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Abstract— This paper studies the effects of the geometry
of a mobile robot formation on the accuracy of the robots’
localization. The general case of heterogeneous (in terms
of sensor accuracy) robot teams performing Cooperative
Localization is considered. An analysis of the time evolution
of the covariance matrix of the position estimates allows us to
express the steady-state positioning uncertainty of the robots
as an analytic function of the relative positions of the robots in
the formation. This metric encapsulates the effect of formation
geometry on the information content of the exteroceptive
measurements, as well as the effect of the influx of uncertainty
due to the errors in the robots’ odometry. Thus, by minimizing
the trace of the steady state covariance matrix with respect
to the positions of the robots, the optimal robot configuration
can be determined. Numerical experiments are presented,
which indicate that it is possible to derive a practical rule for
determining optimal formations, without the need to resort
to extensive simulations, or experimentation.

I. INTRODUCTION

The topic of Cooperative Localization in multi-robot
systems has recently attracted the interest of many re-
searchers due to the greater versatility that robotic teams
provide. Numerous algorithms for efficient pose estimation
in robot teams have been proposed in the literature, such
as Extended Kalman Filtering [1], Particle Filtering [2],
Maximum Likelihood estimation [3], and Set Membership
approaches [4]. In this paper, we specifically address the
issue of localization in mobile robot formations. Our mo-
tivation arises from the fact that a large number of appli-
cations require robots to move in a coordinated fashion, in
order to accomplish a certain task.

The key contributions of this paper are (i) formulating a
cost metric and (ii) determining a simple empirical rule for
optimal mobile robot formations. Our cost metric employs
the trace of the robot state covariance, where the optimality
is defined as minimizing the sum of the robots’ position
variances. This metric is more robust compared to the one
given by the determinant of the robot state covariance used
in [5] and [6]. For example, in [7] and within the context
of Simultaneous Localization and Mapping (SLAM), the
determinant of the state covariance converges to zero in
the limit when at least one of the landmarks is observed
numerous times. Similarly, when robots perform coopera-
tive localization and the estimates of at least two of them
become fully correlated, the determinant of the multirobot
system covariance matrix will be close to zero.

Our metric computes the cost of robot formations in
motion. That is, the robot formation is evaluated at the
steady state of the Riccati recursion. The Relative Position
Measurement Graph (RPMG) is used to interpret the robot-
to-robot relative position detectability. RPMG is a graph

whose vertices represent robots in the group and its di-
rected edges correspond to relative position measurements.
These are important since we can assess the formation in
advance of the mobile robot operation. The results of this
work provide important insights about the optimal robot
formations. It is shown that the robots must be located at
equilateral positions, circumscribed by circles, that define
the forbidden vicinity due to the measurement model and
the robot physical size.

II. RELATED WORK

Current research on mobile robot formations mainly
focuses on the issue of motion control for formation stabi-
lization. The proposed approaches include behavior-based
control techniques [8], [9], methods relying on potential
fields [10], the use of virtual structures to describe the
formation [11], and approaches employing notions of graph
theory for characterizing the interconnections between the
robots of a team [12], [13]. Additionally, formation design
for accomplishing a certain task, such as object moving,
has attracted the interest of several researchers [14], [15].
However, the effects of the geometry of a formation on the
localization accuracy of its members has, in general, been
overlooked, with only a few exceptions.

Specifically, in [16] a robot team comprised of one
master and two slave robots is studied and a portable
landmarks-based technique is adopted, i.e., at each time
instant at least one robot remains stationary. The robots
move along a straight-line path and record measurements
of their relative positions at evenly spaced intermediate
points. The authors propose a method for determining the
optimal relative positions between the robots that attain the
maximum possible localization accuracy at the end of the
path and identify three configurations that yield superior
results. In [6], the robots are allowed to move continu-
ously towards a target configuration and a gradient-based
optimization method is employed for determining the tra-
jectories that yield optimal localization performance. The
presented numerical experiments indicate that improved
positioning accuracy is achieved when the robots of the
team do not follow identical trajectories. We note, however,
that the aforementioned techniques are not applicable in
cases where motion in formation is required, since the
relative positions of the robots vary substantially as the
team moves.

