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Abstract: This paper presents a method for determining the six degrees-of-freedom
transformation between a camera and a base frame of interest. A planar mirror
is maneuvered so as to allow the camera to observe the environment from sev-
eral viewing angles. Points, whose coordinates in the base frame are known, are
observed by the camera via their reflections in the mirror. Exploiting these mea-
surements, we determine the camera-to-base transformation analytically, without
assuming prior knowledge of the mirror motion or placement with respect to the
camera. The computed solution is refined using a maximum likelihood estimator, to
obtain high-accuracy estimates of the camera-to-base transformation and the mir-
ror configuration for each image. We validate the accuracy and correctness of our
method with simulations and real-world experiments.

1 Introduction

Cameras are utilized in a wide variety of
applications ranging from surveillance and
crowd monitoring, to vision-based robot lo-
calization. In order to obtain meaningful ge-
ometric information from a camera, two cal-
ibration procedures must be completed. The
first is intrinsic calibration, that is, deter-
mining the internal camera parameters (e.g.,
focal length, principal point, and skew co-
efficients), which affect the image measure-
ments. The second is extrinsic calibration,
which is the process of computing the trans-
formation between the camera and a base
frame of reference. In a surveillance appli-
cation, the base frame may be the room or
building coordinate system, whereas on a
mobile robot, the base frame could be the

Fig. 1. A camera equipped robot
views itself in a mirror.
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robot-body frame. Several works have addressed extrinsic calibration of a
camera to another sensor (e.g., for odometry-to-camera [14], inertial measure-
ment unit (IMU)-to-camera [15, 16], or laser scanner-to-camera [1, 23]). These
exploit measurements from both sensors to determine their mutual transfor-
mation. However, very little attention has been devoted to determining the
camera-to-base transformation, for a generic base frame.

In this paper, we deal exclusively with extrinsic camera calibration. Our
objective is to determine the camera-to-base transformation from observations
of points whose coordinates in the base frame are known. We consider the most
limiting case, in which the known points do not lie within the camera’s field
of view but can only be observed using a mirror (cf. Fig. 1). We maneuver a
planar mirror in front of the camera to provide multiple views of the points. In
our formulation, no prior information about the mirror motion or placement
with respect to the camera is assumed. The configuration of the mirror and
the camera-to-base transformation are treated as unknowns to be computed
from the observations. The main contribution of this paper is an algorithm for
determining the camera-to-base transformation analytically, which requires a
minimum of 3 noncollinear points tracked in 3 images.

A direct approach to extrinsic camera calibration is to utilize all of the
measurements in a maximum-likelihood estimator (MLE) for computing the
unknown transformation [8]. This takes the form of a nonlinear least-squares
problem, which seeks to iteratively minimize a nonconvex function of the un-
known variables. While appealing for its ease of implementation, this method
has a number of drawbacks. Without an accurate initial guess, the minimiza-
tion process may take several iterations to converge, or even fail to find the
correct solution. Additionally, the MLE provides no framework for studying
the minimal measurement conditions required to compute a solution. For these
reasons, we first determine the transformation analytically, and then employ
an MLE to refine the computed solution. The rest of the paper is organized
as follows. The proposed algorithm is discussed in Section 3, including pre-
sentations of the measurement model, the analytical solution, and the MLE
utilized to refine the computed solution. This algorithm is tested both in simu-
lation (Section 4) and experimentally (Section 5) to evaluate its accuracy and
investigate its sensitivity to the system parameters. Section 6 discusses the
conclusions of this work and suggests interesting directions of future research.
Lastly, we comment on the extension of this work to robot-body cartography
(Appendix B).

2 Related Work

We first review the related work, which falls into two categories: (i) hand-eye
calibration, and (ii) catadioptric systems. Hand-eye calibration is the process
of determining the six degrees-of-freedom (6 dof) transformation between a
camera and a tool, which are both mounted on a robot manipulator [22, 2].
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The hand-eye problem is solved by correlating the measurements of the cam-
era and the encoders, which measure displacements of the robot joints. This
process determines the pose of the camera with respect to the robot base.
Subsequently, the camera-to-tool transformation is calculated by combining
the estimated camera-to-robot-base transformation, and the robot-base-to-
tool transformation, which is assumed to be known. This assumption necessi-
tates the availability of precise technical drawings, and limits the applicability
of these methods, since they cannot determine the camera-to-base transfor-
mation for a generic base frame.

