

that of the standard UKF. The difference arises in the

update phase, where, instead of employing the unconstrained

minimization of (2) for computing the regression matrix

A, we employ constrained optimization, by enforcing the

desired observability properties. In particular, if a landmark
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was first observed at time-step ko, we require that

H̆ko
N = 0 (37)

H̆ko+kΦ̆ko+k−1 · · · Φ̆ko
N = 0, k > 0 (38)

In this expression, N is a 5×3 matrix, whose columns span

the desired nullspace. These constraints ensure that all the

block rows of the observability matrix M (cf. (33)) have

the same nullspace, which coincides with the unobservable

subspace of the filter’s system model. It is interesting to note

that, in this formulation, this subspace is a design choice,

since we can freely choose N. For instance, we can choose a

matrix whose columns span the nullspace of the first inferred

Jacobian, H̆ko
(which can be computed via the SVD of H̆ko

),

or we can explicitly require the nullspace to be of the same

structure as that of the ideal EKF, by choosing:

N =





I2 Jp̂Rko|ko

01×2 1
I2 Jp̂Lko|ko



 (39)

Note that, since the true value of the state is unknown in (39),

we employ the state estimates at time-step ko.

The regression matrix A at each update step (cf. (31)) is

obtained by solving the constrained optimization problem:

min
A,b

10∑

i=0

wie
T
i ei (40)

s.t. AΦ̆ko+k−1 · · · Φ̆ko
N = 0 (41)

where Φ̆ℓ =

[

Φ̆Rℓ
0

0 I2

]

denotes the regression matrix

obtained from propagation (cf. (27)), corresponding to the

system whose state vector comprises the robot pose and the

landmark position. The sigma points used in the above min-

imization problem are computed by the procedure described

in Section IV-B.

We now derive a solution to the constrained optimiza-

tion problem (40) in closed form. First, we define U ,

Φ̆ko+k−1 · · · Φ̆ko
N, and using this notation, we write the

equality constraint on A as AU = 0. This equation states

that the rows of A lie in the left nullspace of the 5×3 matrix

U. Therefore, if L is a 2 × 5 matrix whose rows span this

nullspace, we can write A as:

A = BL (42)

where B is the unknow 2×2 matrix that we seek to compute.

We note that there are several possible ways of computing

an appropriate matrix L, whose rows lie in the nullspace of

U. For instance, such a matrix is given, in closed form, by

the expression:

L =
[
I2 02×3

] (
I5 − U(UT U)−1UT

)
(43)

Substituting (42) in the original problem formulation

(cf. (2), (40)), we obtain:

min
B,b

10∑

i=0

wi (Zi − (BLi + b))
T

(Zi − (BLi + b)) (44)

where we have defined Li = LXi, i = 0, . . . , 10. This is an

unconstrained minimization problem with design variables

B and b, and has exactly the same structure as that in (2).

By analogy, we thus see that the optimal solution for B is

B = P̄zℓP
−1

ℓℓ (45)

where

P̄zℓ =

10∑

i=0

wi(Zi − z̄)(LXi − Lx̄)T = P̄zxL
T

Pℓℓ =

10∑

i=0

wi(LXi − Lx̄)(LXi − Lx̄)T = LP̄xxL
T

By combining these two results with those of (45) and (42),

we obtain the optimal value of A as:

A =
[

H̆Rko+k
H̆Lko+k

]
= P̄zxL

T
(
LP̄xxL

T
)−1

L (46)

After constructing the inferred measurement Jacobian matrix

H̆ko+k from the regression matrix A (cf. (32)), we are able

to update the state and its covariance (cf. (13)-(16)). We

point out that in the general case, where multiple landmarks

are observed, the above process is repeated for each of the

landmarks observed at the current time step. The maximal

dimension of all the matrices involved is 5 (cf. (30)), and thus

computing the regression matrix A incurs only a constant

computational overhead, regardless of the number of land-

marks in the state. As a result, the overall computational cost

of the update step remains quadratic, and is dominated by

the cost of updating the covariance (cf. (16)). The proposed

OC-UKF SLAM is summarized in Algorithm 1.

Algorithm 1 Observability-Constrained (OC)-UKF SLAM

Require: Initial state estimate and covariance

1: loop

2: Propagation:

3: Determine sigma points by (17) with mean and

covariance (26).

4: Produce regression points by passing the sigma

points through (5) and compute the propagated state

estimate by sample mean.

5: Compute regression matrices via (27).

6: Compute propagated covariance via (29).

7: Update:

8: Determine sigma points by (17) with mean and

covariance (30).

9: Produce regression points by passing the sigma

points through (10).

10: Compute regression matrix via (46) and (32).

11: Update state and covariance via (13)-(16).

12: end loop

VII. SIMULATION RESULTS

A series of Monte-Carlo comparison studies were con-

ducted under various conditions, in order to demonstrate
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the capability of the OC-UKF to improve the consistency

of UKF-based SLAM. The metrics used to evaluate filter

performance are: (i) the RMS error, and (ii) the average

normalized (state) estimation error squared (NEES) [15].

Specifically, for the landmarks we compute the average RMS

errors and average NEES by averaging the squared errors

and the NEES, respectively, over all Monte Carlo runs, all

landmarks, and all time steps. On the other hand, for the

robot pose we compute these error metrics by averaging over

all Monte Carlo runs for each time step (cf. [14] for a more

detailed description). By studying both the RMS errors and

NEES, we obtain a comprehensive picture of the estimators’

performance.

In the simulation tests presented in this section, a robot

with a simple 3-wheel (2 active and 1 caster) kinematic

model moves on a planar surface, at a constant velocity

of v = 0.25 m/sec. The two active wheels are equipped

with encoders, which measure their revolutions and provide

measurements of velocity with standard deviation equal to

σ = 2%v for each wheel. These measurements are used

to obtain linear velocity measurements for the robot, with

standard deviation equal to σv = σ√
2

, and rotational ve-

locity measurements with standard deviation σω = 2
√

2σ.