The impact of the geometry of a static robot formation
on the accuracy of pose estimation is studied in the work
of Zhang et al. [17]. The authors consider formations of
robots that receive both absolute position measurements
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and relative measurements (i.e., relative range, bearing, or
orientation) and derive a necessary condition on the number
of measurements of each type, in order for the formation to
be localizable. A study of the structure of the measurement
matrix shows that the information matrix corresponding to
the exteroceptive measurements is a function of the relative
positions of the robots. Consequently, it is meaningful to
seek optimal configurations for the formation. A gradient-
based optimization technique is employed to determine
local maxima of the trace of the information matrix. How-
ever, due to the non-concavity of the objective function,
the selected optimization method does not guarantee global
optimality of the solution.

Our work differs from the aforementioned approaches,
in that we consider a team of robots that move while
maintaining their formation. The positioning accuracy of
the robots is expressed as an analytic function of their
relative positions and this enables us to determine, by
employing numerical optimization, the optimal geometry
for a robot team with a given (and possibly heterogeneous)
set of sensors.

III. PROBLEM FORMULATION

Consider a group of N robots that move in formation
towards a goal position. The robots employ an Extended
Kalman Filter (EKF) estimator to perform CL, using pro-
prioceptive (i.e., velocity) measurements to propagate their
position estimates, and exteroceptive measurements (i.e.,
robot-to-robot relative position measurements and absolute
position measurements) to update these estimates. Addi-
tionally, we assume that each robot receives measurements
of its absolute orientation, such as those provided by a
compass or a sun sensor, or those inferred by exploiting
the perpendicularity of the walls in an indoor environment.
Availability of such measurements is required, in order to
maintain the variance of the orientation estimates of the
robots within finite limits. Without the absolute orientation
update, the errors in the robots’ orientation estimates will
grow unbounded and any EKF-based estimator of their
position will eventually diverge [18].

Since the robots in the team have access to absolute
position information, the covariance matrix of their position
estimates converges to a constant steady-state value, after
an initial transient phase [19]. Our goal is to determine the
optimal geometry of the formation, in order to minimize
the trace of the steady state covariance matrix. This is
facilitated by decoupling the task of orientation estimation
from that of position estimation. Specifically, a state vector
comprised of the positions of the N robots is defined,
and the velocity and orientation of each robot are treated
as measurement inputs for propagating the state estimates
of the EKF. At each time step, a set of exteroceptive
(relative and absolute position) measurements becomes
available and is processed in order to update the position
estimates of the robots. This formulation enables us to
express the steady state covariance matrix of the robots’
position estimates as an analytic function of the positions
of the robots and results in an analytical expression for the
objective function.

The basis of our approach for determining the steady
state value of the robots’ positioning uncertainty is the
use of the Riccati recursion (cf. Eq. (19)), that describes
the time evolution of the estimates’ covariance in the
EKF framework. In the case of a robot team moving in
formation, the matrix coefficients in the Riccati recur-
sion are approximately time-invariant. This allows us to
compute the steady state solution of the recursion, by
solving a constant coefficient algebraic Riccati equation
(cf. Eq. (20)). In the following sections the motion and
measurement models for the robot team are described, and
the cost function to be minimized is derived as a function
of the robots’ relative positions in the formation.