We turn our attention to catadioptric systems, which are employed to per-
form synthetic multiple-view vision. Methods have been presented utilizing a
single camera and planar [3, 4, 9], or conic mirrors [10]. Others accomplish
stereo vision with reflections from free-form surfaces [24], and a trinocular
mirror-based vision system also exists [19]. Additionally, stereo is achieved
with a static camera and a moving mirror [12], or with a moving camera
and two stationary spherical mirrors of known radii [17]. In contrast to the
approaches above, we do not perform synthetic stereo, i.e., only a single ob-
servation of each point is available in each image.

Jang et al. demonstrate a moving planar mirror system for 3D scene recon-
struction [11]. Exploiting a combination of fiducial points on the mirror and
vanishing points in the reflections, they solve for the position of the mirror
with respect to the camera. The 3D scene is determined based on synthetic
stereo from multiple reflections. In contrast to this approach, we do not as-
sume that the dimensions of the mirror, or its position with respect to the
camera, are available. Finally, Kumar et al. determine the transformations
between multiple cameras with non-overlapping fields of view, using mirror
reflections of a calibration grid [13]. They require 5 views (per camera) of the
calibration pattern to form a set of linear constraints which are solved for
the unknown transformations. In contrast to [13], our method requires only
3 images, each containing observations of 3 known points, to determine the
camera-to-base transformation analytically.

3 Computing the Transformation

In this section, we describe our approach for analytically determining the
transformation between the camera frame, {C'}, and a frame of interest, { B},
from observations of 3 points whose coordinates in {B} are known. Frame
{B} is arbitrary and without loss of generality, we will refer to {B} as the
“base frame.” Example base frames vary by application, and may include
(i) the robot-body frame, if the camera is mounted on a robot, (ii) the room
or building frame, if the camera is utilized in a surveillance application, and
(iii) the rig mount, if the camera is part of a stereo pair.

We address the most limiting scenario in which the points are only visible
through reflections in a planar mirror that is moved in front of the camera
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Algorithm 1 Computing the Camera to Base-Frame Transformation
Input: Set of 3 points tracked in N. images
Output: The camera-to-base transformation {§R, “pg}
for each image in N. do
Convert to three point pose estimation problem (P3P)
Solve P3P to obtain combined homogeneous/reflection transformation: {A, b}
end for
for each triplet of solutions {A,b}x, {A, b}y, {A, b}y do
Compute mirror configurations from (14)
Compute camera-to-base rotation R, from (23)
Compute camera-to-base translation “pp from (16)
end for
Utilize clustering to select the correct solution {gR, CpB}
Refine the solution using a maximum-likelihood estimator

to provide multiple views of the scene. We exploit these observations to com-
pute the transformation between {B} and {C'}, without knowledge of the
mirror’s placement or motion with respect to the camera (cf. Algorithm 1). In
what follows, we present the measurement model and discuss its relation with
the three point pose estimation problem (P3P). Additionally, we comment
on the unobservable cases of the system under consideration, and present an
analytical method to compute the unknown transformation from a minimum
of 3 points observed in 3 images which differ by rotations about two axes.
Lastly, we summarize a maximum-likelihood approach for refining the com-
puted transformation, a detailed discussion of which is available in [8].

3.1 Measurement Model

First, we present the measurement model that describes each of the camera
observations. To simplify the presentation, in this section we focus on the
case of a single point, observed in a single image. Consider a point p, whose
position with respect to frame {B}, Pp, is known'. We seek to express the
point p in the camera reference frame {C}. From geometry (cf. Fig. 2) we
have two constraint equations:

Cp'=p+ 2dpcn (1)
dy=d—n"% (2)

where ©p’ is the reflection of “p, “n is the mirror normal vector expressed in
the camera frame, d is the distance between the mirror and the camera, and