The robot records distance and bearing measurements to

landmarks that lie within its sensing range of 5 m. The

standard deviation of the distance measurement noise is

equal to 10% of the robot-to-landmark distance, while the

standard deviation of the bearing measurement noise is set

to 10 deg. It should be pointed out that the sensor-noise levels

selected for the simulations are larger than what is typically

encountered in practice. This was done on purpose, so as to

make the effects of inconsistency more apparent (larger noise

levels lead to larger estimation errors, and thus less accurate

linearization). We note that the initialization of the landmarks

is performed by use of the unscented transformation, as

detailed in [14].

For the results shown here, a SLAM scenario with multiple

loop closures was considered, where during each run, the

robot executes 8 loops on a circular trajectory, and observes

20 landmarks in total. The reported results are averages

over 50 Monte Carlo simulations. During the test, five filters

process the same data, to ensure a fair comparison2. These

are: (i) the ideal EKF, (ii) the standard EKF, (iii) the FEJ-

EKF [11], (iv) the standard UKF, and (v) the OC-UKF.

The comparative results for all filters are presented in

Fig. 1 and Table I. Specifically, Fig. 1(a) and Fig. 1(b)

show the average NEES and RMS errors for the robot pose,

respectively. On the other hand, Table I presents the average

values of all relevant performance metrics for the landmarks

and robot.

Several interesting conclusions can be drawn from these

results. First, it becomes clear that the performance of

2In [11], the FEJ-EKF was shown to perform better, in terms of accuracy
and consistency, than the robocentric mapping algorithm [16], which aims at
improving the consistency of SLAM by expressing the landmarks in a robot-
relative frame. Therefore, in this paper we omit the comparison between the
proposed OC-UKF and robocentric mapping.

Ideal EKF Std EKF FEJ-EKF Std UKF OC-UKF

Robot Position Err. RMS (m)

0.4386 0.6320 0.4712 0.6009 0.4491

Robot Heading Err. RMS (rad)

0.0415 0.0546 0.0445 0.0523 0.0424

Robot Pose NEES

3.0922 6.4944 4.1061 6.0324 3.4663

Landmark Position Err. RMS (m)

0.4506 0.6743 0.4842 0.6373 0.4627

Landmark Position NEES

1.9922 5.4125 3.3575 4.9038 2.3611

TABLE I

ROBOT POSE AND LANDMARK POSITION ESTIMATION PERFORMANCE

the OC-UKF is very close to that of the ideal EKF, and

substantially better than both the standard EKF and the

standard UKF, in terms of RMS errors, as well as in terms

of NEES. The observed performance gains indicate that

the observability properties of the linear-regression-based

system model employed in the UKF play a key role in

determining the filter consistency. If these properties differ

from those of the underlying nonlinear system, consistency

cannot be guaranteed. Moreover, the results shown here agree

with those obtained in the case of the EKF in [11]. This

further validates the claim that the observability properties

of a filter’s system model significantly impact the filter’s

performance.

A second observation is that, in this large sensor-noise set-

ting, the OC-UKF also outperforms the FEJ-EKF [11], both

in terms of accuracy and in terms of consistency. On the other

hand, in tests where relatively small sensor-noise levels are

selected, the two filters’ performance is very similar (these

results cannot be included due to limited space). One possible

explaination for this is the fact that, when the sensor noise

is small, the linearization errors remain relatively small for

both filters, and, since both filters maintain the appropriate

observability properties, their performance is comparable.

However, when the noise is large, the linearization errors

become significant. In this case, the statistical linearization

employed by the UKF is capable of better capturing the

higher-order effects in the nonlinear propagation and update

models, thus yielding superior performance. Hence, we see

that the OC-UKF combines the benefits of the FEJ-EKF (i.e.,

observability properties) with those of the UKF (i.e., better

linearization), to form an estimator whose performance is

comparable to that of the ideal EKF.

As a final remark, we note that even though the OC-UKF

NEES performance is significantly better compared to that

of the FEJ-EKF, the difference in the RMS errors of the two

filters is less pronounced. This indicates that the effects of

inconsistency primarily affect the covariance, rather than the

state estimates.
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Fig. 1. Monte Carlo results for a SLAM scenario with multiple loop closures. (a) Average NEES of the robot pose errors (b) RMS errors for the robot
pose (position and orientation). In these plots, the solid lines correspond to the ideal EKF, the solid lines with circles to the standard EKF, the dash-dotted
lines to the FEJ-EKF, the solid lines with crosses to the standard UKF, and the dashed lines to the OC-UKF. Note that the RMS errors of the ideal EKF,
the FEJ-EKF, and the OC-UKF are almost identical, which makes the corresponding lines difficult to distinguish.

VIII. CONCLUSIONS

This paper focuses on the UKF-based SLAM, and in

particular on the issues of computational complexity and

filter inconsistency. The first contribution of this work is

a formulation of UKF-based SLAM that has computational

complexity of the same order as that of EKF-SLAM. This

formulation requires computing the square root of matrices

of (small) constant size, which leads to computational com-

plexity linear in the propagation phase, and quadratic during

updates. Moreover, we have shown that a mismatch between

the observability properties of the linear-regression-based

system model employed in the UKF, and those of the actual

nonlinear SLAM system, causes inconsistency. To address

this problem, we have introduced a new Observability-

Constrained (OC)-UKF, which ensures that the filter’s system

model has an unobservable subspace of appropriate dimen-

sions. This filter is shown to outperform both the EKF and

the UKF, in terms of consistency and accuracy.
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