A. Position propagation

The discrete-time kinematic equations for a mobile robot
moving in 2D are

xi(k + 1) = xi(k) + Vi(k)δt cos(φi(k)) (1)

yi(k + 1) = yi(k) + Vi(k)δt sin(φi(k)) (2)

where Vi(k) denotes the translational velocity of the i-th
robot at time step k, and δt is the sampling period. In
the Kalman filter framework, the estimates of the robot’s
position are propagated using the measurements of the
robot’s velocity, Vmi

(k), and the estimates of the robot’s
orientation, φ̂i(k). Clearly, these equations are time vary-
ing and nonlinear due to the dependence on the robot’s
orientation estimates. By linearizing Eqs. (1) and (2) the
error propagation equation for the robot’s position is readily
derived:[

x̃ik+1|k
ỹik+1|k

]
=
[

1 0
0 1

] [
x̃ik|k
ỹik|k

]
+
[

δt cos(φ̂i(k)) −Vmi
(k)δt sin(φ̂i(k))

δt sin(φ̂i(k)) Vmi
(k)δt cos(φ̂i(k))

] [
wVi

(k)

φ̃i(k)

]
⇔ X̃ik+1|k = I2×2X̃ik|k + Gi(k)Wi(k) (3)

where1 wVi
(k) is a zero-mean white Gaussian noise se-

quence with variance σ2
Vi

, affecting the velocity measure-
ments, and φ̃i(k) is the error in the robot’s orientation
estimate at time k. This is modelled as a zero-mean white
Gaussian noise sequence, whose variance, σ2

φi
, is deter-

mined by the accuracy of the sensor used for measuring
orientation.

From Eq. (3), we deduce that the covariance matrix of
the system noise affecting the i-th robot is

Qi(k) = E{Gi(k)Wi(k)WT
i (k)GT

i (k)}
= C(φ̂i(k))

[
δt2σ2

Vi
0

0 δt2V 2
mi

(k)σ2
φi

]
CT (φ̂i(k))

where C(φ̂i) denotes the rotation matrix associated with
φ̂i.

At this point, we note that since the robots move in a
predefined formation, all robots are required to move in the
same direction and with the same velocity, both of which
are considered known constants. Assuming that a motion

1Throughout this paper, 0m×n denotes the m × n matrix of zeros,
1m×n the m × n matrix of ones, and In×n the n × n identity matrix.
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controller is used in order to minimize the deviations from
the desired formation, and that the accuracy of the velocity
measurements and orientation estimates is sufficiently high,
we can replace the quantities Vmi

(k) and φ̂i(k) in the above
expression by their respective desired values, Vo and φo,
and thus

Qi(k) � C(φo)
[

δt2σ2
Vi

0
0 δt2V 2

o σ2
φi

]
CT (φo) = Qio

(4)

The state vector X(k) for the entire system is defined as
the stacked vector comprising of the positions of the N
robots. The state transition matrix for the entire system at
time step k is Φk = I2N×2N and the covariance matrix of
the system noise is approximately equal to

Qo =

 Q1o
· · · 02×2

...
. . .

...
02×2 · · · QNo

 (5)

which is a constant matrix. The equation for propagating
the covariance matrix of the state error is now written as

Pk+1|k = Pk|k + Qo (6)

B. Exteroceptive Measurement Model

In this section we derive the covariance update equation
of the EKF. We consider the robot-to-robot as well as the
absolute position measurements recorded by the robots and
show that the information contributed by the exteroceptive
measurements, at each update step, can be expressed as
a function of the relative positions of the robots in the
formation.

The relative position measurement zij between robots i
and j is defined as

zij = CT (φi) (Xj − Xi) + nzij
= CT (φi)∆pij + nzij

(7)

where nzij
(k) is a white zero-mean Gaussian noise process

affecting the measurement. By linearizing this expression,
the measurement error equation is obtained:

z̃ij(k + 1) = Hij(k + 1)X̃k+1|k + Γij(k + 1)nij(k + 1)

where

Hij(k + 1) = CT (φ̂i(k + 1))Hoij
(8)

Hoij
=
[

02×2 .. −I2×2︸ ︷︷ ︸
i

.. I2×2︸︷︷︸
j

.. 02×2
]