! Throughout this paper, ¥y denotes a vector y expressed with respect to frame
{X}, iR is the rotation matrix rotating vectors from frame {W} to frame {X},
and Xpw is the position of the origin of frame {W}, expressed with respect to
frame {X}. I, is the n X n identity matrix, and Omxn is the m X n matrix of
ZEros.
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d, is the distance between the mirror and the known point (both distances
are defined along the mirror normal vector). Note also that

“p=5R"p + “ps, (3)

where $R is the matrix which rotates vectors between frames {B} and {C},
and “pp is the origin of { B} with respect to {C'}. We substitute (2) and (3)
into (1), and rearrange the terms to obtain:
Cp' = Cp +2d,%n
= (13 — QCnch) “p+2d°n

= (I; - 2°n%n") (§RPp + “pp) +2d°n (4)

which can be written in terms of homogeneous coordinates as:
Cp _ (13 _ ZCnch) 2d°n] [SR Cpg] [Ep )

1 01x3 1 O1x3 1 1

This expression will be useful in the ensuing derivations. The reflection of p is
observed by the camera, and this measurement is described by the perspective
projection model:

z= iS [p1] +n=h("p)+n, D =[pp Ps]T (6)
p3 P2

where 1) is the pixel noise, assumed to be zero-mean Gaussian with covariance
matrix o2I,. Equations (4) and (6) define the measurement model, which ex-
presses the observed image coordinates, z, of the point as a function of the
known position vector, Bp, the unknown transformation between the camera
and base frame, {§R,“pp}, and the unknown configuration of the mirror
with respect to the camera {€n,d}. Note that the transformation between
the mirror and camera frame has 6 dof, however, only 3 dof appear in the
measurement equation. These are expressed by the vector d“n, which has 2
dof from the mirror normal, “n, and 1 dof from the camera-to-mirror dis-
tance, d. The remaining 3 dof, which correspond to rotations about “n and
to translations of the mirror-frame origin in the mirror plane, do not affect
the measurements, and are unobservable.

3.2 Three Point Perspective Pose Estimation Problem

We now briefly review the three point perspective pose estimation problem
(P3P) and discuss how it relates to our problem. The goal of P3P is to de-
termine the 6 dof transformation, {§R, “pp}, between a camera frame, {C},
and a base frame, {B}, given the known coordinates of 3 noncollinear points,
Bp,;, i =1...3,in {B}, and their corresponding perspective projections, z;,
i=1...3,in {C}, defined as:

2 The indices in this paper are: i for points, j for images, and k for solutions.
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mirror

Fig. 2. Observation of the point “p’ which is the reflection of “p. In this figure, the
mirror plane is perpendicular to the page. Only the reflected point is in the camera’s
field of view; the real point is not observed directly by the camera.

1 Ph} (e T
zZ; = — 5 i = i 7 % 7
= {p% P, = [p1i p2i p3i (7)
Cp; — gR CPB Bpi (8)
1 0143 1 1

This problem has up to 4 pairs of solutions, where for each pair, there is one
solution lying in front of the center of perspectivity and one behind it [5].

Equation (8) differs from (5) in that the former expresses a homogeneous
transformation, while the latter describes a homogeneous transformation fol-
lowed by a reflection. In other words, our scenario is equivalent to a P3P in
which an “imaginary” camera with a left-handed reference frame lies behind
the mirror and observes the true points (not the reflections). To bring (5)
into a form similar to (8), we convert the imaginary camera to a right-handed
system by premultiplying with a reflection across the y axis (although any
axis can be chosen):

|:ép/:| _ |:(Ig — 2ese]) ngl} [(13 —2¢n%nT) 2dcn} {gR CpB} {Bp:|

1 01x3 1 01x3 1 O1x3 1 1
C e} B
— | BR "ps| |"P 9)
O1x3 1 1

where e; = [0'1 O]T. The origin of {C} coincides with that of {C}, their z
and z axes are common, and their y axes lie in opposite directions. Note that
this additional reflection can be implemented easily, by simply negating the
sign of the y-coordinates of the image measurements.