X̃k+1|k =
[

X̃T
1 .. X̃T

i .. X̃T
j .. X̃T

N

]T
k+1|k

Γij(k + 1) =
[

I2×2 −CT (φ̂i(k + 1))J∆̂pij(k + 1)

]
J =

[
0 −1
1 0

]
, nij(k + 1) =

[
nzij

(k + 1)

φ̃i(k + 1)

]
∆̂pij(k + 1) = X̂jk+1|k − X̂ik+1|k

The covariance of the error in this measurement is given
by

iRjj(k + 1) = Γij(k + 1)E{nij(k + 1)nT
ij(k + 1)}ΓT

ij(k + 1)

= Rzij
(k + 1) + Rφ̃ij

(k + 1) (9)

This expression encapsulates all sources of noise and uncer-
tainty that contribute to the measurement error z̃ij(k + 1).
More specifically, Rzij

(k + 1) is the covariance compo-
nent attributed to the measurement noise nzij

(k + 1), and
Rφ̃ij

(k + 1) is the additional covariance term due to the

error φ̃i(k + 1) in the orientation estimate of the measuring
robot.

Assuming that each relative position measurement is
comprised of a distance measurement ρij and a bearing
measurement θij , affected by two independent zero-mean
white Gaussian noise sequences nρi

and nθi
respectively,

the term Rzij
(k + 1) can be expressed as [20]:

Rzij
= CT (φ̂i)

(
σ2

ρi

ρ̂2
ij

∆̂pij∆̂p
T

ij + σ2
θi

J∆̂pij∆̂p
T

ijJ
T

)
C(φ̂i)

where time indices have been dropped for simplicity, and
the variances of the noise in the distance and bearing
measurements are denoted as σ2

ρi
= E{n2

ρi
} and σ2

θi
=

E{n2
θi
} respectively.

The error in the orientation estimate of the measuring
robot introduces an additional error component to all
relative position measurements recorded by the robot and
renders them correlated. It can be shown that the additional
covariance term for each measurement is equal to [20]:

Rφ̃ij
(k + 1) = σ2

φi
CT (φ̂i)J∆̂pij∆̂p

T

ijJ
T C(φ̂i) (10)

while the matrix of correlation between the errors in the
measurements zij(k + 1) and zi�(k + 1) is

iRj�(k + 1) = Γij(k)E{nij(k + 1)nT
i�(k + 1)}ΓT

i�(k)

= σ2
φi

CT (φ̂i)J∆̂pij∆̂p
T

i�J
T C(φ̂i) (11)

The results of Eqs. (9)-(11) allow for the evaluation of
the 2Mi × 2Mi covariance matrix Ri(k + 1) of all the Mi

relative position measurements gathered by robot i at each
time instant. This is a matrix whose 2 × 2 block diagonal
elements equal iRij(k + 1), j ∈ NMi

⊂ {1, . . . , N}, where
NMi

is the set of the indices of the robots j observed
by robot i. The off-diagonal block elements of Ri(k + 1)

are iRj�(k + 1), j, � ∈ NMi
, j �= �. Simple algebraic

manipulation yields the expression

Ri(k + 1) = DT
φ̂i

Roi
(k + 1)Dφ̂i

(12)

where Dφ̂i
= IMi×Mi

⊗ C(φ̂i), with ⊗ denoting the
Kronecker matrix product, and

Roi
(k + 1) = σ2

ρi
I2Mi×2Mi

− Bi diag

(
σ2

ρi

ρ̂2
ij

)
BT

i

+ σ2
θi

BiB
T
i + σ2

φi
Bi1Mi×Mi

BT
i (13)

In the last expression Bi = Diag
(
J∆̂pijk+1|k

)
is a 2Mi×

Mi block diagonal matrix with elements J∆̂pijk+1|k , j ∈
NMi

.
The measurement matrix describing the relative position

measurements performed by robot i at each time step is a
matrix whose block rows are Hij , and

Hi(k + 1) = DT
φ̂i

Hoi
(14)
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where Hoi
is a constant matrix with block rows Hoij

,
j ∈ NMi

(cf. Eq. (8)). Hence, the information contributed
by the measurements of robot i is

HT
i (k + 1)R−1

i (k + 1)Hi(k + 1) = HT
oi

R−1
oi

(k + 1)Hoi

For a known topology of the RPMG and given the accuracy
of the robot’s exteroceptive sensors, this matrix depends
only on the estimates for the relative positions of the
robots. However, since the configuration of the robots in the
formation remains approximately constant (and assuming
small estimation errors), we can approximate the matrix
Roi

(k + 1) by a constant matrix, obtained by replacing
the estimates for the robots’ relative positions by their
predefined values, i.e.,

Roi
� σ2

ρi
I2Mi×2Mi

− Boi
diag

(
σ2

ρi

ρ2
oij

)
BT

oi

+ σ2
θi

Boi
BT

oi
+ σ2

φi
Boi

1Mi×Mi
BT

oi
(15)

where the matrix Boi
= Diag

(
J∆poij

)
, depends on the

values for the relative positions ∆poij
between the robots,

as they are determined by the geometry of the formation.
In addition to the relative position measurements

recorded by the robots, we assume that at least one of the
members of the team has access to absolute positioning
information. If robot � receives absolute position measure-
ments, the corresponding block row of the measurement
matrix is:

Hα�
=
[

02×2 . . . I2×2︸︷︷︸
�

. . . 02×2
]

(16)

while Rα�
, the covariance of the absolute position mea-

surement, is a constant provided by the specifications of
the absolute positioning sensor. In the following, we denote
by Nα the set of indices corresponding to robots receiving
absolute position measurements.

The measurement matrix for the entire system, H(k + 1),
is defined as a matrix with block rows Hi(k + 1), i = 1..N
and Hα�

, � ∈ Nα. Since the measurements recorded
by different robots are independent, the covariance matrix
R(k + 1) of all the exteroceptive measurements is a block
diagonal matrix with elements Ri, i = 1..N , and Rα�

,
� ∈ Nα, respectively. Thus the total information available
to the estimator at each update step is

HT
(k + 1)R−1

(k + 1)H(k + 1)

=
∑

i

HT
i (k + 1)R−1

i (k + 1)Hi(k + 1) +
∑

�

HT
α�

R−1
α�

Hα�

�
∑

i

HT
oi

R−1
oi

Hoi
+
∑

�

HT
α�

R−1
α�

Hα�

= HT
o R−1

o Ho (17)

where Ho is a matrix with block rows Hoi
, i = 1..N

and Hα�
, � ∈ Nα, while Ro is a block diagonal matrix

with submatrix elements Roi
, i = 1..N and Rα�

, � ∈
Nα. Hence, the covariance update equation of the EKF is

written as

Pk+1|k+1 =
(
P−1

k+1|k + HT
(k + 1)R−1

(k + 1)H(k + 1)

)−1

�
(
P−1

k+1|k + HT
o R−1

o Ho

)−1

(18)

IV. OPTIMALITY CRITERION

The time evolution of the covariance matrix of the
position estimates of the robots is described by the Riccati
recursion, which is derived by combining the covariance
propagation and update equations (Eqs. (6) and (18)) into
a single recursion. The notation is simplified by setting
Pk+1|k = Pk, and Pk+2|k+1 = Pk+1, which yields the
recursion

Pk+1 =
(
P−1

k + HT
o R−1

o Ho

)−1
+ Qo (19)

It is important to note that the matrix coefficients
HT

o R−1
o Ho and Qo that appear in this recursion are

constant. Additionally, since the robot team has access to
absolute positioning information, the system under consid-
eration is observable [1]. Therefore the Riccati recursion in
the last expression converges to a constant value at steady
state. This value is determined by setting Pk+1 = Pk =
P∞, and solving the equation