Applying any method for solving the P3P problem to the modified one
(cf. (9)), we obtain up to 4 solutions, in general, for the unknown transforma-
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tion, {gR, “p B}, between the body frame {B} and the right-handed frame
{C} of the “imaginary” camera behind the mirror. In order to obtain the
left-handed camera system, we “reflect back” each of the solutions:

)[R o

01><3 1 01><3 1 1 01><3 1 1

where the pair {A, b}, describes a reflection and a homogeneous transforma-
tion. Equating (5) and (10), we observe that:

A= (I; - 200" §R (11)
b= (I —2n“n") “pp + 2d°n (12)

To summarize, in order to exploit the similarity of our problem to the P3P,
we execute the following steps: First, the y coordinates of the image measure-
ments are negated. Then, the measurements are processed by a P3P algorithm
to obtain {§R,“pp}. Subsequently we employ (10), to obtain up to 4 solu-
tions for A and b. In the next section, we describe our approach for recovering
the unknowns, {4R, “ppg, “n,d}, from A and b using (11) and (12).

3.3 Solution from 3 points in 3 images

When only 2 points are observed, regardless of the number of images, there is
not enough information to determine the transformation, since 3 noncollinear
points are required to define the base frame of reference®. From 1 image with
3 points, there are not enough constraints to determine the unknowns (cf. (5)
and (6)). As shown in [7], from 2 images with 3 points observed in each, the
number of constraints equals the number of unknowns. Unfortunately in this
case, rotations of the two mirror planes about the axis of their intersection
are unobservable, and thus two images are not sufficient [7].

From 3 images with 3 points in each, there are 18 scalar measurements
(cf. (6)) and 15 unknowns; 6 from {§R,“pp}, and 3 for each mirror configu-
ration {n;,d;} for j =1...3 (cf. (5)). This is an overdetermined system that
is nonlinear in the unknown variables. Using P3P as an intermediate step,
and momentarily ignoring multiple solutions, we have constraints of the form
(11), (12) for each image.

For each pair of images, j,7/ € {1...3}, let the unit vector mj,,, be
perpendicular to both nj;, and n; (i.e., n;rmjj/ = n;r,mjj/ = 0). Clearly,
m;;; = om; X nj, where o is a scaling constant to ensure unit length. Then,
the following relationship holds (cf. (11)):

AjA]T,mjj/ = (Ig — 2ananT) (13 — Qan/CnJT/) mjj/ = mjj/ (13)

3 In the case of 2 points, or 3 or more collinear points, rotations about the line that
the points lie on will not be observable.
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Thus, by solving for the eigenvector corresponding to the unit eigenvalue of
AjAJT,, we determine m;;, up to sign (it can be shown that AjA;f, is a special
orthogonal matrix with two complex conjugate eigenvalues, and one eigenvalue
equal to one). Employing the properties of the cross product, we obtain?
mj3 X mjg mo; X Mo3 mi3 X mMo3
|[my3 x mys|| [lma; X mys|| |[my3 x mas||

Once we have determined the unit vectors corresponding to the 3 mirror
planes, the rotation matrix, gR, can be computed independently from 3 sets
of equations:

GR;=(I—2nml)A;, j=1...3 (15)

In order to utilize all the available information, and to minimize numerical
errors, we want to compute an “average” $R from these 3 sets of equations.
However, employing the arithmetic mean is inappropriate since the property
of orthonormality is not maintained. We address this issue with the procedure
described in Appendix A.

Once the rotation, gR, and the mirror normal vectors, n;, j = 1...3, are
determined, the remaining unknowns {“pg, di, d2, d3} appear linearly in
the constraint equations (cf. (12))

CPB
I—2n1nrlf) 2n; 0 O d b
I-2n,nl) 0 2n, 0 d1 = |by| ©Dx=c (16)
I-2n3nf) 0 0 2ng d2 bs
3

where D is a 9 x 6 known matrix, c is a 9 x 1 known vector, and x is the 6 x 1
vector of unknowns. The least-squares solution for x in this linear system is
x = Dfc, where DT denotes the Moore-Penrose generalized inverse of D. From
(14), (15), (23), and (16) the mirror configurations as well as the camera-to-
base transformation are computed.

Up to this point, we assumed that the P3P solution was unique for each im-
age. In general, however, there may be up to 4 solutions per image. Recall that
3 images are required to compute the camera-to-base transformation analyti-
cally, hence, there are up to 64 solutions for {§R, “pp,d;,ds,ds, ny,nz,n3},
arising from the 4 x 4 x 4 possible combinations of P3P solutions. If the mea-
surements were noiseless, we would expect that only one of these solutions
would yield zero reprojection error (i.e., would satisfy all constraints exactly).
This is because the problem at hand is over-constrained (18 constraints for
15 unknowns), and we expect to have a unique solution. In the presence of
pixel noise, none of the solutions will satisfy the measurements exactly, thus,
we choose the solution with the minimum reprojection error.

Moreover, when N, images are available, there are N; = (Z\;F) analytically
computed transformations. However, some of these may be inaccurate as a

* For the remainder of the paper, we drop the superscript ‘C” from n;, j =1...3.
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result of degenerate sets of measurements (e.g., when 3 images are all taken
from similar viewing angles). In order to identify the correct solution, we
employ spectral clustering to determine the largest set of similar solutions [18].
Specifically, we adopt the unit-quaternion representation of rotation [21], “ gz,
which corresponds to gR, and denote each solution as {ng), Cpggk)} for k =
1...Ns. To carry out spectral clustering, we define an affinity matrix, L, in
which each element is the Mahalanobis distance between a pair of solutions,
indexed by k and k'

_ 117 60
Ly = 665, 0] [(nglek) '+ (HIT'Hy) 1} LSPZZ,] (17)

where 00y is the quaternion error-angle vector between C(jgc) and C(jg/) [21],

and dprr = Cpgc) — Cpggkl) is the difference between the translation vectors.
The matrices Hy and Hy are the measurement Jacobians with respect to
the transformation [7], and T' = 071 is the covariance of the pixel noise.
For brevity, we do not discuss spectral clustering further here, but refer the
reader to [18] for details. We compute the transformation, {§R, “pg}, from
the largest spectral cluster. The rotation, %R7 is determined from (23) using
all the quaternions in the cluster (cf. Appendix A), and the translation, “pp,
is computed as the arithmetic mean of the translations in the cluster.

3.4 Refining the Solution

Due to the presence of pixel noise, and the fact that noise was not accounted
for in the analytical solution, the result of the procedure presented in Sec-
tions 3.2-3.3 may be coarse (cf. Section 4). Hence, we employ an MLE to
refine our analytically computed estimate. We now proceed with an overview
of the MLE for determining the unknown transformation between the cam-
era and base frame. Let the vector of all unknown parameters be denoted by
x. This vector comprises the unknown transformation, as well as {an, d;},
j=1...N., that describe each mirror configuration:

x= [°p} %G5 “nT d; ... 0} dn.]" (18)
Under the assumption of Gaussian pixel noise, the likelihood of the measure-
ments is given by:

Np N, Np N,
L(z:x) = [[ 1] ptziix) = 111
i=1j=1

i=1j=1

N, N, 1 i
H H 9ro2 exp[_ (Zijfhij(x)gagzijfhij (x))}
i=1j=1 0y m

9 ! 5 exp|:_ (zijfh(cj p;)gTSZij*h(cj p;))
To3 o2
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where the dependence on x is explicitly shown (cf. (5), (6)), and N, is the
total number of points observed in each of the N, images. Maximizing the
likelihood is equivalent to minimizing its negative logarithm, or minimizing
the cost function:

Np N

J(x) =Y (zi; — hi;(x) " (zi; — hij(x)) (19)

i=1 j=1

This is a nonlinear least-squares problem, and thus we employ Gauss-Newton
iterative minimization for estimating x. At each iteration, indexed by ¢, the
estimate is changed by:

-1
oxO= | S HYTHY | HDT (5 - by ()
i,J .3

where Hgf) is the Jacobian of the measurement z;; with respect to x, evaluated

at the current iterate, x(©). Note that the analytically computed solution from
Sections 3.2-3.3 is utilized as the initial iterate, x(9), of the MLE. Since the
MLE is not a main contribution of this work, we limit our discussion here,
but refer the reader to [8] for more details.