P∞ =
(
P−1

∞ + HT
o R−1

o Ho

)−1
+ Qo (20)

The intermediate steps of the solution involve only alge-
braic manipulation, and cannot be included in this paper
due to space limitations. The resulting solution is

P∞ = Q1/2
o Udiag

(
1
2

+
√

1
4

+
1
λi

)
UT Q1/2

o (21)

where Q1/2
o denotes the square root matrix of Qo, and the

quantities U and λi, i = 1, .., 2N are defined as the matrix
of eigenvectors and the eigenvalues, respectively, of matrix

C = Q1/2
o HT

o R−1
o HoQ1/2

o

We observe that the steady state localization accuracy of
the robot team is obtained in analytic form, and depends on
the configuration of the formation (affecting matrices Ro

and Qo), as well as on the accuracy of the robots’ sensors
and the topology of the RPMG. Thus, for a robot team
whose members receive a specified set of exteroceptive
measurements at each time step, the optimal placement of
the robots in space, in the sense of attaining the maximum
possible positioning accuracy, can be determined by nu-
merical optimization of an appropriate objective function.

Clearly, in order to improve the positioning accuracy of
the robot team, the steady state covariance of the robots’
position estimates should be minimized. However, P∞ is
a 2N × 2N matrix and in order to employ numerical
optimization a scalar objective function is required. Several
scalar performance metrics can be defined based on P∞
(e.g., its determinant, its maximum eigenvalue, its trace).
In this work, we have selected the trace of P∞ as the
cost function to be minimized, i.e., we solve the following
minimization problem:

minimize trace(P∞) (22)
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Fig. 1. Optimization results for teams comprising of 3, 4, 5, and 6 robots. The direction of motion for the formation is along the x axis. Robot
positions are denoted by crosses (asterisks), which correspond to robots with (without) absolute position sensor measurements. Circles of radii 0.5dmin
have been superimposed on the figures, to emphasize the fact that the robots lay on the vertices of equilateral triangles.

One reason for selecting the trace of the covariance matrix
as the performance metric is that, by doing so, we assign
equal importance to the positioning accuracy of all robots.
Moreover, we note that the criterion of optimality in the
derivation of the Kalman filter estimator is the minimiza-
tion of the mean squared error of the state estimate which
is equivalent to minimizing the trace of the covariance
matrix [21].

V. OPTIMIZATION RESULTS

A Genetic Algorithm (GA) for numerical optimization
was employed for the minimization of the objective func-
tion in Eq. (22). This selection was stipulated by the fact
that the cost metric is a highly nonlinear, non-convex
function of the design variables (i.e., the positions of the
robots). This renders any gradient-optimization method
inappropriate for this problem, since such a method cannot
provide any guarantee of global optimality of the solution.
Moreover, in order to take into consideration the physical
dimensions of the robots, we need to impose constraints on
the minimum allowable distance between any two robots.
These constraints are nonlinear and their implementation
is not trivial in a gradient-based method. Evolutionary
algorithms do not suffer from the existence of local minima
in the cost function, and allow for easy incorporation of the
nonlinear constraints in the optimization. This is achieved
by modifying the cost function, in a way that yields a
(practically) infinite cost for the solutions that violate the
constraints. Thus, GAs are a suitable tool for the problem
at hand. In our implementation, the Genetic Algorithm
Optimization Toolbox (GAOT), which is open to the public
under GNU General Public License (GPL) has been used.
The technical description of the GAOT is found in [22].