4 Simulations

In this section, we study the accuracy of the analytically computed camera-to-
base transformation (cf. Sections 3.2-3.3). In particular, we investigate how the
accuracy is affected by the following parameters: (i) pixel noise, (ii) number
of images, (iil) distance from camera to mirror, and (iv) range of the mirror’s
angular motion. We consider a “standard” case, in which 3 points placed at
the corners of a right triangle with sides measuring 20 x 20 x 20v/2 cm are
observed in 200 images, while a mirror placed at a distance of 0.5 m is rotated
by 30° in two directions. Then, we vary each of the aforementioned parameters
individually, in order to examine its effect on the solution accuracy. In Fig. 3,
we plot the average RMS error for the position and attitude. These averages
are computed over 10 trials. Some key observations are the following;:

e Increasing the camera’s pixel noise decreases the accuracy of the computed
solution. In the extreme case when the camera measurements become sub-
stantially noisy, e.g., 0 = 2 pixels, the average RMS error is 1° in attitude
and 15 cm in position.

e As expected, increasing the number of images results in higher accuracy.
However, the improvement follows a “law of diminishing return,” i.e., when
a large number of images is already available, the impact of recording more
observations is smaller.
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Fig. 3. Average RMS error over 10 trials for attitude and position plotted versus:
(a) pixel noise, (b) number of images, (c) mirror distance, and (d) range of mirror
rotation.

e Changing the distance from the mirror to the camera has a significant
effect on the position accuracy. When the mirror is at a distance of 1 m,
the average RMS error for position is approximately 13 cm. The magni-
tude of this error suggests that the mirror distance should be kept small.
Additionally, it highlights the need to refine our analytically computed
transformation with an MLE. As we show in [8], the accuracy of the MLE
is approximately 5 times better in attitude, and 10 times better in position
compared to the analytical solution.

e Increasing the range of the mirror’s angular motion results in improved
accuracy. The effect on the attained accuracy is significant, and thus every
effort should be made to move the mirror in the widest range of motion
allowed by the camera’s field of view.

As a final remark, we note that using the analytical solution as an initial
guess for the MLE helps the latter converge to the correct minimum 100%
of the time. Moreover, the number of iterations required by the MLE was 7
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Fig. 4. (a) Observation of a point on the robot reflected in the mirror, (b) Image
with 3 fiducial points, captured during experimentation.

(compaired to 18 when using a naive initial guess), on average, which shows
that the availability of a precise analytical solution improves the speed and
robustness of the overall estimation process.

5 Experiments

The method described in the preceding sections was employed for computing
the transformation between a camera and a base frame attached on the robot-
body. For this purpose, 3 fiducial points were placed in known positions on the
robot as shown in Fig. 4(b). The origin of frame {B} coincides with the top-
left fiducial point, while both frames {B} and {C'} are right-handed systems
with the axes of { B} approximately aligned with those of {C}. These fiducial
points were tracked using the KLT algorithm [20] in 1000 images, recorded by
a Firewire camera with resolution of 1024 x 768 pixels.

A planar mirror was maneuvered in different spatial configurations, and
in distances varying between 30 and 50 cm from the camera, in order to
generate a wide range of views. All the measurements were processed to com-
pute the transformation analytically: Cpp = [~14.13 —10.25 —13.89] * cm,

and “qp = [~0.0401 —0.0017 —0.0145 0.9991] *. This initial solution was
refined using the MLE described in Section 3.4, to obtain a better esti-
mate for the transformation between the two frames of interest. The Gauss-
Newton minimization converged after 8 iterations, to the following solution

for the transformation: “pp = [—14.80 —15.96 —14.95]T cm, and “qp =
[0.0045 0.0774 0.0389 0.9962}T. The corresponding 30 accuracy bounds are
[1.1 1.6 5.0] mm for the position, and [0.2419 0.2313 0.0665] degrees for the

orientation estimates. We point out that the estimates agree with our best
guess from manual measurement. We believe that the attained accuracy (given
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by the 30 bounds from the MLE) is sufficiently high for most practical appli-
cations.

6 Conclusions and Future Work

In this paper, we propose a method for computing the 6 dof transformation
between a camera and a base frame of reference. A mirror is maneuvered in
front of the camera, to provide observations of known points from different
viewing angles and distances. These measurements are utilized to analytically
compute the camera-to-base transformation, and the solution is refined using
a maximum-likelihood estimator, which produces estimates for the camera-
to-base transformation, as well as for the mirror configuration in each image.
The approach was validated both in simulation and using real-world exper-
imentation. One of the key advantages of the proposed method is its ease
of use; it only requires a mirror, and it provides a solution with as little as
3 points viewed in 3 images. When more information is available, it can be
incorporated to produce a more accurate estimate of the transformation.

In our future work, we will investigate the feasibility of mirror-based robot-
body cartography (briefly discussed in Appendix B). Furthermore, we plan to
extend this method to the case where the coordinates of the points in the base
frame are not known a priori, but are estimated along with the camera-to-base
transformation and the mirror configurations.

Appendix A

In this section, we describe the procedure we employ for computing an “av-
erage rotation,” given N, rotation estimates g;,j = 1...N,. We adopt the
quaternion notation from [21] and denote the quaternion of rotation arising
from the jth set of equations as g;, which corresponds to §R; (cf. (15)). As-
suming that ¢ is the optimal estimate, and employing the small error-angle
approximation, we write the following expression for the error in each of the

(jjSZ

_ k;00; )

qj®q1:{jl j}, j=1...N, (20)
where ® denotes quaternion multiplication, k; is the unit-vector axis of rota-

tion, and 66; is the error angle between the two quaternions. Rewriting this
last expression as a matrix-vector multiplication [21], yields

N k;00; .
L(qj)qlz{al a], j=1...N, (21)
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where £ (g;), is the left-side quaternion multiplication matrix parameterized
by g;. Projecting this relation, to keep only the error components, we obtain:

PL(G)q =kl j=1...N, (22)
where P = [13 ngl]. Stacking these relations, we have

PL(q1) k1661

: g = : (23)
PL (v, kv, 0,

Our goal is to find the g—! that minimizes the norm of the right-hand side.
This occurs when g~ = v (0ynin), i-e., we select g~* to be the right singular
vector corresponding to the minimum singular value of the 3N, x 4 matrix
multiplying g=! in (23). After finding g~ by SVD, we compute the optimal
estimate for the rotational matrix R = R.(q), which is the rotational matrix
parameterized by the quaternion g.

Appendix B

We hereafter address the problem of mirror-based robot-body cartography.
That is, building a 3D map of the robot body utilizing mirror reflections. We
assume that in addition to the 3 points which are known in the robot body
frame, we observe another point, p,, which is unknown in the body frame.
From one image, we have (cf. (4)):

scp;O =(Is - 2CnCnT) SRPp, + (Is — 2CnCnT) “pp +2d°n (24)

where s is an unknown scale factor and Cpim is the unit vector along the
direction of “p! . Premultiplying both sides by the reflection matrix yields

s (I; —2n%n") “p), = GRPp, + “pp — 2d°n (25)

We assume that the transformation from {B} to {C}, as well as the mirror
configuration have been determined using the method outlined in this pa-
per. Hence, the quantities {5R, “pp,d, “n} are known and Cp;m is measured
(through the image reflection), while the quantities {s, ®?p,} are unknown.
From a single image, there are 3 constraints (cf. (25)) and 4 unknowns; hence,
we can constrain Pp, to lie on a line parameterized by s. If the point is
observed in 2 consecutive images, then we will have 6 constraints and 5 un-
knowns, 3 corresponding to the unknown point’s coordinates and 2 to the
unknown scale factors. In this case, we expect that Zp, can be determined
uniquely.

In fact, this problem is analogous to “triangulation” of a point from two
image views ([6], ch. 12). It is solvable when the origin of the camera frame



Mirror-Based Extrinsic Camera Calibration 15

is different for the two views. In our case, this corresponds to the quantity
d°n changing. Thus, it suffices to either change the distance to the mirror,
or the mirror’s orientation with respect to the camera. We expect that the
location of every unknown point on the robot-body, which is visible in the
mirror reflections, can be determined in the body frame of reference, given
that it can be reliably tracked in at least 2 images taken from different views.
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