In order to demonstrate the generality of our approach,
the optimization results of this section pertain to hetero-
geneous robot teams. Specifically, the standard deviation
of the orientation estimates of the robots varies between
σφmin = 1o and σφmax = 4o, while the standard deviation
of the velocity measurements varies between σVmin =
0.01m/sec. and, σVmax = 0.1m/sec. The formation is
moving at a constant speed of Vo = 1m/sec, and for
simplicity, a complete RPMG topology is employed for
the exteroceptive measurements, i.e., each robot measures
the relative position of all other robots in the team. Each
relative position measurement comprises of a range and a

bearing measurement, whose standard deviations are given
by (σρ, σθ) = (0.05m, 3o) for all robots. One of the
robots is equipped with an absolute position sensor, that
provides measurements whose errors across each axis are
assumed to be uncorrelated, zero-mean, white Gaussian
noise sequences with standard deviation σα = 0.20m.
Note that only one absolute position sensor for the team is
sufficient in order to assure that all robots have bounded
positioning uncertainty.

In Fig. 1, the optimal geometries of formations compris-
ing of 3, 4, 5, and 6 robots are shown. In order to account
for the physical dimensions of the robots, as well as for
the fact that sensors based on time-of-flight measurements
have a minimum allowable sensing range, we impose a
minimum distance constraint of dmin = 0.8m between any
two robots. From these figures it becomes apparent that
the optimal configuration arises when the robots remain as
close together as possible. The resulting geometry is such
that the robots lie on the vertices of adjacent equilateral
triangles, whose sides are equal to dmin. This observation
is general and similar results have been obtained in all our
tests with teams of increasing size and varying accuracy of
their sensors. These results make sense intuitively, since the
information content of the bearing measurements decreases
as the distance between robots increases. Therefore, it is
beneficial for the robots to remain as close as possible. An
additional observation is that the robot which is equipped
with absolute position sensing capabilities is positioned on
the vertex of the formation that has the minimum sum of
distances to the rest of the vertices. This is due to the fact
that the robot which has access to absolute position mea-
surements can estimate its position with greater accuracy.
Therefore the relative position measurements that involve
this robot convey more significant information.

At this point, a remark about the nature of the cost
function is due. In order to derive a closed form expression
for the objective function, we have approximated the time
varying estimates of the position and orientation of the
robots with constant values, determined by the geometry of
the formation. To verify that this approximation is valid,
in Fig. 2 the time evolution of trace(Pk) is plotted and
compared to its theoretically computed steady state value,
trace(P∞), for a robot team comprising of 5 robots. We
observe that after an initial transient phase, the trace of
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Fig. 2. Comparison of the actual trace of the covariance matrix, during
EKF-based localization, with the theoretically computed value, which is
based on the desired robot positions.

the covariance fluctuates around a value very close to the
theoretical one. The deviations, attributed to the errors in
the estimates of the position and orientation of the robots,
are not significant, and thus we conclude that the objective
function of Eq. (22) yields an accurate description of the
formation positioning performance.

VI. CONCLUSIONS

In this paper we propose the first, to the best of our
knowledge, method for optimizing the geometry of mobile
robot formations in order to attain maximum localization
accuracy. We consider the general case of heterogeneous
(in terms of sensor accuracy) robot teams, whose members
perform Cooperative Localization, with an arbitrary RPMG
topology. The performance metric we propose is the trace
of the steady-state covariance of the robots’ position esti-
mates, which can be evaluated as an analytic function of
the relative positions of the robots in the formation. This
metric encapsulates the effect of formation geometry on the
information content of the exteroceptive measurements, as
well as, the effect of the influx of uncertainty due to the
errors in the robots’ odometry. Numerical optimization of
the resulting objective function indicates that in the case
that all robots are able to measure the relative positions
of all other robots, the optimal configuration requires all
robots to be placed as close as possible. Since practical
limitations prevent the robots from approaching each other
below some given minimum distance, the resulting forma-
tion geometry comprises of adjacent equilateral triangles.
This is an important observation, that can be employed
as a practical rule for determining optimal formations,
without the need to resort to extensive simulations, or
experimentation.
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